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Abstract. We present a mobile robot that autonomously generates be-
haviors to calibrate its intuitive-physics engine, also known as the �Game
Engine in the Head� (GEITH). Most POMDP and Active Inference learn-
ing techniques operate in a closed world in which the set of states is
de�ned a priori. However, implementing an �innate� GEITH and a set of
interactive behaviors allowed us to avoid these limitations and design a
mechanism for information search and learning in an open world. The re-
sults show that over a few tens of interaction cycles, the robot's prediction
errors decrease, which shows an improvement in the GEITH calibration.
Moreover, the robot generates behaviors that human observers describe
as playful.

Keywords: Active inference · developmental learning · enaction · in-
trinsic motivation · robotics · core knowledge.

1 Introduction

In their book �The pragmatic Turn�, Engel, Friston, and Kragic [2] advocate a
shift from a representation-centered perspective to an �action-oriented� perspec-
tive on cognition. Aligned with this shift, we present a robotics implementation
to study the intricacy between action and perception. Closely related to prag-
matic philosophy, Whitehead's process philosophy proposes useful concepts to
describe perception from entities having unconscious experience of connection
to the world, which he calls enduring objects [23]. He distinguishes between
two modes of perception: the mode of presentational immediacy and the mode
of causal e�ciency [17]. We apply these concepts to robotics: sensory input is
provided to the robot in the mode of presentational immediacy, and the robot
learns spatio-sequential patterns of actions and outcomes that account for the
causal-e�ciency mode of perception.

Karl Friston and his research group have proposed Active Inference as a
method to interactively learn the causes of sensory signals by minimizing free
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energy, or equivalently, prediction error [3]. Active inference has been used in
the framework of Partially Observable Markov Decision Processes (POMDPs)
to allow arti�cial agents to learn a causal model of the environment that they
can only partially observe [18]. The causal model uses the distribution of the
probability of each possible state of the world. In essence, at each instant, the
agent estimates which states are the most or least likely to be the actual state of
the world. The expected information gained to enhance this estimate is involved
when selecting the next action. Active inference has been used in robotics [11]
but generally under closed-world settings in the sense that the set of possible
states is known a priori�a requirement for most of the mathematical apparatus
of active inference.

When the robot is thrown into an open world, the problem of learning the
cause of sensory input remains open. The POMDP and active inference literature
suggest that the robot needs prior assumptions about the world to cope with
complexity [7]. The present study examines how the �Game Engine In The head�
(GEITH) can work as a suitable prior assumption that an autonomous robot
could use to maintain a causal model of perception in the open world and reduce
prediction errors.

Joshua Tenenbaum and his research group have proposed GEITH [21] as the
capacity of cognitive beings to simulate the basic dynamics of physics and inter-
actions. In the brain, the GEITH rests on structures that are partially prede�ned
by genes and then completed through ontogenetic development. Similarly, it is
possible to endow arti�cial agents and robots with a prede�ned software game
engine and expect them to re�ne the parameters of their game engine and mod-
ify their predictions through ongoing interaction. The re�nement of the game
engine is assessed through the prediction error of sensory signals. The decrease
in prediction errors shows an improvement of the game engine.

Compared with general Bayesian models classically used in active inference,
GEITH adds the assumption that all the sensorimotor experiences can be local-
ized in the 3D Euclidean space, at least approximately. It implements prede�ned
linear-algebra functions to compute spatial transformations (rotations and trans-
lations) between frames of reference.

2 Our hypothesis

We comply with active inference theory in several regards. Firstly, we do not
assume that sensory signals are representational of the state of the world. The
world is hidden to the agent so that a given state may return contrary sensory
signals when acted on di�erently by the agent. This implies a �conceptual inver-
sion� of the interaction cycle in which action comes �rst and the sensory signal
comes second as an outcome of action. Secondly, we do not provide the agent
with presupposed ontological knowledge about entities in the world. The agent
must infer the presence of causes in the world through patterns of interactive
experience. Thirdly, no extrinsic goal is encoded in the agent in the form of goal
states that the agent should search based on reward or other criteria. However,
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we may associate some prior preference with interactions. In short, the agent
has no rewarding world states but has rewarding interactions. For a deeper ex-
amination of these principles in relation to the active inference literature, we
refer the reader to [7].

We also adopt prediction error as a measure of the quality of the agent's
world model. However, we are not using the gradient descent of the prediction
error as a motivational principle to drive the learning process. As we develop,
our agent is not always driven by a value optimization process; it may also
enact behaviors that we call disinterested. Disinterested behaviors can consist of
aimless innate tendencies, or individual habits taken through the agent's lifetime.
In this implementation, the reduction of prediction errors is not a means of
improving the world model, but a consequence of its improvement.

We are using a cognitive architecture designed previously based on senso-
rimotor and enactive principles [7]. The present article reports the integration
of the new GEITH module within this cognitive architecture, as illustrated in
Figure 1. The GEITH supports the simulation of behaviors before their selection
by the cognitive architecture and their enaction by the robot. At the beginning
of each interaction cycle, the simulation computes the predicted outcome. At the
end of the interaction cycle, the predicted outcome is compared with the actual

outcome to calculate the prediction error. We investigate the core elements of
the GEITH that are needed for the agent to reduce prediction error.

We draw inspiration from studies on core knowledge in the brains of animals
and human infants. For example, Elizabeth Spelke and her colleagues argued for
the existence of two core geometry systems that �evolved before the emergence
of the human species�: �The core navigation system captures absolute distance
and sense [..] but not relative length or angle; the core form analysis system does
the reverse� [19, p. 2789]. We start by implementing the minimal requirements
she deems necessary for both systems, namely the ability to handle points in
spatial memory, the foundational elements of Euclidean geometry.

Our cognitive architecture encodes behaviors as composite interactions which
are sequences of primitive interactions. A primitive interaction is a control loop

that involves actuator commands, expected sensory feedback, spatio-temporal
attributes, termination conditions, termination outcome, and prior preference.
Examples are given in Section 3. GEITH may consider some of the outcomes
as the result of interaction with �something� in the environment. In this case,
the GEITH instantiates a data structure called a phenomenon5 and localizes
this phenomenon at the position of the interaction in spatio-sequential mem-
ory. Next, GEITH simulates subsequent interactions with phenomena to predict
future outcomes.

We seeded the cognitive architecture with �innate� composite interactions
that cause the robot to explore the environment and interact with points en-
countered on the �oor (Fig. 1, top center). In other studies, we implemented the

5 Common-sense usage of the term phenomenon: �something� that a cognitive being
perceives in the environment. Technically: �any useful grouping of a subset of spatio-
temporal patterns experienced by an agent in an environment� [20, p. 8].
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Fig. 1. The game engine within the cognitive architecture (derived from [7], Fig. 6).
Bottom: the history of interactions enacted over time. Rightward triangles: forward.
Leftward triangles: backward. Squares: swipe. Circles: turn. shade: outcome white

or black. Center: the GEITH. Red hexagon: the focus of attention localized at the
position of the phenomenon. Magenta hexagon: the prompt is the localization of the
next selected interaction's destination: swipe to the right. Left: the types of phenomena
inferred through interactive experience. Solid objects, walls, and other robots can be
detected by the echo-localization sensor, but are not present in this experiment. Top
center: prede�ned composite interactions and GEITH parameters. Top right: three-
dimensional emotional state based on dopamine (DA), serotonin (5-HT), and nor-
adrenaline (NA). Right: the cognitive architecture selects the next behavior based on
the emotional state and the expected outcome predicted by the GEITH.

learning of new composite interactions [8], but here we only examine the re�ne-
ment of the GEITH parameters allowing the tuning of primitive interactions to
reduce the prediction error.

The cognitive architecture uses variables that represent the robot's emotional

state to select composite interactions to try to enact. We use Hugo Lövheim's
�cube of emotions� [12] as a basic emotional model based on three neurotrans-
mitters: dopamine (DA), serotonin (5-HT), and nor-adrenaline (NA) (Fig. 1,
top right). This model associates dopamine with pleasure and reward seeking
behavior, serotonin with well-being and playful behavior, and nor-adrenaline
with responses to arousal and stress. It has been used successfully for simple
emotional robotics. Our robot visually indicates its predominant neurotransmit-
ter level using an intuitive color code studied by Max Talanov and his team:
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green for dopamine, white for serotonin, red for noradrenaline, and blue when
all three neurotransmitter levels are low [1].

The GEITH implements two levels of spatio-sequential working memory:
egocentric and allo-phenomenon-centric (Fig. 1, center). The interactions and
displacements are received in the egocentric reference frame based on the po-
sition of sensors and translation speed given as GEITH parameters, and the
yaw measured by the Inertial Measurement Unit (IMU) which plays a similar
role as the vestibular system (Fig. 2, top right). When the robot encounters
a new phenomenon, the GEITH instantiates a new allocentric reference frame
centered on this phenomenon to track the displacement of the robot relative to
this phenomenon (Fig. 2, bottom right). Comparable mechanisms of coordinate
conversion have recently been found in the brain [22] and implemented in other
software cognitive architectures [15]. Phenomenon-centric frames relate to Je�
Hawkins' thousand brain hypothesis [9], according to which the brain records
thousands of small spatio-temporal models to memorize interactions with di�er-
ent kinds of object.

Once the robot has selected an object in the environment, its serotonin level
increases, which triggers behaviors of interaction with this object to calibrate its
GEITH parameters. Phenomenon-centric memory is discretized into a hexagonal
grid inspired by grid cells in the entorhinal cortex [13]. The cognitive architecture
uses this grid as a small �nite discrete model in which to search for information
and optimize it.

3 Experiment

We designed a mobile robotic platform called Petitcat6 based on the Osoyoo

robot car [14]. The experiment reported here uses only two sensors. The �oor

luminosity sensor is a bar of 5 infrared-re�ective sensors directed to the �oor.
From this bar of sensors, we retrieve 4 possible signals: none, left, front, or
right signaling the absence or relative position of a black tape present beneath
them. The IMU measures the yaw during the enaction of interactions. Note that
Petitcat cannot see the black tape from a distance. He has no camera, lidar, or
odometer. What looks like eyes on his head is an ultrasonic echo-localization
sensor not exploited in this experiment. The emotion indicator is an RGB LED
(Fig. 2).

The C++ software running on the robot's Arduino board controls the en-
action of primitive interactions. A personal computer implements the GEITH
and the cognitive architecture that remote controls the robot via Wi-Fi. The
cognitive architecture selects the primitive interaction to try to enact and sends
it to the robot. The robot tries to enact it and sends the outcome back to the
PC. The code is open source and shared online [6].

For this experiment, we de�ned four possible commands: forward, backward,
swipe, and turn. Forward and backward are longitudinal translations. Their

6 Sections 3 and 4 personalize the robot by name and pronoun to enhance readability.
We do not claim that he has a psychology or gender.



6 Georgeon, de Montéra, and Robertson

Omni-directional wheels

Floor luminosity sensors

Emotional indicator

Focus of attentionBlack floor detection events

Echo detection events

Echo-localization sensor

Inertial measurement unit

Fig. 2. Screenshot of a video example run [4]. Left: Petitcat playing with a point made
of a piece of black tape on the �oor. Top right: Petitcat's egocentric memory. Black
segments: black tape detection events. Bottom right: phenomenon-centric memory.
Black hexagon: the point phenomenon used as origin of the allocentric reference frame.
Yellow hexagons: echo measured with the sonar. Red hexagon: focus of attention.

spatio-temporal attribute is the target duration (�oat). Swipe is a lateral trans-
lation. Its spatio-temporal attributes are the direction (left or right) and target
duration (�oat). Turn consists in turning in place. Its spatio-temporal attribute
is the target yaw (�oat), negative when counter-trigonometric.

The control loop monitors the elapsed time, yaw, and �oor luminosity. The
termination conditions are reaching the target duration or yaw, or detecting the
black tape, making two possible outcomes: white or black. This gives eight prim-
itive interactions identi�ed by their tuple ⟨command, outcome⟩: 4 commands ×
2 outcomes. All interactions are given a zero prior preference except ⟨forward,
white⟩ which has a positive one. Additionally, the robot returns the measured
spatio-temporal attributes: measured duration (�oat), measured yaw (�oat), and
black tape detection (none, left, front, right).

When the black tape is detected, the movement is interrupted and a �re�ex�
movement is performed to withdraw from the tape by a few centimeters. When
detection is on the side, this withdrawal includes a rotation to the opposite side,
which tends to bring the robot back into a position perpendicular to the tape.
This behavior was implemented to prevent the robot from falling o� a table or
exiting the arena.

We seeded the cognitive architecture with the four composite interactions
below, which constitute �innate� ways for Petitcat to interact with points. The
GEITH tries to simulate them, computes their spatio-temporal attributes ac-
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cording to the position of the phenomenon in memory, and proposes those that
are feasible in the current context.

1. ⟨⟨forward, black⟩⟩
2. ⟨⟨turn, white⟩, ⟨forward, black⟩⟩
3. ⟨⟨swipe, white⟩, ⟨forward, black⟩⟩
4. ⟨⟨swipe, white⟩, ⟨turn, white⟩, ⟨forward, black⟩⟩

Neurotransmitter levels can vary from 0 to 100 and are initialized at 50. DA
prevails in case of equality. The prevalence of DA makes Petitcat initially select
the ⟨forward, white⟩ interaction because it has a positive prior preference. When
he detects a point (by surprise), 5-HT increases to its max. The prevalence of
5-HT and the presence of a point phenomenon in memory trigger the selection
of innate interactions with the point. If the prediction errors do not decrease
(that is, the prediction is not longer improving), 5-HT decreases. When 5-HT
drops below or equal to DA, the ⟨forward, white⟩ interaction is again selected,
causing Petitcat to explore new destinations.

Prediction errors may concern both the outcome of primitive interactions
and the spatio-temporal measures. Prediction errors on the outcome (black
predicted but white occurred, or the reverse) mean that the selected primitive
interaction failed and another interaction was actually enacted instead. Failing
primitive interactions cause the composite interaction to which they belong to
abort, and NA to rise to its max.

The GEITH uses a focus of attention point and a prompt point to compute
the spatio-temporal attributes of interactions (Fig. 1, center). When Petitcat
interacts with a point, the GEITH places the focus of attention at the place of
the phenomenon. A failure to interact with the point means that the localization
of the phenomenon in memory is erroneous. The high NA level that occurs in
case of failure causes the GEITH to move the focus of attention to another cell in
phenomenon-centric memory in search of the point. Cells compete to catch the
focus with preference given to those closer to the last detected position of the
phenomenon but having gone the longest period since last being visited. The
interactions with the point continue afterward based on the focus in di�erent
cells. NA is reset to 50 if Petitcat �nds the lost point; otherwise, it progressively
decreases until it drops below 50 causing Petitcat to abandon the search.

In addition to the number of failed interactions, we also expect the prediction
errors of the yaw and of the forward duration to decrease as the GEITH adjusts
its parameters. Our GEITH has about 20 parameters, but this experiment only
involves FLOOR_SENSOR_POSITION, FORWARD_SPEED, WITHDRAWAL_DISTANCE, and
SIDE_WITHDRAWAL_YAW. Note that GEITH has no means to infer the absolute
values of these parameters but can only adjust them in relation to each other.
The GEITH cannot either predict that the point will be detected on the side
of the �oor luminosity sensor, which will cause a withdrawal with rotation. The
cognitive architecture makes the robot aim straight at the point. The GEITH
thus always predicts a straight withdrawal.
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4 Results

Several videos of experiment runs are available online [5]. Here we analyze the
representative run recorded in [4]. In this run, Petitcat encountered the point in
Step 1 and interacted with it up to Step 60. In Step 17, it missed the point, but
found it again in Step 20. This is shown in the outcome code prediction error

plot in Fig. 3. The fact that Peticat did not miss the point after Step 20 shows
an improvement of the GEITH parameters.

0 10 20 30 40 50 60
Step

1

0

1

2

(0
/1

)

Outcome code prediction error

Fig. 3. Outcome prediction error plot: 0 if predicted outcome = actual outcome (suc-
cessful interaction), 1 otherwise (failed interaction). Step 0: Petitcat moved forward.
Step 1: he unexpectedly detected the point. Step 17: he expected to detect the point
while translating forward but missed it. Step 18: he expected to not detect the point
while turning but detected it. Step 20: he did not predict detecting the point but did.
Step 63: As he moved away from the point, he did not expect to detect the arena
border.

As explained above, the GEITH cannot predict when Peticat will detect the
point on the side. This can cause large yaw prediction errors because the robot
unexpectedly turned during withdrawal. Fig. 4 shows these prediction errors that
do not improve over time.

The GEITH simulates turning while withdrawing based on the SIDE_WITH-
DRAWAL_YAW parameter. To adjust this parameter, the GEITH must compute
the yaw residual error that is left when knowing on which side the point was
detected. Fig. 5 shows that the residual yaw error decreases as the robot adjusts
the SIDE_WITHDRAWAL_YAW parameter.

The adjustment of FORWARD_SPEED and WITHDRAWAL_DISTANCE allows for a
visible decrease of the forward-duration prediction error shown in Fig. 6.
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Fig. 4. Yaw prediction error plot. The prediction errors come from di�erent causes
which makes the interpretation of the plot di�cult. Points above 20 or below -20 are
large prediction errors occurring when Petitcat turned while withdrawing because the
GEITH did not predict detecting the point on the side.
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Fig. 5. Yaw residual error of interactions that have a black outcome. It shows a sig-
ni�cant decrease as the robot interacts with the point.
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Fig. 6. Duration prediction error for forward interactions. Step 1 and 20: the forward
translation was unexpectedly interrupted by the point detection. Step 17: the forward
duration was longer than expected because the robot did not detect the point. Except
for these events, the plot shows that the forward duration prediction error decreases as
the robot is interacting with the point from Step 1 to 62. On Step 63: the robot moves
away from the point and a forward duration prediction errors occur as he encounters
a new object: the border of the arena.

5 Conclusion

We demonstrated a simple robot that managed to reduce intuitive-physics pre-
diction errors in an open environment. We drew inspiration from theories posit-
ing core knowledge in the brain that have innate origins. Compared with our
previous studies base on the same robot and earlier iterations of the cognitive
architecture [7], the present study adds the model of emotion, the GEITH, and
a set of innate behaviors. These elements are hard-coded in the robot, but what
is not prede�ned is the set of world states and the ontology of objects in the
world.

When the robot �nds an object, it instantiates a small local model in the
reference frame of this object. This �nite discrete model lends itself to regular
active inference techniques. We continue studying how to optimize the process of
GEITH re�nement in such local models using the active inference python library
inferactively-pymdp [10]. This approach, however, remains dependent on the
causal structure of the GEITH itself. How the robot could improve the causal
structure of the GEITH or �nd exceptions remains an open question related to
explainable AI [20].

This study illustrates Whitehead's two modes of perception. Mode 1, presen-
tational immediacy (in the sense of �seeing a color�), corresponds to the robot's
boolean sensory input we label white and black. Mode 2, causal e�ciency (in
the sense of �seeing an object�), corresponds to the robot maintaining a causal
model of the point on the �oor. We expect the next step to involve mode-2

perception of lines between points, which could open the way to learning the
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compositionality of phenomena. We shall also examine how the robot can per-
ceive the appearance, disappearance, and displacement of objects.

Beyond studying perception, we follow a method that advances through
analogies between robots and natural organisms, aiming to enhance our un-
derstanding of the potential becoming of agency in robots. This method relates
to the method of transduction proposed by another philosopher of process phi-
losophy, Gilbert Simondon [16]. We try to design robots that mimic traits of
natural organisms such as perception, surprise, emotions, and preferences. We
are not claiming that the robot can actually experience these traits of agency, let
alone have sentience. The robot, nonetheless, generates behaviors that human
observers easily interpret as lifelike, which could �nd applications in companion
robotics. The robot seems to enjoy exploring for the mere pleasure of movement
as it lights up in green (DA prevails); it plays with the point as it does practicing
its skills as it lights up in white (5-HT prevails); it seems anxious to search for
the lost point as it lights up in red (NA prevails). This interpretation is also re-
inforced by seeing that the robot also turns its head in search of objects around
the arena. In future experiments, we would like to study more precisely to what
extent observers assign these subjective traits to the robot.

Acknowledgments. Dr. de Montera acknowledges support by ANR under contract
ANR-11-DPBS-0001. Dr. Robertson acknowledges that this material is based upon
work supported by the Defense Advanced Research Projects Agency (DARPA), USA
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