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MAGNETIC DIRAC OPERATOR IN STRIPS
SUBMITTED TO STRONG MAGNETIC FIELDS

LOÏC LE TREUST, NICOLAS RAYMOND, AND JULIEN ROYER

Abstract. We consider the magnetic Dirac operator on a curved strip whose
boundary carries the infinite mass boundary condition. When the magnetic
field is large, we provide the reader with accurate estimates of the essential and
discrete spectra. In particular, we give sufficient conditions ensuring that the
discrete spectrum is non-empty.

1. Motivations and main results

1.1. The magnetic Dirac operator on a strip. We perform the spectral anal-
ysis of magnetic Dirac operators on bidimensional strips.

The strips under consideration in this article are built from a smooth curve
without self-intersections γ : R → R2 (with |γ′| = 1) and from the application

Θ : Ω0 ∋ (s, t) 7→ γ(s) + tn(s) , (1.1)

where n = γ′⊥ is chosen so that (γ′,n) forms a direct orthonormal basis and
Ω0 = R × (−δ, δ) is a straight strip of width δ > 0 so small that Θ is injective.
The curvature κ of γ is characterized by

γ′′(s) = κ(s)n(s)

for all s ∈ R. To simplify the analysis, we only consider the case when the curvature
has compact support. Then, the strip is Ω = Θ(Ω0), which, for δ small enough, is
a smooth curved strip about the base curve γ (see Figure 1).

In order to define the Dirac operator with constant magnetic field B = 1, we
need an associated vector potential A : Ω → R2 (that is a function such that
∂1A2 − ∂2A1 = 1). Note that any two associated vector potentials yield unitarily
equivalent operators, given that Ω is simply connected. In such a geometric con-
text, there is a rather natural choice. Consider the bounded function ϕ0 on Ω0

given by

ϕ0(s, t) =
t2 − δ2

2
,

which satisfies curlA0 = 1, with A0 = ∇ϕ⊥
0 = (−t, 0). The following proposition

has been established in [4, Proposition 1.2].
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Figure 1. Typical Waveguide Profile

Proposition 1.1. Let ϕ̂0 = ϕ0 ◦Θ−1 ∈ C ∞(Ω). There exists a unique ϕ ∈ C ∞(Ω)

such that ∆ϕ = 1, ϕ|∂Ω = 0, and ϕ − ϕ̂0 ∈ S (Ω). Moreover, there exists c0 > 0
such that ∂Nϕ ⩾ c0 on ∂Ω, N being the outward pointing normal to the boundary.

Thanks to the function ϕ given in Proposition 1.1, we get the existence of a
smooth and bounded vector potential A = ∇ϕ⊥ on the curved strip Ω.

For h > 0, we consider the magnetic Dirac operators

Dh = σ · (p−A) =

(
0 dh,A

d×h,A 0

)
=

(
0 −2ih∂z − A1 + iA2

−2ih∂z − A1 − iA2 0

)
,

where p = −ih∇, ∂z = ∂1−i∂2
2

, ∂z = ∂1+i∂2
2

, and the Pauli matrices are given by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

and

Dh,0 = σ · (p−A0) =

(
0 −ih∂s − h∂t + t

−ih∂s + h∂t + t 0

)
,

with respective domains

Dom(Dh) = {ψ ∈ H1(Ω,C2) : −iσ3(σ ·N)ψ = ψ , on ∂Ω} ,
Dom(Dh,0) = {ψ ∈ H1(Ω0,C2) : −iσ3(σ ·N)ψ = ψ , on ∂Ω0} ,

where N is the outward pointing normal to the boundary ∂Ω (N = ±n). The
boundary conditions are the so-called infinite mass boundary conditions. By means
of the analysis in [1], we can prove that Dh and Dh,0 are self-adjoint.
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Remark 1.2. Note that the boundary condition can also be written as ψ2 = ±inψ1

where n = n1 + in2, (n1, n2) being the coordinates of n.

1.2. Main results. The aim of the article is to study the spectra of the operators
Dh,0 and Dh in the limit h→ 0 (which is equivalent to the large magnetic field limit,
with a magnetic field of strength h−1). Our first result describes their essential
spectra by providing the reader with asymptotic estimates of the negative and
positive thresholds of the essential spectrum.

Theorem 1.3. For all h > 0,

spess(Dh) = sp(Dh,0) = spess(Dh,0) .

Moreover, for all h > 0, there exist λ±ess(h) > 0 such that:

sp(Dh,0) = R \ (−λ−ess(h), λ+ess(h)) ,

and we have

λ+ess(h) = 2

√
h

π
e−δ

2/h(1 + o(1)) and λ−ess(h) = a0
√
h (1 + o(1)) ,

for some a0 ∈ (0,
√
2).

As expected, the essential spectra of Dh and Dh,0 coincide, since Ω looks like Ω0

at infinity. The constant a0 is the one appearing in [3, Theorem 1.15]: it represents
the spectral gap of the Dirac operator with magnetic field equal to 1 when h = 1
on a half-plane.

Remark 1.4. Note that one could relax our assumption that the curvature has
compact support by assuming that κ goes to 0 at infinity sufficiently fast.

Let us now discuss the existence of the discrete spectrum for Dh. To ensure its
existence, we will work under the following assumption.

Assumption 1.5. The function ϕ has a unique minimum attained at xmin(∈ Ω),
which is non-degenerate. Moreover, we have ϕmin = minΩ ϕ < minΩ0

ϕ0 = − δ2

2
and

lim inf |x|→∞
x∈Ω

ϕ(x) > ϕmin.

It is known from [4, Proposition 1.3] that Assumption 1.5 is satisfied when the
strip is straight away from a compact set, thin enough, and when the square of the
curvature κ of its base curve γ has a unique maximum, which is non-degenerate.

In order to formulate our main theorem, one will need the Segal-Bargmann space

B2(C) = {u ∈ O(C) : NB(u) < +∞} ,

where

NB(u) =

(∫
R2

|u (y1 + iy2)|2 e−Hessxminϕ(y,y)dy

)1/2

.
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One will also need the Hardy space H 2(Ω) on Ω, which is essentially made of
holomorphic functions on Ω having a trace on ∂Ω that is L2(∂Ω). The Hardy
space is equipped with ∥ · ∥L2(∂Ω). More details about the Hardy space and its
norm are given in Appendix A, see also the discussion in Section 1.3. The distances
associated with the above norms are denoted by distB and distH .

For k ∈ N∗ we set (we will write zmin instead of xmin when Ω is considered as a
subset of C)

Xk = {u ∈ H 2(Ω) ,∀j ∈ {0, . . . , k − 2} , u(j)(zmin) = 0 , u(k−1)(zmin) = 1} ,
Yk = {u ∈ C[X] , deg u = k − 1 , u(k−1)(0) = 1} .

Then we set dkH = distH 2(Ω)(0,Xk) and dkB = distB(C)(0,Yk).
Here comes our main theorem.

Theorem 1.6. Suppose that Assumption 1.5 holds.
(i) Let k ⩾ 1. Consider

λeffk (h) = inf
W⊂H 2(Ω)
dimW=k

sup
u∈W\{0}

h∥u∥2∂Ω
∥e−ϕ/hu∥2

,

Then, we have

λeffk (h) = h1−ke2ϕmin/h

(
dkH
dkB

)2

(1 + oh→0(1)) .

(ii) Consider N ∈ N. There exists h0 > 0 such that for all h ∈ (0, h0) the operator
Dh has at least N positive discrete eigenvalues (counted with multiplicities).
Denoting the first N eigenvalues by (λ+k (h))k∈{1,...,N}, we have for all k ∈
{1, . . . , N}

λ+k (h) ∼
h→0

λeffk (h) .

Remark 1.7.
(i) Theorem 1.6 establishes the non-emptyness of the discrete spectrum when

h is small enough. A similar question has recently been considered for the
Dirichlet-Pauli operator in [4] with some of the ideas from [2]: it solved
an open problem by P. Duclos and P. Exner (see [8] and the non-exhaustive
literature [6, 14, 10, 9] about waveguides, sometimes with magnetic fields). In
the present article, we also provide the reader with the one-term asymptotics
of the smallest positive eigenvalues and not only upper bounds.

(ii) Theorem 1.6 is an extension of [3, Theorem 1.12] to unbounded and non-
convex domains. We underline that some of the geometric quantities are
related to the Hardy space on the curved strip H 2(Ω) and that the polyno-
mials do not belong to this space, contrary to the case when Ω is bounded.
This is the reason why the constants attached to the Hardy space are writ-
ten in a way slightly different from [3, Theorem 1.12]. This absence of the
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polynomials in the Hardy space has important consequences on the proof,
see Section 1.3 below.

(iii) The case of magnetic Dirac operators on annuli has been considered in [11,
12].

(iv) Having Remark 1.4 in mind and if one only assumes that κ goes to 0 at
infinity (without being 0), we can consider the case when γ is analytic. In
this case, similarly to [3, Theorem 1.22], we may prove that the smallest (in
absolute value) negative eigenvalue (whose positive part is denoted by λ−1 (h))
exists as soon as h is small enough. Moreover, for some c0 > 0, we have

λ−1 (h) = a0
√
h+ h

3
2 c0λ1

(
D2
s −

κ(s)2

12

)
+ o(h

3
2 ) ,

where the groundstate energy satisfies λ1
(
D2
s −

κ(s)2

12

)
< 0.

Remark 1.8. There are explicit expressions for the constants (dkB)k and (dkH )k.
(i) The sequence of NB-orthogonal monic polynomials (Pm)m⩾0 with

Pm : z 7→ zm +
m−1∑
n=0

cm,nz
n ,m ∈ N , cm,n ∈ C ,

obtained after a Gram-Schmidt process over the family (zk)k⩾0 satisfies for
m ⩾ 0, (dm+1

B ) = NB(Pm)/m!,

Pm : z 7→

{
zm if a = b ,∣∣ b−a
ab

∣∣m/2Hem (z√∣∣ abb−a∣∣) if a ̸= b ,

and

NB(Pm)
2 =

2πm!(a+ b)m

(ab)m+ 1
2

,

where a/2, b/2 are the eigenvalues of Hessxmin
ϕ and Hem are the Hermite

polynomials

Hem : z 7→ (−1)mez
2/2 dm

dzm
e−z

2/2 =

⌊m/2⌋∑
l=0

(−1)lm!

2ll!(m− 2l)!
zm−2l .

Therefore, we have

(dkB)
2 = NB(Pk−1)

2/[(k − 1)!]2 =
π(B(xmin))

k−1

2k−1(k − 1)!(det Hessxmin
ϕ)k−

1
2

, k ⩾ 1 .

The isotropic case a = b is straightforward : (Pn)n⩾0 = (zn)n⩾0. The
anisotropic case is a consequence of [16] with A = min

(
a
b
, b
a

)
and a change

of scale z̃ =
∣∣ b−a
ab

∣∣ z (see also [5]). For a general presentation on orthogonal
polynomials, see [7, Section 2.3.4].
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(ii) For k ⩾ 1,

dkB = inf

{
∥u∥H 2(Ω)

|u(k−1)(xmin)|
, u ∈ H 2(Ω) ,

u(j)(zmin) = 0 ,∀j ∈ {0, . . . , k − 2} ,
u(k−1)(zmin) ̸= 0

}
.

On the unit disk D, the sequence (zk−1)k⩾1 realizes the minima and their
values are

( √
2π

(k−1)!

)
k⩾1

. Notice then that the sequence
(
Λzk−1

)
k⩾1

realizes the
minima on Ω where Λ is the isometric isomorphism defined by

Λ: H 2(D) −→ H 2(Ω)

u 7−→
[
z 7→

√
φ′(z)u ◦ φ(z)

]
,

φ being a biholomorphism from the unit disk D to Ω such that φ(0) = zmin.
Therefore, we have

dkH =

√
2π

(k − 1)!
|φ′(0)|k−

1
2 .

(iii) We have for k ⩾ 1,(
dkH
dkB

)2

=
2k|φ′(0)|2k−1(det Hessxmin

ϕ)k−
1
2

(k − 1)!B(xmin)k−1
.

1.3. Organization and strategy. Section 2 is devoted to the proof of Theorem
1.3. In Section 2.1, we show that Dh and Dh,0 have the same essential spectrum, see
Proposition 2.2. To do so, we prove that Dh is unitarily equivalent to an operator
on the straight strip Ω0 and we use the Weyl criterion. In Section 2.2, we study the
spectrum of Dh,0 be means of the Fourier transform in the longitudinal variable. We
get a family of one dimensional Dirac operators (Dh,0,ξ)ξ∈R (which have compact
resolvent). For each ξ, the spectrum of Dh,0,ξ is made of positive eigenvalues
(µ+

n (ξ, h))n⩾1 and of negative eigenvalues (−µ−
n (ξ, h))n⩾1, which are even function

of ξ (see Lemma 2.5). Then, we focus on a description of µ+
1 (ξ, h), which is

characterized in Proposition 2.4. This characterization implies an estimate of
infξ∈R µ

+
1 (ξ, h), see Proposition 2.7, and of the threshold λ+ess(h) = infξ∈R µ

+
1 (ξ, h),

see Corollary 2.8. Section 2.4 is devoted to the estimate of infξ∈R µ−
1 (ξ, h) = λ−ess(h).

In Section 3, we prove Theorem 1.6. Sections 3.1 (upper bound) and 3.2 (lower
bound) establish Point (i). We emphasize that the polynomials do not belong to
the Hardy space on Ω and that Taylor expansions near xmin have to be replaced
by a suitable "Taylor expansion" in the Hardy space TaylH 2(Ω). More precisely,
one has to approximate functions by functions in the Hardy space having the same
Taylor expansion at xmin, see Notation 3.6 and Lemma 3.7. Up to this key idea
(which actually allows to deal with general unbounded domains), the proof follows
then the same steps as in [3, Section 3]. Section 3.3 is devoted to the proof of Point
(ii). We start by introducing some µk(h) in (3.15). These numbers will turn to be
exactly the λ+k (h). To check that, one first must check that they do not belong to
the essential spectrum when h is small enough, see Proposition 3.11. The analysis
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of the Fredholmness is the key to deal with the fact that Dh does not have compact
resolvent. A crucial point that allows the connection between the µk(h) and the
λ+k (h) is Proposition 3.14 (iv), see Section 3.3.3.

2. Estimate of the essential spectrum

2.1. The operators Dh and Dh,0 share the same essential spectrum. For
(s, t) ∈ Ω0 we set

m(s, t) = 1− tκ(s).

Then we consider on L2(Ω0;C) the operator Dh defined by

Dh =
σ1
2

(
m−1

(
hDs + t− t2κ

2

)
+

(
hDs + t− t2κ

2

)
m−1

)
+ σ2(hDt) ,

on the domain

Dom(Dh) = {φ ∈ H1(Ω0;C2) : φ2(s,±δ) = ∓φ1(s,±δ),∀s ∈ R}.

The following lemma follows from standard arguments (see for instance [13,
Theorem 2.1]).

Lemma 2.1. The operator Dh is unitarily equivalent to Dh.

Proof. Let us describe the action of Dh in the tubular coordinates (s, t) given by
x = Θ(s, t) = γ(s)+tn(s). Since n = γ′⊥ and γ′′ = κn we can write JacΘ(s, t)−T =(
m−1γ′(s) ,n(s)

)
, and by the chain rule,

Θ∗∇x(Θ
∗)−1 = γ′m−1∂s + n∂t .

Let us also consider the new vector potential

Ã = JacΘ(s, t)T (A ◦Θ) =

(
m(A ◦Θ) · γ′
(A ◦Θ) · n

)
,

which satisfies curl Ã = 1− tκ(s). We obtain

Θ∗Dh(Θ
∗)−1 = Θ∗(σ·(p−A))(Θ∗)−1 = m−1(σ·γ′)(−ih∂s−Ãs)+(σ·n)(−ih∂t−Ãt).

This is an equality between unbounded operators on the weighted space L2(Ω0,mdsdt).
After conjugaison by m1/2, we obtain that Dh is unitarily equivalent to the follow-
ing operator on L2(Ω0,mdsdt).

m−1(σ · γ′)(−im1/2h∂sm
−1/2 − Ãs) + (σ · n)(−im1/2h∂tm

−1/2 − Ãt) ,

= m−1(σ · γ′)(−ih∂s − Ãs −
ithκ′

2m
) + (σ · n)(−ih∂t − Ãt −

ihκ

2m
) .

Let us recall that the Dirac equation is covariant. In particular, if γ′(s) = eiθ, then

eiσ3θ/2σ · γ′e−iσ3θ/2 = σ1 , eiσ3θ/2σ · ne−iσ3θ/2 = σ2 ,
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and
eiσ3θ/2(−ih∂s)e−iσ3θ/2 = (−ih∂s)−

hκσ3
2

,

so that a conjugaison by the rotor e−iσ3θ/2 leads to

m−1σ1(−ih∂s − Ãs −
ihtκ′

2m
) + σ2(−ih∂t − Ãt)

which can be rewritten in an explicitly symmetric form as
σ1
2

(
m−1(−ih∂s − Ãs) + (−ih∂s − Ãs)m

−1
)
+ σ2(−ih∂t − Ãt) .

Note also that by the covariance of the Dirac operator, this operator is equipped
with the infinite mass boundary condition on Ω0. Indeed, we have

eiσ3θ/2 (−iσ3σ · n) e−iσ3θ/2 = −iσ3σ2 = σ1

and φ2(s,±δ) = ∓φ1(s,±δ). Finally, we have

curl

(
−t+ t2κ

2
0

)
= 1− tκ = m = curlÃ ,

and that Ω0 is simply connected. Hence, there exists a change of gauge so that Dh

is unitarily equivalent to
σ1
2

(
m−1

(
−ih∂s + t− t2κ

2

)
+

(
−ih∂s + t− t2κ

2

)
m−1

)
+ σ2(−ih∂t) .

□

Proposition 2.2. We have

spess(Dh) = spess(Dh,0) .

Proof. Thanks to Lemma 2.1, we may focus on Dh. We have
Dh = Dh,0 +Ph ,

where Dh,0 = Dh,0 = σ1(hDs+ t)+σ2Dt and Ph = Vh+
1
2
(WhhDs + hDsWh) with

Vh = σ1

(
(m−1 − 1)t− t2κ

2m

)
, Wh = σ1(m

−1 − 1) .

Since κ is compactly supported, so are Vh and Wh. Let us explain why (Dh +
i)−1− (Dh,0+ i)−1 is compact. In virtue of the Weyl criterion, this will imply that
spess(Dh) = spess(Dh,0) and thus the conclusion.

We use the resolvent formula to get
(Dh + i)−1 − (Dh,0 + i)−1 = (Dh,0 + i)−1(Dh,0 −Dh)(Dh + i)−1

= −(Dh,0 + i)−1Ph(Dh + i)−1 .

Since Dh and Dh,0 are self-adjoint, hDs(Dh±i)−1 and hDs(Dh,0±i)−1 are bounded
from L2(Ω0,C2) to L2(Ω0,C2). Their adjoints (Dh± i)−1hDs and (Dh,0 ± i)−1hDs

can be extended to become bounded operators from L2(Ω0,C2) to L2(Ω0,C2).
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Moreover, by Rellich–Kondrachov theorem, (Dh±i)−1 and (Dh,0±i)−1 are compact
from L2(Ω0,C2) to L2

loc(Ω0,C2). Since, Vh and Wh are bounded and compactly
supported, we get that Wh(Dh± i)−1, Vh(Dh± i)−1, Wh(Dh,0± i)−1, Vh(Dh,0± i)−1

as well as their adjoints are compact operators from L2(Ω0,C2) to L2(Ω0,C2).
Therefore, we obtain that

(Dh,0 + i)−1hDsWh(Dh + i)−1 =
[
(Dh,0 + i)−1hDs

] [
Wh(Dh + i)−1

]
,

(Dh,0 + i)−1WhhDs(Dh + i)−1 =
[
(Dh,0 + i)−1Wh

] [
hDs(Dh + i)−1

]
,

(Dh,0 + i)−1Vh(Dh + i)−1 =
[
(Dh,0 + i)−1

] [
Vh(Dh + i)−1

]
,

are compact from L2(Ω0,C2) to L2(Ω0,C2). Therefore, (Dh + i)−1 − (Dh,0 + i)−1

is compact and the Weyl criterion gives the equality of the essential spectra. □

2.2. A fibered family of Dirac operators. By using the semiclassical Fourier
transform, we see that

Dh,0 =

∫ ⊕
Dh,0,ξdξ , (2.1)

with

Dh,0,ξ = (ξ + t)σ1 + σ2Dt =

(
0 ξ − h∂t + t

ξ + h∂t + t 0

)
,

with domain

Dom(Dh,0,ξ) = {ψ = (ψ1, ψ2) ∈ H1(I,C2), ψ1(±δ) = ∓ψ2(±δ)} .

Let us describe some properties of the operators (Dh,0,ξ)ξ. The associated dis-
persion curves are illustrated in Figure 2.

Proposition 2.3. Let h > 0. The following holds.
(i) For ξ ∈ R, the operator Dh,0,ξ is neither bounded from below nor from above,

it is self-adjoint, inversible and has compact resolvent. Its eigenvalues are
simple and denoted by

. . . ⩽ −µ−
2 (ξ, h) ⩽ −µ−

1 (ξ, h) < 0 < µ+
1 (ξ, h) ⩽ µ+

2 (ξ, h) ⩽ . . . .

(ii) For k ∈ N \ {0}, the map ξ 7→ µ±
k (ξ, h) is analytic and even.

The main tool in this study is the non-linear min-max characterization obtained
in [3] adapted to our setting.

Proposition 2.4. We have

µ±
1 (ξ, h) = min

ψ∈H1(I)\{0}

h∥ψ∥2∂I +
√
h2∥ψ∥4∂I + 4∥ψ∥2∥(±h∂t + t+ ξ)ψ∥2

2∥ψ∥2
.

Moreover, µ±
1 (ξ, h) is the smallest positive solution λ of

ℓ±1 (λ, ξ, h) = 0 ,
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Figure 2. Dispersion curves for h = 0.05

where ℓ±1 (λ, ξ, h) is the lowest eigenvalue of the self-adjoint operator L ±
λ,ξ,h whose

associated quadratic form is

Q±
λ,ξ,h(ψ) = ∥(±h∂t + ξ + t)ψ∥2 + λh∥ψ∥2∂I − λ2∥ψ∥2 , ∀ψ ∈ H1(I) .

In addition, we have for λ > 0,

|ℓ±1 (λ, ξ, h)| ⩾ λ|µ±
1 (ξ, h)− λ| .

2.2.1. Proof of the symmetry of the dispersion curves. To prove that the dispersion
curves are even, note that Ω0 is left stable by the point symmetry around 0.
The covariance of the Dirac operator is expressed on the fibered operators in the
following lemma (iσ3 being the rotor associated with the symmetry).

Lemma 2.5. Considering the unitary transformation S : ψ 7→ iσ3ψ(−·), we have,
for all ξ ∈ R, SDom(Dh,0,ξ) = Dom(Dh,0,ξ) and

S∗Dh,0,ξS = Dh,0,−ξ .

In particular, we have
µ±
k (ξ, h) = µ±

k (−ξ, h) .
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Remark 2.6. Note that the charge conjugation for the bidimentionnal Dirac op-
erator is C : ψ 7→ σ1ψ. For the fibered ones, it reduces to a multiplication by σ1
and to a change of sign for ξ. This leaves the domain Dom(Dh,0,ξ) stable. The
operator Dh,0,ξ is transformed into − ((ξ − t)σ1 + σ2Dt) (the magnetic field has
opposite sign).

2.2.2. Some elements of the Proof of Points (i) and (ii) of Proposition 2.3. The
proof follows classical steps as presented in [3, Proposition 4.2]. Let us recall why
Dh,0,ξ is inversible. Since the spectrum is discrete, it is sufficient to consider the
equation Dh,0,ξψ = 0. Let ψ ∈ ker(Dh,0,ξ). We have

(ξ − h∂t + t)ψ2 = 0 , (ξ + h∂t + t)ψ1 = 0 .

Then,
⟨(ξ − h∂t + t)ψ2, ψ1⟩ = 0 ,

and, by integration by parts,

⟨(ξ − h∂t + t)ψ2, ψ1⟩ = −h(ψ2(δ)ψ1(δ)− ψ2(−δ)ψ1(−δ)) = 0 ,

so that, using the boundary condition, ψ1(±δ) = ψ2(±δ) = 0. Thus, ψ1, ψ2

vanish at the boundary and solve first order linear ordinary differential equations,
therefore ψ = 0.

2.3. Study of µ+
1 (ξ, h). The following proposition presents some properties of the

first positive dispersion curve.

Proposition 2.7. (a) For all ξ, we have µ+
1 (ξ, h) ⩽ ν1(ξ, h) , with

ν1(ξ, h) :=
h(e−

(ξ−δ)2

h + e−
(ξ+δ)2

h )∫ δ
−δ e

−(ξ+t)2/hdt
.

(b) infξ∈R ν1(ξ, h) = ν1(0, h) = 2
√

h
π
e−

δ2

h (1 + oh→0(1)) .

(c) For all |ξ| > δ,

µ+
1 (ξ, h) ⩾ |ξ| − δ − h

|ξ| − δ
.

(d) For all ξ such that µ+
1 (ξ, h) ⩽

√
he−δ

2/h we have

µ+
1 (ξ, h) ⩾ ν1(ξ, h) (1 + oh→0(1))

with oh→0(1) uniform in ξ.

Proposition 2.7 gathers the ingredient to characterize the positive part of the
spectrum of Dh,0 as stated in Theorem 1.3.

Corollary 2.8. We have

sp(Dh,0) ∩ [0,+∞[= [λ+ess(h),+∞[ ,

with λ+ess(h) := infξ∈R µ
+
1 (ξ, h) = 2

√
h
π
e−δ

2/h(1 + oh→0(1)).
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Proof. We have
{µ+

1 (ξ, h) , ξ ∈ R} ⊂ sp(Dh,0) ∩ [0,+∞[ ,

and
λ+ess(h) = inf

ξ∈R
µ+
1 (ξ, h) = inf sp(Dh,0) ∩ [0,+∞[ .

By Point (c) of Proposition 2.7, we get that

{µ+
1 (ξ, h) , ξ ∈ R} = [λ+ess(h),+∞[ .

By Points (a) and (b) of Proposition 2.7, we also have that

λ+ess(h) ⩽ µ+
1 (0, h) ⩽ 2

√
h

π
e−δ

2/h(1 + oh→0(1)) .

Now, let (ξh) such that for all h, λ+ess(h) ⩾ µ+
1 (ξh, h)(1 + oh→0(1)). Points (b) and

(d) ensure then that

λ+ess(h) ⩾ µ+
1 (ξh, h)(1 + oh→0(1)) ⩾ ν1(ξh, h)(1 + oh→0(1)) ⩾ ν1(0, h)(1 + oh→0(1))

and the conclusion follows. □

2.3.1. Proof of Point (a) and (b) of Proposition 2.7. By considering the function
uξ(t) = e−

(ξ+t)2

2h , Proposition 2.4 implies Point (a). To prove (b), remark that

ν1(ξ, h) = he−δ
2/h e2ξδ/h + e−2ξδ/h∫ δ

−δ e
−2ξt/he−t2/hdt

,

and

∂ξν1(ξ, h) =
2e−δ

2/h(∫ δ
−δ e

−2ξt/he−t2/hdt
)2[(e2ξδ/h − e−2ξδ/h)

∫ δ

−δ
δe−2ξt/he−t

2/hdt

+ (e2ξδ/h + e−2ξδ/h)

∫ δ

−δ
te−2ξt/he−t

2/hdt
]
.

The quantity between the brackets equals∫ δ

−δ
(t+ δ)e(δ−t)ξ/he−t

2/hdt+

∫ δ

−δ
(t− δ)e−(δ+t)ξ/he−t

2/hdt ,

and also (by using t 7→ −t in the second integral)∫ δ

−δ
(t+ δ)e(δ−t)ξ/he−t

2/hdt−
∫ δ

−δ
(t+ δ)e−(δ−t)ξ/he−t

2/hdt

= 2

∫ δ

−δ
(t+ δ) sinh((δ − t)ξ/h)e−t

2/hdt .
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Thus,

∂ξν1(ξ, h) =
4e−δ

2/h(∫ δ
−δ e

−2ξt/he−t2/hdt
)2 ∫ δ

−δ
(t+ δ) sinh((δ − t)ξ/h)e−t

2/hdt ,

which is positive when ξ > 0. Therefore, the function ξ 7→ ν1(ξ, h) is even,
increasing on R+ and Point (b) follows.

2.3.2. Proof of Point (c) of Proposition 2.7. We consider the case ξ > δ. Let us
use Proposition 2.4 and consider ℓ+1 (λ, ξ, h) with λ = ξ − δ > 0. We have

Q+
λ,ξ,h(ψ) = ∥h∂tψ∥2 + ∥(ξ + t)ψ∥2 + 2hRe ⟨∂tψ, (ξ + t)ψ⟩+ λh∥ψ∥2∂I − λ2∥ψ∥2 ,

and, by integration by parts,

Q+
λ,ξ,h(ψ) = ∥h∂tψ∥2 + ∥(ξ + t)ψ∥2 − h∥ψ∥2

+ h(ξ + δ)|ψ(δ)|2 − h(ξ − δ)|ψ(−δ)|2 + λh∥ψ∥2∂I − λ2∥ψ∥2 .

Since ξ > δ we have ∥(ξ + t)ψ∥2 ⩾ λ2∥ψ∥2. We deduce that

Q+
λ,ξ,h(ψ) ⩾ −h∥ψ∥2 ,

so that
ℓ+1 (ξ − δ, ξ, h) ⩾ −h .

If ℓ+1 (ξ−δ, ξ, h) ⩾ 0, then µ+
1 (ξ, h) ⩾ ξ−δ (see Proposition 2.4). If ℓ+1 (ξ−δ, ξ, h) <

0, we get |ℓ+1 (ξ − δ, ξ, h)| ⩽ h so that

(ξ − δ)|µ+
1 (ξ, h)− (ξ − δ)| ⩽ h .

When ξ < −δ we proceed similarly.

2.3.3. Proof of Point (d) of Proposition 2.7. Let us turn to lower bounds for
µ+
1 (·, h). By Point (a) and (b), there is h0 > 0 such that for h ∈ (0, h0),

Ξh :=
{
ξ ⩾ 0 : µ+

1 (ξ, h) ⩽
√
he−

δ2

h

}
̸= ∅ . (2.2)

Notation 2.9. We consider on L2(I) the operator

dh,ξ = −h∂t + ξ + t

with domain
Dom(dh,ξ) = H1

0 (I) .

Its adjoint is
d∗h,ξ = h∂t + ξ + t

with domain
Dom(d∗h,ξ) = H1(I).

We denote by Πξ the orthogonal projection on Ker(d∗h,ξ), which is spanned by
t 7→ e−(ξ+t)2/2h.
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Notation 2.10. Let ξ ∈ R. By Proposition 2.4, we consider ψξ ∈ H1(I) such that
∥ψξ∥ = 1 and

µ+
1 (ξ, h) =

h

2
∥ψξ∥2∂I +

1

2

√
h2∥ψξ∥4∂I + 4∥(h∂t + t+ ξ)ψξ∥2 .

Lemma 2.11. There exist h0 > 0 and C > 0 such that, for all h ∈ (0, h0) and
ξ ∈ Ξh,

∥ψξ − Πξψξ∥H1(I) ⩽ Ch−
3
2 e−δ

2/h .

Proof. For all ξ ∈ Ξh, we have

∥d∗h,ξ(ψξ − Πξψξ)∥ = ∥d∗h,ξψξ∥ ⩽ µ+
1 (ξ, h) ⩽

√
he−

δ2

h .

Since dh,ξ has closed range, we have ψξ − Πξψξ ∈ Ker(d∗h,ξ)
⊥ = Ran(dh,ξ). Let

φξ ∈ H2(I) ∩H1
0 (I) such that dh,ξφξ = ψξ − Πξψξ. We consider the operator

L +
h,ξ = d∗h,ξdh,ξ = −h2∂2t + (ξ + t)2 + h ,

with domain H2(I) ∩ H1
0 (I). We have ∥L +

h,ξφξ∥ ⩽ h
1
2 e−

δ2

h . Note that, since φξ
satisfies the Dirichlet boundary condition, we have

∥L +
h,ξφξ∥

2 = ∥h2∂2t φξ∥2 + ∥(ξ + t)2φξ∥2 + ∥hφξ∥2 + 2h3∥∂tφξ∥2 + 2h∥(ξ + t)φξ∥2

+ 2Re
〈
−h2∂2t φξ, (ξ + t)2φξ

〉
.

Moreover,

2Re
〈
−h2∂2t φξ, (ξ + t)2φξ

〉
= 2h2Re

〈
∂tφξ, ∂t

[
(ξ + t)2φξ

]〉
and

2h2Re
〈
∂tφξ, ∂t[(ξ + t)2φξ]

〉
= 2h2∥(ξ + t)∂tφξ∥2 + 4h2Re ⟨∂tφξ, (ξ + t)φξ⟩
= 2h2∥(ξ + t)∂tφξ∥2 − 2h2∥φξ∥2 .

Therefore,

∥L +
h,ξφξ∥

2 = ∥h2∂2t φξ∥2+ ∥(ξ+ t)2φξ∥2+h2∥φξ∥2+2h3∥∂tφξ∥2+2h∥(ξ+ t)φξ∥2

+ 2h2∥(ξ + t)∂tφξ∥2 − 2h2∥φξ∥2 .
Thus,

∥L +
h,ξφξ∥

2 = ∥h2∂2t φξ∥2 + ∥(ξ + t)2φξ∥2 + h2∥φξ∥2 + 2h2∥(ξ + t)∂tφξ∥2

+ 2h∥(h∂t + ξ + t)φξ∥2 . (2.3)

and in particular
h4∥∂2t φξ∥2 + h2∥φξ∥2 ⩽ (h1/2e−

δ2

h )2 .

Since φξ ∈ H2(I) ∩H1
0 (I), we get

∥φξ∥2H2(I) ⩽ Ch−3e−
2δ2

h .
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Then, we have
∥dh,ξφξ∥H1(I) = ∥(−h∂t + ξ + t)φξ∥H1(I)

⩽ C (h∥∂tφξ∥H1 + ∥(ξ + t)φξ∥H1)

⩽ C
(
∥φξ∥H2(I) + ∥(ξ + t)φξ∥+ ∥(ξ + t)∂tφξ∥

)
⩽ C̃h−

3
2 e−δ

2/h ,

where we used (2.3) and the Cauchy-Schwarz inequality. □

Now we can prove Point (d). We have

µ+
1 (ξ, h) ⩾ h∥ψξ∥2∂I .

By Lemma 2.11 and a usual trace theorem, considering h small enough and ξ ∈ Ξh,
we get

∥ψξ − Πξψξ∥+ ∥ψξ − Πξψξ∥∂I ⩽ Ch−
3
2 e−δ

2/h ,

so

∥ψξ∥2∂I =
∥Πξψξ∥2∂I
∥Πξψξ∥2

(1 + oh→0(1)) .

Finally,
∥Πξψξ∥2∂I
∥Πξψξ∥2

= ν1(ξ, h),

and the conclusion follows.

2.4. Study of µ−
1 (ξ, h). In this section, we continue the proof of Theorem 1.3 by

establishing the estimate of λ−ess(h).

Proposition 2.12. We have
(a) There exists C > 0 such that for all |ξ| > δ,

µ−
1 (ξ, h) ⩾ |ξ| − δ − C

|ξ| − δ
.

(b) There exists C > 0 such that for all ξ,

µ−
1 (ξ, h) ⩾ a0

√
h− Ch3/2 .

with C independent of ξ, h.
(c) We have

µ−
1 (δ −

√
ha0, h) ⩽ a0

√
h+ O(h∞) .

This proposition 2.12 allows us to study the negative part of the spectrum of
Dh,0 as stated in Theorem 1.3.

Corollary 2.13. We have

sp(Dh,0)∩]−∞, 0] = (−∞,−λ−ess(h)] ,

with λ−ess(h) := infξ∈R µ
−
1 (ξ, h) =

√
ha0 + O(h3/2).



16 L. LE TREUST, N. RAYMOND, AND J. ROYER

2.4.1. Proof of Point (a) of Proposition 2.12. As in Section 2.3.2, we consider the
case ξ > δ and take λ = ξ − δ. We have, for all ψ ∈ H1(I),

Q−
λ,ξ,h(ψ) = ∥h∂tψ∥2 + ∥(ξ + t)ψ∥2 + h∥ψ∥2

− h(ξ + δ)|ψ(δ)|2 + h(ξ − δ)|ψ(−δ)|2 + λh∥ψ∥2∂I − λ2∥ψ∥2 .

Since ξ > δ, we have for t ∈ (−δ, δ), (ξ + t)2 ⩾ (ξ − δ)2 = λ2. Moreover,

−h(ξ+δ)|ψ(δ)|2+h(ξ−δ)|ψ(−δ)|2+λh∥ψ∥2∂I = −2hδ|ψ(δ)|2+2h(ξ−δ)|ψ(−δ)|2 ,
so that

Q−
λ,ξ,h(ψ) ⩾ ∥h∂tψ∥2 + h∥ψ∥2 − 2hδ|ψ(δ)|2 .

By Sobolev embedding, we recall that there exists C > 0 such that, for all ϵ > 0,

∥ψ∥2L∞(I) ⩽ ϵ∥∂tψ∥2 + Cϵ−1∥ψ∥2 .

Thus, with ϵ = h(2δ)−1, we deduce that

Q−
λ,ξ,h(ψ) ⩾ −4Cδ2∥ψ∥2 .

Therefore, by the min-max theorem,

ℓ−1 (λ, ξ, h) ⩾ −4Cδ2 .

By Proposition 2.4, if ℓ−1 (λ, ξ, h) ⩾ 0, then µ−
1 (ξ, h) ⩾ λ = ξ− δ. If ℓ−1 (λ, ξ, h) ⩽ 0,

then |ℓ−1 (λ, ξ, h)| ⩽ 4Cδ2. Thus,

µ−
1 (ξ, h) ⩾ ξ − δ − 4Cδ2(ξ − δ)−1 .

2.4.2. Proof of Point (b) of Proposition 2.12. Let us denote for u ∈ {v ∈ H1(R) , tv(t) ∈
L2(R)},

Q−
λ,ξ,R(u) := ∥(−∂t + ξ + t)u∥2L2(R) + λ|u(0)|2 − λ2∥u∥2L2(R) ,

and u ∈ {v ∈ H1(R+) , tv(t) ∈ L2(R+)},

Q−
λ,ξ,R+

(u) := ∥(−∂t + ξ + t)u∥2L2(R+) + λ|u(0)|2 − λ2∥u∥2L2(R+) .

Let (χ1, χ2, χ3) be a partition of the unity of [−δ, δ] such that supp(χ1) ⊂ [−δ,−δ/3],
supp(χ2) ⊂ [−2δ/3, 2δ/3], supp(χ3) ⊂ [δ/3, δ],

χ2
1 + χ2

2 + χ2
3 = 1 and |∂tχ1|2 + |∂tχ2|2 + |∂tχ3|2 ⩽ C .

From the localization formula, we have

∥(−h∂t + ξ + t)ψ∥2 =
3∑
j=1

(
∥(−h∂t + ξ + t)(χjψ)∥2 − ∥h(∂tχj)ψ∥2

)
⩾ −Ch2∥ψ∥2 +

3∑
j=1

∥(−h∂t + ξ + t)(χjψ)∥2 ,
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so that

Q−
λ,ξ,h(ψ) ⩾ −Ch2∥ψ∥2 +

3∑
j=1

Q−
λ,ξ,h(χiψ).

We denote v1 : s ∈ R+ 7→ (χ1ψ)(s
√
h − δ), v2 : s ∈ R 7→ (χ2ψ)(s

√
h) and v3 : s ∈

R+ 7→ (χ3ψ)(δ − s
√
h) so that

Q−
λ,ξ,h(χ1ψ) = h3/2Q−

λ√
h
, ξ−δ√

h
,R+

(v1) ,

Q−
λ,ξ,h(χ2ψ) = h3/2Q−

λ√
h
, ξ√

h
,R
(v2) ,

Q−
λ,ξ,h(χ3ψ) = h3/2Q−

λ√
h
,− ξ+δ√

h
,R+

(v3) .

Now, fix λ = a0
√
h. By [3, Propositions 4.12, 4.15], the map ξ 7→ infv ̸=0

1
∥v∥2Q

−
a0,ξ,R+

(v)

is non-negative and has a unique non-degenerate minimum at ξ = −a0, which is
zero. By [3, Theorem 4.3], the map ξ 7→ infv ̸=0

1
∥v∥2Q

−
a0,ξ,R(v) is constant equal to

2− a20. Therefore, there exists c0 > 0 such that
3∑
j=1

Q−
λ,ξ,h(χiψ) ⩾ h3/2c0min

(
1,

∣∣∣∣ξ − δ√
h

+ a0

∣∣∣∣2 , ∣∣∣∣−ξ + δ√
h

+ a0

∣∣∣∣2
)
∥ψ∥2 .

We obtain then that

ℓ−1 (
√
ha0, ξ, h) ⩾ h3/2c0min

(
1,

∣∣∣∣ξ − δ√
h

+ a0

∣∣∣∣2 , ∣∣∣∣−ξ + δ√
h

+ a0

∣∣∣∣2
)

− Ch2 . (2.4)

By Proposition 2.4, if ℓ−1 (
√
ha0, ξ, h) ⩾ 0, then µ−

1 (ξ, h) ⩾
√
ha0. If ℓ−1 (

√
ha0, ξ, h) ⩽

0, then
√
ha0 − µ−

1 (ξ, h) ⩾ 0 and
√
ha0(

√
ha0 − µ−

1 (ξ, h)) ⩽ |ℓ−1 (
√
ha0, ξ, h)| ⩽ Ch2 ,

so
µ−
1 (ξ, h) ⩾

√
ha0 − Ch3/2 .

Note that (2.4) suggests that the minima of ξ 7→ µ−
1 (ξ, h) occur near ξ = δ−

√
ha0

and ξ = −δ +
√
ha0 (see Figure 2). However, we leave the investigation of a more

precise determination of the minima’s location as an open question.

2.4.3. Proof of Point (c) of Proposition 2.12. Let us focus on upper bounds on µ−
1 .

Following the notations of [3, Section 4.4], we denote by ua0,−a0 the normalized
ground state of Q−

a0,−a0,R+
. Its energy is 0. Let v : t ∈ (−δ, δ) 7→ ua0,−a0

(
t+δ√
h

)
.

Since ua0,−a0 belongs to the Schwartz class, the rescaling performed in the previous
section ensures that

Q−√
ha0,δ−

√
ha0,h

(v) = h3/2Q−
a0,−a0,R+

(ua0,−a0) + O(h∞) = O(h∞) ,
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so that
ℓ−1 (

√
ha0, δ −

√
ha0, h) ⩽ O(h∞) .

By Proposition 2.4, if ℓ−1 (
√
ha0, δ −

√
ha0, h) ⩾ 0, then µ−

1 (δ −
√
ha0, h) ⩾

√
ha0

and
√
ha0

(
µ−
1 (δ −

√
ha0, h)−

√
ha0

)
⩽ ℓ−1 (

√
ha0, δ −

√
ha0, h) ⩽ O(h∞) ,

so that
µ−
1 (δ −

√
ha0, h) ⩽

√
ha0 + O(h∞) .

If ℓ−1 (
√
ha0, δ −

√
ha0, h) ⩽ 0, then µ−

1 (δ −
√
ha0, h) ⩽

√
ha0 .

3. Estimates of the discrete spectrum

3.1. Upper bound of Point (i) of Theorem 1.6. Let k ∈ N∗ be fixed in this
section.

Notation 3.1.
a) We denote by {v0, . . . , vk−1} ⊂ H 2(Ω) a k-dimensional family of Hardy func-

tions satisfying for j, l ∈ {0, . . . , k − 1}, v(j)l (zmin) = δjl, δjl being the Kro-
necker delta. We assume moreover that vk−1 is the unique minimizer of dkH =
distH 2(Ω)(0,Xk) where Xk is defined before Theorem 1.6.

b) The familly (Pn)n∈N is theNB-orthogonal family obtained after a Gram-Schmidt
process on (1, Z, . . . , Zn, . . . ) and normalized by P (n)

n (0) = bn,n = 1 in Pn(Z) =∑n
j=0

bn,j

j!
Zj.

c) For n ∈ {0, . . . , k − 1}, we define wn =
∑n

j=0 bn,jh
n−j
2 vj.

d) Tayl(w) is the polynomial part of the Taylor expansion of degree k − 1 of the
function w at zmin :

Tayl(w)(z) =
k−1∑
l=0

w(l)(zmin)

l!
(z − zmin)

l .

Lemma 3.2. We have for n ∈ {0, . . . k − 1},

Tayl(wn)
(
zmin +

√
hz
)
= h

n
2Pn(z) .

Proof. Let l, n ∈ {0, . . . k − 1}, we have

w(l)
n (zmin) =

n∑
j=0

bn,jh
n−j
2 v

(l)
j (zmin) =

n∑
j=0

bn,jh
n−j
2 δlj = bn,lh

n−l
2 ,

and

Tayl(wn)
(
zmin +

√
hz
)
=

k−1∑
l=0

w
(l)
n (zmin)

l!

(√
hz
)l

= h
n
2Pn(z) .

□
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Lemma 3.3. Let c0, . . . , ck−1 ∈ C and w =
∑k−1

n=0 cnwn. We have

∫
Ω

∣∣∣∣∣
k−1∑
n=0

cnwn

∣∣∣∣∣
2

e−2(ϕ−ϕmin)/hdx ⩾ (1 + o(1))h
k−1∑
j=0

|hj/2cj|2NB (Pj)
2 .

Proof. Let η ∈ (1/3, 1/2). By Taylor’s formula, there exists C > 0 such that for
x ∈ D(xmin, h

η)

ϕ(x)− ϕmin ⩽
1

2
Hessminϕ(x− xmin, x− xmin) + h3ηC

and with x = xmin +
√
hy,

∫
Ω

|w|2e−2(ϕ−ϕmin)/hdx ⩾
∫
B(xmin,hη)

|w|2e−2(ϕ−ϕmin)/hdx

⩾ e−2Ch3η−1

∫
B(xmin,hη)

|w|2e−Hessminϕ(x−xmin,x−xmin)/hdx

⩾ (1 + o(1))

∫
B(xmin,hη)

|w|2e−Hessminϕ(x−xmin,x−xmin)/hdx

⩾ (1 + o(1))h

∫
B(0,hη−1/2)

|w(xmin +
√
hy)|2e−Hessminϕ(y,y)dy .

By Lemma 3.2, we have for y ∈ D(0, hη−1/2),

|wj(xmin +
√
hy)− hj/2Pj(y)| ⩽ C(

√
h|y|)k ,

Thus we have

w(xmin +
√
hy) = Tayl(w)(xmin +

√
hy) +Rh,c(y) ,

with

|Rh,c(y)| ⩽ C|y
√
h|k

k−1∑
j=0

|cj| .
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By Young’s inequality, we have for ε = h1/4 > 0, c̃ = (c̃j)j = (hj/2cj)j,

h

∫
D(0,hη−1/2)

|w(xmin +
√
hy)|2e−Hessminϕ(y,y)dy

⩾ (1− ε)h

∫
D(0,hη−1/2)

|Tayl(w)(xmin +
√
hy)|2e−Hessminϕ(y,y)dy

− ε−1h

∫
D(0,hη−1/2)

|Rh,c(y)|2e−Hessminϕ(y,y)dy

⩾ (1− ε)h

∫
D(0,hη−1/2)

|
k−1∑
j=0

c̃jPj(y)|2e−Hessminϕ(y,y)dy − ε−1h3/2C∥c̃∥22

⩾ (1 + o(1))hNB

(
k−1∑
j=0

c̃jPj(y)

)2

+ o(h)∥c̃∥22

By the orthogonality of the (Pj) family, we get

NB

(
k−1∑
j=0

c̃jPj(y)

)2

=
k−1∑
j=0

|c̃j|2NB (Pj)
2

and the equivalence of the norms in finite dimensions ensures

h

∫
D(0,hη−1/2)

|w(xmin +
√
hy)|2e−Hessminϕ(y,y)dy ⩾ (1 + o(1))h

k−1∑
j=0

|c̃j|2NB (Pj)
2 .

□

Lemma 3.4. Let c0, . . . , ck−1 ∈ C. We have

√
h∥w∥H 2(Ω) ⩽

√
h(1 + o(1))

k−1∑
j=0

|cj|∥vj∥H 2(Ω) .

Proof. Let w =
∑k−1

n=0 cnwn. By the triangle inequality and the definition of (wn),
we have

√
h∥w∥H 2(Ω) ⩽

√
h

k−1∑
j=0

|cj|∥wj∥H 2(Ω) ⩽
√
h(1 + o(1))

k−1∑
j=0

|cj|∥vj∥H 2(Ω) ,

□

Lemma 3.5. We have,

sup
c∈Ck\{0}

h
(∑k−1

j=0 |cj|∥vj∥H 2(Ω)

)2
h
∑k−1

j=0 |hj/2cj|2NB (Pj)
2
= (1 + o(1))h(1−k)

(
dkH
dkB

)2

.
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Proof. Considering c = (0, . . . , 0, 1) we obtain

sup
c∈Ck\{0}

h
(∑k−1

j=0 |cj|∥vj∥H 2(Ω)

)2
h
∑k−1

j=0 |hj/2cj|2NB (Pj)
2
⩾
h(1−k)∥vk−1∥2H 2(Ω)

NB (Pk−1)
2 .

Conversely, for c = (c0, . . . , ck−1) ∈ C \ {0} we have∑k−1
j=0 |cj|∥vj∥H 2(Ω)√∑k−1
j=0 |hj/2cj|2NB (Pj)

2
=

|ck−1|∥vk−1∥H 2(Ω) +
∑k−2

j=0 |cj|∥vj∥H 2(Ω)√∑k−1
j=0 |hj/2cj|2NB (Pj)

2

⩽

√
h(1−k)∥vk−1∥2H 2(Ω)

NB (Pk−1)
2 + h(2−k)/2 sup

c∈Ck−1

∑k−2
j=0 |cj|∥vj∥H 2(Ω)√∑k−2
j=0 |cj|2NB (Pj)

2
.

Note now that ∥vk−1∥H 2(Ω) = dkH and NB (Pk−1) = dkB. The result follows. □

The upper bound in Point (i) of Theorem 1.6 follow from Lemmas 3.3, 3.4 and
3.5.

3.2. Lower bound of Point (i) of Theorem 1.6.

3.2.1. Preliminaries. The proof of the lower bound closely follows that presented
in [3, Section 3.1.2]. A notable difference is that polynomials do not belong to the
Hardy space H 2(Ω). This is addressed through the introduction of the Hardy-
Taylor expansion described below. Let k ∈ N∗ be fixed in this section.

Notation 3.6.
a) For l ∈ {0, . . . , k − 1}, we define

Xk,l = {u ∈ H 2(Ω) : ∀j ∈ {0, . . . , k − 1}, u(j)(zmin) = δjl}.
Then we denote by vl ∈ Xk,l ⊂ H 2(Ω) the unique minimizer of distH 2(Ω)(0,Xk,l).
Note that Xk,k−1 = Xk as defined in Point (i) of Theorem 1.6, ensuring that the
notation for vk is consistent with that introduced in Notation 3.1.

b) We denote by TaylH 2(Ω)(w) the Hardy - Taylor expansion of degree k−1 of the
function w ∈ H 2(Ω) at zmin :

TaylH 2(Ω)(w) =
k−1∑
l=0

w(l)(zmin)vl ∈ H 2(Ω) .

c) We denote by Wk(h) ⊂ H 2(Ω) a subspace such that dimWk(h) = k and

sup
w∈Wk(h)\{0}

h∥w∥2H 2(Ω)

∥e−ϕ/hw∥2
⩽ λeffk (h)(1 + o(1)) . (3.1)

Let us clarify the relationship between the Taylor expansion and the Hardy-
Taylor expansion as defined in Notations 3.1 and 3.6 and prove a notable property
of TaylH 2(Ω).
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Lemma 3.7. The following assertions hold:
(i) The operator

TaylH 2(Ω) : H 2(Ω) → H 2(Ω)

is the H 2(Ω)-orthogonal projection onto the orthogonal of

X̃k+1 = {u ∈ H 2(Ω) : ∀j ∈ {0, . . . , k}, u(j)(zmin) = 0}.
(ii) For any w ∈ H 2(Ω), the following identity holds:

Tayl
(
w − TaylH 2(Ω)(w)

)
= 0 .

Proof. Let us begin with Point (ii):

Tayl
(
TaylH 2(Ω)(w)

)
(z) =

k−1∑
l=0

w(l)(zmin)Tayl(vl)(z) =
k−1∑
l=0

w(l)(zmin)

l!
(z − zmin)

l

= Tayl(w)(z) .

We now prove Point (i). Note that, by the Cauchy formula estimation from Point
(iii) of Proposition A.12, X̃k+1 and (Xk,l)0⩽l⩽k−1 are (non empty) closed subspaces
so that the orthogonal projection is indeed well-defined. Let 0 ⩽ l ⩽ k − 1 and
u ∈ X̃k+1, then u + vl ∈ Xk,l. Since vl is the orthogonal projection of 0 onto Xk,l,
we get

0 = ⟨vl, (u+ vl)− vl⟩H 2(Ω) = ⟨vl, u⟩H 2(Ω) ,

and vl ∈ (X̃k+1)
⊥. This proves that

span(v0, . . . , vk−1) ⊂ (X̃k+1)
⊥ .

Assume now that u ∈ (X̃k+1)
⊥ ∩ (span(v0, . . . , vk−1))

⊥. Then, u− TaylH 2(Ω)(u) ∈
X̃k+1 so that

0 = ⟨u, u− TaylH 2(Ω)(u)⟩H 2(Ω) = ∥u∥2H 2(Ω) .

We proved that
span(v0, . . . , vk−1) = (X̃k+1)

⊥ . (3.2)
Finally, note that

TaylH 2(Ω)(v) =

{
v if v ∈ span(v0, . . . , vk−1) ,

0 if v ∈ X̃k+1 .
(3.3)

We conclude from (3.2) and (3.3) that TaylH 2(Ω) is the orthogonal projection onto
(X̃k+1)

⊥ and Point (i) follows.
Remark that by the Cauchy formula estimation from Point (iii) of Proposition

A.12, we recover the boundedness of TaylH 2(Ω) :

∥TaylH 2(Ω)(w)∥H 2(Ω) ⩽
k−1∑
l=0

|w(l)(zmin)|∥vl∥H 2(Ω) ⩽ C∥w∥H 2(Ω) .



23

□

The next two lemmas provide a priori bounds on the functions in Wk(h).

Lemma 3.8. There exist constants C and h0 > 0 such that for any v ∈ Wk(h)
and h in the range (0, h0), the following inequality holds:

∥v∥2 ⩽ Ch−ke2ϕmin/h

∫
Ω

e−2ϕ/h|v|2 dx.

Proof. From the continuous embedding H 2(Ω) ↪→ L2(Ω) of Point (ii) of Proposi-
tion A.12 and the upper bound of Point (i) of Theorem 1.6, there exist c, C, h0 > 0
such that, for all h ∈ (0, h0) and all v ∈ Wk(h),

ch∥v∥2 ⩽ h∥v∥2H 2(Ω) ⩽ (1 + o(1))λeffk (h)

∫
Ω

e−2ϕ/h|v|2 dx

⩽ Ch1−ke2ϕmin/h

∫
Ω

e−2ϕ/h|v|2 dx.

□

The following lemma comes from [3, Lemma 3.9].

Lemma 3.9. Let α ∈ (1/3, 1/2). Then,

lim
h→0

sup
v∈Wk(h)\{0}

∣∣∣∣∣
∫
D(xmin,hα)

e−2ϕ/h|v(x)|2 dx∫
Ω
e−2ϕ/h|v(x)|2 dx

− 1

∣∣∣∣∣ = 0.

Proof. Assume that α ∈
(
1
3
, 1
2

)
. For all x ∈ D(xmin, h

α), we find that

ϕ(x) = ϕmin +
1

2
Hessxmin

ϕ(x− xmin, x− xmin) + O(h3α) .

According to the maximum principle,

min
x∈D(xmin, hα)c

ϕ(x) = min
x∈∂D(xmin, hα)c

ϕ(x) ⩾ ϕmin +
h2α

2
min sp(Hessxmin

) + O(h3α) .

Then for any v ∈ Wk(h) we have by Lemma 3.8∫
Ω\D(xmin,hα)

e−2ϕ/h|v(x)|2 dx∫
Ω
e−2ϕ/h|v(x)|2 dx

⩽
∥v∥2e−2ϕmin/he−h

2α−1 min sp(Hessxmin )+O(h3α−1)

C−1∥v∥2hke−2ϕmin/h
,

and the conclusion follows. □



24 L. LE TREUST, N. RAYMOND, AND J. ROYER

3.2.2. Proof of the lower bound. We are now well-positioned to analyze the lower
bound.

Let α ∈ (1/3, 1/2) and v ∈ Wk(h). With Lemma 3.9,

he2ϕmin/h∥v∥2H 2(Ω)(1 + o(1)) ⩽ λeffk (h)∥e−
1
2h

Hessxminϕ(x−xmin,x−xmin)v∥2L2(D(xmin,hα))
.

(3.4)
In the following, we divide the proof into several parts. First, we replace v with
its Taylor expansion of order k − 1 at xmin in the right-hand side (RHS) of (3.4).
Second, we substitute the Hardy-Taylor expansion into the left-hand side (LHS)
of the same equation.

i. By the Cauchy formula estimation from Point (iii) of Proposition A.12, there
exist constants C > 0 and h0 > 0 such that for all h ∈ (0, h0), for every
v ∈ H 2(Ω), for all z0 ∈ D(xmin, h

α), and for each n ∈ {0, . . . , k},
|v(n)(z0)| ⩽ C∥v∥H 2(Ω) . (3.5)

Let us define, for all v ∈ H 2(Ω),

Nh(v) := ∥e−
1
2h

Hessxminϕ(x−xmin,x−xmin)v∥L2(D(xmin,hα)) .

By the Taylor formula, we can express

v = Tayl(v) +R(v),

where Tayl(v) is the (k − 1)-th degree polynomial Taylor approximation of v
at zmin, as defined in Notation 3.1. Additionally, for all z0 ∈ D(zmin, h

α),

|R(v)(z0)| ⩽ C|z0 − zmin|k sup
D(zmin,hα)

|v(k)| .

With (3.5) and after rescaling, the Taylor remainder satisfies

Nh(R(v)) ⩽ Ch
k+1
2 ∥v∥H 2(Ω). (3.6)

Thus, by the triangle inequality,

|Nh(v)−Nh(Tayl(v))| ⩽ Ch
k+1
2 ∥v∥H 2(Ω). (3.7)

Therefore, with (3.4), we obtain

(1 + o(1))eϕmin/h
√
h∥v∥H 2(Ω) ⩽

√
λeffk (h)Nh(Tayl(v)) + C

√
λeffk (h)h

1+k
2 ∥v∥H 2(Ω),

and so, according to the upper bound in Point (i) of Theorem 1.6,

(1 + o(1))eϕmin/h
√
h∥v∥H 2(Ω) ⩽

√
λeffk (h)Nh(Tayl(v)) ⩽

√
λeffk (h)N̂h(Tayl(v)),

(3.8)
where

N̂h(w) = ∥e−
1
2h

Hessxminϕ(x−xmin,x−xmin)w∥L2(R2).

By (3.7) and Lemma 3.7, we also have

|Nh(TaylH 2(Ω)(v))−Nh(Tayl(v))| ⩽ Ch
k+1
2 ∥v∥H 2(Ω)
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so, according to the upper bound in Point (i) of Theorem 1.6, and (3.8),

(1 + o(1))eϕmin/h
√
h∥v∥H 2(Ω) ⩽

√
λeffk (h)Nh(TaylH 2(Ω)(v))

⩽
√
λeffk (h)N̂h(TaylH 2(Ω)(v)).

(3.9)

Inequalities (3.8) and (3.9) show that Tayl and TaylH 2(Ω) are injective on
Wk(h) and

dimTaylWk(h) = dimTaylH 2(Ω)Wk(h) = k . (3.10)

ii. By Lemma 3.7 and (3.8), we obtain

∥v∥2H 2(Ω) = ∥TaylH 2(Ω)(v)∥2H 2(Ω) + ∥v − TaylH 2(Ω)(v)∥2H 2(Ω)

⩽ (1 + o(1))e−2ϕmin/hh−1λeffk (h)N̂h(Tayl(v))
2.

(3.11)

Inequality (3.11) ensures that

sup
w∈TaylH 2(Ω)Wk(h)\{0}

∥w∥2H 2(Ω)

N̂h(Tayl(w))2
⩽ (1 + o(1))e−2ϕmin/hh−1λeffk (h) . (3.12)

iii. We define u = TaylH 2(Ω)(v)− v(k−1)(zmin)vk−1. By the triangle inequality, we
have

∥u∥H 2(Ω) ⩽
k−2∑
n=0

|v(n)(zmin)|∥vn∥H 2(Ω) ⩽ h−
k−2
2

k−2∑
n=0

h
n
2 |v(n)(zmin)|∥vn∥H 2(Ω)

⩽ h−
k−2
2

k−1∑
n=0

h
n
2 |v(n)(zmin)||∥vn∥H 2(Ω) ⩽ Ch−

k−2
2 h−

1
2 N̂h(Tayl(v)) ,

(3.13)

where we used the rescaling property

N̂h

(
k−1∑
n=0

cn(z − zmin)
n

)
= h

1
2 N̂1

(
k−1∑
n=0

cnh
n
2 (z − zmin)

n

)
, (3.14)

and the equivalence of the norms in finite dimension: ∃C > 0 ,∀d ∈ Ck:

C−1

k−1∑
n=0

|dn|∥vn∥H 2(Ω) ⩽ N̂1

(
k−1∑
n=0

dn
n!

(z − zmin)
n

)
⩽ C

k−1∑
n=0

|dn|∥vn∥H 2(Ω) .

Using again the triangle inequality with inequalities (3.12), (3.13) and the
upper bound of Point (i) of Theorem 1.6,

|v(k−1)(zmin)|dkH = ∥v(k−1)(zmin)vk−1∥H 2(Ω) ⩽ ∥u∥H 2(Ω) + ∥TaylH 2(Ω)(v)∥H 2(Ω)

⩽

(
Ch−

k−2
2 h−

1
2 + (1 + o(1))e−ϕmin/hh−1/2

√
λeffk (h)

)
N̂h(Tayl(v)) .



26 L. LE TREUST, N. RAYMOND, AND J. ROYER

Remark now that a rescaling ensures that

sup
p∈Ck−1[X]\{0}

|p(k−1)(zmin)|
N̂h(p)

=
1

hk/2dkB
.

By (3.10), TaylWk(h) = Ck−1[X], and

dkH
dkB

h−k/2(1 + o(1)) ⩽ e−ϕmin/hh−1/2
√
λeffk (h) .

The lower bound follows.
The proof gives some controls on the functions.

Lemma 3.10. Let v = vh be a function that realizes the maximum (3.1). There
exists C > 0 such that for all h ∈ (0, h0),

h∥v − TaylH 2(Ω)(v)∥2H 2(Ω) + h∥v(k−1)(zmin)vk−1 − TaylH 2(Ω)(v)∥2H 2(Ω)

⩽ o(λeffk (h))∥e−ϕ/hv∥2L2(Ω) ,

Proof. The first inequality comes from the fact that TaylH 2(Ω) is an orthogonal
projection (Lemma 3.7) and that v realizes the maximum. The last inequality is
a reformulation of (3.13). □

3.3. Characterization of the positive eigenvalues and consequences. The
main two results in this section are Propositions 3.11 & 3.12. Combining these
two propositions with Point (i) of Theorem 1.6, we get Point (ii) of Theorem 1.6.

3.3.1. Statement of the characterization. Consider the non-decreasing sequence of
numbers

µk(h) = inf
W⊂hA(Ω)
dimW=k

sup
u∈W\{0}

h∥u∥2∂Ω +
√
h2∥u∥4∂Ω + ∥d×Au∥2∥u∥2

2∥u∥2
, (3.15)

where hA(Ω) := H1(Ω) + H 2
A(Ω) with H 2

A(Ω) = e−ϕ/hH 2(Ω). Due to Lemma
A.13, we also have

µk(h) = inf
W⊂H1(Ω)
dimW=k

sup
u∈W\{0}

h∥u∥2∂Ω +
√
h2∥u∥4∂Ω + ∥d×Au∥2∥u∥2

2∥u∥2
.

Proposition 3.11. Let k ⩾ 1. Then, we have

µk(h) = (1 + o(1))λeffk (h) . (3.16)

Moreover, for h small enough, Dh − µk(h) is a Fredholm operator with index 0.

Proof. The second part of the statement follows from (3.16), Theorem 1.3 & Point
(i) of Theorem 1.6. Note that 0 ⩽ µk(h) ⩽ λeffk (h). The proof of (3.16) is quite
similar to that of [3, Section 3]. □



27

Let us now state the proposition that connects the low-lying positive discrete
spectrum of Dh to the µk(h), when h is small.

Proposition 3.12. Let k ⩾ 1. There exists h0 > 0 such that, for all h ∈ (0, h0),
the k-th positive eigenvalue of Dh exists and satisfies

λ+k (h) = µk(h) .

3.3.2. Characterization of the µk(h) and relation to Dh. Let λ > 0. For all u ∈
hA(Ω), we consider

qλ(u) = ∥d×Au∥
2 + hλ∥u∥2∂Ω − λ2∥u∥2 .

Lemma 3.13. The quadratic form qλ is closed on its domain hA(Ω).

Proof. The proof is similar to the case when Ω is bounded, see [3, Lemma 2.4 &
Proposition 2.5 (i)], since the arguments do not use the boundedness. □

We denote by Lλ the self-adjoint operator associated with qλ. We denote by
(ℓk(λ))k⩾1 the non-decreasing sequence of the Rayleigh quotients of qλ.

Let us explain the relations between Lλ and Dh − λ.

Proposition 3.14. For all u ∈ DomLλ, we let

Jλ(u) = (u, λ−1d×Au) .

Then, we have the following
(i) The application Jλ sends DomLλ into DomDh and, for all u ∈ DomLλ,

we have
(Dh − λ)Jλ(u) = (Lλu, 0) .

(ii) The application Jλ induces an isomorphism from kerLλ to ker(Dh − λ).
(iii) The application Jλ has closed range in DomDh.
(iv) If Dh − λ is Fredholm with index 0, then so is Lλ. In particular, if λ ∈

spdis(Dh), then 0 ∈ spdis(Lλ).

Proof. Take u ∈ DomLλ ⊂ Dom qλ. Then, for all v ∈ DomDh,

⟨Jλ(u), (Dh − λ)v⟩ = ⟨u,−λv1 + dAv2⟩+ ⟨λ−1d×Au,−λv2 + d×Av1⟩
= λ−1qλ(u, v1) ,

where we used an integration by parts and the boundary condition satisfied by v.
Since u ∈ DomLλ, we get that

qλ(u, v1) = ⟨Lλu, v1⟩ .

This shows that Jλ(u) ∈ DomD∗
h = DomDh and Point (i) follows.

Thanks to (i), we have only to check that Jλ : kerLλ → ker(Dh−λ) is surjective
(since it is clearly injective). Take v ∈ ker(Dh − λ). We have dAv2 = λv1 and
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d×Av1 = λv2. Let us check that v1 ∈ kerLλ. For all w ∈ hA(Ω) we have

qλ(v1, w) = ⟨d×Av1, d
×
Aw⟩+ hλ⟨v1, w⟩∂Ω − λ2⟨v1, w⟩

= λ⟨v2, d×Aw⟩+ hλ⟨v1, w⟩∂Ω − λ2⟨v1, w⟩ = 0 ,

where we used an integration by parts and the boundary condition. This proves
Point (ii).

Point (iii) follows from the fact that the graph norm of Dh is the H1-norm. In
particular, Jλ is a continuous isomorphism between Banach spaces, from DomLλ

onto its closed range. Thus, Jλ is a Fredholm operator with index 0. The identity
of (i) implies (iv) since λ ∈ spdis(Dh) is equivalent to say that λ is in the spectrum
and such that Dh−λ is Fredholm with index 0 and since the product of Fredholm
operator of index 0 is still a Fredholm operator with index 0.

□

Lemma 3.15. For h small enough, we have µ1(h) > 0. Moreover, for all λ ∈
(0, µ1(h)), we have ℓ1(λ) > 0.

Proof. The first part of the statement follows from Proposition 3.11 and Theorem
1.6 (i). Then, we take λ ∈ (0, µ1(h)). For all u ∈ hA(Ω), we have

ρ+(u) :=
h∥u∥2∂Ω +

√
h2∥u∥4∂Ω + ∥d×Au∥2∥u∥2

2∥u∥2
⩾ µ1(h) > 0 .

We have, for all u ∈ hA(Ω) such that ∥u∥ = 1,

qλ(u) = −(λ− ρ+(u))(λ− ρ−(u)) ,

with ρ−(u) ⩽ 0. We have ρ+(u)− λ ⩾ µ1(h)− λ > 0. The conclusion follows.
□

The following lemma essentially comes from [3] and makes the bridge between
the µk(h) and the spectrum of Dh through Lλ.

Lemma 3.16. Let k ⩾ 1. The equation ℓk(λ) = 0 admits µk(h) as unique positive
solution.

Proof. The proof of the existence and uniqueness is the same as in [3, Lemma
2.10], where it is only used that A is bounded (as the case here). Let us check that
µk(h) solves the equation. Take ϵ > 0 and consider W ⊂ hA(Ω) with dimW = k
such that

max
u∈W\{0}

ρ+(u) ⩽ µk(h) + ϵ .

In particular, for all u ∈ W , we have ρ+(u) ⩽ µk(h) + ϵ. Then, we have

ℓk(µk(h)) ⩽ max
u∈W\{0}

qµk(h)(u)

∥u∥2
= max

u∈W\{0}
(µk(h)− ρ−(u))(ρ+(u)− µk(h))

⩽ ϵ max
u∈W\{0}

(µk(h)− ρ−(u)) .
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Taking the limit ϵ→ 0, we get ℓk(µk(h)) ⩽ 0. Conversely, for all W ⊂ hA(Ω) such
that dimW = k, we have

µk(h) ⩽ max
u∈W\{0}

ρ+(u) .

Thus, there exists uk ∈ W \ {0} such that

µk(h) ⩽ ρ+(uk)

and then

max
u∈W\{0}

qµk(h)(u)

∥u∥2
⩾
qµk(h)(uk)

∥uk∥2
⩾ 0 .

Taking the infimum, we get ℓk(µk(h)) ⩾ 0. □

3.3.3. Proof of Proposition 3.12. For all k ⩾ 1 and for h small enough Dh− µk(h)
is Fredholm with index 0. From Proposition 3.14, we get that Lµk(h) is Fredholm
with index 0 and with a non-empty kernel (of finite dimension) since ℓk(µk(h)) = 0.
We get that µk(h) ∈ spdis(Dh). This shows that, for all k ⩾ 1,

λ+k (h) ⩽ µk(h) . (3.17)

Let us explain this. Assume that µ1(h) = . . . = µk1(h) < µk1+1(h). This implies
that ℓ1(µ1(h)) = ℓk1(µ1(h)) = 0 and ℓk1+1(µ1(h)) > 0 so that, by the min-max
theorem, dimkerLµ1(h) = k1 and then dimker(Dh − µ1(h)) = k1. This shows
(3.17) for k = 1, . . . , k1. By induction and similar considerations, we get (3.17).

Conversely, we notice that Lλ+k (h) is Fredholm with index 0, with non-empty
kernel so that, for some p, ℓp(λ+k (h)) = 0. Thus, for some p, λ+k (h) = µp(h).
Moreover, assume that λ+1 (h) has multiplicity m1. Thus, we have dimkerLλ+1 (h) =

m1. Therefore there exists p ∈ N such that ℓp+1(λ
+
1 (h)) = . . . = ℓp+m1(λ

+
1 (h)) = 0

and ℓp(λ
+
1 (h)) < 0 < ℓp+m1+1(λ

+
1 (h)). In particular, µp+1(h) = . . . = µp+m1(h) =

λ+1 (h). This shows that µk(h) ⩽ λ+k (h) for k = 1, . . . ,m1. By induction, we can
check that this inequality is true for k ⩾ 1.
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Appendix A. Hardy space on the strip

A.1. Hardy space on the straight strip. Let us consider the strip Sδ = R ×
(−δ, δ) and consider the following set of holomorphic functions

H 2(Sδ) = O(Sδ) ∩ L∞((−δ, δ)y, L2(Rx))

= {u ∈ O(Sδ) :M(u) := sup
y∈(−δ,δ)

∥u(·+ iy)∥L2(R) < +∞} .

Let us gather the well-known properties of the Hardy space H 2(Sδ) (see, for
instance, [15, Chapter 19] dealing with the half-space).

Proposition A.1. The following holds.
(i) The space H 2(Sδ) is a Banach space.
(ii) [Paley-Wiener] For all u ∈ H 2(Sδ), the map

(−δ, δ) ∋ y 7→ u(·+ iy) ∈ L2(R)
is continuous and can be extended by continuity to [−δ, δ]. This defines a
trace operator at the boundary :

T : u ∈ H 2(Sδ) 7→ T (u) ∈ L2(∂Sδ) .

(iii) The norms u 7→ ∥Tu∥L2(∂Sδ) =
√

∥u(· − iδ)∥2L2(R) + ∥u(·+ iδ)∥2L2(R) and u 7→
M(u) are equivalent. Moreover, H 2(Sδ) endowed with ∥T ·∥L2(∂Sδ) is a Hilbert
space and T becomes an isometry.

(iv) We have the continuous embedding H 2(Sδ) ⊂ L2(Sδ) , with ∥u∥L2(Sδ) ⩽√
δ∥Tu∥L2(∂Sδ), for all u ∈ H 2(Sδ).

(v) For u ∈ H 2(Sδ), z0 ∈ Sδ and k ∈ N, we have

|u(k)(z0)| ⩽
√

(2k)!

22k+1π
dist(z0, ∂Sδ)

− 2k+1
2 ∥Tu∥L2(∂Sδ) .

Proof. L∞((−δ, δ)y, L2(Rx)) is a Banach space that is continuously embedded in
L1
loc(Sδ). Therefore, the distribution theory ensures that H 2(Sδ) is a closed subset

and Point (i) follows. To show Point (ii), consider u ∈ H 2(Sδ) and y ∈ (−δ, δ).
We can consider the partial Fourier transform Fu(· + iy) ∈ L2(R) and check by
Cauchy formula that

F [u(·+ iy)](ξ) = e−yξF [u(·)](ξ) .
From the Parseval formula, it follows that, for all y ∈ (−δ, δ),∫

R
e−2yξ|F [u(·)](ξ)|2dξ = ∥u(·+ iy)∥2L2(R) ⩽M(u)2 .

Thanks to the Fatou lemma (by sending y → ±δ), we see that∫
R
cosh(2δξ)|F [u(·)](ξ)|2dξ ⩽M(u)2 ,
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and in particular that

M(u)2 ⩽
∫
R
e2δ|ξ||F [u(·)](ξ)|2dξ ⩽ 2M(u)2 .

By using the dominate convergence theorem, it shows that (−δ, δ) ∋ y 7→ u(·+iy) ∈
L2(R) is continuous. This application has also limits in ±δ. These limits are
F−1(e∓δξF [u(·)]). Point (iii) follows from Point (ii). Let us turn to Point (iv).
Let u ∈ H 2(Sδ), we have

∥u∥2L2(Sδ)
=

∫ δ

−δ
∥Fu(·+ iy)∥2L2(R)dy = δ

∫
R
|Fu|2

(
e2ξδ − e−2ξδ

2ξδ

)
dξ

⩽ δ∥Tu∥2∂Sδ

∥∥∥∥tanh(x)x

∥∥∥∥
L∞

⩽ δ∥Tu∥2∂Sδ
.

Let us now show Point (v). Let u ∈ H 2(Sδ) and z0 = x0 + iy0 ∈ Sδ. We have

(−i)ku(k)(z0) = (−i)k∂kxu(z0) = F−1
(
ξkF (u(·+ iy0))

)
(x0)

= F−1
(
ξke−y0ξF [u(·)]

)
(x0) ,

so that the Cauchy-Schwarz inequality ensures

|u(k)(z0)| ⩽
1√
2π

∥ξke−y0ξF [u(·)]∥L1(R)

⩽
1√
2π

∥|ξ|ke−(δ−|y0|)|ξ|∥L2(R)∥eδ|ξ|F [u(·)]∥L2(R)

⩽
1

√
2π(δ − |y0|)

2k+1
2

∥|ξ|ke−|ξ|∥L2(R)∥Tu∥L2(∂Sδ) .

□

Lemma A.2. The space H1(Sδ) ∩ H 2(Sδ) is dense in H 2(Sδ). More precisely,
for all u ∈ H 2(Sδ), there exists (uϵ)ϵ>0 ⊂ H1(Sδ) ∩ H 2(Sδ) such that

lim
ϵ→+0

∥T (uϵ − u)∥L2(∂Sδ) = 0 .

Proof. Let u ∈ H 2(Sδ) and ϵ > 0. We let
uϵ(x) = u((1− ϵ)x) .

The function uϵ belongs to O(Sδ/(1−ϵ)). In particular, uϵ ∈ C ∞(Sδ). We also see
that uϵ ∈ H 2(Sδ). In fact, uϵ ∈ H1(Sδ). To see this, we notice that

F (uϵ(·+ iy)) = e−yξF (uϵ) = (1− ϵ)−1e−yξF (u)((1− ϵ)−1ξ) .

We have∫
R
eα|ξ||F (uϵ(·+ iy))|2dξ = (1− ϵ)−1

∫
R
eα|ξ|e−2y(1−ϵ)ξ|F [u]|2dξ

⩽ (1− ϵ)−1

∫
R
e(α−2δϵ)|ξ|e2δ|ξ||F [u]|2dξ .
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We recall that ∫
R
cosh(2δξ)|F [u(·)](ξ)|2dξ ⩽M(u)2 .

Thus, by taking α = δϵ, we get∫
R
eα|ξ||F (uϵ(·+ iy))|2dξ ⩽ 2(1− ϵ)−1M(u)2 .

Integrating then with respect to y, we infer that ∂nxuϵ ∈ L2(Sδ) for all n ⩾ 1. By
using the Cauchy-Riemann relation ∂xuϵ + i∂yuϵ = 0, we get that uϵ ∈ H1(Sδ).

Let us now consider the approximation. We have

∥T (uϵ − u)∥2L2(∂Sδ)
=

∫
R
(e−2δξ + e2δξ)|F (uϵ − u)|2dξ ,

which goes to 0 as ϵ goes to 0 by the dominate convergence theorem. □

A.2. Biholomorphism. We would like to define the Hardy space H 2(Ωδ). Of
course, by the Riemann mapping theorem, we can transform Ωδ into Sδ or even
into the unit disk by means of a biholomorphism. As we can guess, the problem of
defining the Hardy space is the behavior of the biholomorphism near the boundary.
The purpose of this section is to construct a biholomorphism whose derivatives are
well-controlled up to the boundary.

Proposition A.3. There exist δ0, C > 0 and for all δ ∈ (0, δ0), a biholomorphism
f : Ωδ → Sδ such that

∥f̃(s, t)− (s+ it)∥C 1(Sδ)
⩽ Cδ .

The following propositions will allow the construction of the imaginary part of
f .

Proposition A.4. There exists a unique function β : Ωδ → R such that β̃(s, t)−t ∈
H1

0 (Sδ) and satisfying
∆β = 0 , β|Γ±

δ
= ±δ .

In fact, β̃(s, t)− t ∈ S (Sδ) and in particular β ∈ C ∞(Ωδ).

Proof. Define t : Ωδ → R the transverse coordinate to γ. Note that ∆t ∈ C ∞
c (Ωδ)

since κ ∈ C ∞
c (R). We are led to solve in H1

0 (Ωδ) the Poisson problem ∆u = −∆t .
The unique solution is then β = u+ t. For more details, one refers to [4]. □

Following the same analysis as in [4, Section 3.2], we can prove that, when δ is
small enough, β is approximated by t.

Proposition A.5. There exist δ0, C > 0 such that, for all δ ∈ (0, δ0),

∥β̃(s, t)− t∥C 1(Sδ)
⩽ Cδ .

In particular, ∇β is uniformly non-zero on Ωδ.
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We recall Poincaré’s Lemma.

Lemma A.6. Let x0 ∈ γ(R). For all x ∈ Ωδ, we let

α(x) =

∫
γx0,x

(∇β)⊥ ·
−→
dℓ ,

where γx0,x is a path of class C 1 connecting x0 to x.
Then, the function α is well defined (it does not depend on the choice of path)

and it is a smooth function on Ωδ that satisfies

∇α = (∇β)⊥ .

We let f = α+ iβ. Then, by construction, we see that f is holomorphic on Ωδ.

Proposition A.7. There exist δ0, C > 0 such that, for all δ ∈ (0, δ0),

∥f̃(s, t)− (s+ it)∥C 1(Sδ)
⩽ Cδ .

It remains to show that f is a biholomorphism.

Lemma A.8. We have
f(Ωδ) ⊂ Sδ .

Proof. By Proposition A.5, β is bounded. Let (sn, tn)n a maximizing sequence
for β. Either there is a bounded subsequence, then the limit is attained at the
boundary due to the maximum principle or there is a subsequence such that |sn| →
+∞ and tn → t∞ ∈ [−δ, δ]. Proposition A.5 ensures that t∞ = sup β ∈ [−δ, δ] so
that sup β = δ. The same holds for the infimum. □

Lemma A.9. We have f(Ωδ) = Sδ.

Proof. Since f is not constant, f(Ωδ) is an open set (by the open mapping the-
orem), which is also connected. Let us show that is it closed in Sδ. Consider a
sequence xn ∈ Ωδ such that limn→+∞ f(xn) = ℓ ∈ Sδ. If (xn) is not bounded,
we may assume that sn → +∞ and thus (f(xn)) is not bounded. Thus, (xn) is
bounded and we may assume that xn → x∞ ∈ Ωδ. We have ℓ = f(x∞) since f
is continuous. We cannot have x∞ ∈ ∂Ωδ since ℓ ∈ Sδ. Therefore x∞ ∈ Ωδ. By
connectedness, we get the result. □

Lemma A.10. There exists δ0 > 0 such that for all δ ∈ (0, δ0), f is injective.

Proof. Assume by contradiction that there is a sequence (δn) → 0 such that fδn
is not injective. There exist (x1n), (x

2
n) ⊂ Ωδn such that x1n ̸= x2n and fδn(x

1
n) =

fδn(x
2
n). By the Taylor formula and Proposition A.7,

0 = f̃δn(y
2
n)− f̃δn(y

1
n) =

∫ 1

0

df̃δn(y
1
n + u(y2n − y1n)) · (y2n − y1n)du ∼n→+∞ y2n − y1n ,

where yjn = Γ−1(xjn). This implies for n large enough, that y2n = y1n which is a
contradiction. □
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A.3. Hardy space on a curved strip. Assume that there exists f : Ω → Sδ
with f ′, (f−1)′ ∈ L∞(Ω). We are now in good position to define H 2(Ω).

Definition A.11. We denote

H 2(Ω) = {u ∈ O(Ω) , u ◦ f ∈ H 2(Sδ)} .

Proposition A.12. The following holds.
(i) The trace operator T : v ∈ H 2(Ω) 7→ [T (v◦f−1)]◦f ∈ L2(∂Ω) is well-defined

and moreover, H 2(Ω) endowed with ∥T · ∥L2(∂Ω) is a Hilbert space and T
becomes an isometry.

(ii) We have the continuous embedding H 2(Ω) ⊂ L2(Ω) , and for all v ∈ H 2(Ωδ),

∥v∥L2(Ω) ⩽
√
δ∥(f−1)′∥L∞∥T v∥L2(∂Ω) .

(iii) For k ∈ N, z0 ∈ Ω, v ∈ H 2(Ω), we have

|v(k)(z0)| ⩽

√
(2k)!

22k+1π

∥f ′∥L∞

∥(f−1)′∥2k+1
L∞

dist(z0, ∂Ω)
− 2k+1

2 ∥T v∥L2(∂Ω) .

Proof. The proposition follows from Proposition A.1. Let us develop some points.
Let v ∈ H 2(Ω) and define u = (f−1)′v ◦ f−1 ∈ H 2(Sδ). By Point (iv) of Propo-
sition A.1, we have

∥v∥L2(Ω) = ∥u∥L2(Sδ) ⩽
√
δ∥Tu∥L2(∂Sδ) ⩽

√
δ∥(f−1)′∥L∞∥T v∥L2(∂Ω) .

Point (ii) follows.
Let z0, z1 ∈ Ω, z̃0 = f(z0), z̃1 = f(z1), γ̃ : [0, 1] → Sδ a smooth path such that

γ̃(0) = z̃0, γ̃(1) = z̃1 and γ = f−1 ◦ γ̃. We have

distΩ(z0, z1) ⩽
∫ 1

0

|γ′(t)|dt =
∫ 1

0

|(f−1)′ ◦ γ̃(t)||γ̃′(t)|dt ⩽ ∥(f−1)′∥L∞

∫ 1

0

|γ̃′(t)|dt .

Now, taking the infimum over all path in Sδ between z̃0 and z̃1, we get

distΩ(z0, z1) ⩽ ∥(f−1)′∥L∞distSδ
(z̃0, z̃1) ,

so that
distΩ(z0, ∂Ω) ⩽ ∥(f−1)′∥L∞distSδ

(z̃0, ∂Sδ) ,

and Point (iii) follows. □

We end this section by stating a useful density lemma, which follows from
Lemma A.2.

Lemma A.13. The space H1(Ω) ∩ H 2(Ω) is dense in H 2(Ω). More precisely,
for all u ∈ H 2(Ω), there exists (un) ⊂ H1(Ω) ∩ H 2(Ω) such that

lim
n→+∞

∥T (un − u)∥L2(∂Ω) = 0 .
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