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ABSTRACT

In the event of a Loss of Coolant Accident (LOCA) in a Pressurized Water Reactor (PWR), sig-
nificant mass transfer and multiphase phenomena occur as the coolant rapidly vaporizes due to
sudden depressurization. The transition from liquid to vapor, coupled with the dynamic move-
ment of steam and liquid phases, interacts with pressure waves, impacting the reactor’s thermal-
hydraulic response. Accurately modeling these complex multiphase mass transfer processes
is essential for predicting reactor behavior and ensuring the effective operation of emergency
cooling systems, thereby enhancing reactor safety and reliability. In this study, we explore the
numerical simulation of depressurization using 4-equation and 6-equation models.

1.INTRODUCTION

Numerical modeling of compressible two-phase flow plays a crucial role across various en-
gineering disciplines, including the design of submarine and naval vehicles, as well as in the
aerospace and nuclear power sectors. During regular operation, Pressurized Water Reactors
maintain their coolant in a liquid state. However, during an accident, this coolant can transform
into a combination of liquid and vapor phases. Since the 1960s, numerous predictive models for
two-phase flow in nuclear thermal hydraulics have been developed and implemented in codes
like RELAP, CATHARE, and ATHLET. The precision and complexity of these models and their
associated simulations can differ due to the system’s hyperbolic characteristics. A significant
focus in nuclear thermal hydraulics has been to model the response of PWRs during LOCA, a
common type of failure. In such scenarios, two primary physical processes are involved and
interact: the movement of pressure waves and mass transfer. Understanding these processes
is crucial for accurately predicting the system’s behavior. Hence, there is an expectation that
numerical models will provide detailed information about the mechanical forces exerted on
the nuclear fuel and other components of the reactor. In the field of numerical analysis, the
theoretical scenario often involves a coolant loss accident primarily occurring in the primary
circuit’s cold leg. A sudden pipe rupture in the primary circuit triggers rapid system depres-
surization. During this depressurization, the high-pressure coolant within the primary circuit
encounters the containment structure’s low-pressure environment, potentially generating a rar-
efaction wave that travels through the primary circuit and the Reactor Pressure Vessel (RPV).
Initially, the depressurization wave propagates as a single-phase liquid flow, but after a few mil-
liseconds, it shifts to a two-phase flow domain [1]. When the primary system pressure drops



to a certain threshold, the Emergency Core Cooling System (ECCS) injects a substantial vol-
ume of borated coolant water into the primary system. This action helps maintain the cladding
temperature within permissible limits and ensures long-term cooling [2].

The literature presents a range of methods for simulating two-phase flow, ranging from
complete models with seven-equation [3] to one-fluid homogeneous mixture model [4] [5]. In
this study, we will explore the numerical solution for the rapid depressurization of CO2 and
water using the four-equation model [6], and the single velocity six-equation model [7]. Canon
and Super-Canon experiments [8] which were conducted in the late 1970s, were simulated
using these models. These tests were designed to evaluate the depressurization of heated water
by simulating LOCA in a PWR primary circuit.

2.MATHEMATICAL MODEL

The single velocity six-equation model is composed of several key components: an advection
equation for the volume fraction of one phase, separate mass and energy equations for each
phase, and a single equation for the mixture’s momentum. The six-equation model is based
on the premise that velocity equilibrium between the two phases is achieved instantaneously.
Despite this, the model still takes into account the differences in mechanical, thermal, and
chemical equilibrium states. The model with stiff mechanical, thermal and chemical relaxation
can be written in the following form in 1D :

∂tα1 +u∂xα1 = µ(p1 − p2)+ v(g2 −g1)/ρI (1)
∂t(α1ρ1)+∂x(α1ρ1u) = v(g2 −g1) (2)

∂t(α2ρ2)+∂x(α2ρ2u) =−v(g2 −g1) (3)

∂t(ρu)+∂x(ρu2 +α1 p1 +α2 p2) = 0 (4)
∂t(α1E1)+∂x[α1(E1 + p1)u]+Σ(U,∂xU) =−µpI(p1 − p2)+θ(T2 −T1)+ eIv(g2 −g1) (5)

∂t(α2E2)+∂x[α2(E2 + p2)u]−Σ(U,∂xU) = µpI(p1 − p2)−θ(T2 −T1)− eIv(g2 −g1) (6)

where αk is the volume fraction of phase k, k = 1,2, and saturation condition is assumed (α1 +
α2 = 1 ), pk is the phasic pressure, and ρk is the phasic density. Phasic total energy denoted as
Ek = Ek + 1

2ρku2, where Ek = ρkεk is the phasic internal energy, with phasic specific internal en-
ergy εk. The right-hand side represents the pressure, thermal and chemical relaxation process,
where µ, θ and v represent the parameters for mechanical, thermal and chemical relaxation,
respectively. For pressure relaxation process, where pI =

Z2 p1+Z1 p2
Z1+Z2

represent the interface pres-
sure, and Zk = ρkck is the acoustic impedance, and ck is the sound of speed of the phase k. It
is assumed that mechanical relaxation occurs instantaneously which means that µ → +∞. Re-
garding the interfacial density ρI and the interfacial specific total energy eI , due to the handling
of thermal and chemical source terms, specifying these expressions is unnecessary. At certain
designated locations, it is presumed that these parameters ( θ→+∞ , v→+∞) have infinite val-
ues, whereas elsewhere they are set to zero. Specifically, thermal transfer occurs at liquid-vapor
interfaces, and thermo-chemical transfer is activated at liquid-vapor interfaces in metastable
thermodynamic conditions. The phasic total energy equations contain nonconservative terms :

Σ(U,∂xU) =−u[Y2∂x(α1 p1)−Y1∂x(α2 p2)] (7)

where Yk = αkρk/ρ. It is crucial to highlight that combining the two nonconservative phasic
total energy equations yields the equation that expresses the conservation of the mixture’s total
energy E = E+ 1

2u2 = α1E1 +α2E2.

∂t(E)+∂x[(E +α1 p1 +α2 p2)u] = 0 (8)



A four-equation model is employed to depict a two-phase flow in kinetic, mechanical, and
thermal equilibrium. This model is derived from the seven-equation Baer-Nunziato two-phase
model [3], under the conditions of velocity, pressure, and temperature equilibrium. It includes
one mass equation for each phase, along with momentum and energy equations for the mixture.
Four-equation model can be written in the following form in 1D :

∂t(α1ρ1)+∂x(α1ρ1u) = v(g2 −g1) (9)
∂t(α2ρ2)+∂x(α2ρ2u) =−v(g2 −g1) (10)

∂t(ρu)+∂x(ρu2 + p) = 0 (11)
∂t(E)+∂x[(E + p)u] = 0 (12)

In this context, ρk represents the phasic density, while αk (α1 +α2 = 1) denotes the volume
fraction, for each respective phase. Additionally, ρ, u, P, and E (E = E + 1

2ρu2) denotes mixture
velocity, density, pressure, and total energy respectively. The right-hand side depicts mass
transfer, with gl and gv representing the chemical potentials (Gibbs free energy) of the gaseous
and liquid phases.

A fundamental requirement for fully describing and closing a physical system is an equa-
tion of state that correlates temperature, pressure, internal energy, and density. A stiffened gas
equation of state (SG EoS) is selected for this purpose :

pk(Ek,ρk) = (γk −1)(Ek −ρkqk)− γk p∞,k, Tk(pk,ρk) =
pk + p∞,k

ρkCv,k(γk −1)
(13)

hk(pk,Tk) =Cp,kT +q, εk(pk,Tk) =
(pk + γk p∞,k)Cv,kTk

pk + p∞,k
+qk (14)

According to the aforementioned relationships, the specific entropy (sk), and Gibbs free energy
(gk), for each phase are determined :

sk(pk,Tk) =Cv,k ln
T γk

k
(pk + p∞,k)γ−1 +q

′
(15)

gk(pk,Tk) = (γkCv,k −q
′
)Tk −Cv,kTk ln

T γk
k

(pk + p∞,k)γ−1 +q (16)

where γ =
Cp
Cv

is the heat capacity ratio, Cp and Cv are thermal capacities, and P∞, q, and q′

are characteristic constants of the thermodynamic behavior of the fluid. Considering the four-
equation model, the mixture pressure and temperature can be defined as [6] :

p =
−a1 +

√
a2

1 −4a0a2

2a2
, T = (e−q∗)

(
∑

YkCvk(pk + γi p∞,k)

pk + p∞,k

)−1

(17)

a2 = Y1Cv1 +Y2Cv2 (18)
a1 = Y1Cv1(p∞,2 + γ1 p∞,1 − (γ1 −1)Q)+Y2Cv2(p∞,1 + γ2 p∞,2 − (γ2 −1)Q) (19)

a0 =−Q((γ1 −1)Y1Cv1 p∞,2 +(γ2 −1)Y2Cv2 p∞,1))+ p∞,1 p∞,2(γ1Y1Cv1 + γ2Y2Cv2) (20)

where q∗ = Y1q1 +Y2q2, and Q = ρ(e−q∗).
The fractional step method [9] has been employed to solve both the 4-equation and 6-equation
models. In the first step, the homogeneous part of the system is solved without the source
term. The solution from this initial step is then used in the subsequent relaxation step. The



homogeneous part of the system is solved using the Harten-Lax-van Leer Contact (HLLC)
approximate Riemann solver [10]. The process can be summarized as follows :

Un+1
i = L∆t

hypL∆t
sourceU

n
i (21)

After solving the homogeneous system, a sequence of ordinary differential equation systems
is solved, taking into account the relaxation source terms. During any relaxation process, the
mixture density, velocity, total energy, and internal energy remain constant throughout the trans-
fer processes. Furthermore, in the absence of activated chemical relaxation, the partial densities
also remain constant. (For an in-depth discussion on the mechanical and thermal relaxation
processes, refer to reference [7].)

The theoretical pressure-temperature saturation curve for liquid and vapor phases is estab-
lished by satisfying the Gibbs free energy equilibrium condition, where the Gibbs free ener-
gies of the two phases, g1 and g2, are set equal. Using the SG EoS equations, the pressure-
temperature saturation curve is characterized by the following equation :

As +
Bs

T
+CslnT +Dsln(p+ p∞,1)− ln(p+ p∞,2) = 0 (22)

with

As =
Cp1 −Cp2 +q

′
2 −q

′
1

Cp2 −Cv2
,Bs =

q2 −q1

Cp2 −Cv2
,Cs =

Cp2 −Cp1

Cp2 −Cv2
,Ds =

Cp1 −Cv1

Cp2 −Cv2
(23)

By employing the above non-linear formula, the saturation temperature corresponding to the
pressure can be determined. After the chemical relaxation, equilibrium pressure (p∗∗∗), tem-
perature (T ∗∗∗), partial densities (ρ∗∗∗

k ), and volume fraction (α∗∗∗) for infinite-rate relaxation
(v →+∞) :

a2(p∗∗∗)(T ∗∗∗)2 +a1(p∗∗∗)(T ∗∗∗)+a0(p∗∗∗) = 0 (24)

a2(p∗∗∗) = ρ
0Cv1Cv2((γ2 −1)(p∗∗∗+ γ1 p∞,1)− (γ1 −1)(p∗∗∗+ γ2 p∞,2)) (25)

a1(p∗∗∗) = E0((γ1 −1)Cv1(p∗∗∗+ p∞,2)− (γ2 −1)Cv2(p∗∗∗+ p∞,1))+

ρ
0((γ2 −1)Cv2q1(p∗∗∗+ p∞,1)− (γ1 −1)Cv1q2(p∗∗∗+ p∞,2)) (26)

Cv2(p∗∗∗+ p∞,1)(p∗∗∗+ γ2 p∞,2)−Cv1(p∗∗∗+ p∞,2)(p∗∗∗+ γ1 p∞,1)

a0(p∗∗∗) = (q2 −q1)(p∗∗∗+ p∞,1)(p∗∗∗+ p∞,2) (27)

T ∗∗∗(p∗∗∗) =
−a1(p∗∗∗)+

√
a1(p∗∗∗)2 −4a0(p∗∗∗)a2(p∗∗∗)

2a2(p∗∗∗)
(28)

ρ
∗∗∗
k =

p∗∗∗+ p∞,k

(γk −1)CvkT ∗∗∗ α
∗∗∗
1 =

ρ0 −ρ∗∗∗
2

ρ∗∗∗
1 −ρ∗∗∗

2
(29)

Although the steps of chemical relaxation for the 6-equation model are expressed here, it can
be used in the 4-equation model.
Moreover, chemical relaxation, defined as an infinite rate, can be modeled by the evolution of
the mass fraction of vapor through the following differential equation [11] :

DYvap

Dt
=−

Yvap −Y ∗∗∗
vap

Θ
(30)

Y n+1
vap = Y ∗∗∗

vap − (Y ∗∗∗
vap −Y n

vap)exp−∆t/Θ (31)

Θ = Θ0α
−0.54
v [

PS(Tin)−P
Pcrit −PS(Tin)

]−1.76 (32)



where Θ0 = 3.84 x 10−7 s [12], Ps(Tin) saturation pressure corresponding to the initial temper-
ature, and Pcrit is the critical pressure (22.064 MPa). This type of mass transfer will be tested in
a 4-equation model. It is designated as 4-eqt-DZ2.

3.RESULTS

The first test case was proposed by Lund [13], involving the depressurization of a pipe filled
with CO2. The total length of the pipe is 80 meters, with the initial discontinuity set at 50 meters.
The initial conditions are as follows: on the left side, the pressure PL is 60 bar, the temperature
TL is 273 K, and the volume fraction is αL = 1× 10−5; on the right side, the pressure PR is 10
bar, the temperature TR is 273 K, and the volume fraction is αR = 1−αL. The parameters for
the equation of state are presented in Table 1.
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Figure 1 - Results of CO2 pipe depressurization for pressure, temperature, density, and
velocity at t= 0.08 s, without mass transfer.

Table 1 - EoS parameters for CO2 test case.

Liquid Vapor

γ 1.23 1.06
P∞ (Pa) 1.32×108 8.86×105

q (J.kg−1) −6.23×105 −3.01×105

Cv (J.kg−1.K−1) 2.44×103 2.41×103

q′ (J.kg−1.K−1) −5.34×103 −1.03×104

For the CO2 depressurization test case, simulations were conducted with and without mass
transfer using a 5000-cell mesh. The results at t = 0.08 s are presented in Figures 1 and 2,
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Figure 2 - Results of CO2 pipe depressurization for pressure, temperature, density, and
velocity at t= 0.08 s, with mass transfer.

respectively. In the first scenario without mass transfer (Fig. 1), the density profile consists
of three waves: an expansion wave on the left, a shock wave on the right, and an initial con-
tact discontinuity at x = 50m. In the second scenario with mass transfer (Fig. 2), we observe
that thermochemical transfer is activated at liquid-vapor interfaces under metastable thermody-
namic conditions (Tliq > Tsat). The temperature variation caused by the liquid-to-vapor transi-
tion generates a new wave between the initial discontinuity and the right section of the pipe.
The outcomes from both scenarios show good agreement with the reference results.

Figure 3 - Schematic of experiment facility.

The Canon and Super-Canon experiments were established to replicate a full-scale LOCA
within a PWR primary circuit. This involved creating a complete break, leading to the rapid
depressurization of a horizontal pipe. As can be seen in Figure 3, the experimental tube has
a length of 4.389 m and an internal diameter of 102.3 mm, sealed at one end and initially
containing undersaturated water. Upon rupturing the membrane at the other end, a rarefaction
wave is initiated, moving through the tube. Although void fraction measurements are taken at
a single point, pressure data is collected at multiple locations along the tube. For the Canon



experiment, the initial pressure and temperature of the pipe were set to 32 bar and 220°C,
respectively. For the Super-Canon experiment, these values were set to 150 bar and 300°C. The
pressure and temperature of the experimental environment were 1 bar and ambient temperature.
However, in the numerical simulation, this part was filled with vapor instead of air at 1 bar, with
temperatures of 220°C for the Canon experiment and 300°C for the Super-Canon experiment.

Table 2 - EoS parameters for liquid and vapor for the Canon & Super-Canon experiment.

Liquid Vapor

γ 1.66 1.34
P∞ (Pa) 769317123.86 0.00
q (J.kg−1) -1359570.00 2032350.00
Cv (J.kg−1.K−1) 2807.61 1162.00
q′ (J.kg−1.K−1) 11671.61 2351.11

Table 3 - Initial conditions for the Canon (left) & Super-Canon (right) experiment

Pipe Tank Pipe Tank

αl 1−10−3 10−3 αl 1−10−3 10−3

αv 10−3 1−10−3 αv 10−3 1−10−3

ρl (kg.m−3) 841.12 837.74 ρl (kg.m−3) 736.45 717.72
ρv (kg.m−3) 16.72 0.52 ρv (kg.m−3) 88.23 0.59
Pl (bar) 32 1 Pl (bar) 150 1
Pv (bar) 32 1 Pv (bar) 150 1

Numerical simulations have been simulated using a 1D simplified geometry with 1000 cells
mesh, and closed-end as a boundary condition on one side and atmospheric pressure tank other
side. In addition, the computational domain is determined as 10 m. The stiffened gas EoS and
initial conditions given in the table 2 and 3. As can be seen in Figure 4, the experimental re-
sults are labeled as ’Exp.’ The 4-equation model results, which include mechanical, thermal,
and chemical relaxation, are labeled as ’4-eqt-pTg.’ The non-instantaneous chemical relaxation
model is labeled as ’4-eqt-DZ2.’ Additionally, the 6-equation model results, which include
mechanical and thermal relaxation, are labeled as ’6-eqt-pT,’ while the version that includes
mechanical, thermal, and chemical relaxation is labeled as ’6-eqt-pTg. In addition, the results
obtained from the solver have been compared with data from the literature (HRM Tabulated
EoS legend [14]). The initial depressurization is both abrupt and rapid. The pressure falls be-
low the saturation pressure corresponding to the initial stagnation temperature, which is 23.2
bar for Canon and 85.8 bar for Super-Canon. This causes the liquid water to penetrate into the
metastable region. The primary events during the experiment can be summarized as follows: the
sudden onset of depressurization generates a rarefaction wave that propagates leftward through
the tube. As the rarefaction wave rapidly propagates, leading to vaporization at a relatively con-
stant pressure for a time. After this period, the pressure continues to decrease until it reaches
the atmospheric pressure. Importantly, differences were found between the experimental results
and the computational predictions, with the computations indicating an earlier start of vapor-
ization compared to what was observed in the experiments.
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Figure 4 - Vapor void fraction versus time at the PT location, comparing Canon (left) and
Super-Canon (right) experiments.
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Figure 5 - Pressure versus time at the P1 location, comparing Canon (left) and Super-
Canon (right) experiments.

4.CONCLUSION

In this study, the CO2 test case and Canon & Super-Canon experiments were simulated using
4-equation and 6-equation models. The results obtained for the depressurization of CO2 align
well with the reference results. However, it is important to note that, for the Canon & Super-
Canon experiments, computational vaporization was predicted to occur earlier than observed in
the actual experiments. Within the wide range of pressures and temperatures considered in this
study, the stiffened gas equation of state appears overly simplistic for accurately capturing the
thermodynamic characteristics of water. Nevertheless, a reasonable level of agreement is ob-
served between the results obtained using the 4-equation and 6-equation models, demonstrating
the effectiveness of the current models in replicating the experimental data, even in complex
and challenging numerical scenarios.
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Figure 6 - Pressure versus time at the P5 location, comparing Canon (left) and Super-
Canon (right) experiments.
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