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Invariant filtering for wheeled vehicle localization with unknown wheel
radius and unknown GNSS lever arm

Paul Chauchat, Axel Barrau, Silvère Bonnabel

Abstract— We consider the problem of observer design for a
nonholonomic car (more generally a wheeled robot) equipped
with wheel speeds with unknown wheel radius, and whose
position is measured via a GNSS antenna placed at an unknown
position in the car. In a tutorial and unified exposition, we
recall the recent theory of two-frame systems within the field
of invariant Kalman filtering. We then show how to adapt it
geometrically to address the considered problem, although it
seems at first sight out of its scope. This yields an invariant
extended Kalman filter having autonomous error equations,
and state-independent Jacobians, which is shown to work re-
markably well in simulations. The proposed novel construction
thus extends the application scope of invariant filtering.

I. INTRODUCTION

Lie group embeddings are now considered as powerful
tools in navigation and mobile robotics, see [21, 12, 1] to cite
a few. Most notably, the use of SO(3), SE(2) and SE(3)
is well established in robotics. These Lie groups allow for
designing non-linear filters with strong theoretical properties
[18, 5], as in the framework of invariant filtering [4, 5, 26]
and equivariant filters [24]. However, practical navigation
problems usually require estimating additional parameters,
and including them as state space variables usually leads
to a loss of the strong theoretical properties of invariant
filtering which are related to the fact the Jacobians do not
depend on the state estimates. Despite this, the “imperfect”
invariant extended Kalman filter (IEKF) proves to work well
in practice and to retain some of the theoretical properties
[2, 23, 16]. Taking into account additional symmetries to
augment the state space was proposed for equivariant filtering
[15, 25], but losing the independent Jacobians property.

Novel Lie groups beyond the commonly used groups
SO(d) and SE(d) have been introduced by the invariant
filtering literature, such as SE2(3) introduced in [4, 2]
to gracefully accommodate the inertial measurement unit
(IMU) equations, as well as the general group SEK(d)
first introduced in [7] and later shown to endow the EKF
with consistency properties for simultaneous localization and
mapping (SLAM) in [3, 2]. Recently, the Two Frame Group
(TFG) structure [6] was shown to encompass all the latter
Lie groups and to provide novel groups and examples.

In this paper, we consider three related problems per-
taining to mobile robotics. Each problem encompasses the
previous one, with an additional complexity, making it closer
to real applications.
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The first one consists in estimating the position and orien-
tation of a 2D mobile robot or nonholonomic car [13], from
odometer and position (GPS) measurements. It has long been
known to fit into the framework of invariant observers, see
[8]. The second one consists in the same problem, but where
there is an unknown lever arm between the GPS antenna
and the midpoint of the rear axle. It has been shown to
be amenable to the recent framework of two-frame systems,
allowing for the tools of invariant Kalman filtering in [6].

Finally, the last problem is more difficult, and novel to the
geometric observer literature. It is the same as the previous
one, with the additional difficulty that the wheel radius is
unknown. It does not seemingly lend itself to the invariant
framework, but we show it is amenable to the framework of
two-frame systems too, after a proper change of variables,
which is our main contribution. A byproduct of this step-by-
step approach based on examples of increasing difficulty, is
to provide a tutorial introduction to [6].

The paper is structured as follows. Section II introduces
the three problems. Sections III and IV respectively recall
how the first problem, and the second one, fit into the TFG
framework. Section V shows how to treat both additional
parameters thanks to a suitable change of variables. Section
VI presents simulations that illustrate the benefits.

II. THREE INCREASINGLY DIFFICULT PROBLEMS

A. First problem (basic problem)

Consider the classical 2D model of a nonholonomic car or
equivalently a wheeled robot, or a unicyle, see e.g., [13] or
[4]. The position of the car in 2D is described by the middle
point of the rear wheels axle xn ∈ R2 , and its orientation
(heading) denoted by θn ∈ R and parameterised by the planar
rotation matrix Rn of angle θn, that is

Rn =

(
cos θn − sin θn
sin θn cos θn

)
. (1)

In the schematic diagram below, the triangle is the car, θn
encodes its orientation or heading, and xn its position.

xn

θn

The discrete-time dynamics of this wheeled robot write:

Rn+1 = RnΩn, xn+1 = xn +RnUn, (2)



where Ωn ∈ SO(2) is the angular rate of the car, that we
assume herein to be measured by a one-axis gyroscope, and
where Un ∈ R2 is a velocity returned by wheel speeds.

We assume the robot to be equipped with a position
measurement device, such as a GPS (more generally GNSS)
in case of a car driving outdoors, and which provides the
world-fixed frame position measurements

yn = h(Rn, xn) := xn ∈ R2. (3)

Goal 1: The goal is to devise an observer to estimate
the unknown robot’s state (Rn, xn) from the known inputs
Ωn, Un and position measurements yn. This is a challenge, as
the system is non-linear, due to the presence of the rotation
matrix Rn in the state. Our goal is to cast the problem into
the invariant filtering framework. If we manage to do so, an
IEKF can be automatically derived, and it comes with several
properties. This has already been done, though, in [8, 4].

B. Second problem (adding one difficulty)

In practice, the GNSS antenna has no reason to coincide
with the midpoint of the rear axle. It can be put anywhere
on the robot, and it may thus prove useful to estimate its
position in the robot’s frame (that we call the lever arm). This
spares the user a calibration phase where the position of the
GNSS needs to be precisely measured. Besides, estimating
it online allows for accommodating small variations of its
position over time due to flexibility or drift.

The goal of this augmented problem is to estimate the
state of a wheeled robot or car under the dynamical model
(2) but, instead of (3), with the measurements

yn = h(Rn, xn) := xn +RnXn ∈ R2, (4)

where Xn ∈ R2 represents the lever arm. As the lever arm
Xn needs to be estimated online, we include it in the state,
leading to the following dynamics

Rn+1 = RnΩn, xn+1 = xn +RnUn, Xn+1 = Xn.
(5)

This is illustrated in the schematic diagram below, where
the triangle is the car and the square represents the position
measured by the GNSS (in the absence of noise).

xn

θnXn

yn = xn +RnXn

Goal 2: The goal is to devise an observer to estimate the
unknown robot’s state (Rn, xn, Xn) from the known inputs
Ωn, Un and position measurements yn. This is a challenge
because of the presence of the rotation matrix Rn in the
state, and the presence of vector variables defined in different
frames (fixed vs mobile). Our goal is to cast the problem into
the invariant filtering framework. This has been done in [6].

C. Third problem (adding yet another difficulty)

We consider the latter problem, with the additional dif-
ficulty that the wheel radius be unknown and needs be
estimated online. The discrete-time dynamics of such a
mobile wheeled robot then write: Rn+1 = RnΩn, xn+1 =
xn + snRnUn, sn+1 = sn where Ωn ∈ SO(2) and
Un ∈ R2 are respectively the car’s angular rate and velocity,
measured by a gyroscope and wheel speeds. The scalar
sn > 0 corresponds to a scaling factor, owed to the fact
that the wheel radius may be unknown, or it may be known
initially and vary over time (for instance due to pressure
decreasing in the tires), or there may be wheel slip that
induces a mismatch between the wheel’s rotation and the
car’s actual velocity (the linear velocity is overestimated
by the wheel speeds, up to an unknown factor). Estimating
this scaling is very relevant in practice, and in navigation
applications it is routinely included in the state.

Goal 3: Considering both the scale sn ∈ R and the lever
arm Xn ∈ R2 as unknown, leads to the following dynamics

Rn+1 = RnΩn, xn+1 = xn + snRnUn,

sn+1 = sn, Xn+1 = Xn,
(6)

along with measurements

yn = h(Rn, xn) := xn +RnXn ∈ R2, (7)

where Xn ∈ R2 represents the lever arm.
The goal is to devise an observer to estimate the unknown

robot’s (larger) state (Rn, xn, sn, Xn) from the known inputs
Ωn, Un and position measurements yn given by (4) or
equivalently (7). Ideally, we would like to cast the problem
into the invariant filtering framework. If we manage to do
so, an IEKF can be automatically derived, and it comes with
a number of powerful properties [5].

III. CASTING THE FIRST PROBLEM INTO THE
FRAMEWORK OF INVARIANT FILTERING

Without the unknown scaling factor and lever arm, the
problem has long been known to possess symmetries making
it amenable to the invariant observer/filtering framework
[8], as the dynamics are then left-invariant on SE(2) and
the output compatible [8]. In this paper, we use this first
known problem to recall a few facts of invariant filtering, but
adopting the recent two-frame systems framework of [6].

A. Group action and group law

The idea of two-frame groups is to depart from a Lie
group G, which serves as a building block to build a group
structure on the state space. An important ingredient of this
construction is the notion of group action.

Definition 1: A (left) group action of G on Rd is a map
(G,Rd) → Rd that we denote as (g, v) 7→ g ∗ v, and which
verifies the two following conditions:

g1 ∗ (g2 ∗ v) = (g1g2) ∗ v, Id ∗ v = v
We may at first define the state space of a (reduced) two-
frame system to be of the form G × Rd. A state element
is then of the form χ := (gn, xn). The two-frame group



(TFG) is a group structure on the state space, that is, a way
to combine state elements. For the present state space it is
defined as follows.

χ1 • χ2 =

(
g1
x1

)
•
(
g2
x2

)
=

(
g1g2

x1 + g1 ∗ x2

)
. (8)

The identity element is (Id, 0), and the inverse is given by
(g−1,−g−1∗x). Endowed with this structure, the state space
of two-frame systems may be identified with the TFG itself.
Note that, letting G = SO(2), gn = Rn, and the action
being the matrix-vector product, that is gn ∗xn = Rnxn, we
recover the well-known group SE(2).

B. Error dynamics

Let us consider the first problem, and view its state space
as SE(2). The success of invariant filters for state estimation
[9] relies on the properties of a non-linear error when passed
through the dynamics. The left-invariant error between two
solutions χ, χ̂ of a system is defined, on SE(2), as

E = χ̂−1 • χ =

(
R̂−1R

R̂−1(x− x̂)

)
:=

(
ER

Ex

)
. (9)

It provides a measure a discrepancy between two elements of
the group (that is, between state variables), and a null error
χ = χ̂ corresponds to E being the identity group element
of the TFG. Let En = χ̂−1

n • χn be the error between two
solutions of the dynamical system governed by (2) at time n,
and let us compute the error at step n+ 1, En+1 = χ̂−1

n+1 •
χn+1 with respect to En. Computations easily show that

En+1 =

(
R̂−1

n Rn

Ω−1
n R̂−1

n (x− x̂+RnUn − R̂nUn)

)
=

(
ER

n

Ω−1
n

(
Ex

n + ER
n Un − Un

)) . (10)

This means that the error after one step depends only of
the error before and the inputs. It is thus “autonomous”, and
does not depend explicitly on χ̂ and χ: It only depends upon
their discrepancy. This autonomy (or state-independence) of
the error evolution plays a key role in the theory of invariant
filtering, and is the basis of many of the properties of the
invariant extended Kalman filter (IEKF) of [4, 5].

C. Invariant observers: compatible output maps

For a system defined on the TFG, consider an output map

y = h(χ) (11)

providing a partial information about the complete state χ.
The notion of compatible output maps of [8, 9] may be

rephrased in the framework of two-frame systems as follows.
Definition 2 (Compatible output): We say an output map

is compatible if there exists an action ∗y : (χ, y) 7→ χ ∗y y
on the output space, such that for all χ1, χ2 we have

h(χ1 • χ2) = χ1 ∗y h(χ2).
In Lie group theory, h is said to be equivariant. The main
interest of such a property is that we may then define an
output error (called innovation in the context of filtering)

which is a function of the error only. Namely, given a state
estimate χ̂ and a measured output (11), let the innovation be

Z := χ̂−1 ∗y y, (12)

which is computable with the information we have, as it does
not require to know the true state χ. We see that owing to
the compatibility property, Z is a function of the error only:

Z = χ̂−1 ∗y h(χ) = h(χ̂−1 • χ) = h(E).

This remarkable property is key to maintain an “au-
tonomous” behavior of the error during the update step, that
is, when the state is corrected in the light of the measurement.
Indeed, in (left) invariant filtering the correction writes

χ̂+
n+1 = χ̂n+1 • L(Zn) (13)

where L(·) is an arbitrary function. The error then becomes

E+
n+1 = (χ̂+

n+1)
−1χn+1 = L(Zn)

−1 • En+1, (14)

hence it evolves only depending on itself. The gain function
L can be tuned through various methods, either by design
to derive strong convergence properties in some specific
problems, see [18, 19, 22, 27, 17] or using an approach akin
to the Extended Kalman filter (EKF), leading to the invariant
EKF (IEKF) [2, 4, 5] or the Equivariant filter [24]. The state
independence of the error evolution plays a key role in any
case.

D. Casting Problem 1 into the invariant filtering framework

Besides being known for a long time, see [8], making
the problem fit into the invariant framework comes as a
straightforward application of the theory of two-frames [6].

Proposition 1: The left-invariant error E is autonomous
for Problem 1. It evolves autonomously through (2) and its
associated innovation Z depends only upon itself.

Proof: Equation (10) showed that the invariant error E
evolves autonomously through dynamics (2).

Regarding the innovation, let us show that the simple
output (3) is compatible. Let ∗y be defined by

χ ∗y y =

(
g
x

)
∗y y := x+ g ∗ y = x+Ry. (15)

On the one hand, we have using (8) and (3)

h(χ1 • χ2) = x1 + g1 ∗ x2 = x1 +R1x2,

and on the other

χ1 ∗y h(χ2) = χ1 ∗y x2 = x1 +R1x2,

proving the compatibility. We proved in passing the output
(3) rewrites as h(χ) = χ ∗y 02.

Finally, the innovation, (automatically) defined as

Z = χ̂−1 ∗y y = R̂−1y − R̂−1x̂ = R̂−1(x− x̂),

is a function of the error, as we find that Z = Ex.



IV. CASTING THE SECOND PROBLEM INTO THE
FRAMEWORK OF INVARIANT FILTERING

The problem of estimating a robot’s unkonwn attitude,
position, and lever-arm χn := (Rn, xn, Xn) has been cast
into the invariant filtering framework recently, and has served
as a flagship example for the theory of two-frame systems
[6]. We recall here how this broadens the scope of the
theory developed in Section III, thus making the reader more
familiar with this recent theory.

A. Definition of the TFG group structure and actions

The two-frame system state space is of the form G ×
Rd × Rf , see Fig. 1. A state element is of the from χ :=
(gn, xn, Xn). The group structure of the TFG relies on two
group actions of G on Rd and Rf , denoted by ∗x and ∗X
respectively. The group law is given by [6]

χ1 • χ2 =

 g1
x1

X1

 •

 g2
x2

X2

 =

 g1g2
x1 + g1 ∗x x2

X2 + g−1
2 ∗X X1

 . (16)

The identity element is (Id, 0, 0), and the inverse is given by
(g−1,−g−1 ∗x x,−g ∗X X).

Fig. 1. The state χ of a two-frames system consists of a frame
transformation operator we denote by R ∈ G with G a frame transformation
group, along with vectors, e.g., the position, velocity, stacked in x ∈ Rd

(resp. X ∈ Rf ) when expressed in the fixed (resp. body) frame.

In the present case, we let G = SO(2), Rd = Rf = R2,
and both actions be the matrix-vector product: g ∗x x = Rx,
and g ∗X X = RX , so that (16) boils down to

χ1 • χ2 =

R1

x1

X1

 •

R2

x2

X2

 =

 R1R2

x1 +R1x2

X2 +R−1
2 X1

 . (17)

The invariant error is now given by

E =

ER

Ex

EX

 = χ̂−1 • χ =

 R̂−1R

R̂−1(x− x̂)

X −R−1R̂X̂

 . (18)

The action of the TFG on the output space is [6]

χ ∗y y := x+RX +Ry (19)

and we see that similarly to the previous problem, we have
managed to write the new output (4) as h(χ) = χ ∗y 02.

B. Results

Dynamics (5) can be rewrittenRn+1

xn+1

Xn+1

 =

 RnΩn

xn +RnUn

Xn

 (20)

Adding Xn to the state, albeit constant, has a non negligible
impact on the evolution of the error E. However, the dynam-
ics still satisfy the group-affine property [5, 6] which ensures
autonomous evolution of the error. Indeed, since ER, Ex are
unchanged compared to (10), they evolve identically. Thanks
to the commutativity of SO(2), we can check that

EX
n+1 = Xn −R−1

n R̂nX̂n = EX
n

Moreover, we can then check that h(χ) = x + RX is
compatible with the TFG through the action ∗y . Indeed, we
have

h(χ1 • χ2) = x1 +R1x2 +R1R2(X2 +R−1
2 X1) (21)

= x1 +R1X1 +R1x2 +R1R2X2 = χ1 ∗y h(χ2)

Therefore, we recover the following result from [6]
Proposition 2: The invariant error evolves autonomously

through the dynamics (5), as we have

En+1 = χ̂−1
n+1 • χn+1 =

 ER
n

Ω−1
n

(
Ex

n + ER
n Un − Un

)
EX

n

 ,

Moreover, the innovation is a function of the error as

Z = χ̂−1 ∗y y = −R̂−1x̂− R̂−1R̂X̂ + R̂−1
(
x+RX

)
= R̂−1(x− x̂) + (R̂−1RX − X̂)

= Ex − (E−1)X

Having established those points, we have all we need to
apply the invariant filtering theory, and we know it will lead
to invariant EKFs that come with strong properties [5].

V. CASTING THE THIRD PROBLEM INTO THE
FRAMEWORK OF INVARIANT FILTERING

While casting Problems 1 and 2 into the framework of
invariant filtering had already beend done, to our knowledge
Problem 3 has not been shown to fit into the invariant
filtering framework (or in simple terms there are not known
alternative state errors that have been shown to evolve
autonomously, to date). We believe this is non-trivial, even
to the expert, as can be observed by the reader who would
attempt at this stage to come up with an error that verifies
autonomous evolution and output compatibility (the end so-
lution looks simple, but only once it has been found). Casting
Problem 3 into the framework of invariant filtering, and
showing experimentally the benefits, can be considered the
main contributions of the present paper. Note that presenting
the two latter problems in an unified and pedagogical way
is a secondary contribution, which was helpful in preparing
the developments to come.



A. A preliminary subproblem as a first step

Let us set aside the lever-arm for now. If we are to include
the scaling factor in the model, and to estimate it online, the
previous approach is not sufficient. It turns out though, that
we can use the theory of two-frame systems developed in
Section III once again, but changing the group G. Indeed in
Fig. 1, the frame transformation group needs not be limited
to a rotation group. It can also include a global scaling,
which makes sense for instance if different units (e.g., meters
vs feet) are used in the fixed and body frames. Note that,
including a scale factor using geometric tools was already
done in the context of visual navigation [14, 10, 20], and we
also proposed it in [11] to cope with wheel scaling.

In this first step, we let G be the direct product between
SO(2) and R>0 endowed with standard product of scalars.
Hence, an element of G now writes g = (R, s) with R a
rotation and s > 0, and the group composition law writes
(R1, s1) · (R2, s2) = (R1R2, s1s2). An element of the TFG
in this context is thus of the form χ = (g, x) = ((R, s), x).
Moreover, we define the action of G on the variable x to be
given by (g, x) 7→ g ∗x x = (R, s) ∗x x := sRx, which is
easily seen to be an action. This defines a TFG group law,
applying (8), which herein particularizes to

χ1 • χ2 =

(
(R1R2, s1s2)
x1 + s1R1x2

)
. (22)

The inverse element is given by χ−1 = ((R, s), x)−1 =
((R−1, 1

s ),−
1
sR

−1x). This group is not new, though, since
it corresponds to the group of similitudes Sim(2) [12].

B. Back to Problem 3

One could think a simple combination of the use of the
TFG as was done in Section IV and the ideas of the latter
subsection to include the scaling as part of the transformation
group of frames G will lead to the result we seek, and
hence to autonomous error equations. However, there is a
fundamental problem.

If we try to apply the methodology of Sections IV and
V-A to the third problem, that is, System (6)-(7), we need to
consider the TFG structure on (SO(2)×R>0)×R2×R2, so
that an element of the state space is ((R, s), x,X). However,
a problem arises when trying to define the suitable actions
∗x, ∗X , ∗y of SO(2)×R>0. For instance, the lever-arm-only
case of Section IV used g ∗x x = Rx, while the scale-factor-
only case of Section V-A used g ∗x x = sRx. The same
applies for the other actions, and one cannot define an action
which would lead to both autonomous error dynamics and
innovation being a function of the error only.

C. Casting the problem into the invariant filtering framework
after a suitable change of variables

We propose an alternative form that falls into the invariant
filtering framework thanks to a change of variable, which will
lead to autonomous errors both in the transformed and in the
original variables. Consider the new variable

χ′ = ((R, s), x,X ′), with X ′ =
1

s
X. (23)

The system then becomes

Rn+1 = RnΩn, xn+1 = xn + snRnUn,

sn+1 = sn, X ′
n+1 = X ′

n.
(24)

with measurements

yn = h(χ′) = xn + snRnX
′
n. (25)

Remarkably, this modified system with a down-scaled lever
arm gracefully fits the framework built up until now, using
the state space (SO(2)×R>0)×R2 ×R2. Indeed, consider
the following actions

(R, s) ∗x x = sRx, (R, s) ∗X X ′ = sRX ′

χ′ ∗y y = x+ sRX ′ + sRy.

As there is no ambiguity, since the actions coincide, we will
use ∗ to denote both ∗x, ∗X . The dynamics (24) may then
rewrite in the form (20) as follows(Rn+1, sn+1)

xn+1

X ′
n+1

 =

 (Rn, sn) · (Ωn, 1)
xn + (Rn, sn) ∗ Un

X ′
n

 . (26)

With the new variable χ′, we can replace R1, R2 with
s1R1, s2R2 in (21), which boils down to changing the group
G, and we recover formally exactly the Problem 2. It is then
easy to check that the output (25) becomes compatible with
the action ∗y . This guarantees that the left-invariant error is
autonomous both at propagation and update steps.

Hereafter we translate the computations in terms of the
original variables.

D. An autonomous error in the original variables

Let us rewrite the error in the original variables, by
replacing X = sX ′ and X̂ = ŝX̂ ′. We thus haveEg

Ex

EX

 =

(ER, Es)
Ex

EX

 :=

 (ER, Es)
Ex

1
s (X −R−1R̂X̂)

 . (27)

This error is not left-invariant, and does not follow from a
TFG group law. Nonetheless, it is autonomous.

Proposition 3: The error (27) has autonomous dynamics,
and the innovation depends only upon it.

Proof: Since ER, Ex coincide with their counterparts
from Section V, we only need to focus on EX . Since sn+1 =
sn, and 2D rotations commute, we have R−1

n+1R̂n+1 =

R−1
n R̂n, and thus EX

n+1 = EX
n .

Regarding the innovation, we can see that

χ̂−1 ∗y y = −R̂−1 1

ŝ
x̂− R̂−1 1

ŝ
(R̂X̂) + R̂−1 1

ŝ

(
x+RX

)
= R̂−1 1

ŝ
(x− x̂)︸ ︷︷ ︸
Ex

+
1

ŝ
(R̂−1RX − X̂)︸ ︷︷ ︸

EX

(28)

These properties previously ensured that the errors of Sec-
tions III, IV, V behaved entirely autonomously. However,
this relied in part on the form of the update (13). Since there
is no group law to define the update here, the update rule
for the original variable χ needs to be clarified.



To this end we rely on the group law of the new variable
χ′. Let the update be ((LR, Ls), Lx, LX′) = L(Z). Follow-
ing the theory of [6], the update rule for χ̂′ writes

χ̂′+ =

(R̂+, ŝ+)
x̂+

X̂ ′+

 =

 (R̂, ŝ) · (LR, Ls)

x̂+ (R̂, ŝ) ∗ Lx

LX′ + (LR, Ls)
−1 ∗ X̂ ′


The update rule in the original variables follows, using that
X̂+ = ŝ+X̂ ′+ = ŝLsX̂

′+:

χ̂+ =

 (R̂, ŝ) · (LR, Ls)

x̂+ (R̂, ŝ) ∗ Lx

ŝLsLX′ + L−1
R X̂

 (29)

Proposition 4: The error update based on the rule (29) is
autonomous.

Proof: We simply need to compute

EX
n+1 =

1

sn+1
(Xn+1 −R−1

n+1R̂
+
n+1X̂

+
n+1)

Replacing the expressions using the equations above, we get

EX
n+1 = EX

n + ((ER
n , Es

n)
−1(LR, Ls)

−1) ∗ L′
X . (30)

E. Discussion
This simple enough set of examples sheds further light on

the two-frame theory. The rationale of this theory is to have
two frames, vectors defined in each, and a transformation
group G which transforms vectors expressed in the body
frame to vectors of the fixed frame. In the subproblem of
Section V-A, it is clear that scalings must be included in G,
as not knowing the wheel radius up to a scaling factor s is
identical to using different units (e.g. meters vs feet) in the
body and the fixed frame. Hence G must act as sR. There
are two frames, a transformation group from one to the other,
and we may follow the theory of [6].

In Problem 3, by constrast, there are fundamentally 3
frames. The odometry measurements Un are vectors in the
body frame that are as if measured in different units than the
lever arm Xn. This yields two different body frames, and one
fixed frame. We do not have 2 frames and a single group that
maps one to the other, as required by the theory. The change
a variable for the lever arm Xn allows for working with 2
frames only, as it brings Un and X′

n in the same frame (this is
as if a global change of units was applied to the body frame
besides the rotation). The proposed change of variable thus
appears fundamentally justified by physical considerations,
and not just a “trick”.

One could also have directly computed the related group
law, although it is hard to guess. However, the change of
variable allows profiting from the properties of the TFG, and
avoids carrying out a number of specific computations.

VI. NUMERICAL COMPARISONS

Once group multiplication and group actions have been
defined, one may follow the constructive design of IEKFs,
see e.g. [6]. In the present case, though, we need to recall
that the problem fits the IEKF framework only after a suitable
change of variables.

A. IEKF design for Problem 3

We denote the filter based on estimation error (27) as TFG-
IEKF. Since the propagation is carried out via the dynamical
model, see e.g., [6], all we have to specify is the update
step. It relies on the exponential map given in Appendix A.
If we consider a change of variable X ′ = X

s , such that
(θ, s, x,X ′) suits the TFG framework, then the TFG-IEKF
update is computed as follows:

• Let (eθ, es, ex, eX′) = exp(Kz) using (35);
• Then (θ, s, x)+ = (θ + eθ, s · es, x+Rex);
• X ′+ = eX′ +

e−1
R

es
X ′, which translates into X+ = s ·

es · eX′ + e−1
R X .

Let us compare with the imperfect IEKF and EKF respective
updates. Write δ = (δθ, δs, δx, δX) = KZ. Then, for the
imperfect IEKF we have (θ, x)+ = (θ, x) expSE(2)(δθ, δx)
and (s,X)+ = (s + δs, X + δX). For the EKF, we simply
have χ+ = χ+δ. Note, in particular, that only the TFG-IEKF
guarantees that the scale stays positive.

B. Numerical experiment

The proposed non-linear autonomous error (27) is com-
pared in a filtering framework with the imperfect IEKF [2]
and the EKF formulations in a quite challenging alignment
experiment. The vehicle was modeled to first drive in circles
with angular velocity of π/25rad/s, and then go straight,
all at constant speed of 5m/s. This allows the lever arm
to be fully observable. Angular and linear increments were
received at 10Hz, and position measurements at 1Hz. They
were polluted by noise of respective standard deviations
σω = 0.05rad/s, σU = 0.1m/s and σy = 1m. The initial
attitude error was sampled from a Gaussian with standard
deviation σ0

att = 100◦ (first experiment), or σ0
att = 200◦

(second experiment), on 50 Monte Carlo runs each. This
corresponds to large initial errors indeed.

Figure 2, top, displays the RMSE for the first case. Im-
perfect IEKF and TFG-IEKF behave likewise asymptotically,
but the proposed filter better handles the first circling part.
On the other hand, the EKF has troubles converging, which
impacts the RMSE. For σ0

att = 200◦, the RMSE depends
primarily on the presence of outliers, i.e. whether the filters
converge, so we focus on this. For each MC run, the 3-
σ envelope and the yaw error are displayed, colored in
blue if the filter achieves convergence, in red otherwise. An
estimate is deemed convergent if its error stays below the
3-σ envelope after 20s, divergent otherwise. Table I gives
the proportion of convergent trajectories. It clearly appears
that only the filter based on the autonomous error manages
to converge at almost each run. Indeed, both the imperfect
IEKF and EKF mostly fail. Notably, the estimated scale ŝ
can become negative, “trying” to compensate for a yaw error
of π.

VII. CONCLUSION

In this work we presented, through a cascade of increas-
ingly difficult navigation problems, how the two-frame group
structure helps designing invariant Kalman filters. The first
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Fig. 2. Results of the alignment experiments. Top: RMSE of the estimates
for σ0

att = 100◦. Bottom: Yaw error for each MC run compared with the
3-σ envelope for σ0

att = 200◦. Error curves are in blue if they stay below
the envelope after 20s, and in red if they do not.

TABLE I
CONVERGENCE RATES OF THE FILTERS FOR σ0

att = 200◦

Filter TFG-IEKF Imp. IEKF EKF
Convergence 98% 34% 14%
Divergence 2% 66% 86%

two problems were known, and recapped in a tutorial and
unified way. The last one was shown not to fit into the TFG
structure as it is. However, a suitable change of variable
allowed for an invariant Kalman filter having autonomous
error. The associated filter was shown to outperform the
imperfect IEKF and standard EKF in terms of accuracy and
convergence capabilities, avoiding local minima. The fact
that the error remained autonomous while going back to the
original variables is intriguing, and opens up for possible
generalizations, and a larger application of the invariant
filtering framework.

APPENDIX

A. Exponential of the TFG with scale factor

The exponential of Sim(2) is given by (cf. Gallier, p58)

exp(θ, s, x) = (θ, es, V (s, θ)x), where V (s, θ) = (αI2 + βJ)

(31)

α =
s(es cos(θ)− 1) + esθ sin(θ)

s2 + θ2
(32)

β =
θ(1− es cos(θ)) + ess sin(θ)

s2 + θ2
(33)

J =

(
0 −1
1 0

)
(34)

The exponential on the TFG is then given by

exp


θ
s
x
X

 =


θ
es

V (s, θ)x
V (−s,−θ)X

 (35)
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