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ABSTRACT

AI is increasingly becoming an important catalyst for improving the efficiency and efficacy of the
financial services industry. For this paper, we consider institutions that provide banking services,
insurance services, payment services, and investment services as part of the financial services industry
(FSI). The recent success of generative AI and predictive AI in the last few years generated enormous
interest in deploying AI across FSI use cases. However, because it is highly regulated and lacks
open-source datasets, there are not enough published resources on the production challenges, failures,
and reasons behind them. Because of this, there is a growing technical debt regarding how AI is
deployed in the FSIs. In addition to this, due to a lack of interdisciplinary skills in AI and the
associated business risks, traditional risk managers and auditors struggle to create risk frameworks for
AI deployments. In this paper, we will review the AI technical debt (TD) in FSIs and do an empirical
study about the risks involved.

Keywords Machine learning · Artificial Intelligence · AI Debt · Financial Services Industry · Banks · Insurance · AI
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1 Introduction

Financial Services as a term became mainstream after the reference in Gramm–Leach–Bliley Act of the late 1990s in the
United States[1] allowed the creation of large financial conglomerates that offered various services under one roof. We
use the financial services industry (FSIs) to represent financial institutions providing banking, insurance, payment, and
investment services. Artificial Intelligence (AI) has seen unprecedented demand in FSIs in the last few years because of
changing customer needs, improved preparedness, and evolving AI techniques, which have transformed traditional
paper/human-based transactions into intelligent and data-based transactions. The benefits of AI teased FSIs for a very
long time as other industries, like retail, Internet, etc., had been deploying AI at scale and were getting the benefits of AI
[2]. In the last decade, FSIs have also undergone the digital transition [3], which involves migrating legacy to new-age
software or cloud and modifying heavy paper-based processes into digital transactions. This made the industry capture
a lot more data and a scalable software stack, which are the prerequisite requirements for deploying AI at scale[4].

The true success of AI deployments in other enterprise verticals is attributed to various factors, such as the availability
of open-source/private data sets, rapid production feedback, fewer regulations, and the awareness of the use cases.
Many of these factors can be attributed to the nature of business (retail, technology, supply chain, etc). However, highly
regulated industries like FSIs are slow to deploy AI [2]. The reason could be regulatory and compliance challenges,
closed data sets, lack of interdisciplinary skills required to design AI solutions, lack of maturity in AI architectures in
FSIs etc. The current success of AI solutions in FSIs can be linked to the ability to learn from similar use cases in other
verticals and deploy them in the FSIs (for example, recommendation systems, anomaly tracking, etc). However, other
industries follow a very leisured risk framework as the business scale is prioritised over the risk/compliances. This
inadvertently creates a Technical Debt in FSIs that could become a critical business continuity risk [5] resulting in loss
of value or reputation or huge compliance troubles.
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Ward Cunningham introduced Technical Debt (TD) 1992 as “shipping first-time code is like going into debt. A little
debt speeds development so long as it is paid back promptly with a rewrite. . . The danger occurs when the debt is
not repaid.” [6]. This was later adapted to AI solutions in 2015 [7]. Sculley expanded the traditional software TD to
Machine Learning and categorized various possible TDs in ML solutions. This became a reference for many future
work [8] [9]. The proposed TD categorization is well-suited for traditional AI deployments. In this paper, we will
review the AI Technical Debt in the Financial Services Industry (FSI) and empirically study the risks associated with
these TD. Given that AI adoption is imperative in FSIs, creating a scalable AI solution to address technical debts can
ensure reliable and sustainable adoption of AI in FSIs.

2 LITERATURE REVIEW

The adoption of Artificial Intelligence (AI) in the FSI is growing rapidly. By analyzing customer data, it can offer
tailored product recommendations and improve customer satisfaction and loyalty in banks [10]. This also allows banks
to understand customer preferences and behaviours mode deeply [11]. AI plays a crucial role in enhancing security
measures within FSIs. ML is deployed to detect fraudulent activities by analysing transaction patterns and identifying
anomalies [12]. The ability of these systems to analyze vast amounts of data in real-time and identify fraud significantly
enhances the speed and accuracy of fraud prevention compared to traditional methods, thereby improving the overall
efficiency of fraud management systems [11] [13]. Insurers have been exploring AI for various use cases like claims
automation, pricing, underwriting, personalization, Data extraction, etc. In health insurance, ML was used to predict
premiums based on features like age, gender, and lifestyle, achieving better accuracy and faster service delivery [14].
Jaskanwar compared the performance of various ML techniques like KNN, ANN, Random Forests, and SVMs in
automating claims decisions for health insurance. In the property and casualty insurance sector, AI and ML prevent
fraudulent claims, make swift business decisions, and enhance predictive analytics, improving customer satisfaction
and reducing costs [15]. The implementation of AI-driven underwriting systems, such as the Hybrid Multiple Classifier
System combining XGBoost, Random Forest, and SVM, has proven to be a cost-effective and time-saving solution,
enhancing digital capabilities and customer focus[16]. AI’s potential in fraud detection is immense, as it can analyze
vast amounts of data to identify suspicious behaviour and develop predictive models tailored to detect fraudulent
activities, thereby safeguarding the integrity of the insurance industry and protecting policyholders [17] [18]. Overall,
the adoption of AI in FSIs is streamlining operations, reducing costs, and providing more personalized and efficient
services to customers, ultimately transforming the industry landscape.

Ward Cunnigham first used technical debt (TD) to explain the long-term negative consequences of short-term com-
promises made in software development [6]. If not handled, these compromises can lead to significant damages
and maintenance costs to the software in future. Effective Technical Debt Management (TDM) involves identifying,
preventing, monitoring, prioritizing, and repaying TD to satisfy technical requirements and customer value, thereby
preventing project failures and overruns [19]. Seaman et al. suggested a framework to manage TD with key components:
TD identification, TD estimation, and decision-making. They provided options to categorize TD into - design/code
debt, testing debt, documentation debt, defect debt and infrastructure debt. The resolutions may need humans or can be
automated based on the TD type. However, it makes it easy to manage the business goals and track the pain points
based on these categorizations. TD impact estimation was suggested to start with an estimated cost and arrive at the
precise cost by refactoring occasionally. Estimating the TD impact cost will provide a metric to benchmark the urgency
of TD resolution [19]. Despite its criticality, formal approaches to TD management are still not widely adopted, with
less than 15% of practitioners using structured methods to manage TD [20]. Occasionally, accumulating TD can make
maintenance nearly impossible or even the software redundant. So, addressing TD at the early stages is essential [6].
Therefore, understanding and managing TD is extremely important for software products.

Technical debt (TD) in Artificial Intelligence (AI) solutions is more complicated and multifaceted. TD in AI systems
can arise from sub-optimal implementations, postponed tasks, and immature artefacts, which incur future costs in
refactoring, rework, and maintenance [9] [6]. Algorithm debt refers to the sub-optimal implementation of algorithm
logic, which can affect the performance and reliability of AI systems significantly [9]. Data testing debt refers to
inadequate testing of input data, and reproducibility debt refers to a lack of consistency in reproducing the experimental
results due to randomized algorithms and non-determinism in parallel learning [7]. Hidden debts are particularly
concerning as they permute the risk of making future improvements more costly and complex[7]. Self-admitted
technical debts (SATD) in AI are related to data dependency, code dependency, and awareness debts. Awareness debts,
for instance, involve doubts about algorithmic procedures, design decisions, and proper API usage, which can lead to
erroneous behaviour and increased maintenance efforts [8]. Tracking and visibility of TD for all stakeholders in the
process is the key to managing TD properly [21]. Prioritising TD from a business perspective is important to business
decision-making. [22]. Bogner et al proposed a new categorization of technical debts for general business along with
anti-patterns [23].
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AI is increasingly adopted in the financial services industry (FSI)s. Technical debt (TD) is a common issue in software
development that can cause severe maintenance and usability challenges. Similarly, managing AI technical debt is
crucial for the success of AI deployment. In highly regulated industries like FSIs, the damage is not just a failure of the
AI; it can lead to severe damage to business and even business continuity risks.

3 Approach:

Categorizing and prioritising TD can ease the decision-making of the businesses and better risk management[22]. While
there have been efforts to categorize TD in traditional environments, we aim to review TD for the Financial Services
Industry (FSIs) and explore its risks. Unlike other verticals, FSIs have stringent regulatory compliance and a very high
cost of failure. Making AI solutions acceptable in FSIs is very complex and needs multiple validations before the
solution can be fully deployed in production environments in FSIs. Hence, documenting the TD with risks provides an
acceptable framework for all stakeholders to validate and benchmark.

We will follow the following steps to arrive at this:

• Step 1: Propose the TD categorization

• Step 2: Empirical review of anti-patterns in each TD category

• Step 3: Reviewing the risks of the TD

4 Data inconsistencies between training and production pipelines:

4.1 Description:

When data pipelines and data formats shared between training and production environments differ, ML models suffer to
maintain performance between training and production.

4.2 Risks:

This debt can manifest in various forms, including inefficiencies, maintenance challenges, and scalability issues, which
can significantly impact the performance and reliability of machine learning systems. Many FSIs use legacy systems
that are not entirely usable for AI integration. These are typically the workflow systems used for Core Banking, Loan
Origination, Policy Admin, etc. To bypass this, FSIs use parallel systems like data lakes to provide training data instead
of extracting it from the actual system. However, FSIs usually store limited data or processed data in these parallel
systems, whereas the actual system captures different data. For example, the transaction details would typically override
the old information with updated information in the data lake for use cases like the Claims process, where the claim
management would’ve captured the transaction details each time of entry. These pipeline inconsistencies can cause the
models to degrade more than usual in production. A similar debt is observed when FSIs migrate from one workflow
system to another, where the previous data pipelines may not be well migrated to new systems, making the old models
unusable with the new systems.

Given the complexity and ad-hoc nature of data processing workflows, it leads to a lack of standardisation and
documentation that complicates maintenance and scalability. For instance, Xin et al. highlighted the challenges in
managing data pipelines due to their intricate dependencies and the need for frequent updates to accommodate new
data sources or changes in data schema [24]. In FSIs, ML models are built using diverse data sources, each with its
own format and quality issues. Derakhshan et al. discussed how data heterogeneity creates complexities in the data
processing and cleaning process, which becomes bottlenecks in the pipelines [25]. These require manual intervention
and are prone to errors contributing to the debt. Not monitoring and debugging these pipelines risks the longevity of
the AI solutions. And eventually, these become unscalable. Wu et al. highlighted that many existing pipelines are
not designed with scalability in mind, leading to performance bottlenecks and increased latencies in data processing
[26]. Addressing this debt requires standardized pipeline architectures, automated monitoring/debugging and design for
scalability.
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5 Excluding features without business oversight

5.1 Description:

Feature omission debt occurs when ML practitioners remove critical data features of the use case, often missing crucial
information when providing predictions.

5.2 Risks:

Feature selection and omission for model building is often preferred through statistical observations rather than the
opinions of business experts. This, in turn, created conflicts between the business experts and ML practitioners when
selecting the final features. Simple observations like - highly missing values may exclude some of the essential features
that can impact the outcome of the models. For example, in loan underwriting, some features are more than 90% nulls,
like "Public Bankrupcies", which are mainly missing but are often the most critical features for an underwriter to make
the final decision.

Excluding such features can lead to a technical debt where long-term costs outweigh the short-term gains of a simpler
model. These debts can result in reduced model performance, increased risk of bias, and the need for frequent updates to
the model to maintain accuracy and compliance[27][28]. Such exclusions can sometimes cause less accurate predictions.
For instance, excluding features that capture the nuanced customer behaviour might simplify the model but can be
less accurate in predicting credit risk [29]. This can get further compounded due to the dynamic nature of FSIs.
The relevancy of features may increase, necessitating the inclusion of these omitted features in future models. This
requires FSIs to continuously evaluate and update their models, which can be resource-intensive and complex [30][31].
Additionally, the legacy systems and data silos can limit the availability and quality of data for model training. This can
lead to excluding important features, further exacerbating feature omission debt [32]

6 Over-engineering the features

6.1 Description:

When the raw features are highly engineered to create synthetic features that overly simplify or complicate the features
used in the modelling.

6.2 Risks:

Raw features are processed through feature engineering techniques to create synthetic variables and are used in model
training and inferencing. If such feature engineering techniques overcomplicate or capture limited information from
raw features, ML models trained on these features may not effectively learn from the data and may miss out on critical
information. One common area where this is more frequent is in processing "categorical" features or high cardinal
features. ML practitioners, particularly in FSIs, ignore the categorical features and focus on numerical features, as many
classic ML models can not take advantage of these categorical features, such as Xgboost, linear regression models, etc.
This creates both feature omission debt and feature engineering debt.

ML practitioners use techniques like label encoding or one-hot encoding in high "cardinal" features. This creates very
sparse data for very high cardinal features. To address this, ML practitioners will only focus on the top frequent values
in a feature, encode only these values and encode the rest of the values into one single category, thereby reducing
the dimensionality. This, in turn, limits the information captured in these synthetic features, resulting in poor model
learning. Effective feature selection can mitigate feature engineering debt by ensuring that the most informative features
are used and also reduce the model complexity and overfitting [33] [34]. Overcomplicating the feature engineering
makes it challenging to explain the model functioning as traditional ML explainability uses feature importance as an
explanation. It becomes hard to retrace the feature importance of complicated synthetic features and link them back
to raw features. This further creates challenges for regulatory compliance and risk management. Integrating domain
knowledge and expert input during feature engineering can enhance the relevance and quality of features selected and
reduce the likelihood of debt.
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7 Not testing enough!

7.1 Description:

It refers to testing models on limited or less data that doesn’t reflect the full complexity of the production environment.

7.2 Risks:

Model testing in financial services is a critical component that ensures the reliability, accuracy, and robustness of
financial models. Model robustness is a regulatory requirement for credit scoring models and other models [35][36][37].
By subjecting models to various stress tests, FSIs can demonstrate the robustness of their models to stakeholders and
regulators

Finding sufficient training data is critical for building AI solutions. However, selecting the right test data is extremely
important in FSIs. Testing data without a reasonable sample distribution of multiple scenarios would bias the models
towards the provided samples during testing. This can lead to critical performance issues for the business. Stress testing
the models will allow the users to find the gaps and design the right risk policies. Stress testing is also to be performed
before each future model update. However, given the dynamic nature of the business and the models, the same testing
strategy may not be ideal as the corner cases would have changed post-retraining or model updates. Driss El Maanaoui
et al. stressed the need for continuous testing and validation to ensure the models remain relevant and accurate over
time [38]. This adaptability is vital for maintaining the relevance and accuracy of financial models over time. Breeden
discussed the role of model testing in improving the interpretability of complex financial models[39].

8 The Explainability Debt: Risks of Opaque or Misunderstood ML Models

8.1 Description:

Being unable to explain ML predictions or using a wrong explainability model creates explainability debt that has
serious downstream risks.

8.2 Risks:

ML explainability refers to explaining the decision-making process of an ML model or understanding the model’s
functioning. It should help us understand why and how the system made a particular decision. Kuiper et al [40]
interviewed 3 applications (consumer credit, credit risk, and anti-money laundering) in FSIs to understand the importance
of explainability in AI solutions. There was a clear need for explainability in AI solutions used in FSIs. However, the
urgency of the models in production made ML practitioners productionize the models without proper explainability
around these decisions. The World Economic Forum in 2019 [41] notes that the opacity of AI poses serious risks for
FSIs and can lead to loss of control because of a lack of transparency. This can lead to serious damage to consumer
trust and confidence.

Local and model-agnostic techniques like SHAP and LIME are widely used for the explainability of individual
predictions of black box models [42]. The LIME technique tries to understand the association between a specific
example’s features and the model’s prediction by training an increasingly explainable model like the linear model
with illustrations resulting from small changes to the original input (Dhinakaran [43]). At the end of the training,
explanations can be found from the characteristics by which the linear model acquired co-efficient, irrespective of
specific thresholds, after factoring in some normalization. The SHAP technique aims to calculate the contribution of
every feature to the prediction to ascertain the impact of each input. SHAP explainability principles, entrenched in
cooperative coalition game theory, generate Shapley values.

One of the most common challenges faced while using these post-hoc techniques is the lack of "stability". According
to Zafar & Khan [44], lack of stability refers to explanation level uncertainty by which locally interpretable models
encompass an uncertainty level linked to it due to black-box model simplification. In addition, the generated explanations
can differ with varying selected features and feature weights due to the random nature of perturbation in LIME. In
critical application areas such as financial services, generating inconsistent explanations could prove troublesome
[44]. When features are correlated, the SHAP value method encounters the inclusion of unrealistic data instances.
Elizebath et al [45] discussed mathematical issues like conditional versus interventional distributions and additive
constraints raised using Shapely values in detail. Leon et al. observed that modified Back Propagation methods like
Deep Taylor Decomposition, Layer-wise Relevance Propagation (LRP), Excitation BP, PatternAttribution, DeepLIFT,
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Deconv, RectGrad, and Guided BP are independent of the parameters of later layers questioning the faithfulness of the
explanations generated using these methods [46].

Sometimes, these explainability techniques can fool the users too. Slack et al. [42] demonstrated that LIME and SHAP
are unreliable as they proposed a novel scaffolding attack that hides the biases of a given classifier by allowing an
adversarial entity to craft an arbitrary desired explanation. In a different study, Slack et al. [47] also demonstrated
how Counterfactual explanation methods (CEM) could be manipulated. The adversarial models appear fair when
evaluated using standard counterfactual explanations but provide much lower-cost recourse for specific subgroups when
slightly perturbed. Kumar et al [48] presented Shapley residuals as a warning mechanism to alert practitioners to model
complexities and essential interactions that may be missed when relying solely on Shapley values for interpretability.

This questions the faithfulness and stability of explainability methods. While most regulations mandate using explainable
AI methods to decode "black box" models, the standards are not defined in terms of the accuracy of these explanations.
"Explainability" itself is not a technical term, which means the outcome is open for interpretation [49]. Krishna et al.
studied the disagreement problem in explainability from the responses of 25 data scientists from the technology and FSI
sectors. It was observed that 84% of respondents admitted that they faced explainability disagreements regularly and
many practitioners admitted to using ad hoc heuristics or being uncertain about resolving explanation disagreements in
practice.

Given regulatory and compliance requirements, this poses a greater risk since any wrong explanation could lead to more
confusion and setbacks for users and the community. Generating consistent and reliable true-to-model explanations can
make debugging easier and deliver confidence to the user.

9 Drift Monitoring Debt

9.1 Description:

When models and data are poorly monitored during production, this leads to substantial model performance degradation
due to drifts.

9.2 Risks:

There are multiple reasons why an AI system fails in production. The common issues that cause ML models to degrade
in production are data drifts and model/concept drifts.

Data drift occurs when the data used in training viz-a-viz data used in production changes over time. This can occur
for various reasons, such as evolving business/consumer behaviour, regulatory changes, market volatility, etc. For
instance, Christensen et al. highlight the impact of high-frequency trading and market microstructure noise, which
can introduce drift in financial data streams, affecting the accuracy of volatility estimations and risk assessments [50].
Pugliese et al. discuss the challenges posed by data drift in credit scoring models, where shifts in consumer behaviour
or economic conditions can lead to model degradation over time [51]. Liu et al. focus on the role of anomaly detection
in identifying data drift, particularly in fraud detection systems within financial services [52]. Anomalies can indicate
shifts in transaction patterns, which may signal fraudulent activities or changes in consumer behaviour, necessitating
timely intervention.

Model drift, also known as model decay or concept drift, refers to "the decay of a model’s predictive power as a
result of alterations in the environment" [53]. Model/Concept drift occurs when the relationship between input and
target variables changes. The model provides inaccurate predictions since the definition of what it attempts to predict
changes. The change can be gradual, sudden, or recurring. Li and Zhao observed that concept drift can lead to model
degradation, necessitating frequent updates to maintain performance [54]. Similarly, Cavalcante et al. discussed how
financial time series models are particularly susceptible to concept drift, resulting in significant prediction errors if not
properly addressed [55]. Moreover, concept drift complicates risk management strategies. Neri points out that financial
institutions rely heavily on historical data to assess risk, but concept drift can render these assessments obsolete, leading
to potential financial losses [56]. Marques emphasizes the importance of adaptive algorithms in financial forecasting,
noting that traditional models often fail to account for non-stationary data, leading to suboptimal predictions [57].
Lin et al. also highlighted the difficulty of distinguishing between noise and genuine concept drift, which can lead to
unnecessary model updates and increased operational costs [58].

In conclusion, drift monitoring debt significantly impacts financial services by affecting the accuracy of models and
complicating risk management. Significant delay in drift monitoring can make the model predictions redundant and
may result in the complete failure of the AI solutions. Addressing these impacts requires adaptive modelling techniques
and robust drift monitoring mechanisms. However, implementing these solutions must balance the need for accuracy
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with the associated computational and operational costs. As financial markets continue to evolve, ongoing research and
innovation in handling concept drift will be crucial for maintaining the efficacy of financial models and strategies.

10 Bias/Fairness Debt.

10.1 Description:

Deploying or using biased ML models without addressing bias in the models.

10.2 Risks:

Biased or unfair models can lead to unfair treatment of individuals, perpetuate existing inequalities, and result in
financial losses or reputational damage for companies. These models can lead to discriminatory practices and risk
accumulation for one class of customers. Bias/unfairness can be induced into the model when trained on historical
data reflecting societal biases[59]. This can be prominently seen in use cases like lending, where certain demographic
groups are systematically disadvantaged in terms of loan approvals and interest rates[60] or in Insurance, where biased
models may inaccurately assess the risk associated with certain individuals or groups, leading to unfair premium pricing
[61]. Such behaviours can exacerbate existing economic disparities and limit marginalized communities’ access to
financial resources.

In addition to creating operating risks, this can also create huge compliance risks. EU AI act in Europe is one of the
first regulations that is specifically defined for AI usage in Low, Medium and High risk use cases. The Act introduces
the concept of algorithmic audits to regularly assess AI systems for bias. These audits must be conducted to ensure
compliance with the established standards and to identify any discriminatory outcomes that may arise from the use of the
AI systems [62]. The Algorithmic Accountability Act in the U.S., mandates that companies conduct impact assessments
of automated decision systems, including potential biases[63]. The Federal Trade Commission (FTC) has issued
guidelines emphasizing the importance of transparency, accountability, and fairness in algorithmic decision-making.
These guidelines encourage companies to conduct regular audits of their algorithms to identify and mitigate bias [64].
In India, RBI released a new circular on "Model Risk Management" of credit risk models probing on using unbiased
models [36]. While the regulations enforce the usage of the process, the significant challenges remain in the lack of
standardized metrics for measuring algorithmic bias. The National Institute of Standards and Technology (NIST) in
the US has been working on a framework to improve the trustworthiness of AI systems, which includes addressing
bias. This framework encourages organizations to adopt practices that ensure AI systems are fair, accountable, and
transparent [65] . However, regulating the bias for these models is a major challenge. As discussed in "Explainability
debt" it is possible to do scaffolding attacks on explainability methods to fool the auditors checking the bias.

11 Auditability debt.

11.1 Description:

Deploying or using AI solutions without capturing the right artefacts and following the right audit framework.

11.2 Risks:

As ML models are being used for increasingly complex and sensitive use cases in FSIs, the ability to audit is critical for
managing risks and delivering regulatory compliance. The complexity of the ML models makes auditing challenging
because of the vast amounts of data and model changes over time. As a result, organizations may struggle to identify
and rectify issues, leading to an accumulation of audit debt that can undermine the reliability and trustworthiness
of their systems [66]. One of the primary concerns with audit debt is the lack of transparency and accountability in
algorithmic systems. Algorithms often operate as "black boxes," making it difficult to understand their decision-making
processes. This opacity can lead to unchecked biases and errors, accumulating over time and resulting in significant
audit debt. External auditors of AI systems are used to deliver external AI governance. But the effectiveness of the
auditing depends heavily on accessibility to the model and model artificats[67]. Recent audits are limited only to
query access to the models and observe the output. This highly limits the auditor’s ability to perform stronger attacks,
more thoroughly interpret models, and conduct fine-tuning. In addition to this, outside-the-box access to training
and deployment information like methodology, code, documentation, data, deployment details, findings from internal
evaluations, etc, allows auditors to scrutinize the development process and design more targeted evaluations.

7
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Several strategies have been proposed to address audit debt in algorithms. One approach is the development of
standardized auditing frameworks that provide guidelines for evaluating algorithmic systems. These frameworks can
help ensure consistency and thoroughness in audits. Deborah et al. [68], suggested a comprehensive end-to-end
audit framework that produces a set of documents which, when combined, will create an audit report that aligns with
organizational values and principles accessing the fit of decisions made throughout the process. The framework follows
different stages: scoping, mapping, artefact collection, testing, and reflection (SMACTR). Akula and Garibay ( [69])
proposed a 7-phase audit depending on the access. The phases are Process access, Model access, Input access, Output
access, Parameter control, Learning objective and white-box models. While artefacts for algorithm auditing are clear,
the execution varies from case to case.

12 Models are prone to attacks

12.1 Description:

Deploying/using ML models with vulnerabilities and being open to attacks.

12.2 Risks:

ML models are prone to attacks that can compromise the integrity, confidentiality, availability and functioning of the AI
solution. One prominent category of attacks is adversarial attacks, where malicious inputs are crafted to deceive ML
models into making incorrect predictions. Xiangyu Qi et al. discuss the vulnerabilities of AI models to adversarial
inputs, which can lead to incorrect predictions and decisions [70]. These adversarial attacks can be classified into
white-box and black-box attacks. In White-box attacks, the attacker will have full access to the model and in black-box
attacks, the access is limited to only query-access [71]. These attacks are highly significant in image classification
where a slight perturbation to the input image can change the final prediction[72] [73]. Model poisoning attack refers to
manipulating the training data to embed malicious behaviour into the model, leading to backdoor access to models to
trigger specific output with specific inputs[74]. These can become really intrusive in federated learning environments,
making it challenging to ensure data integrity [75]. Membership inferencing attacks aim to determine whether a specific
data point was used in the model’s training data, thereby compromising the data privacy [76]. Model extraction attack
refers to training a surrogate model using the input and the output of the model to approximate the model functionality.
This can further allow other attacks like adversarial or poisoning attacks using the extracted model [77].

Due to the sensitive nature of the business, protecting the ML models in production is crucial for FSIs. Training the
models with adversarial examples can help them recognize and mitigate the malicious inputs designed to deceive
them[78]. Using secure multi-party computation (SMPC) and homomorphic encryption allows the processing of
encrypted data without revealing sensitive information. This can protect the data confidentiality and still enable ML
models for decision-making [79]. Detecting anomalies in ML pipelines helps to identify attacks and provides an
additional layer of defence against known and novel attacks [80]. Regular model audits and updates are essential to
maintain the security and integrity of the AI solution. Balancing security with model performance and computational
efficiency is a persistent challenge, as securing ML models may require more resources and impact the latencies of
model inferencing. Deploying models without addressing model safety can carry a substantial debt for the FSIs.

13 Using shadowy pre-trained models

13.1 Description:

Using pre-trained models without sufficient documentation on the training data and the sources.

13.2 Risks:

While this is prominent in generative AI models where the model outputs can create copyright and trademark issues, it
is also applicable in use cases where FSIs use pre-trained models, like in Credit rating where alternate data sets are
used for credit scoring models. Using models that were trained on unauthorized data violates the data privacy laws
of the land, such as the General Data Protection Regulation (GDPR) in Europe, the California Consumer Privacy Act
(CCPA) in the United States, or the DPDP Act in India. These regulations mandate strict guidelines on data usage, and
non-compliance can result in hefty fines and legal actions against financial institutions. Unauthorized usage of such
data can lead to a breach of contractual obligations [81]. Such models also lack the accountability needed for FSIs.
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14 Delayed, unchecked or no feedback to ML models

14.1 Description:

When ML models are used without any feedback in production or when the feedback is delayed or not validated
correctly.

14.2 Risks:

ML models can iterate using feedback and adapt in a production environment. However, when such feedback is not
provided or delayed, these models degrade over time and lack relevance in production. The nature of the business could
also cause delays in feedback. In loan underwriting, while the decision can be made in real-time, the quality of the
underwritten customer is only known after many months. Insurance companies rely heavily on ML for underwriting,
claims processing, and customer service. In Health Insurance, claims can arise after years of underwriting the application.
In life insurance, a death claim can be registered after decades. In such cases, it is hard to validate the efficacy of
the models, and such debt can lead to the accumulation of tremendous risk over time. This can impact the decision-
making and risk assessment of FSIs. One of the challenges of managing feedback debt is the complexity involved in
integrating with diverse data sources. FSIs deal with vast amounts of structured and unstructured data, which could be
time-consuming and complex to analyze and process the feedback in real-time. This can exacerbate feedback debt as
the resources may not be readily available.

At the same time, sharing unchecked feedback can cause the models to learn inconsequential patterns and it would
be very hard to track, rectify and fix such erroneous learning. Hence, the feedback loop in ML is critical, and any
errors would propagate through the systems, leading to compounding errors over time[82]. Wyllie et al. highlighted
that adversarial attacks can also manipulate the feedback data, intentionally skewing model output to favour specific
outcomes[83]. The impact of incorrect feedback is also seen in model bias and fairness. Gupta et al. discussed how
feedback can reinforce existing biases within the model [84]. There is also a strong need to create organisational
changes on communication between the data scientists, engineers and domain experts to correctly interpret feedback
data and make informed decisions on model updates [85].

15 Reproducibility Debt

15.1 Description:

Failure to replicate the results of ML models consistently.

15.2 Risks:

FSIs strive to maintain consistency and stability across the process. Risk management is built on delivering stability
to the organization. Using an ML model without fully documented artefacts can result in huge reproducibility debt.
One of the issues was a lack of standardization, documentation, poor version controls, and poor audit or governance
frameworks. This is exacerbated by using complex models and proprietary datasets, which are not always available
during validation [86] [87]. ML models typically involve multiple configurations that need thorough documentation
of data reprocessing steps, hyperparameter settings and training procedures. The common reasons for the lack of
documentation are time constraints and pressure to deploy models in production [88] [89]. Furthermore, FSIs operate a
complex array of systems that often involve complex interactions between systems, creating a unique flow for each
integration. Without standardization, documentation and continuous capturing of artefacts, it only adds more complexity
and increases reproducibility debt. While this looks like an operations issue, failing to recreate the scenarios during an
audit can lead to non-compliance or even higher penalties for violation of regulations.

16 Compliance & Governance Debt

16.1 Description:

Compliance & governance debt refers to using AI solutions without a regulatory or governance framework because of a
lack of clarity in regulations or internal governance.
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16.2 Risks:

AI is fairly new, and the techniques are evolving rapidly. It is very hard for regulators to keep up with the speed of AI
innovations. These gaps arise from the rapid advancement of AI technologies, which often outpace the development of
corresponding regulatory measures. Even today, there is no standardization of benchmarking or definitions. Also, there
is no standardization between regulating bodies within the same geography or between geographies. For example, in
the US, anti-model laundering (AML) and fraud prevention models are heavily regulated, whereas in Europe, this is
not the case [90]. This disparity creates challenges for FSIs to create complete foolproof AI solutions. Moreover, the
regulatory system fails to capture the dynamic nature of AI systems, which poses challenges for traditional regulatory
approaches that are static and prescriptive. As these AI systems become autonomous, there is a need for adaptive
regulatory mechanisms that can respond to changes in AI capabilities [91]. There is also a gap in the liability and
accountability of AI decisions. There is no clarity on the liability when AI systems cause harm or make erroneous
decisions [92]. So, FSIs need to deploy ML models that are compliant with internal AI governance standards that could
align with possible regulations in the future and realign the internal AI governance with changes in regulations from
time to time.

17 Stakeholder Debt: The Hidden Cost of Limited Participation in AI Development

17.1 Description:

When AI solutions are built and deployed with participation from only one/limited stakeholder group, they result in
high dependency on that group.

17.2 Risks:

In FSIs, multiple process owners exist for a use case, such as data, IT, operations, risk, revenue, etc. For any given
use case, all critical information about the ML model must be provided to all stakeholders to ensure transparency and
validation from all users in approach and usage. However, because ML is highly technical, only Data Scientists or ML
practitioners will often own the entire process and the other stakeholders are often limited to just the final usage. This
creates a gap in understanding the AI solutions with the other stakeholders. A few issues, like Feature Selection debt,
could be solved by involving all the stakeholders at each stage. Similar to generating explainability (local or global), the
user group can validate the sufficiency of the explainability. This issue is also caused by the inability to provide the
information in a language other stakeholders can understand, making it intrinsically dependent on ML practitioners.

Zhang et al. explored the role of participatory design in ML, suggesting the implementation of iterative feedback with
stakeholders and the need to address potential issues early in the development process [93]. Yakota et al. suggest that
stakeholder input is vital for identifying and prioritizing system features that align with the user’s needs [94]. This
reduces the misalignment of system functionality. Communication and transparency between stakeholders regarding
system capabilities and limitations are also required so that there are fewer misunderstandings and misalignments
in the deliverables. But at the same time, balancing the stakeholder’s interests and noting the conflicting priorities
can lead to compromises that may not satisfy all staekholders. Addressing them through structured negotiations and
consensus-building is essential[95]. Enabling such a flow of information and knowledge about the AI solution is not
scalable without proper tools. Castro-Herrera et al. stressed the need for tools and frameworks that facilitate stakeholder
engagements through the ML lifecycle [96]. These tools can streamline communication and ensure that stakeholders’
inputs are integrated systematically.

18 Model Risk Managing(MRM) Debt.

18.1 Description:

Model risk management debt occurs when FSIs use AI solutions with poorly tested model risk frameworks in production.

18.2 Risks:

Effective model risk management(MRM) should safeguard organizational objectives, shield/protect business assets, and
warrant financial sustainability. This involves setting up feedback loops and performance metrics that allow for the
ongoing assessment of model usage risk and the timely identification of any emerging risks. Various regulatory bodies
like the Federal Reserve Supervisory in 07-2011 [37], Bank of England in 06-2022 [35], and Reserve Bank of India in
08-2024 [36] released model risk management guidelines. However, these are more applicable to traditional models.
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Traditional MRM involves a more structured process of evaluating model assumptions and testing its performance and
robustness. For instance, the definition of a model given by the Federal Reserve Supervisory states: "model refers
to a quantitative method, system, or approach that applies statistical, economic, financial, or mathematical theories,
techniques, and assumptions to process input data into quantitative estimates. A model consists of three components:
an information input component, which delivers assumptions and data to the model; a processing component, which
transforms inputs into estimates; and a reporting component, which translates the estimates into useful business
information. . . . The definition of the model also covers quantitative approaches whose inputs are partially or wholly
qualitative or based on expert judgment, provided that the output is quantitative in nature." However, in machine
learning, the models learn from the data, and this data serves as the source of the functions that emerge from the
ML models. Similarly in RBI’s guidelines suggest that the models should be explainable, but as discussed in the
explainability debt, there is no standard for "explainability" [49].

In contrast to traditional MRM, MRM in ML is complex due to the nature of ML models, which are often non-linear
and involve high-dimensional data. The opacity of ML models necessitates new techniques for risk management. This
paper highlights multiple risk sources when deploying AI in FSIs, such as biased models, poor drift monitoring setup,
poor testing, lack of or inadequate explainability, data processing debt, model safety, etc. The model risk management
(MRM) framework should address these concerns when deploying ML models in FSIs. Moreover, ML models are
highly sensitive to the quality and quantity of data, making data management a crucial aspect of MRM in ML. Issues
such as data bias, data drift, and overfitting are prevalent, requiring continuous monitoring and updating of models
to ensure their reliability and accuracy in ML models. In contrast, traditional models are largely static and require
significantly less frequent changes. Traditional models are subject to well-established regulatory requirements, whereas
ML models still navigate a developing regulatory environment. This lack of clear guidelines can challenge organisations
when implementing effective MRM practices for ML models, thereby creating an MRM debt.

To track the framework’s effectiveness, it is also essential to identify the right metric for benchmarking each risk
criterion. For example - how to quantify bias? If there is a greater risk of gender bias in the models, fine-tuning
the metrics to reflect the sensitivity of the risk is needed. Unlike the traditional risk management model followed
in FSI, MRM on AI solutions is more interdisciplinary and complex. It sometimes has technical dependencies like
interpretability and transparency of AI models, which are vital components for designing risk management.

19 CONCLUSION

AI Technical Debt (TD) is gaining momentum, as it documents various gaps in the ML system design that could cause
the system failure. This paper focused primarily on reviewing TDs in the Financial Services Industry (FSI). FSIs
are highly regulated, and any failure can cause severe financial damage, create enormous regulatory challenges and
damage the customers’ trust. In FSIs, AI is undoubtedly proving its value due to applications ranging from fighting
financial crime, automating multiple critical decisions (underwriting, claims, product construct, etc.) and assisting with
innovative digital experiences for clients. As AI gets mainstream and starts being deployed into multiple operations,
any failure is not just an operational risk but a business continuity risk. Hence, financial institutions should formulate
appropriate steps to guarantee the stability of these systems and manage the risks of using AI systems.

In this paper, we have highlighted the risks of Technical Debt (TD) in AI solutions arising from compromises or
poor design of the AI systems in FSIs. The reasons for these TDs are multifaceted and complex. However, certain
debts are highly critical for FSIs, and it is important for FSIs to design AI systems addressing these TDs. TDs, like
explainability debt, are pretty complex because of non-standardization in the definition and the risk of using wrong
explainability models. Model risk management debt is incredibly different from traditional ML and is highly complex
and evolving. Other TDs, like Feature Engineering debt, Feature exclusion debt, Feedback debt, etc, carry heavy risks
but are addressable. Compliance and regulatory debt are underdeveloped, but regulators try to introduce more explicit
regulations over time. Hence, FSIs should focus on integrating an internal governance framework to align and meet the
governance expectations. Finally, TDs like model attacks are new and need more research to explore the gaps in ML
and provide insights on addressing this TD.

20 Future Work

While this paper focused on FSIs, many of the components apply to any other highly regulated industry, such as Health
care, Manufacturing, Government, etc. We hope this paper will encourage additional development in Technical Debt
(TD) areas in highly regulated industries, where mission-critical use cases are scrutinized more and involve very high
risk. There is no one-size-fits-all when it comes to deploying AI. Hence, it is essential to identify the risks and pitfall
areas so that the industry can work to create solutions, tools, and products that effectively address these challenges.
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