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Abstract
We study the problem of collective tree exploration (CTE) in which a team of k agents is tasked to
traverse all the edges of an unknown tree as fast as possible, assuming complete communication
between the agents [14]. In this paper, we present an algorithm performing collective tree exploration
in 2n/k + O(kD) rounds, where n is the number of nodes in the tree, and D is the tree depth. This
leads to a competitive ratio of O(

√
k), the first polynomial improvement over the O(k) ratio of

depth-first search. Our analysis holds for an asynchronous generalization of collective tree exploration.
It relies on a game with robots at the leaves of a continuously growing tree extending the “tree-mining
game” of [6] and resembling the “evolving tree game” of [3]. Another surprising consequence of our
results is the existence of algorithms {Ak}k∈N for layered tree traversal (LTT) with cost at most
2L/k + O(kD), where L is the sum of all edge lengths. For the case of layered trees of width w and
unit edge lengths, our guarantee is thus in O(

√
wD).
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1 Introduction

The present study concerns collective tree exploration (CTE), a problem introduced in the
field of distributed computing by [13]. The goal is for a team of agents or robots, initially
located at the root of an unknown unweighted tree, to go through all of its all edges as quickly
as possible before returning to the root. At all rounds, each robot moves along one edge to
reach a neighboring node. When a robot attains the endpoint of a new edge, the existence
of that edge is revealed to the entire team. Following the centralized full-communication
setting, we assume that robots can communicate and compute at no cost. They thus share
at all times a map of the explored sub-tree and of the unexplored edges at its boundary. In
collective tree exploration, the number of nodes of the tree is denoted by n and the tree
depth is denoted by D, both quantities are unknown initially.

Another seemingly unrelated problem is layered graph traversal (LGT). It was introduced
in the literature on online algorithms by [16]. We describe the problem for the special case
of trees, which was extensively studied [12, 17, 3]. The goal is for a single agent, initially
located at the origin of an unknown tree with non-negative edge lengths, to reach another
node (called the target), while enduring a small movement cost, in the sense of the total
travelled length. The set of nodes that are i hops away from the origin is called the i-th
layer, the maximum cardinality of a layer is called the width and is denoted by w, the length
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35:2 Collective Tree Exploration via Potential Function Method

of the path from the origin to the target is called the depth and is denoted by D, and the
sum of all edge lengths is denoted by L. The tree is revealed iteratively: at step i all nodes
and edges up to layer i are revealed, and the agent must move to some node in the i-th layer.
This repeats until the layer containing the target is revealed.

Main results. In this paper we present a deterministic algorithm performing collective tree
exploration (CTE) with k robots in 2n/k + O(kD) synchronous rounds for any tree with n

nodes and depth D. This algorithm, when used by a fraction k′ = ⌊
√

k⌋ robots while the
remaining k − k′ robots stay idle at the root, achieves a competitive ratio of order O(

√
k).

The algorithm guarantee is derived for the more general asynchronous setting (ACTE) defined
in Section 3, making it applicable to a wider range of real-world scenarios.

Our analysis relies on a two-player game, that we call the “continuous tree-mining game”
(CTM). In this game, the adversary controls the continuous evolution of a tree while the
player controls the position of k “miners” located at its leaves. The game differs from the
“evolving tree game” of [3] in that the player may block the extension of a leaf of the tree by
attributing it a single miner. We show that it is possible for the player of this game to get
all miners to reach depth D with a total movement cost of at most O(k2D).

Another consequence of our analysis is a sequence of randomized algorithms {Ak}k∈N for
layered tree traversal (LTT) which satisfy for any k ∈ N that the cost of algorithm Ak on a
layered tree T of depth D and length L is bounded by 2L/k + O(kD). This result highlights
for the first time a strong connection between collective tree exploration and layered graph
traversal, which were until now introduced and studied by two distinct fields. For the case
of layered trees of width w and unit edge lengths, since L ≤ wD, our guarantee is thus in
O(

√
wD). To the best of our knowledge, this is the first algorithm to improve over the trivial

O(L) guarantee for that problem.

Background on Collective Tree Exploration. The problem of collective tree exploration has
a rich history in the field of distributed algorithms and robotics. It was introduced by [13]
along with two communication models. A centralized “complete communication” model, in
which communications are unrestricted, which we study in this paper ; and a distributed
“write-read communication” model in which agents communicate through whiteboards located
at all nodes. A collective exploration algorithm is said to be order c(k)−competitive if its
runtime on a tree with n nodes and of depth D is bounded by O

(
c(k)

(
n
k + D

))
(see [14]).

A competitive ratio of O(k) is thus trivially achieved by a single depth-first search. [14]
proposed a O(k/ log(k))-competitive algorithm which can be implemented in the distributed
communication model, and thus also in the complete communication model. They suggested
that a constant ratio could be achieved in the complete communication model (see initial
version [13]). This conjecture was disproved by [11] who showed that the competitive ratio
of any deterministic algorithm is at least in Ω(log(k)/ log log(k)). Many works followed,
tackling diverse questions such as: quasi-linear algorithms [15], power constraints [10], and
the case of many explorers k ≫ n [9]. A new type of competitive analysis was proposed
by [2], with a guarantee of the form 2n/k + O((D + k)k), where 2n/k is a lower-bound on
the time required by the robots to traverse all edges and return to the origin and where
we can thus call the quantity O((D + k)k) the “competitive overhead” or “penalty”. This
quantity was improved to O(log(k)D2) by a simple algorithm combining breadth-first search
and depth-first search [7]. The approach was then recently used by [6] to slightly improve
the competitive ratio of collective tree exploration in the complete communication model
to order O(k/ exp(

√
ln 2 ln k)), using a linear in-D competitive overhead of O(klog2(k)−1D).
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These analyses were performed in the complete communication model for an asynchronous
extension of collective tree exploration (ACTE). The competitive ratio presented in this
paper, in O(

√
k), is the first to display a polynomial improvement over the aforementioned

O(k) ratio of depth-first search. The present discussion is summarized in Table 1.

Table 1 Previous work on competitive analysis of collective tree exploration (CTE), in the
complete communication model. All results hold up to a multiplicative constant.

O(·) Competitive Ratio c(·) Competitive Overhead f(·, ·)

Runtime c(k)( n
k

+ D) 2n
k

+ f(k, D)

[13] k/ ln k -

[2] - (D + k)k

[7] - ln kD2

[6] k/ exp(
√

ln 2 ln k) klog2 k−1D

This work
√

k kD

Background on Layered Graph Traversal. The problem has a rich history in the field of
online algorithms. It was first described in a paper by Papadimitriou and Yannanakis [16]
titled “Shortest path without a map” analyzing the case of layered graph with width w = 2.
Independently the problem was introduced by [5] under the denomination “Metrical Service
System”, which was inspired by [1]. The equivalence, between both settings, was noticed
by [12]. They also introduced the denomination Layered Graph Traversal (LGT) and observed
that its competitive analysis can be reduced to the special case of Layered Tree Traversal
(LTT). For arbitrary width w and depth D, they proposed a deterministic algorithm with
cost bounded by O(9wD), i.e. of competitive ratio O(9w). The quantity was later improved
to O(w2w) by [4], nearly matching the lower-bound in Ω(2w) [12]. Using a randomized
algorithm, [3] obtained a O(w2) competitive ratio, nearly matching the randomized lower
bound in Ω(w2/ log(w)) [17]. The approach of [3] is to use a two-player game, that they call
the “evolving tree game”, which shares similarities with the “continuous tree-mining game”
(CTM) presented in this paper. Contrarily to the aforementioned guarantees which are all of
the form O(c(w)D), our bound in O (2L/k + kD) depends on the sum of all edge lengths L

and on the depth D of the tree but not on its width w.

Notations and definitions. The following definitions are used throughout the paper. A
tree T = (V, E) is a connected acyclic graph. One specific node, called the root, is denoted
r ∈ V . Every other node u ∈ V \ {r} has a unique parent denoted by p(u). For two nodes
u, v ∈ V we say that u is a descendant of v or equivalently that v is an ancestor of u and
we denote by u ⪯ v if v can be obtained from u by iterating the parent function p(·). For
any two nodes u, v ∈ V we denote by A(u, v) the lowest common ancestor of u and v. We
also denote by u → v (resp. u ↔ v) the sequence of nodes in the shortest path from u to
v, excluding v (resp. including v). A leaf of T is a node ℓ ∈ V which has no descendant.
The set of all leaves of T is denoted by L(T ). We say that a tree is simple if no node has
degree 2, except possibly for the root.

A weighted tree is a tree in which edges have a non-negative length. An unweighted tree
can be seen as a weighted tree where all edge lengths are equal to 1. For u ∈ V \{r}, the length
of edge (u, p(u)) is denoted du ∈ R+. For any two nodes u, v ∈ V we denote by d(u, v) the
distance from u to v, which can be defined by d(u, v) =

∑
w∈u→A(u,v) dw +

∑
w∈v→A(u,v) dw.

ITCS 2024



35:4 Collective Tree Exploration via Potential Function Method

For some integer k ≥ 2, a discrete configuration on a tree T is a collection x ∈ NL(T )

satisfying
∑

ℓ∈L(T ) xℓ = k. It can be extended to a collection x ∈ NV by setting ∀u ∈
V : xu =

∑
ℓ⪯u xℓ. The set of all discrete configurations is denoted X (T ). A fractional

configuration on T is a collection y ∈ RL(T )
+ satisfying

∑
ℓ∈L(T ) yℓ = k. It can be extended to

a collection y ∈ RV
+ by setting ∀u ∈ V : yu =

∑
ℓ⪯u yℓ. The set of all fractional configurations

is denoted Y(T ). For any two configurations (discrete or fractional) x and x′, we define the
optimal transport cost OTT (x, x′) =

∑
u∈V du|xu − x′

u|.

Structure of the paper. The paper is organized as follows. In Section 2 we define and
analyze the continuous tree-mining game (CTM). In Section 3 we present the reductions that
relating it to collective tree exploration (CTE) and layered tree traversal (LTT). In Section 4
we then apply the results of Section 2 to obtain new guarantees for both problems.

2 Analysis of the continuous tree-mining game

In this section, we introduce and analyze a two-player game that we call the continuous
tree-mining game (CTM). We first define the game in Section 2.1, then we present an
algorithm for the player of the game in Section 2.2, finally we provide an analysis of the
player’s algorithm in Section 2.3. The continuous tree-mining game is tightly connected to
the problems of collective tree exploration (CTE) and of layered tree traversal (LTT), as we
shall see in Section 3.

2.1 The continuous tree-mining game

The state of the game is defined at any continuous time t. It consists of a simple weighted
tree T (t), the evolution of which is controlled by the adversary, and of a discrete configuration
x(t) over T (t), the evolution of which is controlled by the player. We now precise the actions
available to the player and the adversary at each instant.

Adversary. The adversary can do three things: kill a leaf, give some children to a leaf, or
elongate the edge leading to a leaf. The first two operations occur instantaneously, while the
other is performed continuously over time. We now detail all three operations.

Leaf edge elongation: Between discrete changes to the tree by the adversary, or discrete
moves by the player, at any given continuous time t the adversary distinguishes one leaf ℓ(t)
and lets the length dℓ(t) of the corresponding edge increase at unit rate. The adversary is
only allowed to choose for ℓ(t) a leaf with more than one robot, i.e. such that xℓ(t)(t) ≥ 2.

Forking at a leaf: At discrete time points the adversary can choose some leaf ℓ hosting
a number xℓ ≥ 3 of robots, and endow this leaf with some number m ∈ {2, . . . , xℓ − 1} of
children. Denoting by ℓ1, . . . , ℓm these children, the newly created edges of the form (ℓ, ℓ(i)),
i ∈ [m], are initialised with some length δ, where 0 < δ ≤ 1 is a quantity chosen by the player
at the time of the fork.

Killing a leaf: At discrete time points the adversary can choose to kill some leaf ℓ. The
corresponding edge (ℓ, p(ℓ)) is then also suppressed from the tree. In case node p(ℓ) is distinct
from the root r, and had only one child u besides ℓ, we then merge the two edges (u, p(ℓ))
and (p(ℓ), p(p(ℓ))) into a single edge (u, p(p(ℓ))) (suppressing node p(ℓ)) and endow this new
edge with length dp(ℓ) + du, preserving the distance between p(p(ℓ)) and u in the new tree.
At all times, the tree thus remains simple.
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Player. At any instant the player can move robots from one leaf to another one, by changing
the configuration x. The cost of going from configuration x to x′ is equal to OTT (x, x′).
When the adversary kills a leaf ℓ, the player is forced to move the corresponding xℓ robots
to other leaves that are still alive and to pay the associated cost. When the adversary forks
at some leaf ℓ, endowing it with m children, the player chooses the length δ < 1 of the fork
and must assign its xℓ robots to these newly created m leaves, paying the associated cost.
Between two discrete re-allocations of robots, when the adversary elongates the leaf ℓ(t), the
cost continuously increases at rate xℓ(t).

Goal of the player. A strategy for the player is a continuous-time algorithm which determines
the response of the player to any modification of the tree by the adversary. It is formally
defined as a function x′ = A(T, x, T ′) which returns a new configuration x′ ∈ X (T ′) given
the previous state of the game x ∈ X (T ) and a modified tree T ′. Note that taking T ′ = T

allows to account for continuous elongation. We say that a strategy is f(k, D)-bounded, for
some real-valued function f(·, ·), if it is such that no matter how the adversary plays, the
cost incurred by the player is always less than f(k, D), where D denotes the depth of the
highest leaf. We will be particularly interested in the case where f is linear in D.

The interest of the continuous tree-mining game lies in the following reduction.

▶ Theorem 1 (Propositions 12–16 in Section 3). For any f(k, D)-bounded strategy for the
continuous tree-mining game (CTM), there is a collective tree exploration (CTE) algorithm
A such that for any unweighted tree T with n nodes and depth D,

Runtime(A, T ) ≤ 2n + f(k, D)
k

+ D + 1.

Also, there exists a collection of layered tree traversal (LTT) randomized algorithms {Ak}k∈N
satisfying for any layered tree T of length L and depth D,

E(Cost(Ak, T )) ≤ 2L + f(k, D)
k

+ 1.

The goal of the rest of this section is thus to prove the following theorem.

▶ Theorem 2 (Proposition 11 in Section 2). There exists a f(k, D)-bounded strategy for the
continuous tree-mining game, with f(k, D) = O(k2D).

2.2 A potential-based algorithm
We assign to any configuration x ∈ X (T ) a potential Ψ(T, x) defined by

Ψ(T, x) :=
∑

u∈V \{r}

duϕ(xu), (1)

where ϕ is a strongly convex function to be determined later. We then define the strategy of
the player by the following equation,

A(T, x, T ′) = arg min
x′∈X (T ′)

Ψ(T ′, x′) + OTT ′(x, x′), (2)

in which ties are always broken arbitrarily in favor of any x′ ̸= x. Note that Algorithm (2) thus
enforces the constraint that at all times t and for any configuration x′ ≠ x(t), Ψ(T (t), x(t))−
Ψ(T (t), x′) < OTT (t)(x(t), x′). We start by establishing some desirable properties on the
dynamics of this algorithm.

ITCS 2024



35:6 Collective Tree Exploration via Potential Function Method

▶ Proposition 3 (Dynamics of x(t) following (2)). While the adversary elongates a leaf,
the moves of the player are all from the elongated leaf to other leaves of the tree, and no
two robots are moved simultaneously. When the adversary deletes a leaf, all moves of the
player are from the deleted leaf to other leaves. When the adversary forks a leaf l, with
m ≤ xl − 1 children denoted {ℓ1, . . . , ℓm}, there is a choice of a small real δ > 0 such that
the new configuration x′ satisfies for all previously existing node u ̸∈ {ℓ1, . . . , ℓm} : xu = x′

u

and for all newly created leaves ℓ ∈ {ℓ1, . . . , ℓm} : xℓ ∈ {⌊xl/m⌋, ⌈xl/m⌉}. At all times, the
configuration of the game x satisfies ∀ℓ ∈ L(T ) : xℓ ≥ 1.

The proof of this proposition relies on the notion of “tension” between configurations.
When the current tree T is clear from context, we will use Ψ(x) as a shorthand for Ψ(T, x).
For any two configurations x and x′ we call the tension from x to x′ and we denote by
τ(x → x′) the decrease in potential obtained when going from configuration x to configuration
x′, i.e. τ(x → x′) = Ψ(x) − Ψ(x′). For a configuration x and two leaves ℓ, ℓ′ we call the
tension from ℓ to ℓ′ in x and denote by τx(ℓ → ℓ′) the decrease in potential obtained by
displacing a robot from ℓ to ℓ′ in configuration x, i.e. τx(ℓ → ℓ′) = Ψ(x) − Ψ(x + eℓ′ − eℓ).
Note that this quantity is only defined if xℓ ≥ 1, which will always be the case as stated in
Proposition 3. The structure imposed on the potential Ψ then leads to the following lemma,
which essentially says that atomic moves (where only one robot moves at a time) are favored
over simultaneous moves by Algorithm (2).

▶ Lemma 4. Consider configurations x and x′ such that ||x−x′||1 = 2h (where ||x−x′||1 =∑
ℓ∈L(T ) |xℓ − yℓ| is always even) and consider ℓ1 → ℓ′

1, . . . , ℓh → ℓ′
h an optimal transport

plan going from x to x′. The following inequality is always satisfied,

τ(x → x′) ≤ τx(ℓ1 → ℓ′
1) + · · · + τx(ℓh → ℓ′

h).

Furthermore, this inequality is strict if there are overlaps in the transport plan, i.e. a pair
i, j such that the shortest paths ℓi → ℓ′

i and ℓj → ℓ′
j have an intersection of positive length.

Proof. We will show the property by induction on h. We observe that the property is true
for h = 1. We now assume that the property is true for some h ≥ 1 and aim to show it
at h + 1. We consider two leaves ℓ → ℓ′ of the transport plan from x to x′ and we define
x′′ = x′ − z with z = eℓ′ − eℓ, the configuration where the move ℓ → ℓ′ did not take place.
Observe that ||x − x′′||1 = 2h will later enable us to apply the induction hypothesis to
τ(x → x′′). We decompose as follows,

Ψ(x) − Ψ(x′) =
∑

u̸∈ℓ↔ℓ′

du(ϕ(xu) − ϕ(x′
u)) +

∑
u∈ℓ↔ℓ′

du(ϕ(xu) − ϕ(x′
u)).

In the first sum we have ∀u ̸∈ ℓ ↔ ℓ′ : x′
u = x′′

u because the configuration value at these nodes
is not affected by moves of the form ℓ → ℓ′. In the second sum, we observe that by optimality
of the transport map, the sign of x′

u −xu is always the same as the sign of zu. This is because
in an optimal transport plan, no two robots are transported on the same edge in opposite
directions. Therefore we have the following inclusion on segments [xu +zu, x′

u −zu] ⊂ [xu, x′
u],

which by convexity of ϕ implies that the chord of the inner segment is below the chord of
the outer segment, ϕ(xu + zu) + ϕ(x′

u − zu) ≤ ϕ(xu) + ϕ(x′
u). Rearranging the terms, we

get the following identity, ϕ(xu) − ϕ(x′
u) ≤ ϕ(xu) − ϕ(x′′

u) + ϕ(xu) − ϕ(xu + zu). Combining
these observations yields,

Ψ(x) − Ψ(x′) ≤
∑
u∈V

du(ϕ(xu) − ϕ(x′′
u)) +

∑
u∈ℓ↔ℓ′

du(ϕ(xu) − ϕ(xu + zu)),

where we recognize the first term to be τ(x → x′′) and the second term to be τx(ℓ → ℓ′).
We conclude by applying the induction hypothesis.
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By strict convexity of ϕ, it is a direct observation that the inequality above is strict as
soon as the inclusion [xu + zu, x′

u − zu] ⊂ [zu, z′
u] is strict, i.e. when there are overlaps in the

transport plan. ◀

The rest of the proof of Proposition 3 is decomposed into Lemmas 20–23, in Appendix A.
These lemmas treat separately the cases of leaf elongation, leaf deletion and leaf fork, all of
them relying on Lemma 4.

2.3 Competitive analysis by potential function
For a given tree T , we consider the optimal fractional configuration y = {yℓ}ℓ∈L(T ) ∈ Y(T )
defined as the solution of the following convex optimization problem,

min Ψ(T, y) =
∑

u∈V \{r} duϕ(yu)
over y ∈ Y(T ),

(3)

where we further assume that ϕ is twice differentiable on R+, with ϕ′′ > 0 and ϕ′ > 0.
The goal of this section is for some suitable constant γ, and some choice of function ϕ, to

prove that the following equation is verified at all times, irrespective of the actions taken by
the adversary,

Cost(t) + Ψ(T (t), x(t)) ≤ γΨ(T (t), y(t)). (4)

This readily leads to conclude that the strategy is f(k, D)-bounded, with f(k, D) = γϕ(k)D.
This is because γϕ(k)D is a simple upper bound of (3). The rest of this section is dedicated
to showing (4) for a quadratic ϕ(·) and a constant γ, thereby proving Theorem 2. We thus
analyze the behaviour of y, starting with Proposition 5 which provides a characterization
of y. We then study the dynamics of y over the course of the game (elongations, deletions,
forks) in Proposition 6. After, we prove some relations between x and y, for some quadratic
function ϕ in Proposition 9. Finally, we conclude with the proof of (4) in Proposition 11.

▶ Proposition 5 (Characterization of y). For any tree T of the game, Equation (3) has a
unique solution. Furthermore, y ∈ Y(T ) is the solution of (3) if and only if there exists
λ ∈ R s.t.

∀ℓ ∈ L(T ),
∑

u∈ℓ→r

duϕ′(yu) ≥ λ, and yℓ > 0 ⇒
∑

u∈ℓ→r

duϕ′(yu) = λ. (5)

Consequently, given any two leaves, ℓ, ℓ′ for which yℓ, y′
ℓ > 0 we have∑

u∈ℓ→A(ℓ,ℓ′)

duϕ′(yu) =
∑

u∈ℓ′→A(ℓ,ℓ′)

duϕ′(yu). (6)

Proof. We start by justifying the existence and uniqueness of y. We note that for any tree
T , the function y → Ψ(T, y) is twice differentiable and compute its Hessian,

∇2
yΨ(T, y) =

 ∑
u⪰A(ℓ,ℓ′)

duϕ′′(yu)


ℓ,ℓ′∈L(T )

(7)

which is an ultrametric matrix (see [8, Definition 3.2, p. 58]), because ϕ′′ > 0. We recall that
an ultrametric matrix is always semidefinite positive because it can be seen as the covariance
matrix of a Brownian motion on a tree (see e.g. [18]). Furthermore, it is non-singular if

ITCS 2024



35:8 Collective Tree Exploration via Potential Function Method

no two rows are equal [8, Th 3.5 (ii)]. This applies here since ∀u ∈ V : du > 0. Thus
y → Ψ(T, y) is strictly convex and its minimum on the compact and convex set Y(T ) exists
and is unique.

We now give a characterization of y by applying the KKT conditions. Let µ = (µℓ)ℓ∈L(T )
denote the vector of non-negative Kuhn-Tucker multipliers associated with inequality con-
straints yℓ ≥ 0, and λ ∈ R the multiplier associated with equality constraint

∑
ℓ∈L(T ) yℓ = k.

We can characterize y by forming the Lagrangian

L(z; (λ, µ)) :=
∑

u∈V (T )\{r}

duϕ(zu) −
∑

ℓ∈L(T )

µℓzℓ + λ

k −
∑

ℓ∈L(T )

zℓ

 .

Optimality of y is characterized by the existence multipliers λ, µ such that the stationarity
conditions together with complementary conditions are satisfied,

∀ℓ ∈ L(T ),
∑

u∈ℓ→r

duϕ′(yu) − µℓ − λ = 0, and ∀ℓ ∈ L(T ), µℓyℓ = 0.

This is readily seen to be equivalent to the conditions stated in the Lemma. ◀

▶ Proposition 6 (Dynamics of y(t) following (3)). Consider some time interval I = [t1, t2],
in which all leaves ℓ satisfy yℓ > 0 and for which the only edge length to increase is dl, then
yl decreases and for any leaf ℓ ̸= l, yℓ increases. Furthermore, y is differentiable and its
derivative ẏ satisfies

ẏl ≥ − 1
dl

max ϕ′

min ϕ′′ . (8)

Consider a leaf l that undergoes a discrete step (fork or deletion), then the optimal configura-
tion yℓ of any leaf ℓ ̸= l is increased. Furthermore, if l undergoes a fork of length δ with m

children, one has

y′
l − yl ≥ − δ

dl

max ϕ′

min ϕ′′ , (9)

where y′ denotes the optimal configuration right after the fork took place, in the tree in which
l is now the parent of m children at distance δ and all attributed configuration weight y′

l/m.

▶ Remark 7. The assumption that yℓ > 0 is not required in practice, but it simplifies the
argument and it is always verified for the given Algorithm (2) of the player, as we shall later
see.

Proof. We treat separately the cases of elongation, deletion and fork.

Leaf elongation. Consider the leaf l which is being elongated during interval [t1, t2], all
other edges being left unchanged. Consider some t ∈ [t1, t2) satisfying y(t) > 0 and some
small dt > 0. The differentiability of y(·) at t can be deduced from straightforward arguments
using the inverse function theorem and the smooth evolution of the convex potential. We
thus focus here on the sign of derivatives ẏ(t). We have by the characterization of y(t + dt)
and of y(t) given in (5) that ∇yΨ(T (t + dt), y(t + dt)) − ∇yΨ(T (t), y(t)) ∈ Vect(1). Using
the identity ∇yΨ(T (t + dt), y(t + dt)) = ∇yΨ(T (t), y(t + dt)) + ϕ′(yl(t + dt))eldt and a
Taylor expansion, we obtain,

∇2
yΨ(T (t), y(t))(y(t + dt) − y(t)) + ϕ′(yl(t + dt))eldt + o(dt) ∈ Vect(1),
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which in the limit dt → 0 gives,

U(t)ẏ(t) ∈ −ϕ′(yl(t))el + Vect(1) (10)

where for shorthand we denote U(t) = ∇2
yΨ(T (t), y(t)), the ultra-metric defined in (7).

Lemma 8 below applied to (10) then allows to conclude that ẏl < 0 and ẏℓ ≥ 0 for all ℓ ̸= l.

▶ Lemma 8. Assume U ∈ Rn×n a positive definite ultrametric matrix satisfies

Uz = −µel + λ1 (11)

for constants λ ∈ R, µ > 0, for some index l ∈ [n] and some zero sum vector z ∈ Rn, i.e.
such that zT

1 = 0. It is then the case that λ ≥ 0 and that ∀ℓ ∈ [n] \ {l} : zℓ ≥ 0.

Proof. We denote by M the inverse of the positive-definite ultrametric U , i.e. M = U−1,
which satisfies the following properties, [8, Th. 3.5 (i)] (a) the diagonal elements of M are
non-negative (b) the off-diagonal elements of M are non-positive (c) the sum of elements of
M across a row (or column) is non-negative.

By multiplying (11) on the left by 1T M and using that 1T z = 0, we get µ1T Mel =
λ1T M1. By property (c) above, 1T Mel ≥ 0 and since µ ≥ 0 we get λ ≥ 0. We then have
z = −µMel + λM1, thus for ℓ ̸= l we get zℓ = −µeT

ℓ Mel + λeT
ℓ M1. Since eT

ℓ Mel ≤ 0
by property (b) and eT

ℓ M1 ≥ 0 by property (c) we get zℓ ≥ 0. Finally, observe that since
1

T z = 0, it must be the case that zl ≤ 0. ◀

We now consider a leaf ℓ ̸= l that is a descendant of p(l). Using equation (6) we get∑
u∈ℓ→p(l) duϕ′(yu) = dlϕ

′(yl) at all times. Taking time derivatives, we obtain,∑
u∈ℓ→p(l)

duẏuϕ′′(yu) = ϕ′(yl) + dlẏlϕ
′′(yl).

We have shown that the left-hand side is non-negative, thus ensuring,

ẏl ≥ − 1
dl

ϕ′(yl)
ϕ′′(yl)

≥ − 1
dl

max ϕ′

min ϕ′′ .

Leaf fork. We now consider the case when leaf l undergoes a discrete fork with m children,
each attached to an edge of length δ. This case will be treated similarly as that of a continuous
elongation by introducing s ∈ [0, 1] and T (s) the tree constructed from T by providing l

with m children each attached to a leaf of length sδ. It is clear that T (0) corresponds to
the tree before the fork and that T (1) corresponds to the tree after the fork. We shall show
that optimal configuration y(s) of T (s) satisfies the property that yℓ(s) is increasing if ℓ is
not a child of l. It is clear from the strict convexity of y → Ψ(T (s), y) and by symmetry
that the value of yℓ(s) for all children ℓ of l is equal to 1

m yl(s), as soon as s > 0. We will
thus see y(s) as a configuration of the tree before the fork, but for the modified potential
Ψ(s, y) = Ψ(T (0), y) + sδ × mϕ

( 1
m yl

)
. By the same reasoning as above, we get the following

dynamics

U(s)ẏ(s) ∈ −δϕ′ (yl(s)/m) el + Vect(1),

where U(s) =
(∑

u⪰A(ℓ,ℓ′) duϕ′′(yu(s))
)

ℓ,ℓ′∈L(T )
+

(
1(ℓ = ℓ′ = l) sδ

m ϕ′′(yl(s))
)

ℓ,ℓ′∈L(T ) is a
positive definite ultra-metric to which we apply Lemma 8 to get the desired monotonicity.
Then by considering a leaf ℓ ̸= l that is a descendant of p(l), we have

∑
u∈ℓ→p(l) duϕ′(yu(s)) =

dlϕ
′(yl(s)) + δsϕ′ (yl(s)/m). By taking derivatives on s, the quantity, dlϕ

′′(yl(s))ẏl(s) +
sδ
m ϕ′′ (yl(s)/m) ẏl(s) + δϕ′ (yl(s)/m) is non-negative, ensuring that ẏl(s) ≥ − δ

dl

ϕ′(yl(s)/m)
ϕ′′(yl(s)) ,

and thus y′
l − yl ≥ − δ

dl

max ϕ′

min ϕ′′ .
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Leaf deletion. Finally, we consider the case of the deletion of leaf l. We observe as in [3],
that the configuration after the deletion of a leaf can be obtained as the limit configuration
when this leaf is extended to infinity. Such infinite extension only leads to increasing the
value of the configuration at all other leaves, thereby proving the monotonicity statement
made for deletions. ◀

▶ Proposition 9 (Bounds on x and y). Let ϵ, ϵ′ ∈ (0, 1/2] be two fixed constants, and assume
that ϕ(x) = ax + bx2 where parameters a, b are chosen such that

2bk ≤ ϵ′a and b(2 − 2ϵ − ϵ′) ≥ 2 + ϵ′. (12)

Then Algorithm (2) is such that irrespective of the adversary’s moves, at all times,

∀ℓ ∈ L(T ), xℓ < yℓ + 2 − ϵ, (13)

and,

∀ℓ ∈ L(T ), ϵ ≤ yℓ. (14)

Proof. We start by showing how (14) follows from (13). Recall from Proposition 6 that the
value of yℓ can only decrease if ℓ is elongated or forked. Since a leaf can only be elongated if
xℓ ≥ 2, it follows from (13) that yℓ can not go below ϵ during an elongation. Now assume
that the leaf ℓ undergoes a fork with m ≤ xℓ − 1 children. By (13), it must be the case that
yl ≥ m − 1 + ϵ ≥ mϵ + (1 − ϵ). For a small enough value of δ in equation (9), we get that
y′

l/m > ϵ, just after the fork. Thus neither elongation nor a fork may make a value of y go
beneath ϵ.

We now show how (13) follows from (12). Note first that (13) holds true at t = 0.
Consider then the earliest time at which this inequality is met with equality: there is some
leaf ℓ such that xℓ = yℓ + 2 − ϵ. Then, since xr = yr = k, there exists an ancestor v of ℓ such
that xv < yv + 2 − ϵ but xu ≥ yu + 2 − ϵ for all u ∈ ℓ → v. Also, since xv =

∑
u:p(u)=v xu

and yv =
∑

u:p(u)=v yu there must be a child w of v such that xw < yw. By iterating this
argument until we reach a leaf, there must exist ℓ′ ∈ L(T ) descending from v and satisfying
that for all u ∈ ℓ′ → v : xu < yu. Let x′ be the robot configuration obtained from x by
moving one robot from ℓ to ℓ′. We evaluate the difference

∆ := Ψ(T, x′) + OTT (x, x′) − Ψ(T, x).

This reads

∆ =
∑

u∈ℓ→v

di(j)[1 − a + b{(xu − 1)2 − x2
u}] +

∑
u∈ℓ′→v

du[1 + a + b{(xu + 1)2 − x2
u}]

=
∑

u∈ℓ→v

du[1 − a + b(1 − 2xu)] +
∑
ℓ′→v

du[1 + a + b(1 + 2xu)]

≤
∑

u∈ℓ→v di(j)[1 − a + b(1 − 2(yu + 2 − ϵ))] +
∑

ℓ′→v di′(j)[1 + a + b(1 + 2yu)],

where we used the inequalities between x and y.
We then recall from (6) (noting that ϕ′(x) = a + 2bx):∑
u∈ℓ→v

du[a + 2byu] =
∑

u∈ℓ′→v

du[a + 2byu]. (15)

We can thus simplify the previous bound on ∆ to obtain

∆ ≤
∑

u∈ℓ→v

du[1 + b(1 − 2(2 − ϵ))] +
∑

u∈ℓ′→v

du[1 + b]. (16)
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Equation (15) together with the assumption 2bk ≤ ϵ′a made in the proposition entails,
noticing that yv ≤ k for all v, that∑

u∈ℓ→v

du ≤ (1 + ϵ′)
∑

u∈ℓ→v

du, and similarly,
∑

u∈ℓ′→v

du ≤ (1 + ϵ′)
∑

u∈ℓ→v

du. (17)

In view of (16), we thus have

∆ ≤
∑

u∈ℓ→v

du [1 + b(−3 + 2ϵ) + (1 + ϵ′)(1 + b)] =
∑

u∈ℓ→v

du [2 + ϵ′ − b(2 − 2ϵ − ϵ′)] .

This upper bound is negative under the second condition b(2 − 2ϵ − ϵ′) ≥ 2 + ϵ′ of the
proposition, which is impossible by Algorithm (2). ◀

▶ Remark 10. We will choose as specific values for ϕ(x) = ax + bx2 the quantities a = 20k,
and b = 5, as well as ϵ = ϵ′ = 1/2. These quantities satisfy the conditions of Proposition 9.

▶ Proposition 11. The above-defined strategy, for the parameters in Remark 10, is such that
at all times, the configuration (T (t), x(t)) of the game satisfies (4) for γ = 48.

Cost(t) + Ψ(T (t), x(t)) ≤ γΨ(T (t), y(t)). (4)

Proof. We show (4) is preserved by leaf elongations, leaf deletions and leaf forks.

Leaf elongation. We first consider the evolution of the equation during a leaf elongation
and between instants at which the player re-assigns robots. The three quantities involved in
(4) evolve smoothly. Denoting by ℓ(t) the leaf chosen by the adversary for elongation, we
have:

d
dt Cost(t) = xℓ(t)(t),
d
dt Ψ(T (t), x(t)) = ϕ(xℓ(t)(t)),
d
dt Ψ(T (t), y(t)) = ϕ(yℓ(t)(t)),

where for the third identity we used the optimality of y(t).
We thus want to choose γ such that, writing x = xℓ(t)(t) and y = yℓ(t)(t) for short, the

following inequality holds:

x + ϕ(x) ≤ γϕ(y). (18)

Proposition 9 gives us the following relations:

x ≤ y + 2 − ϵ = y + 3/2 and y ≥ ϵ = 1/2.

We then notice that ∀y ≥ 1/2 : y + 3/2 + ϕ(y + 3/2) ≤ γϕ(y) is satisfied for any γ ≥ 7, and
for the choice of parameters made in Remark 10, therefore proving (18).

Next, we consider an instant t, occurring during a leaf elongation, at which the player
reassigns robots, moving from x to x′. The cost incurred by the player for this move is
precisely OTT (t)(x, x′). Because of the player’s strategy, this move occurs only if

OTT (t)(x, x′) + Ψ(T (t), x′) ≤ Ψ(T (t), x).

Thus the left-hand side of (4) makes a downward jump at time t, whereas its right-hand side
incurs no jump.
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Leaf fork. The case of leaf fork is similar to the case of leaf elongation. Denote by T , x and
y (resp T ′, x′ and y′) the tree, the discrete configuration and the optimal configurations
before (resp. after) the fork and denote by ℓ the leaf that is forked. Recall that the fork
length δ is chosen small enough for the fork to lead to no reassignments, i.e. xℓ = x′

ℓ and the
newly created leaves take their values in {⌈xℓ/m⌉, ⌊xℓ/m⌋}. The fork leads to the following
change in cost and potential,

∆xCost = δxℓ,

∆xΨ = Ψ(T ′, x′) − Ψ(T, x) ≤ mδϕ(⌈xℓ/m⌉),
∆yΨ = Ψ(T ′, y′) − Ψ(T, y) ≥

∫ δ

0 mϕ(yℓ(s)/m)ds ≥ mδϕ(y′
ℓ/m),

where for the third inequality, we used the fact that a leaf fork can be seen as a leaf elongation
with modified leaf potential : y → mϕ(y/m), see Proposition 6. Further by Proposition 6 the
value of δ > 0 can be chosen small enough to ensure y′

ℓ/m ≥ ϵ and y′
ℓ ≥ yℓ −1/2. We then use

xℓ ≤ yℓ + 3/2 ≤ y′
ℓ + 2 to observe that ∆xCost ≤ ∆yΨ, and use ⌈xℓ/m⌉ ≤ y′

ℓ/m + 3/2 and
y′

ℓ/m ≥ ϵ along with the computations used for leaf elongations to get that ∆xΨ ≤ γ∆yΨ′

for any γ ≥ 7. Summing up both inequalities, we get that for any γ ≥ 8,

∆xCost + ∆xΨ ≤ γ∆yΨ′.

Leaf deletion. We finally deal with leaf deletions and keep the same notations of (T, x, y)
and (T ′, x′, y′) to denote the state of the game before and after the deletion and use ℓ to
denote the deleted leaf. We first lower-bound the value of ∆yΨ = Ψ(T ′, y′) − Ψ(T, y) and
then upper bound the value of ∆x(Ψ + Cost) = Ψ(T ′, x′) − Ψ(T, x) + OT(x, x′).

We define δ = y′ − y ∈ Y(T ) where we set by convention y′
ℓ = 0. For each s ∈ [0, 1], we

then let y(s) = y + sδ ∈ Y(T ). We then define h(s) :=
∑

u duϕ(yu(s)), so that

h(0) = Ψ(T, y), h(1) = Ψ(T ′, y′).

By optimality of y for T , h′(0) = 0. Also,

h′′(s) =
∑

u

duδ2
u(2b) ≥ dℓ(yℓ)2(2b).

Thus h′(s) ≥ 2bs ∗ dℓ(yℓ)2. In turn one obtains

∆yΨ = Ψ(T ′, y′) − Ψ(T, y) = h(1) − h(0) ≥ bdℓ(yℓ)2. (19)

Let us now upper-bound the increase to the left-hand side of (4) incurred by the player’s move.
Note that the player’s strategy is to choose a new configuration x′ ∈ Y(T ′) that minimizes
OTT (x, x′) + Ψ(x′) − Ψ(x), which is precisely the amount by which this left-hand side will
increase. We can thus choose any target configuration x′′ ∈ Y(T ′) we like to upper-bound
this left-hand side increase. Pick one leaf ℓ′ ≠ ℓ that is a descendant of p(ℓ), and consider the
configuration x′′ = x − xℓeℓ + xℓeℓ′ obtained by moving the xℓ robots from ℓ to ℓ′. Using
(17), we observe that the associated transport cost OT(x, x′′) is no larger than (5/2)dℓxℓ.
The difference in potential then writes as follows

Ψ(x′′) − Ψ(x) =
∑

u∈ℓ→A(ℓ,ℓ′)

du(ϕ(xu − xℓ) − ϕ(xu)) +
∑

u∈ℓ′→A(ℓ,ℓ′)

du(ϕ(xu + xℓ) − ϕ(xu)).

We then observe that for ϕ(x) = ax + bx2, we have for x, h ≥ 0,

ϕ(x + h) − ϕ(x) = bh2 + (a + 2bx)h ≤ bh2 + (ϕ(x + 1) − ϕ(x))h
ϕ(x − h) − ϕ(x) = bh2 − (a + 2bx)h ≤ bh2 + (ϕ(x − 1) − ϕ(x))h
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and thus, we bound Ψ(x′′) − Ψ(x) by,

bx2
ℓd(ℓ, ℓ′) +

∑
u∈ℓ→A(ℓ,ℓ′)

xℓdu(ϕ(xu − 1) − ϕ(xu)) +
∑

u∈ℓ′→A(ℓ,ℓ′)

xℓdu(ϕ(xu + 1) − ϕ(xu))

≤ bx2
ℓd(ℓ, ℓ′) + xℓτx(ℓ′ → ℓ)

≤ bx2
ℓd(ℓ, ℓ′) + xℓd(ℓ, ℓ′)

where in the last equation we used the inequality τx(ℓ → ℓ′) ≤ d(ℓ, ℓ′), which was proved in
Proposition 3. This yields the following bound,

Ψ(x′′) − Ψ(x) ≤ bx2
ℓd(ℓ, ℓ′) + xℓd(ℓ, ℓ′) ≤ d(ℓ, ℓ′)(yℓ)2(16b + 8),

where we used xℓ ≤ 4yℓ which follows from (13) and yℓ ≥ 1/2. Adding the transport cost of
OT(x′′, x) = xℓd(ℓ, ℓ′) we get,

∆x(Ψ + Cost) ≤ (yℓ)2d(ℓ, ℓ′)(16b + 16) ≤ (yℓ)2dℓ(5/2)(16b + 16) ≤ γ∆yΨ

for γ = (5/2)(16b + 16)/b = 48 where we used the lower bound of ∆yΨ given by (19). ◀

3 Reductions of Continuous Tree-Mining Game

In this section, we precise the reductions that connect the game above to both of our motiva-
tions, collective tree exploration (CTE) and layered tree traversal (LTT). The reductions are
summarized in the following diagram, Figure 1.

Continuous Tree-Mining
Game (CTM)

Discrete Tree-Mining
Game (TM)

Asynchronous Collective
Tree Exploration (ACTE)

Collective
Tree Exploration (CTE)

Layered Tree
Traversal (LTT)

Prop. 14

[6]

Prop. 13

[6] & Prop. 12 Prop. 16

Figure 1 Summary of reductions. Rectangles are for settings expressed in the form of a game.
Ovals are for exploration problems. Double boundary are for online problems.

3.1 Synchronous and Asynchronous Collective Tree Exploration
The problem of (synchronous) collective tree exploration (CTE) was introduced by [14].
We shall first recall the definition of the problem and then present an extension called
asynchronous collective tree exploration (ACTE) [6]. We finally recall the reduction from
(CTE) to (ACTE) in Proposition 12.
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(Synchronous) Collective Tree Exploration (CTE). The problem is defined as follows. A
team of k robots is initially located at the root of an unknown tree T with edges of length 1.
The team is tasked to go through the edges of a tree as fast as possible and then return to
the root. At all rounds, the robots can move synchronously along one incident edge, thereby
possibly visiting new nodes. When a robot visits a node u for the first time, the full team
becomes aware of its degree and of all the unexplored edges adjacent to u, that we shall
call dangling edges. When there are no more dangling edges, the entire team knows that all
edges have been explored and meets at the root to declare the termination of exploration.
The runtime of an exploration algorithm A is defined on a tree T as the number of rounds
before termination and is denoted by Runtime(A, k, T ). By extension, for any two integers
n ≥ D, we denote by Runtime(A, k, n, D) the maximum number of rounds required before
termination on any tree with n nodes and depth D. For more formalism, we refer to [7].

Asynchronous Collective Tree Exploration (ACTE). The problem of asynchronous col-
lective tree exploration (ACTE) is a generalization of collective tree exploration (CTE) in
which the agents move sequentially. At each (discrete) time t, only a single robot indexed
by rt ∈ [k] is allowed to move. The sequence r0, r1, . . . is completely adversarial. At the
beginning of move t, the team is only given the information of whether robot rt is adjacent
to some unexplored edge, and if so, the ability to move along that edge. Consequently in
contrast with collective tree exploration, the team does not know the degree of a node until
it has been mined, i.e. some robot moving from that node was not given a fresh unexplored
edge to traverse. Exploration starts with all robots located at the root of some unknown tree
T and ends only when all nodes have been mined. We do not ask that all robots return to the
root at the end of exploration for this might not be possible in finite time if say some robot
is allowed only a single move. For an asynchronous collective tree exploration algorithm B,
we denote by Moves(B, k, T ) the maximum number of moves that are needed to traverse all
edges of T . We naturally extend this notation to Moves(B, k, n, D) for two integers n ≥ D

denoting the maximum number of moves required to explore a tree with n nodes and depth
D. (ACTE) generalises (CTE) in the following sense.

▶ Proposition 12. For any asynchronous exploration collective tree exploration algorithm B,
one can derive a synchronous algorithm A satisfying,

Runtime(A, k, T ) ≤
⌈

1
k

Moves(B, k, T )
⌉

+ D,

for any tree T of depth D, and for all number of robots k.

Proof idea. Considering a sequence of allowed moves 1, 2, . . . , k, 1, 2, . . . , k, 1, 2, . . . , we re-
cover a synchronous collective exploration algorithm from an asynchronous collective explo-
ration algorithm. Then all robots return to the root in at most D additional steps. We refer
to [6] for more details. ◀

3.2 Continuous and Discrete Tree-Mining Games

The problem of asynchronous collective tree exploration can be reduced to a game opposing
a player and an adversary known as the “tree-mining” game (TM) [6]. In this section, we
first recall the original setting of the discrete tree-mining game (TM), and then show it can
be reduced to the continuous tree-mining game (CTM), which was studied in Section 2.



R. Cosson and L. Massoulié 35:15

Discrete Tree-Mining Game (TM). The game is defined as follows for some fixed integer
k ≥ 2. At step i ≥ 0, the state of the game is defined by a pair T (i) = (T (i), x(i))
where T (i) = (V (i), E(i), L(i)) is a rooted tree with nodes V (i), edges E(i), and with
L(i) ⊂ L(T (i)) a subset of the leaves of T (i) called active leaves. The configuration
x(i) = (xℓ(i))ℓ∈L(i) represents the number of miners on each active leaf, for a total of k

miners, i.e.
∑

ℓ∈L(i) xℓ(i) = k. At the beginning of step i ∈ N, the adversary is the first
to play. It chooses an active leaf ℓ(i) ∈ L(i) that becomes inactive and is given xℓ(i)(i) − 1
(active) children which are added to L(i + 1). Then, the player sends one miner of ℓ(i) to
each of newly created leaves, and decides on some active leaf ℓ′(i) ∈ L(i + 1) on which to
send the last miner at ℓ(i). After round i, the cost of the game is updated as follows,

Cost(i + 1) = Cost(i) + d(ℓ(i), ℓ′(i)),

keeping track of the total distance traversed by the excess miners1. A strategy for the player
of the tree-mining game is called f(k, D)-bounded if all k miners are guaranteed to attain
depth D with a score of at most f(k, D). We have the following result,

▶ Proposition 13. For every f(k, D)-bounded strategy for the tree-mining game (TM) there
exists an asynchronous collective tree exploration (ACTE) algorithm B satisfying,

Moves(B, k, n, D) ≤ 2n + f(k, D).

Proof idea. The proof relies on the notion of locally-greedy algorithms with target, formally
defined in [6]. An exploration algorithm is called locally-greedy if moving robots always
prefer unexplored edges over explored edges. In a locally-greedy algorithm with targets, each
robot is assigned a target, which is a discovered node that has not been mined. When a
robot is not adjacent to an unexplored edge, it simply performs one step towards its target.
In the reduction to the tree-mining game, the targets correspond to the active leaves. When
a robot mines its target, all robots sharing the same target must be re-targeted, and the
additional movement cost associated to this re-targeting is bounded by the distance between
the previous target and the new target. This quantity is exactly the cost in the corresponding
tree-mining game. We refer to [6] for more details. ◀

▶ Remark. In the description of the game above, leaves are not deleted but rather deactivated,
and some nodes can be of degree 2. An alternative definition of the game, which is closer
from the one used in the continuous tree-mining game, would see the deactivated leaves
effectively deleted from the tree, as well as nodes of degree equal to 2 by merging their
adjacent edges. This view, which is used for the reduction below, maintains a “simple” tree,
as defined in the introduction.

Continuous Tree-Mining Game (CTM). We defined in the beginning of Section 2 a variant
of the tree-mining game, called the continuous tree-mining game (CTM). Similarly, we say
that a strategy for this variant of the game is f(k, D)-bounded if k miners are guaranteed to
attain depth D with a cost of at most f(k, D). We shall now prove a reduction from the
discrete tree-mining game to the continuous tree-mining game.

▶ Proposition 14. For any f(k, D)-bounded strategy for the player of the continuous game
(CTM), there is an f(k, D)-bounded strategy for the player of the discrete tree game (TM).

1 This cost can slightly be refined, see [6].
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Proof. The discrete strategy is defined using the continuous strategy as follows. Given the
i-th move of the adversary, the player of the discrete game emulates the continuous game
for some duration ti+1 − ti against some adequately defined continuous adversary. The
configuration obtained in the continuous tree T c at time ti+1 defines the response of the
player on the discrete tree T d at discrete step i. The following properties, which highlight
the correspondences between the continuous and the discrete games will always be satisfied
at instants t1, t2, t3, . . . (a) T c(ti) and T d(i) have the same set of vertices V , edges E and
leaves L. (b) For any leaf ℓ ∈ L : xc

ℓ = xd
ℓ . (c) For any v ∈ V \ L : dc

v = dd
v where dc

v (resp.
dd

v) denotes the distance from v to p(v) in T c (resp. T d). (d) If for some leaf ℓ ∈ L we have
dc

ℓ < dd
ℓ then necessarily, xc

ℓ = xd
ℓ = 1. We assume that the following properties are satisfied

at time ti and show how we define time ti+1 as well as the evolution of the continuous game
during [ti, ti+1]. The state of T c(ti+1) will then define the i + 1-th move of the player of the
discrete game by enforcing (b) in T d(i + 1). Assume that the i-th choice of the adversary
of the discrete game is a leaf ℓ(i) with xℓ(i) miners. Then, a similar move is perpetrated in
T c to that same leaf, i.e. edge deletion if xℓ(i) = 1, edge elongation if xℓ(i) = 2 or fork if
xℓ(i) ≥ 3, so that the property (a) is preserved. Then, while there is a leaf ℓ of T c satisfying
xℓ ≥ 2 and dc

ℓ < dd
ℓ , that leaf is elongated, leading to the transfer of the excess miner from

leaf to leaf. When that property is no longer true, we interrupt the passing of time and this
defines ti+1 as well as the state of the continuous game T c(ti+1). We then perform the move
of the player of the discrete game which enforces (b) at step i + 1 and note that properties
(c) and (d) follow. Properties (a), (b), (c), (d) are thus all satisfied at step i + 1. It is clear
from the description that all moves taking place in T d up to step i must have taken place
in T c, except for the moves inside partially completed leaves, which came at no cost in the
discrete game. In conclusion the cost of the discrete (resp. continuous) game Costd(i) (resp.
Costc(i)) satisfy Costd(i) ≤ Costc(i). ◀

3.3 Layered Tree Traversal
In this section, we first recall the problem of layered tree traversal (LTT) which is a crucial
special case of layered graph traversal (LGT) [12]. We then recall the equivalence between
fractional strategies and mixed (i.e. randomized) strategies for layered tree traversal [3].
After, we show how a new type of guarantees for layered tree traversal can be obtained from
asynchronous collective exploration (ACTE) algorithms.

Layered Tree Traversal. A searcher attempts to go from the source r ∈ V to the target
r′ ∈ V of a weighted tree T = (V, E) with as little effort as possible. The searcher does
not initially observe the entire tree T which is instead revealed layer by layer. The i-th
layer corresponds to the set of nodes of combinatorial depth i. At step i, the i-th layer is
revealed along with all the edges going from the i − 1-th layer to the i-th layer. The searcher
then has to choose one node of the i-th layer and must move to this node using previously
revealed edges. The length of all edges is assumed to take its values in {0, 1}. The goal
for the searcher is to reach the last layer (which contains r′) while traversing the minimum
number of length 1 edges. The following quantities are useful to describe the layered tree,

the width w ∈ N is equal to the maximum number of nodes of a layer,
the depth D ∈ R is equal to the shortest path distance from r to r′,
the length L ∈ R is equal to the sum of all edge lengths.

It was observed by [12] that the setting of LTT with edge lengths in {0, 1} encompasses the
general setting of layered tree traversal with arbitrary edge lengths. Given an algorithm
A traversing layered trees with edge lengths in {0, 1}, we readily obtain an algorithm A′
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traversing layered trees with edge lengths in N, by cutting edges in segments of size 0 and 1,
inserting intermediary layers when needed. Note that this operation does not change the
quantities of interest: the width w, the depth D, and the length L. The argument is easily
generalized to allow for edge lengths in {0} ∪ [ϵ, ∞] where ϵ is a lower-bound on the smallest
non-zero edge length, see [12] for full details.

Fractional strategies and randomized algorithms. A deterministic algorithm for layered
tree traversal is one that maps a sequence of layers, as well as the position of the searcher
in the before-last layer, to the position of the searcher in the last layer. The cost of a
deterministic algorithm on some layered tree T equals the total length traversed by a searcher
using the algorithm to navigate in that tree, when layers are revealed one after the other. A
randomized algorithm is a probability distribution over deterministic algorithms, its cost is
defined by taking the expectation of the cost over the deterministic algorithms. A fractional
strategy is one which maps a probability distribution on the before-last layer, to a probability
distribution on the last layer. The cost of a fractional strategy is equal to the sum of
optimal transport costs between all consecutive probability distributions, until the last layer
is revealed. The following reduction was observed by [3].

▶ Proposition 15. For every fractional strategy of the searcher, there is a mixed strategy
incurring the same cost in expectation.

Proof idea. The proof works by induction, the idea is to build a probability distribution
over deterministic algorithms that has the same expected cost as the fractional strategy. At
each step, the optimal transport cost between two consecutive probability distributions on
both layers allows to define a coupling which tells how the position of a searcher should
change, given its current position. We refer to [3, Section 4] for more details. ◀

Connection to (ACTE). We now show how an asynchronous collective tree exploration
algorithm can be used to obtain a fractional strategy for layered tree traversal (LTT).

▶ Proposition 16. Given an asynchronous collective tree exploration (ACTE) algorithm B,
for any k ∈ N, there exists a mixed strategy of the searcher A such that for any layered tree
T with edge lengths in {0, 1}, we have,

E(Cost(A, T )) ≤ 1
k

Moves(B, k, T ′)

where T ′ denotes the tree obtained by concatenating nodes of T connected by length 0 edges.

Proof. We use the asynchronous collective exploration algorithm B to define a fractional
strategy for layered graph traversal. For this purpose we define T ′ the tree obtained from
the weighted tree T by concatenating all nodes that are connected by length 0 edges. We
also denote by V ′

i the set of all nodes of T ′ that belong to the i-th layer of T . Note that the
sets V ′

i no longer form a partition of the nodes, since one node may belong to multiple layers.
At each step i, the i-th layer of T is revealed and we shall use our (ACTE) algorithm B on
T ′ to define a fractional configuration on that layer.

Specifically, we shall consider a run of the algorithm B on T ′ and instants t0 ≤ · · · ≤
ti ≤ . . . such that (1) at time ti, all robots are located on a node of V ′

i (2) before time ti,
no robot located on a node of V ′

i was ever granted a move. If these properties are satisfied
for some ti, it is easy to define a time ti+1 and a sequence of robot moves such that the
property will be satisfied at ti+1. Indeed, simply grant a move to the robots until they each
reach a node of V ′

i+1. Since the exploration algorithm B finishes in finite time, all robots will
eventually reach such node.

ITCS 2024



35:18 Collective Tree Exploration via Potential Function Method

Note that the run defined above can be performed online, if the layer i + 1 is always
revealed at time ti. Thus, this run of B allows to define a fractional strategy for layered tree
traversal, where the probability distribution is given by the distribution of the k robots on
V ′

i , translated in a distribution over Vi which is the actual i-th layer of T . It is clear that
the number of robot moves between two consecutive steps is at least k times the optimal
transport cost between the distributions. Finally, observe that the exploration is not finished
until the last layer, which we assume without loss of generality reduced to the target {r′}, has
been reached by all robots. But the target is then still un-mined because no robot located at
r′ was granted a move, thus at this instant the total number of moves of the exploration
algorithm is less than Moves(B, k, T ). This finishes the proof of the proposition. ◀

4 Applications

In this section, we combine the results obtained for the continuous tree-mining game in
Section 2 to the reduction presented in Section 3 in order to obtain new guarantees for
collective tree exploration (CTE) and layered tree traversal (LTT).

4.1 Application to Collective Tree Exploration
The first result that we obtain is on asynchronous collective tree exploration (ACTE).

▶ Theorem 17. There exists an asynchronous collective tree exploration algorithm B satisfy-
ing, for any k ∈ N and n ≥ D,

Moves(B, k, n, D) ≤ 2n + O(k2D).

Proof. Combine Proposition 14 and Proposition 13 with Theorem 2. ◀

This result then immediately translates to the synchronous setting (CTE), providing the
announced competitive ratio.

▶ Theorem 18. There exists a collective tree exploration algorithm A with runtime,

Runtime(A, k, n, D) ≤ 2n

k
+ O(kD).

The exploration algorithm A′ which uses this algorithm with k′ =
√

k robots while leaving
k −

√
k robots idle at the root thus has a competitive ratio of O(

√
k).

Proof. Apply Theorem 17 with Proposition 12. For the competitive ratio, observe that

2n√
k

+ cst ×
√

kD ≤ cst ×
√

k
(n

k
+ D

)
. ◀

4.2 Application to Layered Tree Traversal
The main result of this section is the following.

▶ Theorem 19. There exists a collection of layered tree traversal (LTT) randomized algorithms
{Ak}k∈N satisfying for any layered tree T ,

E(Cost(Ak, T )) ≤ 2L

k
+ O(kD),

where L is the sum of all edge lengths in T and D is the distance from source to target.
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Proof. Apply Theorem 17 with Proposition 16. ◀

We now discuss the relevance of the above result in light of prior work on layered tree and
graph traversal. The most notable difference is that our guarantee does not depend on the
width w, contrarily to all previous work on the topic which focused on bounds of the form
O(c(w)D) (competitive analysis). The latest result of this kind is the recent algorithm A
of [3] satisfying, E(Cost(A, G)) ≤ O(w2D). Instead, our guarantees depend on the sum of
all edge lengths L, which cannot be bounded by a function of w and D in full generality. We
thus present below two settings illustrating the interest Theorem 19.

Unit edge lengths. Recall that layered tree traversal can be reduced to the case of edge
lengths belonging to {0, 1}. We consider here the simple restriction where the edge lengths
are all set equal to 1, and where the environment is thus represented by an unweighted
tree structure. This setting seems particularly relevant to robotic applications in which
sensors have a given range. The unit lengths assumption entails that D = N , where N

is the number of layers, and thus that L ≤ wD, where w is the width of the layered tree.
Therefore choosing k = ⌊

√
w⌋, we obtain an algorithm traversing unweighted layered trees of

width w with cost O(
√

wD). To the best of our knowledge, this is the first guarantee on this
problem that improves over the naive O(L) = O(wD) upper bound, achieved by a simple
depth-first search. More generally, if edges are not of unit lengths, but the ratio between the
shortest and the longest edge lengths is bounded by a constant C, we obtain a guarantee in
O(

√
CwD).

Average case analysis. Another natural situation which provides a control of the value of
L is when the problem instance is sampled at random from probability distribution. One
reasonable way to sample a layered graph of width w is as follows. We first pick an arbitrary
time horizon N and we consider a set of layers L1, . . . , LN that each contain w nodes. One
node of the last layer LN is arbitrarily chosen to be connected to the target r′, whereas all
nodes of the first layer are connected to the source r. For all i < N , we define Es the set of
edges in Li × Li+1, connecting layer i to layer i + 1, by assigning to each node of Li+1 one
parent in Li chosen uniformly at random. Then for every edge e ∈ E, we pick an independent
sample of a Bernouilli random variable Ze ∼ B( 1

2 ) to decide whether e is of length 0 or
1. The total length of the tree is then the sum of |E| = wN independent Bernoullis, i.e.
L =

∑
e∈E Ze, and the distance from source to target is the sum of N independent Bernoullis

D =
∑

e∈P (r,r′) Ze where P (r, r′) denotes the path from source to target. In this context,
with high probability and for N sufficiently large, L will be of order as Θ(wD). As above,
we then choose k = ⌊

√
w⌋ to obtain a guarantee in O(

√
wD). This discussion could be of

interest in the perspective of an average case analysis of layered tree and graph traversal.
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A Proofs of Lemmas 20, 21, 22, 23 on the dynamics of x

▶ Lemma 20. Consider some time interval I = [t1, t2], in which some leaf l is continuously
extended. In this time interval, all moves by Algorithm (2) consist in moving a robot from l

to some other leaf of the tree, and no two moves happen simultaneously.

Proof. We denote by x the configuration of the robots at time t1 and we assume that it is
stable (i.e. for any other configuration z : τ(x, z) < OT(x, z). We denote by x′ the first
configuration that the player will switch to after x, and by t3 ∈ (t1, t2) the time at which it
occurs. We shall show that x′ will satisfy x′ = x − el + eℓ for some leaf ℓ ̸= l. First observe
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that before t3 the tension between any two leaves ℓ, ℓ′ ̸= l in x does not change with time (and
thus remains always < d(ℓ, ℓ′)). Then observe that the tension τ(x → x′) = Φt(x′) − Φt(x)
evolves continuously with time, as well as OT(x, x′). So at time t3, when the movement
occurs, we have that Φ(x) − Φ(x′) = OT(x, x′) =

∑
i∈[h] d(ℓi, ℓ′

i) for ℓ1 → ℓ′
1, . . . , ℓh → ℓ′

h

an optimal transport plan leading from x to x′. Using Lemma 4, we get that at time t3,∑
i∈[h]

d(ℓi, ℓ′
i) = τ(x → x′) ≤ τ(ℓ1 → ℓ′

1) + · · · + τ(ℓh → ℓ′
h),

where by continuity of tensions, since no moves took place before t3 we have for all i ∈ [h] :
τ(ℓi → ℓ′

i) ≤ d(ℓi → ℓ′
i), with strict inequality if ℓi ̸= l. This implies that ∀i ∈ [h] : ℓi = l.

Then observe that if h > 1, the optimal transport plan has overlaps of positive length, so by
the lemma above,∑

i∈[h]

d(ℓi, ℓ′
i) = τ(x → x′) < τ(ℓ1 → ℓ′

1) + · · · + τ(ℓh → ℓ′
h),

which is impossible using again the continuity of tensions. So it is a necessity that h = 1
and that x′ = x − el + eℓ′

1
. Now to conclude this proof, it suffices to observe that the

configuration x′ is stable at time t3 (i.e. for any other configuration z : τ(x′, z) < OT(x′, z)
where OT(x′, z) denotes the optimal transport distance from x′ to z). We can then iterate
the argument to show that the property will remain satisfied all the way to time t2. Assume
by contradiction that right after the player makes the move to x′ at t3, there is another
configuration z ̸= x′ satisfying τ(x′, z) ≥ OT(x′, z), then the following identities held before
the move at time t3, τ(x, z) = τ(x, x′) + τ(x′, z) ≥ OT(x, x′) + OT(x′, z) ≥ OT(x, z).
So z would have been another allowed candidate at time t3. Thus, z = x − el + eℓ′ for
some other leaf ℓ′. This implies that OT(x, x′) + OT(x′, z) > OT(x, z) which in turns
implies that at time t3, before the move of the player we had τ(x, z) > OT(x, z), which is a
contradiction. ◀

▶ Lemma 21. When some leaf l is deleted, denoting by x the configuration before the deletion
and by x′ the configuration right after the deletion, we have that ∀ℓ ≠ l : yℓ ≥ xℓ. In other
words, all moves by Algorithm (2) are from the deleted leaf to other leaves of the tree.

Proof. We denote by x the configuration before the removal of l and by x′ the configuration
after the removal of l and we recall that the transport distance OT(x, x′) =

∑
i∈[h] d(ℓi, ℓ′

i)
where ℓ1 → ℓ′

1, . . . , ℓh → ℓ′
h is an optimal transport plan leading from x to x′. We also recall

that Lemma 4 gives,

τ(x → x′) ≤ τx(ℓ1 → ℓ′
1) + · · · + τx(ℓh → ℓ′

h).

We assume by contradiction that there is a leaf ℓ ̸= l satisfying yℓ < xℓ. Without loss of
generality, this implies that we can choose a leaf ℓi ̸= l of the optimal transport plan, for
i ∈ [h], such that yℓ′

i
> xℓ′

i
. Consequently the configuration x′′ = x′ − eℓ′

i
+ eℓi

where one
move from ℓi to ℓ′

i never took place is valid, even after the deletion of leaf l because obviously
ℓ′

i ̸= l. Also remember that by the proof of Lemma 4,

τ(x → x′) ≤ τ(x → x′′) + τ(ℓ → ℓ′)

and recall,

OT(x, x′) = OT(x, x′′) + d(ℓ, ℓ′).
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Since x′ was performed instead of x′′, it must have been that τ(x → x′) − OT(x, x′) ≥
τ(x → x′′) − OT(x, x′′) and thus that τx(ℓ → ℓ′) ≥ d(ℓ, ℓ′). This is not possible, because it
implies that a movement from ℓ to ℓ′ would have taken place before the removal of l, at time
t−
1 . ◀

▶ Lemma 22. Consider the fork of a leaf l in m children, and denote by x the configuration
right before the fork. We call “configuration induced by the fork” and we denote by x′ a
configuration in which the xl robots formerly located at l are partitioned evenly on the m

children of l, i.e. where the newly created children take values in {⌈ xl

m ⌉, ⌊ xl

m ⌋} and where
x′

l = xl. There exists some δ ∈ (0, 1), such that for any fork length of δ, the configuration x′

is stable after the fork.

Proof. We recall that a fork of leaf l in m children leads to the creation of m new leaves at
distance δ from l. By convexity of Φ(·), the configuration x′ defined above are such that for
any ℓ, ℓ′ newly created children, τx′(ℓ → ℓ′) ≤ 0 and thus, τx′(ℓ → ℓ′) − d(ℓ, ℓ′) < 0 after the
fork. We consider T (u) the tree corresponding to a fork length of u ∈ [0, 1). We note that for
any two leaves ℓ, ℓ′, which are not both children of l, the value of τx′(ℓ → ℓ′) − d(ℓ, ℓ′) evolves
continuously and is known to be strictly below 0 for u = 0, by stability of the configuration
x before the fork. Therefore there is a value of δ > 0, such that the benefit of moving robots
between leaves remains below below 0, and by Lemma 4, this implies that the configuration
x′ defined above is stable after the fork. ◀

The lemmas above, also lead to the following result.

▶ Lemma 23. Over the course of the evolving tree game, the discrete configuration x always
satisfies ∀ℓ ∈ L : xℓ ≥ 1.

Proof. We assume by contradiction that the property is not satisfied, and we consider the
first instant t when a leaf was depopulated for the first time (take the supremum over the
instants for which the property hold). By Lemma 20, t cannot occur in the middle of a leaf
elongation because a leaf with a single robot cannot be elongated. It must thus correspond
to the instant of a discrete step. But by Lemma 21 and 22 no discrete steps can lead to a
lonely leaf. This finishes the contradiction. ◀
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