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ALGEBRAIC ISOMORPHISMS OF QUANTIZED HOMOGENEOUS
SPACES

ROBERT YUNCKEN

Abstract. We describe a proof of the following folklore theorem: If
X = G/K is the homogeneous space of a simply connected compact
semisimple Lie group with Poisson-Lie stabilizers, then the q-deformed
algebras of regular functions C[Xq] with 0 < q ≤ 1 are mutually non-
isomorphic as ∗-algebras.

1. Introduction

Fix G a compact simply connected semisimple Lie group and K a proper
closed Poisson-Lie subgroup. The homogeneous space X = G/K admits
a family of q-deformations, 0 < q < ∞, realized via their ∗-algebras of
regular functions C[Xq].

The following theorem is folklore.

Theorem 1.1. C[Xp] ∼= C[Xq] if and only if p = q±1.

In this expository note, we will give a proof of this fact. The ideas are
mostly not original. A proof for the quantum spheres Xq = S2n+1

q was
given by D’Andrea [DAn24]. Krähmer [Krä08] proved a similar result for
the nonstandard Podleś spheres.

In the present context, the algebras C[Gq] are due to Soibelman [Soi91],
see also [Wor87]. The algebras C[Xq] were introduced over the follow-
ing years, but a systematic study of their structure was undertaken by
Stokman and Dijkhuizen [SD99; Sto03]. This was further developed by
Neshveyev and Tuset in [NT12]. The essential points necessary for prov-
ing Theorem 1.1 are already contained in the papers just listed.

Giselsson [Gis20] proved that the enveloping C∗-algebras C(Xq) are all
isomorphic for q ∈ (0, ∞) \ {1}. In other words, the quantum spaces Xq
(0 < q < 1) are isomorphic as noncommutative topological spaces but not
as noncommutative algebraic varieties.

Date: September 7, 2024.
2020 Mathematics Subject Classification. Primary: 20G42, Secondary: 46L67, 17B37.
Key words and phrases. quantum groups, quantized homogeneous spaces, quantized

function algebras, Poisson-Lie groups.
This research was supported by ANR project OpART (ANR-23-CE40-0016), and by

COST Action CaLISTA CA21109 (European Cooperation in Science and Technology),
www.cost.eu. The author is grateful for the support and hospitality of the Sydney Mathe-
matics Research Institute and the University of Wollongong, where this article was written.

1

https://www.cost.eu


2 ROBERT YUNCKEN

Acknowledgements. It is a pleasure to thank Ulrich Krähmer for discus-
sions during a common visit to the University of Wollongong.

2. Preliminaries

This article is not completely self-contained. We will make heavy use of
the notation and results of [NT12], especially Sections 1, 2 and the begin-
ning of Section 3.

The isomorphism C[Xq] ∼= C[Xq−1 ] is well-known, cf. [NT13, Lemma
2.4.2]. Also, C[Xq] is commutative if and only if q = 1. We therefore work
throughout with 0 < p, q < 1.

3. SUq(2) and the quantum disk

The algebra C[SUq(2)] is the universal ∗-algebra generated by two ele-
ments α and γ satisfying

αγ = qγα, αγ∗ = qγ∗α, γγ∗ = γ∗γ
α∗α + γ∗γ = 1 = αα∗ + q2γ∗γ.

(3.1)

The ∗-subalgebra C[γ, γ∗] is a polynomial algebra in 2 commuting conju-
gate variables. We use the notation

α(i) =

{
αi, if i ≥ 0,
(α∗)−i, if i < 0.

Putting Ai = α(i)C[γ, γ∗] = C[γ, γ∗]α(i). we get an algebra grading

C[SUq(2)] =
⊕
i∈Z
Ai. (3.2)

The standard irreducible representation ρq of C[SUq(2)] on B(`2(Z+))
is given in the basis (en)n∈Z+

by

ρq(α) : en 7→
√

1− q2n en−1, ρq(γ) : en 7→ −qnen. (3.3)

Lemma 3.1. The kernel of ρq is the ideal generated by γ− γ∗.

Proof. Let a ∈ ker(ρq). Write a = ∑i ciα
(i) ∈ ⊕

iAi where ci ∈ C[γ, γ∗].
Since ρq maps Ai to weighted shifts of degree i, we have ρq(ciα

(i)) = 0 for
each i.

Let i ≥ 0. We have ρq(ciα
(i)α(i)∗) = 0. Since ρq(α(i)α(i)∗) is diagonal

with no zero entries, we get ρq(ci) = 0. The spectrum of ρq(γ) = ρq(γ∗)

is −qZ+ which is Zariski dense in R. So if we view ci as a polynomial in
C[γ, γ∗] ∼= C[Z, Z], it is zero on the real line and hence divisible by γ− γ∗.

For i < 0, we can take the adjoint to reduce to the previous case. �

We define C[Dq] = C[SUq(2)]/〈γ − γ∗〉 ∼= ρq(C[SUq(2)]) and let Fq :
C[SUq(2)]→ C[Dq] denote the quotient map. Then C[Dq] has generators

y = Fq(γ), z = Fq(α)
∗ (3.4)

and relations

yz = qzy, y = y∗, zz∗ + y2 = 1 = z∗z + q2y2. (3.5)
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In Poisson language, Fq is the restriction of polynomials on SUq(2) to a
certain quantized symplectic leaf.

Remark 3.2. The ∗-algebra C[Dq] embeds into the C∗-algebra of the quan-
tum disk C(Dq) of [NT12, §3] via the homomorphism

z 7→ Zq, y 7→ −(1− ZqZ∗q )
1
2 . (3.6)

This is not an algebraic map, which is why we add the generator y.

4. Homogeneous spaces for SUq(2)

Write T for the diagonal torus in SU(2) . For n ∈ {1, 2, . . . , }, let Tn
denote the closed subgroup of T generated by the nth roots of unity. We
also use the convention T∞ = T. The associated quantum homogeneous
spaces [NT12, §2] are given by the quantized function algebras

C[SUq(2)/Tn] = span{α(i)γjγ∗k | i + j− k ∈ nZ} ⊆ C[SUq(2)], (4.1)

where we use the convention ∞Z = {0}. Explicitly SUq(2)/Tn is SUq(2)
when n = 1, SOq(3) when n = 2 [Pod95], the quantum lens space L3

q(n, 1)
when 3 ≤ n < ∞ [HS03] and the standard Podleś sphere when n = ∞
[Pod87].

Let us also write

C[Dq/Tn] = Fq(C[SUq(2)/Tn]) ∼= ρq(C[SUq(2)/Tn]).

This is the quantization of a 2-dimensional symplectic leaf of SUq(2)/Tn.

5. Commutator spectrum

Definition 5.1. Define the commutator spectrum of an algebra A to be

CommSp(A) = {ω ∈ C× | ∃a, b ∈ A \ {0} with ab = ωba}.

Lemma 5.2. The commutator spectrum of C[Dq/Tn] is

Q(C[Dq/Tn]) =

{
qZ if n is odd
q2Z if n is even or ∞.

Proof. Consider first the quantum plane algebra Cq[y, z] generated by y, z
with yz = qzy. We do not impose a ∗-structure for the moment. We have

(yjzk)(yj′zk′) = qjk′−j′k(yj′zk′)(yjzk). (5.1)

This shows that qZ ⊆ CommSp[Cq[y, z]). Moreover, by considering the
leading terms for the lexicographical ordering on powers of y and z, one
can deduce that CommSp(Cq[y, z]) = qZ.

Now suppose ω ∈ CommSp(C[Dq/Tn]), so we have a, b ∈ C[Dq/Tn]
nonzero with ab = ωba. By considering the highest order terms in the
grading (3.2), we can assume without loss of generality that a ∈ Fq(Ai),
b ∈ Fq(Ai′) for some i, i′. If both i, i′ ≤ 0 then a, b ∈ Cq[y, z] so ω ∈ qZ. If
both i, i′ > 0 we can reduce to the previous case by taking adjoints. Finally,
if i < 0 and i′ > 0 then we can reduce to the previous case by replacing b
by amb for some sufficiently large m.
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This proves that CommSp(C[Dq/Tn]) ⊆ qZ, and also that it is realized
on monomials a = yjzk, b = yj′zk′ ∈ C[Dq/Tn]. Note also that it is closed
under taking integer powers, by considering a and bm.

If n is even or ∞, then Equation (4.1) forces j ≡ k [2] and j′ ≡ k′ [2].
Therefore, by Equation (5.1), CommSp(C[Dq/Tn]) ⊆ q2Z. Putting a =

Fq(γ∗α) = yz∗, b = Fq(γ∗γ) = y2 gives ω = q2.
If n is odd, we can put a = Fq(γn+1α∗) = yn+1z, b = Fq(γ

n+1
2 γ∗

n−1
2 α∗) =

ynz and we get ω = q. �

6. Quantized homogeneous spaces

Let Π = {α1, . . . , αr} be the simple roots of G and {ω1, . . . , ωr} the
associated fundamental weights. We write (•, •) for the G-invariant bilinear
form on h∗ with (α, α) = 2 for all short roots α, and we use the standard
notation qi = q(αi ,αi)/2. Thus qi = q, q2 or q3 depending on the length of αi.
For every αi ∈ Π, there is a restriction map σi : C[Gq]→ C[SUqi(2)].

The Poisson-Lie subgroups of G are determined by pairs (S, L) where
S is a subset of the simple roots for G and L is a subgroup of the lattice
P(Sc) = Z{ωi | αi ∈ Sc}. We refer to [NT12, Proposition 1.1] for the details.
Fix such a subgroup KS,L and consider X = G/KS,L and its quantized
algebra of function C[Xq].

Lemma 6.1. For every αi ∈ Sc we have σi(C[Xq]) = C[SUqi(2)/Tni ] for some
ni ∈ {1, 2, . . . , ∞}.

Proof. This follows from [NT12, Corollary 2.4]. Explicitly, ni is the gen-
erator of the subgroup of Z obtained by restricting the weights µ ∈ L to
weights for Uqi(sl2), i.e., niZ = {(µ, αi) | µ ∈ L}. �

Let T be the maximal torus of G, and TL ⊆ T the subgroup annihilated
by L ⊆ P = T̂. Let WS ⊂ W be the set of w ∈ W such that w(αi) > 0 for
all αi ∈ S.

The irreducible representations of C[Xq] are indexed by pairs (w, t) ∈
WS × T/TL. These representations πw,t are described explicitly in the pre-
amble to Theorem 2.2 of [NT12]. See also [SD99, Theorem 5.9]. We recall
only that in the case where w = si is the simple reflection in αi ∈ Sc, the
associated representation is

πsi ,1 = ρq ◦ σi : C[Xq]→ C[Dqi /Tni ]→ B(`2(Z+)). (6.1)

7. Quantum 2-cell representations

Definition 7.1. An irreducible representation π of C[Xq] will be called a
2-cell representation if the norm closure of the image is an extension of an
abelian C∗-algebra by the compacts—that is, if it fits into an exact sequence
of C∗-algebras

0→ K → π(C(Xq))→ A→ 0

with A abelian and K being the compacts on a separable infinite dimen-
sional Hilbert space.
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Example 7.2. The standard representation ρq of C[SUq(2)/Tn] is a 2-cell
representation for any n ∈ {1, 2, . . . , ∞}. To see this, let I denote the ∗-
ideal of C[SUq(2)] generated by γ and put In = I ∩ C[SUq(2)/Tn]. Then
ρq(In) = K(`2(Z+)) since it contains ρq(α∗γ) which is a compact weighted
shift with distinct nonzero weights. And putting γ = 0 in the relations
(3.1) shows that C[SUq(2)/Tn]/In is abelian.

Lemma 7.3. The representation πw,t is a 2-cell representation if and only if w is
a simple reflection, i.e. w = si for some αi ∈ Sc.

Proof. The representation πw,t is the representation πw,1 twisted by a char-
acter, so the image of πt,w(C[Xq]) is independent of t. Therefore, we may
take t = 1.

If w = 1, then π1,1 is the counit.
If w = si for i ∈ Sc, then by Lemma 6.1 πw,1(C[Xq]) = ρqi(C[SUqi(2)/Tni ]),

so πw is a 2-cell representation by Example 7.2.
If w ∈ WS has Bruhat length two or more, then [NT12, Theorem 4.1]

shows that πw,1(C(Xq)) has a nontrivial nonabelian quotient, so πw,1 is
not a 2-cell representation.

�

8. Proof of the main theorem

Proof of Theorem 1.1. By Lemmas 5.2, 6.1 and 7.3, the greatest value, less
than one, of the commutator spectrum of the image of any 2-cell repre-
sentation of C[Xq] is qm, for some m ∈ N independent of q. This is an
invariant of C[Xq]. �
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