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INTRODUCTION
Continuum robots are promising for minimally invasive
surgery. They consist of thin and flexible structures
whose shape can be continuously deformed using re-
mote actuators, allowing them to be inserted in small
tubular cavities. For safety reasons, it is important to
be aware of the forces applied to surrounding tissue
during deployment. Because common force sensors are
too cumbersome to be embedded into continuum robots,
alternative shape-based force estimation methods have
been developed. Such methods estimate the contact
location and the corresponding force based on the com-
parison between a measured robot shape (for instance
using Fiber Braggs Gratings sensors or vision sensors)
and the one predicted from robot modeling (typically
computed using Cosserat rod modeling and actuator po-
sitions [1]). The applied force is then estimated through
optimization procedures, with [2] or without [3], [4]
explicit knowledge of the force application point. These
algorithms have shown promising performance but are
restricted to passive Cosserat rods models, whereas in
practice continuum robots are active structures. Recently,
Aloi et al. extended the work from [4] in the case of a 2-
DOF tendon-driven robot, for which they experimentally
validated their method [5].
All the previous solutions have two limitations. First,
they assume contact forces to be perpendicular to the
robot’s curvilinear axis: hypothesis (H1). Since con-
tinuum robot shapes can be highly curved, one might
question how strongly the tangential component of the
force can affect the global deformation of the robot.
Second, they consist of iterative optimizations during
which the whole robot model is computed at each
iteration using convex optimization routines. Such an
approach can be computationally time-consuming and
does not necessarily yield a global optimum.
The present paper introduces a new Compliance-based
approach to estimate an external force applied to a
continuum robot in any direction. Results obtained with
a simulated Concentric Tubes Continuum Robot (CTCR)
are presented and discussed.

MATERIALS AND METHODS
Let us consider a continuum robot of length 𝐿 modeled
using Cosserat rod theory. In a given configuration, the

robot shape 𝑝𝑖𝑛𝑖𝑡 can be computed using the model. It
is discretized into 𝑁 points 𝑝(𝑠𝑖), associated with its
discretized arc-length 𝑠𝑖 ∈ [0, 𝐿] with 𝑖 ∈ [[1, 𝑁]]. Let us
assume the robot is loaded with external forces, denoted
𝑓 (𝑠 𝑗 ), with 𝑗 ∈ [[1, 𝑁]]. We define the Generalized
Compliance matrix 𝐶𝑠 𝑗 (𝑠𝑖) of the robot as:

𝐶𝑠 𝑗 (𝑠𝑖) =
𝜕𝑝(𝑠𝑖)
𝜕 𝑓 (𝑠 𝑗 )

. (1)

𝐶𝑠 𝑗 (𝑠𝑖) can be efficiently computed by extending the
method from [6] to forces applied at any point of the robot.
The robot shape under external load 𝑝𝑚𝑒𝑠 is assumed to
be measured in order to estimate the robot deformation
under external loads, Δ𝑝(𝑠𝑖). By considering a linear
approximation of the robot deformation, Δ𝑝(𝑠𝑖) can be
defined as:

∀𝑖 ∈ [[1, 𝑁]], Δ𝑝(𝑠𝑖) ≈
∑︁

𝑗∈[[1,𝑁 ]]
𝐶𝑠 𝑗 (𝑠𝑖)Δ 𝑓 (𝑠 𝑗 ) (2)

The problem is then to estimate the forces Δ 𝑓 (𝑠 𝑗 ) that
generate the observed deformation Δ𝑝(𝑠𝑖).

A. Single Force Estimation

In this study, a unique force Δ 𝑓 (𝑠0) is considered, where
𝑠0 refers to the loaded point abscissa. Therefore, the
problem is to find the vector force and the loaded point
Δ 𝑓 (𝑠0) that has led to the observed deformations Δ𝑝(𝑠𝑖):

∀𝑖 ∈ [[1, 𝑁]], Δ𝑝(𝑠𝑖) ≈ 𝐶𝑠0 (𝑠𝑖)Δ 𝑓 (𝑠0) (3)

For a given loaded point 𝑠 𝑗 , the estimated force vector
Δ 𝑓 (𝑠 𝑗 ) is computed by iterative optimization of the cost
function (4) :

Δ 𝑓 (𝑠 𝑗 ) = arg min
Δ 𝑓

©«
∑︁

𝑖∈[[1,𝑁 ]]

����𝐶𝑠 𝑗 (𝑠𝑖)Δ 𝑓 − Δ𝑝(𝑠𝑖)
����2ª®¬ (4)

This approach speeds up the force estimation by substitut-
ing multiple computations of the robot model with simple
computations of linear algebra. Since the Generalized
Compliance matrix is computed once for a given robot
shape, it is possible to perform the minimization in
equation (4) in parallel for every application point 𝑠 𝑗 .
The loaded point arc-length 𝑠0 can then be estimated



||Δ 𝑓 (𝑠0 )−Δ 𝑓 (𝑠0 ) ||
||Δ 𝑓 (𝑠0 ) || [%] |𝑠0−𝑠0 |

𝐿
error [%]

〈
Δ 𝑓 (𝑠0),Δ 𝑓 (𝑠0)

〉
[deg]

min median IQR max min median IQR max min median IQR max

2D(𝑎) 1.88 16.42 23.41 108.19 0.00 3.41 1.71 4.88 0.00 1.14 0.80 10.31
3D(𝑏) 8.67 21.19 9.91 82.61 0.00 3.41 1.71 5.85 19.18 35.08 9.76 47.50

TABLE I Performances of the proposed force sensing algorithm applied to simulated CTCR described in Table II. Two
scenarios have been simulated: when (H1) is assumed (a) and when it is not (b).

by selecting the global optimum (see Fig. 1a) from the
previous computations:

𝑠0 = arg min
𝑠 𝑗

©«
∑︁

𝑖∈[[1,𝑁 ]]

����𝐶𝑠 𝑗 (𝑠𝑖)Δ 𝑓 (𝑠 𝑗 ) − Δ𝑝(𝑠𝑖)
����2ª®¬ (5)

The method described above yields the application point
𝑠0 and the associated force Δ 𝑓 (𝑠0). Finally, the Cosserat-
based robot model is computed only once to compute the
robot deformed shape 𝑝𝑒𝑠𝑡 under this loading. Fig. 1b
shows an example of a result in a given configuration.
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Fig. 1 Sample result on a simulated CTCR. a) Evolution
of the minimum (5) evaluated for all possible loaded
points 𝑠 𝑗 . Note the presence of a local minimum that
could induce wrong results using convex optimization. b)
Initial, measured, and estimated robot shape under a force
Δ 𝑓 (𝑠0), compared with the estimated one Δ 𝑓 (𝑠0).

RESULTS
The algorithm was tested in simulation with a CTCR (see
Table II) of 𝐿 = 200 mm, with 𝑁 = 39.

𝐿𝑟 𝐿𝑐 𝑅𝑐 𝐾𝑥, 𝑦 𝜈 𝜃𝑐 𝛽𝑐

Units mm mm mm N.mm2 - deg mm
Tube 1 165 50 160 2.2 ·105 0.3 90 100
Tube 2 235 50 242 1.2 ·105 0.3 180 150
Tube 3 450 50 118 6.0 ·104 0.3 270 200

TABLE II Parameters of the simulated CTCR. 𝐿𝑟 : straight
length; 𝐿𝑐: curved length; 𝑅𝑐: radius of curvature; 𝐾𝑥, 𝑦:
stiffness along x and y; 𝜈: Poisson’s ratio; 𝜃𝑐: actuator
rotation; 𝛽𝑐: actuator translation.

To ensure a fair distribution of forces and application
points, we selected 20 evenly spaced loaded points (𝑠0

from 10% to 90% of the robot length) and force magnitude
Δ 𝑓 (𝑠0) from 1N to 8N. For each set of (𝑠0,Δ 𝑓 ), the
force vector was simulated for 10 random directions. The
results obtained were averaged and used to extract force
magnitude errors, loaded point location errors and force
direction errors. Table I presents the results obtained when
hypothesis (H1) is considered and when it is not. It can be
noticed that the performance for the force magnitude and
the loaded point estimations do not seem to be strongly
affected by (H1). However, the force direction estimation
is significantly affected by it: the median error increases
from 1.14 deg to 35.08 deg.
DISCUSSION
This paper presents the first Compliance-based force sens-
ing algorithm for arbitrarily located forces along the robot.
To the best of the authors’ knowledge, the algorithm is the
first one to avoid computing the whole robot model at each
iteration and to consider non-perpendicular forces. The
simulation results show the efficiency of the Compliance-
based force estimation algorithm for continuum robots.
The results also illustrate that it can be challenging to
estimate the tangential component of external forces, and
it would be instructive to compare the estimation error of
the tangential component with the deformation intensity
generated by it. An algorithmic strategy for estimating
multiple forces at once while preserving the effectiveness
of the Compliance-based approach is currently under
study. Future work will include experimentally testing
the method to demonstrate the possibilities for practical
medical applications.
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