

Support Vector Machine Algorithm for Mapping Land Cover Dynamics in Senegal, West Africa, Using Earth Observation Data

Polina Lemenkova

▶ To cite this version:

 $\label{eq:poline} \begin{array}{l} \mbox{Polina Lemenkova. Support Vector Machine Algorithm for Mapping Land Cover Dynamics in Senegal, West Africa, Using Earth Observation Data. Earth, 2024, 5 (3), pp.420-462. 10.3390/earth5030024 . hal-04690921 \end{array}$

HAL Id: hal-04690921 https://hal.science/hal-04690921v1

Submitted on 6 Sep 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Article Support Vector Machine Algorithm for Mapping Land Cover Dynamics in Senegal, West Africa, Using Earth Observation Data

Polina Lemenkova ^{1,2}

- ¹ Department of Geoinformatics, Faculty of Digital and Analytical Sciences, Paris Lodron Universität Salzburg, Schillerstraße 30, A-5020 Salzburg, Austria; polina.lemenkova@plus.ac.at or polina.lemenkova2@unibo.it; Tel.: +43-677-6173-2772 or +39-344-69-28-732
- ² Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum—Università di Bologna, Via Irnerio 42, IT-40126 Bologna, Italy

Abstract: This paper addresses the problem of mapping land cover types in Senegal and recognition of vegetation systems in the Saloum River Delta on the satellite images. Multi-seasonal landscape dynamics were analyzed using Landsat 8-9 OLI/TIRS images from 2015 to 2023. Two image classification methods were compared, and their performance was evaluated in the GRASS GIS software (version 8.4.0, creator: GRASS Development Team, original location: Champaign, Illinois, USA, currently multinational project) by means of unsupervised classification using the k-means clustering algorithm and supervised classification using the Support Vector Machine (SVM) algorithm. The land cover types were identified using machine learning (ML)-based analysis of the spectral reflectance of the multispectral images. The results based on the processed multispectral images indicated a decrease in savannas, an increase in croplands and agricultural lands, a decline in forests, and changes to coastal wetlands, including mangroves with high biodiversity. The practical aim is to describe a novel method of creating land cover maps using RS data for each class and to improve accuracy. We accomplish this by calculating the areas occupied by 10 land cover classes within the target area for six consecutive years. Our results indicate that, in comparing the performance of the algorithms, the SVM classification approach increased the accuracy, with 98% of pixels being stable, which shows qualitative improvements in image classification. This paper contributes to the natural resource management and environmental monitoring of Senegal, West Africa, through advanced cartographic methods applied to remote sensing of Earth observation data.

Keywords: remote sensing; cartography; vegetation; West Africa; satellite image; Landsat; Sahel; climate change; landscape; land cover types

PACS: 91.10.Da; 91.10.Jf; 91.10.Sp; 91.10.Xa; 96.25.Vt; 91.10.Fc; 95.40.+s; 95.75.Qr; 95.75.Rs; 42.68.Wt

MSC: 86A30; 86-08; 86A99; 86A04

JEL Classification: Y91; Q20; Q24; Q23; Q3; Q01; R11; O44; O13; Q5; Q51; Q55; N57; C6; C61

1. Introduction

1.1. Background

Land cover and land use change are widely known as key elements of landscapes. Maps showing classification of land cover types are key data sources for assessment of landscape dynamics and for evaluating environmental trends. Land cover types (or land use types) refer to the physical components of Earth cover that are physically present and visible on the Earth's surface. Compared to land use types, which are defined as landscape patches used by people, land cover types typically represent natural physical characteristics of the Earth's surface in terms of structure, patterns, and components.

Citation: Lemenkova, P. Support Vector Machine Algorithm for Mapping Land Cover Dynamics in Senegal, West Africa, Using Earth Observation Data. *Earth* **2024**, *5*, 420–462. https://doi.org/10.3390/ earth5030024

Academic Editor: Hariklia D. Skilodimou and Charles Jones

Received: 6 July 2024 Revised: 4 September 2024 Accepted: 5 September 2024 Published: 6 September 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Characteristics and features of land cover types are visible on satellite images recorded from space. Therefore, remote sensing (RS) data, such as satellite images, are widely used for land cover change analysis using classification maps that show spatio-temporal changes in land cover/land use patterns. Hence, land cover maps are the background geoinformation products necessary for analysts and decision makers. The use of land cover maps enables the monitoring of environmental changes and evaluation of risks to sustainable development. Therefore, the use of land cover maps is applicable in diverse research and development sectors such as governments, civil engineering, and industrial planning [1].

In monitoring landscape dynamics, remote sensing (RS) data are widely used and applied in environmental mapping with the aim of detecting identical landscape patterns in a time series of images and analyzing changes using recognition of landscape patches. In this regard, there is a strong need for machine-based, automated geospatial data processing and image analysis that turns the technical values of pixels in the satellite images into information that provides knowledge and insights for environmental experts and planners. The identification and recognition of land cover types becomes possible using the analysis and synthesis of remote sensing data, such as spaceborne images. Environmental studies often use such products for landscape analysis, for example, images of Landsat missions.

Major types of satellite images for effective interpretation of the Earth's landscapes include Sentinel 2 Data [2,3], NOAA-AVHRR [4–6], SPOT [7,8], and Landsat [9,10], and the combinations thereof [11]. For instance, the recent Global Land Cover 2000 map was implemented using the analysis of the Vegetation Sensor on board the SPOT-4 satellite image [12]. Another example of such products is presented by the time series of annual global maps of land cover types derived from the ESA Sentinel 2 imagery at 10 m resolution [13]. The Landsat scenes used for landscape mapping include data acquired from its various sensors, such as the Multispectral Scanner (MSS), the Thematic Mapper (TM), the Enhanced Thematic Mapper Plus (ETM+), and the recent product called the Operational Land Imager and Thermal Infrared Sensor (OLI/TIRS).

Certainly, although diverse images can be used in various combination as data sources for landscape interpretation and environmental mapping, the general approach of RS data processing relies on using the values of spectral reflectance obtained as digital numbers (DNs) of pixels on the image scene [14]. The effects of reflectance and absorption of various land cover types in different wavelengths enable the discrimination of major land cover types in the multispectral images: water, land, forests (with various types of vegetation), urban zones, and desert sands [15]. Such information can be extracted from variations in brightness, primary colors (red, green, blue), hue, saturation, and intensity of light. In experimental studies, these phenomena are utilized to assess land–water borders and distinguish them from other land cover types, leading to an improvement in the recognition of the Earth's objects [16]. The information provided by the environmental descriptors can be obtained from the analysis of values of pixels recording spectral reflectance of diverse land cover types. In RS, this can be derived from the combination of different bands of the multispectral imagery, e.g., NIR/Red bands for computing the Normalized Difference Vegetation Index (NDVI) and other vegetation indices [17–20].

1.2. Problem Formulation

One of the challenging problems in identification of land cover types in the satellite images consists of automatic extraction of the reliable features visible in the image scene. This is true especially in terms of highly heterogeneous landscape patches in a complex mosaic of intermittent land cover types [21,22]. In this regard, image processing and analysis for landscape interpretation are fundamental issues in environmental mapping and thematic cartography. Identification of land cover types in the RS data requires diverse image processing techniques, such as classification, clustering, and segmentation. Classifying mixed terrestrial ecoregions typical for Senegal requires advanced methods of image analysis [23]. Senegal's landscape is distinctive because it consists of a complex blend

of diverse, semi-arid landscapes, such as forest–savanna mosaics, which are periodically filled with Sahelian acacia and West Sudanian savannas with diverse tree species, as well as coastal regions with dominant Guinean mangroves [24,25].

The current practice of geographic information system (GIS)-based supervised image processing involves manually marking different features in a landscape, such as regions of interest (ROIs), singular patches, and landscape corridors, because the extraction of features from processed images is difficult [26]. The human factor in landscape assessment involves some concerns about the repeatability and reliability, which suggest the need for the development of automatic methods for image interpretation and object recognition [27–29]. Manual interpretation of land cover types can lead to the misclassification of pixels in the images, which might result in misinterpretation of the selected landscape patches. As mentioned earlier, implementing quantitative data interpretation for prediction and analysis is challenging in African countries where fieldwork data are limited [30]. Therefore, RS-based vegetation mapping and agricultural landscape monitoring are vitally dependent on using satellite data processed with a high level of automation [31,32].

Effective image analysis relies heavily on the type of classifier and the algorithms used for data handling [33]. Another important factor is the quality of imagery for the evaluated region of interest (ROI) in the study area, which includes minimal cloudiness and haze, correct time of image capture and coverage. Finally, image analysis is based on the methodology and approaches used in RS, including data acquisition, preprocessing, description, recognition, classification, segmentation, interpretation, and accuracy analysis. The development of computer-based programming methods has led to the growth of novel image processing methods, which are the primary factors in effectiveness [34–38]. Development of the advanced tools of image processing and related cartographic tasks has resulted in many approaches to utilizing effective methods for automation [39–44]. One of these methods is the machine learning (ML)-based Support Vector Machine (SVM) algorithm used for image analysis and synthesis for interpretation of vegetation patterns [45–48].

In this respect, the research questions formulated in this study are as follows: (1) Can the Support Vector Machine (SVM) ML-based land cover detection method be used with GIS for satellite image analysis? (2) How can the SVM algorithm of ML be employed in geoinformation extracting tasks using scripts? (3) What is the workflow for RS data processing for an effective chain of data handling to perform the necessary tasks during SVM-based image classification? Answering these questions enables us to evaluate the effectiveness of SVM as one of the most powerful ML applications in cartographic tasks and RS data analysis.

1.3. Related Work

Many reports have recently been published illustrating land cover changes in Senegal [49–51], effects of climate change on landscape variability and vegetation communities [52–54], environmental dynamics, and sustainability [55]. Nevertheless, these approaches do not take into account the benefits of programming scripts for satellite image processing. At the same time, using ML methods increases the automation of mapping and the speed of data processing, ensuring the accuracy and objectivity of land cover classification. Indeed, image processing using ML methods such as SVM partitions the image into structured land patches using automatic analysis of spectral reflectance of the pixels. The obtained values of pixels are then assigned into various classes using principles of machine-based vision and pattern recognition. Through this approach, it is easy to visualize and estimate changes in land cover types using images from different years as part of a time series analysis. Additionally, it overcomes the problems with conventional software programs used for image processing, which may include drawbacks in data processing.

A drought period in Africa in the 1970s and 1980s resulted in climate changes that include such consequences as decreased rainfall and precipitation, raised temperatures, and increased evaporation [56,57]. These climate-related processes triggered land cover changes in natural vegetation patterns of Sahel ecoregions that affected cultivated areas

and croplands, increased spots of bare soil, and led to changes in surface water [58,59]. To this point, one of the priorities of image processing methods for environmental landscape analysis is to support land cover monitoring through the interpretation of land cover types using time series analysis. Regular monitoring of the Earth's landscapes enables us to detect environmental changes, land and soil degradation, and variations in vegetation cover [60]. Another essential application of image analysis is monitoring coastal zones to evaluate hydrological changes, to evaluate the extent of river flooding in the delta, to detect soil erosion [61,62], and to monitor the degradation of mangroves and coastal ecosystems [63,64]

1.4. Objective and Motivation

Inspired by the existing examples of the ML methods used to analyze multispectral satellite images in environmental applications, this study integrates advanced cartographic scripting methods with applied techniques of SVM image processing for monitoring land-scapes in Senegal; see Figure 1.

Figure 1. Study area with segments of the Landsat images shown on a topographic map of Senegal. Software: GMT. Map source: Author.

The environmental analysis was performed using a series of satellite images evaluated for the period from 2015 to 2023. To this end, we explore the classification approach of SVM, which was employed for RS data processing by the scripting techniques of the Geographic Resources Analysis Support System (GRASS) GIS. The SVM classifier is applied as a widely implemented supervised learning approach. Other advanced deep learning (DL) methods that have been developed recently include such methods as autoencoders, a special type of neural network that operates with dimensional latent representation, and vision transformers, which differentially weigh the significance of each part of the image. Nevertheless, SVM is still a sufficient and effective approach for many remote sensing (RS) and GIS tasks. Given the availability of SVM in GRASS GIS, this method was employed for the image classification.

The main goal of this study is to map and evaluate changes in diverse land cover types in West Senegal, which include both inner regions and coastal mangrove forests in the delta of the Saloum River; see Figure 1. To achieve this goal, the practical objective is to classify land cover types in the coastal region of West Senegal using a series of Landsat 8-9 OLI/TIRS multispectral satellite images processed using ML methods, including SVM as an advanced method of automated image classification. Contrary to the existing GIS, the programming approach to satellite image processing has a high automation in data handling. Additionally, it is a very fast and robust approach for classifying and comparing satellite images. This is achieved by a combination of the embedded GRASS GIS modules is used separately for computing vegetation indices and plotting the classification maps.

According to recent studies, mangrove habitats are drastically disappearing. This is because these ecosystems are being impacted by anthropogenic activity, climate change, and local effects of salinity in the soil [65,66]. By evaluating gains and losses in landscape patches, RS data can be spatially analyzed to understand the dynamics of these distinct wetland ecosystems. Our comprehension of the changes in Senegalese landscapes is aided by satellite image analysis, which shows how these landscapes respond to the effects of West Africa's changing climate, including rising temperatures, evaporation, and falling precipitation.

The goal of using the GRASS GIS scripts for RS data analysis is to quantitatively evaluate changes in land cover types in Senegal as a result of climate fluctuations during a recent eight-year period. The approach to achieve this goal is based on using automated unsupervised classification and supervised classification using the ML method of SVM. In this way, the maximal likelihood and SVM classification algorithms present an effective means by which the Landsat scenes can be processed automatically. The RS data obtained from the United States Geological Survey (USGS) repository were used for environmental analysis and monitoring to evaluate and visualize variations in landscape patches. This analysis is technically based on the ML-based estimation of spectral reflectance on the satellite images, which supports environmental monitoring of the West African landscapes responding to climate and anthropogenic effects.

The main purpose of this paper is to provide an advanced approach using ML to RS data analysis and processing. Such an approach can evaluate the nonlinear behavior of the landscapes in West Africa over time, which indicates the development of climate settings and the related response of vegetation patterns. To this end, we propose a script-based classification and image enhancement technique using GRASS GIS software to analyze land cover changes in the coastal region of West Senegal. This technique aims to address the main challenges associated with traditional image processing, such as structured noise in the classified scenes, poor quality of the images, the misinterpretation of pixels, and the low speed of data handling.

The ML-based image analysis is based on using the RS data, which serve as a cartographic basis to support optimized decisions made by environmental policy makers and planners. Satellite images processed by the machine-based methods allow for the identification of vulnerable landscapes and enable the monitoring of degraded lands in Senegal. In order to do this, a series of the multispectral satellite images from Landsat with recent OLI/TIRS sensors taken on different years was processed with various modules of GRASS GIS. This time series data analysis enabled us to perform an environmental analysis for monitoring landscape dynamics in Senegal.

Importantly, the study presented here is not intended to suggest that scripting methods replace the role of conventional GIS. In contrast, the programming codes supplement the traditional cartographic methods used in the RS software. However, the integration of a scripting workflow with image analysis and cartographic tasks provides an effective approach by which the analysis of land cover changes can be visualized in an automatic way. In light of this, the main contributions of this paper are as follows:

- A combination of the GRASS GIS modules 'i.group', 'i.maxlik', and 'i.cluster' are proposed for the unsupervised image classification. The land cover types are classified based on the difference in spectral reflectance of the pixels in each of the images.
- A set of GRASS GIS modules, including 'r.learn.predict', 'r.learn.train', and 'r.random', is used for supervised ML-based image classification using an SVM modeling algorithm.
- The land cover types in coastal Senegal are defined as groups of pixels according to the structural similarity between the landscape patches. Orientation, location, and frequency of mangrove fields in the Saloum River Delta are estimated from the analysis of landscape patches in the coastal area.
- To balance the robustness and accuracy, a coarse-to-fine strategy is proposed using the interpretation of landscape patches according to the FAO scheme of land cover types. The data for the whole country were downscaled to the ROI of the selected study area, with images covering the region of Cape Verde Peninsula and the surrounding territories.
- The proposed image processing and ML-based classification algorithms utilizing the SVM techniques of GRASS GIS outperform the existing traditional software with graphical user interface (GUI) approaches in terms of repeatability of scripts and automation through computer vision. This methodological workflow is useful for future similar studies of land cover type analysis in Senegal or surrounding areas of West Africa.

2. Materials and Methods

To increase the speed and accuracy of image processing, the GRASS GIS software was applied for advanced image processing due to its extended functionalities [67]. Generic Mapping Tools (GMT) Version 6 [68] was used as a cartographic tool for topography, and RS tasks are based on scripting techniques. The main advantages of scripts include their high speed of data processing and repeatability [69–71].

2.1. Data

We use six Landsat 8-9 OLI/TIRS images for evaluation of land cover changes in western Senegal from 2015 to 2023. Major metadata are summarized in Table 1.

Date	Landsat Product Identifier L1	Landsat Product Identifier L2	Scene ID
25 February 2015	LC08_L1TP_205050_20150225_20200909_02_T1	LC08_L2SP_205050_20150225_20200909_02_T1	LC82050502015056LGN01
17 February 2018	LC08_L1TP_205050_20180217_20200902_02_T1	LC08_L2SP_205050_20180217_20200902_02_T1	LC82050502018048LGN00
7 February 2020	LC08_L1TP_205050_20200207_20200823_02_T1	LC08_L2SP_205050_20200207_20200823_02_T1	LC82050502020038LGN00
25 February 2021	LC08_L1TP_205050_20210225_20210304_02_T1	LC08_L2SP_205050_20210225_20210304_02_T1	LC82050502021056LGN00
20 February 2022	LC09_L1TP_205050_20220220_20230427_02_T1	LC09_L2SP_205050_20220220_20230427_02_T1	LC92050502022051LGN01
22 January 2023	LC09_L1TP_205050_20230122_20230313_02_T1	LC09_L2SP_205050_20230122_20230313_02_T1	LC92050502023022LGN01

Table 1. Identifiers (IDs) of the six multispectral Landsat 8-9 OLI/TIRS images.

The images were downloaded from the United States Geological Survey (USGS) EarthExplorer repository; see Figure 2. The data contain scenes taken during the winter period (January/February). The selection of the winter period is explained by the fact that images taken during winter enable us to better detect plant phenology in a semi-arid climate. In contrast, those collected during summer are not suitable for plant detection due to the high level of droughts in the desert areas, especially in the inner regions of the country. Additionally, the images were collected with minimized cloudiness and haze below 10%. Hence, the best quality and suitability of images was in the winter period, during the months of January and February. All Landsat images are multispectral and have a 30 m resolution in visible spectral bands. The images are projected in Universal Transverse Mercator (UTM) Zone 28 for western Senegal. The Landsat images used in this study are presented in Figure 3.

Figure 2. Data capture of Landsat images from the USGS EarthExplorer repository.

(a)

(e) (**f**) Figure 3. Landsat images in RGB colors covering the Cape Verde Peninsula region and Saloum River Delta, West Senegal, in February: (a) 2015; (b) 2018; (c) 2020; (d) 2021; (e) 2022; (f) 2023.

It is well-known that the high-resolution commercial satellite images (e.g., SPOT, Pleiades) are expensive due to the expenses related to the launch of the satellite and related operational costs. Therefore, such scenes are not always easily accessible as a data source. Hence, the use of the open source Landsat 8-9 OLI/TIRS is crucial, and the value of these

products to environmental monitoring is high. This is especially true for replication of this study in future similar work. The aim of the multispectral Landsat images was to examine the impact of both anthropogenic and climatic factors on the process of land cover change in western Senegal. This was achieved by analyzing and processing the spectral reflectance characteristics of the pixels obtained from the RS data.

The images were selected for different years (2015 to 2023) for comparability. Using RS techniques, the environmental characteristics of the landscapes were evaluated in order to analyze how changes in climate are affecting the types of land cover and, in particular, the distribution of mangroves along the Saloum River Delta. The metadata for the images were evaluated for each scene: four images were selected from the Landsat-8 OLI-TIRS sensor, and two recent scenes were selected from the Landsat-9 OLI-TIRS sensor instruments.

2.2. Methodology

The methodology of this study is based on scripting software for data processing. Technically, we propose a novel mapping method using the SVM algorithm in GRASS GIS for improving the image classification task, and we compare it with the conventional method of unsupervised classification using k-means clustering. Major programming scripts are shown in Appendix B for technical reference. The full codes have been placed in a GitHub repository, including ML techniques of SVM). The advantage of the GRASS GIS approach to RS data processing consists of adjusted modules enabling us to analyze spectral properties of the satellite images. Additionally, the GMT was applied for cartographic mapping. This paper presents a series of scripting experiments that utilize both software applications. Methods of applied programming enabled us to evaluate recent dynamics of land cover types in Senegal.

The advanced script-based cartographic methods of monitoring and mapping land cover types are built on a growing demand for time- and cost-effective approaches in cartographic workflow and RS data analysis. Their use enables us to save time and resources while processing large geospatial datasets using satellite images obtained from open sources. Hence, three major script-based tool sets were used in this study for geospatial data analysis and environmental monitoring in West Africa:

- 1. The GMT script was used for plotting the topography of the country; see Listing A1.
- 2. An R script was used for plotting the methodological flowchart; see Listing A2.
- 3. GRASS GIS scripts were used for image processing; see Listings A3 and A4.

The main idea was to apply a single workflow framework for both the image processing and the cartographic mapping tasks using scripts run from the console. This enabled us to reveal the advantages of the technical performance of automated geospatial data processing. More specifically, using a programming approach that includes various programming suites from the script-based software presents a novel workflow for geospatial data processing. This method demonstrates how adding scripts expedites the process of image analysis and cartographic plotting while also providing an overview of the study methods. As mentioned earlier [72], the automation of the cartographic procedure and the workflow's repeatability in future research are the primary benefits of scripts. Moreover, scripting enables us to save significant time due to automation. We were able to identify changes in the analysis of landscapes of western Senegal for the assessment of environmental impacts from climate change by using the information obtained from the automated image analysis and interpretation. This was done by evaluating a series of images and analyzing RS data.

The workflow of the data processing and major methodological steps is shown in Figure 4, with the goal of performing image classification and interpretation in order to detect changes in land cover types. The data processing was technically implemented using GRASS GIS software [73] and run on a Mac machine with Apple M1 chip and the MacOS operating system. After preprocessing and data import, the images were grouped to select the necessary multispectral raster bands for image processing. This was performed by the 'i.group' module of GRASS GIS [74]. Afterwards, the images were clustered using

unsupervised classification. This was carried out utilizing the module 'i.cluster', which automatically assigns pixels into groups according to their spectral reflectance. This method of image processing provided enough data to group the pixels into land cover types and to evaluate the values of pixels in the actual scenes for comparison. The average computation time for image classification and enhancement per Landsat scene is about 2.5 s.

Figure 4. Workflow scheme illustrating the data and the main methodological steps. Software: R version 4.3.3, library DiagrammeR version 1.0.11. Diagram source: Author.

The matching performance of landscape patches over this period is evaluated using GRASS GIS functionality as a sequence of modules utilized for processing each scene separately using a script. The images were read into the GRASS GIS environment using the 'r.import' module; the list of the available bands was checked using the 'g.list rast' command. The extent of the ROI (UTM Zone 28) and the resolution were set to the region of the current image, which was detected automatically along with geospatial data such as coordinates, location, and projection. The false color composites were plotted to distinguish the area of vegetation in the delta of the Saloum River (colored in red shadows), land (colored by beige and light brownish shadows), and water areas (colored black for seawater and navy blue for the Saloum River); see Figure 5.

The ML method of satellite image processing involves using the SVM algorithm for data partition and classification. To perform these steps with fixed ML parameters, we utilize the GRASS GIS modules 'r.random' for generating a training dataset from pixels obtained from the land cover classification, the 'r.learn.train' module for training a Support Vector Classification (SVC) model, and the 'r.learn.predict' module, which predicts the pixel's assignment to the target classes. We represent the image dataset as a time series of scenes from 2015 to 2023 represented as color composites from the multispectral bands of Landsat. We denote the number of estimators as 500 in the model and the number of seed points as 100 pixels, with a total of 1000 evaluated pixels ('npoints' in the model's syntax).

(e) (f) **Figure 5.** False color composites of the Landsat 8-9 OLI/TIRS images with vegetation colored red, using a combination of spectral bands 5 (Near Infrared (NIR)), 4 (Red), and 3 (Green) of the Landsat OLI sensor covering the study area in the Cape Verde Peninsula region and Saloum River Delta, West Senegal, using February scenes: (a) 2015; (b) 2018; (c) 2020; (d) 2021; (e) 2022; (f) 2023.

The standard requirements for a training dataset in the ML approach that includes the SVM algorithm include a supervised classifier to derive an accurate and precise description of the spectral properties of each land cover type. Therefore, the training data were derived from the previous raster dataset in TIFF format as samples that support vectors through data partition. The target pixels were selected as representative cells located on the edge of the class distribution in feature space. Using GRASS GIS syntax, generating the training pixels from the land cover classification was performed using the following code: 'r.random input=L_2015_clusters seed=100 npoints=1000 raster=training_pixels'. Here, the number of pixels was selected as 1000 for a larger and more representative dataset, and the seed for training the data was set to 100.

Afterwards, the contrasting regions that have distinguished spectral reflectance values (water, savanna, forest, croplands, and urban spaces) were used for identification of similar classes in the evaluated periods. Then, the land cover classes were identified using the SVM algorithm with the modules 'r.learn.train', which trains an SVM model, and 'r.learn.predict', which performs prediction of pixels' association with each of the 10 target land cover classes based on the spectral reflectance of pixels in the images.

The training model name is explicitly defined as 'SVC', i.e., Support Vector Classification, as it is the algorithm embedded in the GRASS GIS software.

3. Results and Discussion

3.1. Interpretation of Key Findings

In this section, the ability of the two algorithms—unsupervised classification by kmeans and supervised classification by SVM—to detect land cover changes in the satellite images is evaluated. Specifically, we assessed the dynamics in the distinct habitats of Senegal ranging from arid landscapes with savanna to humid coastal conditions with mangroves. The data for the land cover types in Senegal were visualized in the QGIS software using vector layers in the Environmental Systems Research Institute (ESRI) format; see Figure 6.

Figure 6. Land cover types in Senegal according to the FAO classification scheme. Software: QGIS v. 3.22. Map source: Author.

According to the Food and Agriculture Organization (FAO)/United Nations Environment Programme (UNEP) classification scheme, the land cover types in Senegal include 10 major classes. These were adopted for the target extent of the ROI through generalization at the country level using the Land Cover Classification System (LCCS) of FAO/UNEP:

- 1. Mosaic grassland or shrubland/cropland;
- 2. Mosaic vegetation/cropland;
- 3. Mangrove wetlands;
- 4. Rainfed cropland;
- 5. Consolidated bare areas;
- 6. Mosaic grassland/forest or shrubland;
- 7. Closed broadleaved forest or shrubland permanently flooded—brackish water;
- 8. Salt hardpans;
- 9. Post-flooding or irrigated or aquatic cropland;
- 10. Water bodies.

The quantitative estimations of changes in land cover types over the evaluated period (2015 to 2023) are summarized in the tables in Appendix C. They report the computed changes in land cover classes for each processed image. The analysis of these values shows that the northern and southern coastal ecosystems of western Senegal have a relatively small degree of change over the estimated period. In contrast, in the arid north, areas associated with forests and mosaic types of vegetation demonstrate higher magnitudes

of change, suggesting a higher level of instability compared to the estuaries in the south. The classification of the land cover types was adapted to the larger extent of the ROI with details for the coastal area, including mangrove forests. The territory of Senegal comprises eight major biological zones with 11 different forms of land use. Of these, major types include the savanna, cultivated lands, forests, and steppes as the dominating types of land cover in the semi-arid zones [75].

A special focus of coastal Senegalese landscapes is mangrove swampland, a crucial habitat in the west of the country. Mangroves provide a source of natural resources [76] and a habitat for wildlife species [77]. At the same time, diverse factors have strongly correlated with mangrove losses. These include climate-related processes such as changes in temperature and precipitation, flooding, and increased salinization of waters, as well as human-related factors such as increases in intensive urbanization [78] and active agriculture practices [79]. Overall, the analysis of land cover types over the coastal area shows the variability in mangroves (bright cyan in Figure 6). Coastal dynamics are explained by high interannual fluctuations in the delta of the Saloum River: the upper tidal zone is flooded during high tide, while during the drought period, it remains drained, with high evaporation resulting in soil salinization.

3.2. Clustering-Based Classification

The overview of Figure 7, on which are overlaid the 2015–2023 Landsat OLI/TIRS time series and the land cover types for each case, shows the diversity of habitats and the intensity of changes detected in the images classified by the k-means algorithm. The analysis of the classified images based on clustering shows a trend in land cover dynamics of the coastal region of Senegal over Dakar and its surroundings.

Figure 7. Classification of the Landsat images from 2020 covering the Cape Verde Peninsula region and the Saloum River Delta, West Senegal: (a) 2015; (b) 2018; (c) 2020; (d) 2021; (e) 2022; (f) 2023.

The results demonstrate that the dominating land cover type of Senegal remains savanna (73%), although the areas covered by savanna showed a slight decrease since 2015. In contrast, the landscapes covered by croplands and agricultural areas expanded

to 22%. Furthermore, the decline in the area covered by forests and mangroves is notable. Nevertheless, in general, the dominating land cover types in Senegal remain savannas, woodlands, and forests, covering over 75% of the country, a result aligned with similar studies [24].

The maps of land cover change based on the classified imagery display different spatial patterns. While forest and savanna in the subplots have a significantly higher magnitude of values than the background, this is not the case for the bushland and grasslands, where the difference between the values inside and outside is minimal. The croplands demonstrate moderate changes that indicate the measures taken for sustainable management in Senegal. Overall, landscape heterogeneity can be observed in comparing the processed images. The southern sector of Senegalese vegetation is characterized by the Sudano-Guinean forest savanna and the Guinean forests [80].

The most pronounced variations in land cover types in western Senegal detected on the processed and classified satellite images reflect the relationships and links between changing vegetation and soil characteristics that are subject to climatic factors, moisture level, salinity, and organic matter, as noted earlier [81]. Moreover, the pattern of changes in the agricultural land cover types over time correlate with seasonal fluctuations in the crop–fallow cycle. Agricultural plantations and irrigated lands are distributed in sporadic settlements along the populated and semi-urban areas. Earlier studies also noted [82] that climate variability is the dominant factor that leads to increasing the actual evaporation and, as a result, to land salinization in the basin of the Senegal River.

3.3. Support Vector Machine (SVM)-Based Classification

The SVM-based classification of the dynamics of land cover types in Senegal based on the Landsat OLI/TIRS scenes (2015–2023) resulted in the generation of the thematic maps of land cover types shown in Figure 8, in which the most important classes are identified as follows: the rainfed cropland class is depicted in aquamarine; water areas are shown in blue; mosaic vegetation is colored bright red; and grassland, forest, and shrubland areas are shown in orange. The numerical results obtained for the different images using classification models of GRASS GIS are summarized in Appendix C. Generally, the classification of the Landsat scenes using the SVM algorithm applied to the reflective multispectral bands of the image (channels 1 to 7) provided excellent results for each kernel of the 10 categorized classes.

The aim of the SVM application is to improve the accuracy of recognition of land cover types and to increase the quality of mapping. The feasibility of land cover change analysis depends on the quality of cartographic techniques when processing RS data. Erroneously recognizing trends may arise from the use of land cover regions derived from unadjusted classifiers that exhibit imbalanced misclassification between distinct groups. Therefore, in our work, we used the effective approach of the SVM algorithm proposed by GRASS GIS, which presents a ML approach for image classification. The scripts used for SVM-based image processing are presented in Appendix B.

The detected landscape dynamics evaluated using a time series of the satellite images indicate the cumulative effects of anthropogenic activities and climate change in the semiarid region of West Africa. This involves such processes as variability of precipitation, increase in temperature, land erosion, and wildfire. These factors control the distribution of croplands, natural vegetation systems, and coastal mangrove colonies in western Senegal. The main triggers for changing types of vegetation and landscape patterns in the Senegalese Sahel include climatic factors and anthropogenic activities, which have resulted in the decline and local extinction of woody species [83].

Among other land cover types, the relics of the Guinean forest are distributed in the northern part of Senegal as a narrow band of landscapes stretching parallel to the Atlantic coast. In the southern and eastern regions off Dakar and around the region of Thiès, there are many species that are abundant in the north of the forest and represented by the scattered trees in the Sudano-Sahelian savanna.

Figure 8. Results of the Support Vector Machine (SVM)-based classification of the Landsat images covering the Cape Verde Peninsula region and Saloum River Delta, West Senegal: (a) February 2015; (b) February 2018; (c) February 2020; (d) February 2021; (e) February 2022; (f) February 2023.

To the east of Dakar, the northern silvopastoral zone of Senegal presents a vast silvopastoral zone characterized around the Ferlo region, which is notable for its extreme aridity, dominated by land cover types of shrubby savanna and steppe vegetation [84]. The enclaves of hygrophilous vegetation surrounding the coastal wetlands are located to the north of Dakar, with mangroves as the dominant land cover type. Additionally, this region includes the occasional groves of the oil palm as spontaneous landscape features of the Guinean forests.

3.4. Accuracy Analysis

Figure 9 shows the results of the accuracy assessment. The correctness of the assignment of pixels to the target classes was evaluated based on the pixel confidence levels with rejection probability values. Using the algorithms embedded in GRASS GIS, six classified Landsat images were evaluated against the probability of the identified pixels being classified into the correct land cover class. In this way, possible misclassification that may arise due to the similar spectral reflectance values in land cover types was assessed. It can be seen that there is a good linear correlation between the contours of the land cover classes and the accuracy of the classification of pixels. The estimation of the values of spectral reflectance indicates a general assignment to a given land cover type. The results are similar for the classified Landsat images processed by means of scripts and correspond to the different land cover types, such as coastal areas, water, savanna, Guinean forests, and agricultural lands.

Figure 9. Accuracy evaluated based on the pixel confidence levels with rejection probability values for the Landsat images covering the Cape Verde Peninsula region and Saloum River Delta, West Senegal: (a) 2015; (b) 2018; (c) 2020; (d) 2021; (e) 2022; (f) 2023.

3.5. Implications and Discussion

Land cover types in Senegal present fluctuations in vegetation patterns as a result of long-term landscape evolution in West Africa [85–88]. The cumulative effects of climate, environmental, and anthropogenic factors led to a decrease in mangrove colonies, which decline in high-salinity waters [89]. This is also supported by previous studies that report the retreat of the mangrove in the advance of the tannes [90]. At the same time, the trend in rainfall recovery in West Senegal since the 1990s [65] has resulted in the rehabilitation of mangroves, which restored their colonies accordingly, as also visible on the images. This corresponds with the results of the existing reports on the location and distribution of *Rhizophora mangle* and *Avicennia germinans* mangrove species in western Senegal [91,92]. Earlier works also noted the increase in mangrove trees in the estuaries of Senegal [93]. In addition to the coastal ecosystems, the areas occupied by crop production follow the same trend in changes, possibly due to vegetation removal associated with plot preparation on agricultural land.

Human-induced activities such as agricultural, demographic, and socioeconomic changes have affected the environmental settings and habitats of Senegal. Although the human impacts on the region were negligible for decades due to the relatively low population density of Senegal, recently, a natural increase in the population has accelerated the exploitation of natural and mineral resources. As a result, this has triggered land degradation in the coastal areas. Consequently, select landscapes of Senegal are subject to the deterioration of valuable habitats, fragmentation of patches, and land cover changes. Major human-induced factors in Senegal are related to dynamic agribusiness in terms of agricultural commodities, which increases the areas of irrigated vegetation and croplands [94]. Although such activities are vital for supporting the local population, the environmental

consequences on Senegalese landscapes include changed land cover types. Additionally, land degradation in the savanna landscapes correlates with trends in land cover changes and a significant decrease in woodlands [95].

To summarize, this paper reports the results obtained from experimental investigations into land cover types in Senegal analyzed using a ML approach and the SVM algorithm, compared and evaluated against the traditional unsupervised classification method of k-means clustering. The performance of SVM demonstrated reliable results in image processing, outperforming clustering in terms of accuracy and speed of data processing. To this end, a time series of Landsat scenes was processed using GRASS GIS software. The image processing was designed using a set of modules processed by scripts for automation. Interactive processing and scripts adjusted for each scene provided an effective way to process satellite images in workflow chain. Such automation enabled us to represent complex interactions within the landscapes in a short-term perspective by accurate ML-based mapping using a comparison of the SVM and k-means methods. In this way, this study has presented an advanced data-driven method of image analysis for automatically detecting changes in land cover types in a selected ROI of Senegal.

4. Conclusions

Mapping land cover types, discriminating mangroves, and monitoring savanna ecosystems are essential for proper land management in Senegal. In this study, the potential for employing the SVM algorithm classifier in conjunction with Landsat OLI/TIRS multispectral satellite images was evaluated to map areas of land cover in the environment of Senegal. In an effort to drive research in this field, this paper proposed a series of image classification experiments using the GRASS GIS scripting approach, which served as a means of ranking landscapes. Using processed satellite images, land cover development was evaluated in the condition of the unstable environmental setting of western Senegal, which has been affected by climate change and human activities. The practical aim was to evaluate the variations in land cover types in the western segment of Senegal around the Cape Verde Peninsula and Dakar and its surroundings during 2015–2023. The presented results confirm that RS data can be effectively used to evaluate the variations in landscapes in West Africa.

To evaluate the performance of GRASS GIS in image processing, the multispectral bands of six images were analyzed for matching landscape comparisons for different years, and the classification accuracy is reported as rejection probability for pixels in each Landsat scene. Hence, the advantage of the use of the RS data for environmental monitoring is that they provide an efficient way to map and visualize the remotely located regions that are otherwise difficult to reach, such as West Africa. The analysis of the extent and distribution of the selected landscapes in a series of satellite images and the decrease in minor patches enabled us to detect environmental landscape dynamics in a selected ROI. We also provided remarks on the factors affecting changes in land cover types based on the analysis of the processed images compared to previous case studies in the published literature. The major driving factors include the related environmental climate processes and human activities that resulted in land cover changes in Senegal. Such notes can be used in similar works with a focus on environmental changes, and land cover type changes in Senegal can continue to be investigated.

Author Contributions: Conceptualization, P.L.; methodology, P.L.; software, P.L.; validation, P.L.; formal analysis, P.L.; investigation, P.L.; resources, P.L.; data curation, P.L.; writing—original draft preparation, P.L.; writing—review and editing, P.L.; visualization, P.L.; supervision, P.L.; project administration, P.L.; funding acquisition, P.L. All authors have read and agreed to the published version of the manuscript

Funding: The publication was funded by the Editorial Office of Earth, Multidisciplinary Digital Publishing Institute (MDPI), by providing a discount for the APC of this manuscript and Institutional Open Access Program (IOAP) participating institution University of Salzburg

Data Availability Statement: The author's GitHub repository, with scripts used for image classification and the results of the Support Vector Machine (SVM) ML-based processing of the satellite images, is available online at: https://github.com/paulinelemenkova/Senegal_Scripts (accessed on 14 August 2024).

Acknowledgments: The author thanks the reviewers for reading and reviewing this manuscript.

Conflicts of Interest: The author declares no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

DCW	Digital Chart of the World
DEM	Digital Elevation Model
DL	Deep Learning
DN	Digital Number
ESRI	Environmental Systems Research Institute
FAO	Food and Agriculture Organization
GEBCO	General Bathymetric Chart of the Oceans
GMT	Generic Mapping Tools
GRASS	Geographic Resources Analysis Support System
LCCS	Land Cover Classification System
GIS	Geographic Information System
GUI	Graphical User Interface
Landsat MSS	Landsat Multispectral Scanner
Landsat TM	Landsat Thematic Mapper
Landsat ETM+	Landsat Enhanced Thematic Mapper Plus
Landsat OLI/TIRS	Landsat Operational Land Imager and Thermal Infrared Sensor
ML	Machine Learning
NDVI	Normalized Difference Vegetation Index
NIR	Near-Infrared
ROI	Region of Interest
RS	Remote Sensing
SRTM	Shuttle Radar Topography Mission
SVC	Support Vector Classification
SVM	Support Vector Machine
TIFF	Tag Image File Format
UNEP	United Nations Environment Programme
USGS	United States Geological Survey
UTM	Universal Transverse Mercator

Appendix A. Metadata of the Landsat 8-9 OLI/TIRS Images

Appendix A.1. Images from 2015, 2018, and 2020

Tabl	e A1.	Metad	ata of	Landsat (OLI/	'TIRS	5 sate	llite	images (of Se	negal	l for t	he y	/ears	2015	5,2018	, and	2020
------	-------	-------	--------	-----------	------	-------	--------	-------	----------	-------	-------	---------	------	-------	------	--------	-------	------

Dataset Attribute	Attribute Value (2015)	Attribute Value (2018)	Attribute Value (2020)
Landsat Scene Identifier	LC82050502015056LGN01	LC82050502018048LGN00	LC82050502020038LGN00
Date Acquired	2015/02/25	2018/02/17	2020/02/07
Collection Category	T1	T1	T1
Collection Number	2	2	2
WRS Path	205	205	205
WRS Row	50	50	50
Target WRS Path	205	205	205
Target WRS Row	50	50	50
Nadir/Off Nadir	NADIR	NADIR	NADIR
Roll Angle	0.000	0.000	0.000
Date Product Generated L2	9 September 2020	2 September 2020	23 August 2020
Date Product Generated L1	9 September 2020	2 September 2020	23 August 2020
Start Time	25 February 2015 11:27:00.070962	17 February 2018 11:26:59.893161	7 February 2020 11:27:15.666422

_

Data Set Attribute	Attribute Value (2015)	Attribute Value (2018)	Attribute Value (2020)
Stop Time	25 February 2015 11:27:31.840958	17 February 2018 11:27:31.663159	7 February 2020 11:27:47.436421
Station Identifier	LGN	LGN	LGN
Day/Night Indicator	DAY	DAY	DAY
Land Cloud Cover	0.04	2.05	0.20
Scene Cloud Cover L1	0.05	2.22	2.80
Ground Control Points Model	771	726	742
Ground Control Points Version	5	5	5
Geometric RMSE Model	3.594	4.364	4.488
Geometric RMSE Model X	2.608	3.059	3.131
Geometric RMSE Model Y	2.472	3.113	3.215
Processing Software Version	LPGS_15.3.1c	LPGS_15.3.1c	LPGS_15.3.1c
Sun Elevation LORA	53.48558579	51.49601301	49.10812112
Sun Azimuth L0RA	128.54617537	131.78990105	135.75967932
TIRS SSM Model	FINAL	FINAL	FINAL
Data Type L2	OLI TIRS L2SP	OLI TIRS L2SP	OLI TIRS L2SP
Sensor Identifier	OLI TIRS	OLITIRS	OLITIRS
Satellite	8	8	8 -
Product Map Projection L1	UTM	UTM	UTM
UTM Zone	28	28	28
Datum	WGS84	WGS84	WGS84
Ellipsoid	WGS84	WGS84	WGS84
Scene Center Lat DMS	14°27′25.70″ N	14°27′24.62″ N	14°27'24.37" N
Scene Center Long DMS	16°39′49.72″ W	16°38′25.62″ W	16°38'00.28" W
Corner Upper Left Lat DMS	15°29′56.47″ N	15°29′57.59″ N	15°29'57.84" N
Corner Upper Left Long DMS	17°44′21.55″ W	17°42′51.05″ W	17°42′30.92″ W
Corner Upper Right Lat DMS	15°30′54.65″ N	15°30′54.86″ N	15°30′54.94″ N
Corner Upper Right Long DMS	15°36'21.85" W	15°35′01.32″ W	15°34′31.12″ W
Corner Lower Left Lat DMS	13°23′18.24″ N	13°23'19.18" N	13°23'19.39" N
Corner Lower Left Long DMS	17°42′48.92″ W	17°41′19.25″ W	17°40′59.34″ W
Corner Lower Right Lat DMS	13°24′08.14″ N	13°24'08.32" N	13°24'08.39" N
Corner Lower Right Long DMS	15°36'01.33" W	15°34′41.56″ W	15°34′11.60″ W
Scene Center Latitude	14.45714	14.45684	14.45677
Scene Center Longitude	-16.66381	-16.64045	-16.63341
Corner Upper Left Latitude	15.49902	15.49933	15.49940
Corner Upper Left Longitude	-17.73932	-17.71418	-17.70859
Corner Upper Right Latitude	15.51518	15.51524	15.51526
Corner Upper Right Longitude	-15.60607	-15.58370	-15.57531
Corner Lower Left Latitude	13.38840	13.38866	13.38872
Corner Lower Left Longitude	-17.71359	-17.68868	-17.68315
Corner Lower Right Latitude	13.40226	13.40231	13.40233
Corner Lower Right Longitude	-15.60037	-15.57821	-15.56989

Table A1. Cont.

Appendix A.2. Images from 2021, 2022, and 2023

Table A2. Metadata of Landsat OLI/TIRS satellite images of Senegal for the years 2021, 2022, and 2023.

Data Set Attribute	Attribute Value (2021)	Attribute Value (2022)	Attribute Value (2023)
Landsat Scene Identifier	LC82050502021056LGN00	LC92050502022051LGN01	LC92050502023022LGN01
Date Acquired	25 February 2021	20 February 2022	22 January 2023
Collection Category	T1 ,	T1	T1
Collection Number	2	2	2
WRS Path	205	205	205
WRS Row	50	50	50
Target WRS Path	205	205	205
Target WRS Row	50	50	50
Nadir/Off Nadir	NADIR	NADIR	NADIR
Roll Angle	0.000	0.000	0.000
Date Product Generated L2	4 March 2021	27 April 2023	13 March 2023
Date Product Generated L1	4 March 2021	27 April 2023	13 March 2023
Start Time	25 February 2021 11:27:13.15558	20 February 2022 11:27:20	22 January 2023 11:27:31
Stop Time	25 February 2021 11:27:44.925579	20 February 2022 11:27:52	22 January 2023 11:28:03
Station Identifier	LGN	LGN	LGN
Day/Night Indicator	DAY	DAY	DAY
Land Cloud Cover	0.09	0.54	0.21
Scene Cloud Cover L1	0.06	0.37	0.15
Ground Control Points Model	734	706	709
Ground Control Points Version	5	5	5
Geometric RMSE Model	5.012	5.380	5.233
Geometric RMSE Model X	3.552	3.866	3.747
Geometric RMSE Model Y	3.536	3.741	3.653

Data Set Attribute	Attribute Value (2021)	Attribute Value (2022)	Attribute Value (2023)	
Processing Software Version	LPGS_15.4.0	LPGS_16.2.0	LPGS_16.2.0	
Sun Elevation L0RA	53.68773361	52.31756922	46.40104898	
Sun Azimuth L0RA	128.38743700	130.64790443	140.80741499	
TIRS SSM Model	FINAL	N/A	N/A	
Data Type L2	OLI_TIRS_L2SP	OLI_TIRS_L2SP	OLI_TIRS_L2SP	
Sensor Identifier	OLI_TIRS	OLI_TIRS	OLI_TIRS	
Satellite	8	9	9	
Product Map Projection L1	UTM	UTM	UTM	
UTM Zone	28	28	28	
Datum	WGS84	WGS84	WGS84	
Ellipsoid	WGS84	WGS84	WGS84	
Scene Center Lat DMS	14°27′25.24″N	14°27′25.16″N	14°27'24.19"N	
Scene Center Long DMS	16°38′36.71″W	16°39'35.46"W	16°38′55.97″W	
Corner Upper Left Lat DMS	15°29'57.37"N	15°29′46.86″N	15°29′47.36″N	
Corner Upper Left Long DMS	17°43′11.14″W	17°44′11.36″W	17°43′31.15″W	
Corner Upper Right Lat DMS	15°30′54.83″N	15°30'44.93"N	15°30′45″N	
Corner Upper Right Long DMS	15°35′11.36″W	15°36'01.69"W	15°35′31.49″W	
Corner Lower Left Lat DMS	13°23′18.96″N	13°23'18.35"N	13°23′18.74″N	
Corner Lower Left Long DMS	17°41′39.19″W	17°42'38.95"W	17°41′59.10″W	
Corner Lower Right Lat DMS	13°24′08.32″N	13°24′08.21″N	13°24′08.24″N	
Corner Lower Right Long DMS	15°34′51.53″W	15°35'41.39"W	15°35′11.47″W	
Scene Center Latitude	14.45701	14.45699	14.45672	
Scene Center Longitude	-16.64353	-16.65985	-16.64888	
Corner Upper Left Latitude	15.49927	15.49635	15.49649	
Corner Upper Left Longitude	-17.71976	-17.73649	-17.72532	
Corner Upper Right Latitude	15.51523	15.51248	15.51250	
Corner Upper Right Longitude	-15.58649	-15.60047	-15.59208	
Corner Lower Left Latitude	13.38860	13.38843	13.38854	
Corner Lower Left Longitude	-17.69422	-17.71082	-17.69975	
Corner Lower Right Latitude	13.40231	13.40228	13.40229	
Corner Lower Right Longitude	-15.58098	-15.59483	-15.58652	

Table A2. Cont.

Appendix B. Programming Scripts

Appendix B.1. GMT Script

Listing A1. GMT code for topographic mapping of the Senegal region based on the GEBCO/SRTM dataset.

```
1 exec bash
2 # Extract a subset of ETOPO1m for the study area
3 gmt grdcut ETOPO1_Ice_g_gmt4.grd -R-18/-11/12/17 -Gsn1_relief.nc
 4 gmt grdcut GEBCO_2019.nc -R-18/-11/12/17 -Gsn_relief.nc
 5 gdalinfo -stats sn1_relief.nc
6 gmt makecpt -Cillumination -V -T-5000/500 -Ic > pauline.cpt
7 # create mask of vector layer from the DCW of country's polygon
8 gmt pscoast -R-18/-11/12/17 -JM6.5i -Dh -M -ESN > Senegal.txt
9 ps=Topo_SN.ps
10 # Make background transparent image
11 gmt grdimage sn_relief.nc -Cpauline.cpt -R-18/-11/12/17 -JM6.5i -I+a15+ne0.75 -t40 -Xc -
       P -K > $ps
12 .5i
13 # Add isolines
14 gmt grdcontour sn1_relief.nc -R -J -C250 -A250+f7p,26,darkbrown -Wthinner,darkbrown -O -
       K >> $ps
15 # Add coastlines, borders, rivers
16 gmt pscoast -R -J \setminus
       -Ia/thinner,blue -Na -N1/thicker,tomato -W0.1p -Df -O -K >> $ps
17
_{18} gmt pscoast -R -J -Ia/thinner,blue -Na -Sroyalblue1 -W2/thin,blue,0.1p -Df -O -K >> $ps
19 gmt psclip -R-18/-11/12/17 -JM6.5i Senegal.txt -O -K >> ps
20 gmt grdimage sn_relief.nc -Cpauline.cpt -R-18/-11/12/17 -JM6.5i -I+a15+ne0.75 -Xc -P -O
       -K >> $ps
21 # Add isolines
_{22} gmt grdcontour sn1_relief.nc -R -J -C100 -A250+f7p,26,darkbrown -Wthinnest,darkbrown -O
        -K >> $ps
{\scriptstyle 23} # Add coastlines, borders, rivers
24 gmt pscoast -R -J \setminus
25
       -Ia/thinner,blue -Na -N1/thicker,tomato -W0.1p -Df -O -K >> ps
_{26} gmt pscoast -R -J -Ia/thinner,blue -Na -Sroyalblue1 -W2/thin,blue,0.1p -Df -O -K >> ps
27 gmt psclip -C -O -K >> $ps
28 gmt psscale -Dg-18/11.5+w16.5c/0.15i+h+o0.3/0i+ml+e -R -J -Cpauline.cpt \
       -Bg1000f50a500+1''Colormap: 'illumination', ESRI cartographic and geospatial gradient, continuous, 126 segments, C=RGB'' \
-I0.2 -By+1''m'' -O -K >> $ps
29
30
31 # Add grid
32 gmt psbasemap -R -J \setminus
```

```
--MAP_FRAME_AXES=WEsN --FORMAT_GEO_MAP=ddd:mm:ssF \
33
            -Bpxg4f1a2 -Bpyg4f1a1 -Bsxg2 -Bsyg1 \
34
       -B+t''Topographic map of Senegal'' -O -K >> $ps
35
_{36} # Add scalebar, directional rose
37 gmt psbasemap -R -J \
       -Lx14.0c/-2.5c+c10+w200k+l''Mercator projection. Scale (km)''+f \
38
39
       -UBL/0p/-70p -0 -K >> $ps
40 gmt psxy -R -J -Sj1c -W1.7p,red3 -O -K << EOF >> $ps
41
   -16.68 14.46 -13 4.0 4.0
42 EOF
43 # Texts
44 gmt pstext -R -J -N -O -K \setminus
45 -F+f11p,21,darkred+jLB >> $ps << EOF
46 -13.60 13.60 Tambacounda
47 EOF
48 gmt psxy -R -J -Sc -W0.5p -Gyellow -O -K << EOF >> $ps
49 -13.67 13.77 0.20c
50 EOF
51 # repeated likewise for all the text annotations using coordinates
52 gmt psbasemap -R -J -O -K -DjTL+w3.2c+o-0.2c/-0.2c+stmp >> $ps
53 read x0 y0 w h < tmp
54 gmt pscoast --MAP_GRID_PEN_PRIMARY=thinnest,lightgray --MAP_FRAME_PEN=thick,white -Rg -
JG-1.0/8.0N/$w -Da -Glightgoldenrod1 -A5000 -Bga -Wfaint -ESN+gred -Sroyalblue1 -0
-K -X$x0 -Y$y0 >> $ps
55 gmt psxy -R -J -O -K -T -X-${x0} -Y-${y0} >> $ps
56 gmt logo -Dx7.0/-3.1+o0.1i/0.1i+w2c -O -K >> $ps
57 gmt pstext -R0/10/0/15 -JX10/10 -X0.5c -Y5.5c -N -O \
       -F+f10p,0,black+jLB >> $ps << EOF
58
59 2.5 11.0 Digital elevation data: SRTM/GEBCO, 15 arc sec resolution grid
60 EOF
61 gmt psconvert Topo_SN.ps -A0.5c -E720 -Tj -Z
```

Appendix B.2. R Script

Listing A2. R code for modeling the flowchart of the methodological process.

```
1 DiagrammeR::grViz('
  digraph Polina_diagram {
  # graph statement
    graph [layout = dot, rankdir = TB, # layout top-to-bottom fontsize = 12]
    node [shape = circle,
         fixedsize = true, width = 2.0]
    subgraph cluster2 {
    node [fillcolor = Bisque, shape = egg, fontname = Helvetica, fontcolor = darkslategray
        shape = rectangle, fixedsize = true, width = 4.0, color = darkslategray,
       linewidth = 2.0]
    A66 [label = 'Landsat 9 OL/TIRS image \nJanuary 2023 \nLC92050502023022LGN01', shape =
        rectangle, fontsize = 22, height = 1.5]
    A55 [label = 'Landsat 9 OL/TIRS image \nFebruary 2022 \nLC92050502022051LGN01', shape
10
        rectangle, fontsize = 22, height = 1.5]
    A44 [label = 'Landsat 8 OL/TIRS image \nFebruary 2021 \nLC82050502021056LGN00', shape
11
         rectangle, fontsize = 22, height = 1.5]
    A33 [label = 'Landsat 8 OL/TIRS image \nFebruary 2020 \nLC82050502020038LGN00', shape
12
         rectangle, fontsize = 22, height = 1.5]
    A22 [label = 'Landsat 8 OL/TIRS image \nFebruary 2018 \nLC82050502018048LGN00', shape
13
       = rectangle, fontsize = 22, height = 1.5]
    A11 [label = 'Landsat 8 OL/TIRS image \nFebruary 2015 \nLC82050502015056LGN01', shape
14
       = rectangle, fontsize = 22, height = 1.5]
15
    r
16
17
    A11 -> A22 [fontcolor = red, color = red, style = dashed]
    A33 -> A44 [fontcolor = red, color = red, style = dashed]
18
    A55 -> A66 [fontcolor = red, color = red, style = dashed]
19
20
21
    E [label = 'Data import \npreprocessing \nGDAL', fontcolor = darkgreen, shape = egg,
22
       fontsize = 24, height = 2.0, width = 2.3 ]
    A44 -> E [fontcolor = darkgreen, color = darkgreen, style = dashed]
23
24
    F [label = 'Data processing \nGRASS GIS', fontcolor = black, height = 1.5, width =
25
      2.5, shape = tab, fontsize = 24]
    subgraph cluster6 {
26
    node [fillcolor = Bisque, shape = egg, fontname = Helvetica, fontcolor = darkslategray
27
         shape = rectangle, fixedsize = true, width = 2.5, color = darkslategray]
    F6 [label = '6. Data import \nd.out.file module', fontcolor = black, shape = rectangle
28
        width = 3.5, height = 1.3, fontsize = 22]
    F5 [label = '5. Visualization \nd.rast, d.legend \nr.colors', fontcolor = black, shape
29
```

```
= rectangle, width = 3.5, height = 1.3, fontsize = 22]
```

```
F4 [label = '4. Accuracy \nassessment', fontcolor = black, shape = rectangle, width =
30
       2.5, height = 1.3, fontsize = 22]
     F3 [label = '3. Classification\n k-means \ni.maxlik module', fontcolor = black, shape
31
        = rectangle, width = 2.5, height = 1.3, fontsize = 22]
    F2 [label = '2. Clustering \ni.cluster module', fontcolor = black, shape = rectangle,
32
       width = 2.5, height = 1.3, fontsize = 22]
33
     F1 [label = '1. Grouping \ni.group module', fontcolor = black, shape = rectangle,
       width = 2.5, height = 1.3, fontsize = 22]
34
    3
35
36
    F1 -> F2 [fontcolor = red, color = red, style = dashed]
    F3 -> F4 [fontcolor = red, color = red, style = dashed]
F5 -> F6 [fontcolor = red, color = red, style = dashed]
37
38
    E -> F [fontcolor = red, color = red, fontsize = 20, style = twodash]
39
    F -> {F3} [fontcolor = red, color = red, style = dashed]
40
41 }
42 )
```


Listing A3. GRASS GIS code for classification of the Senegal coastal region based on the segmented raster image Landsat 9 OLI/TIRS.

```
1 g.list rast
  # importing the image subset with 7 Landsat bands and display the raster map
 3 r.import input=/Users/polinalemenkova/grassdata/Senegal/
       LC08_L2SP_205050_20150225_20200909_02_T1_SR_B1.TIF output=L8_2015f_01 resample=
       bilinear extent=region resolution=region --overwrite
 4 r.import input=/Users/polinalemenkova/grassdata/Senegal/
       LC08_L2SP_205050_20150225_20200909_02_T1_SR_B2.TIF output=L8_2015f_02 extent=region
        resolution=region
5 r.import input=/Users/polinalemenkova/grassdata/Senegal/
       LC08_L2SP_205050_20150225_20200909_02_T1_SR_B3.TIF output=L8_2015f_03 extent=region
        resolution=region
6 r.import input=/Users/polinalemenkova/grassdata/Senegal/
       LC08_L2SP_205050_20150225_20200909_02_T1_SR_B4.TIF output=L8_2015f_04 extent=region
        resolution=region
7 r.import input=/Users/polinalemenkova/grassdata/Senegal/
       LC08_L2SP_205050_20150225_20200909_02_T1_SR_B5.TIF output=L8_2015f_05 extent=region
        resolution=region
8 r.import input=/Users/polinalemenkova/grassdata/Senegal/
       LC08_L2SP_205050_20150225_20200909_02_T1_SR_B6.TIF output=L8_2015f_06 extent=region
        resolution=region
9 r.import input=/Users/polinalemenkova/grassdata/Senegal/
       LC08_L2SP_205050_20150225_20200909_02_T1_SR_B7.TIF output=L8_2015f_07 extent=region
        resolution=region
10 g.list rast
11 # Set computational region to match the scene
12 g.region raster=L8_2015f_01 -p
13 # store VIZ, NIR, MIR into group/subgroup (leaving out TIR)
14 i.group group=L8_2015f subgroup=res_30m \
    input=L8_2015f_01,L8_2015f_02,L8_2015f_03,L8_2015f_04,L8_2015f_05,L8_2015f_06,
15
       L8_2015f_07
16 \# Clustering: generating signature file and report using k-means clustering algorithm
17 i.cluster group=L8_2015f subgroup=res_30m \setminus
18
    signaturefile=cluster_L8_2015f \
19
    classes=10 reportfile=rep_clust_L8_2015f.txt --overwrite
20 # Classification by i.maxlik module
21 i.maxlik group=L8_2015f subgroup=res_30m \
    signaturefile=cluster_L8_2015f \
22
    output=L8_2015f_cluster_classes reject=L8_2015f_cluster_reject --overwrite
23
24 # Mapping
25 d.mon wx0
26 g.region raster=L8_2015f_cluster_classes -p
27 r.colors L8_2015f_cluster_classes color=roygbiv -e
28 # d.rast.leg L8_2014_cluster_classes
29 d.rast L8_2015f_cluster_classes
30 d.legend raster=L8_2015f_cluster_classes title=''2015 February'' title_fontsize=14 font=
        'Helvetica'' fontsize=12 bgcolor=white border_color=white
31 d.out.file output=Senegal_2015f format=jpg --overwrite
32 d.mon wx1
33 g.region raster=L8_2015f_cluster_classes -p
34 r.colors L8_2015f_cluster_reject color=rainbow -e
35 d.rast L8_2015f_cluster_reject
36 d.legend raster=L8_2015f_cluster_reject title=''2015 February'' title_fontsize=14 font='
       'Helvetica'' fontsize=12 bgcolor=white border_color=white
37 d.out.file output=Senegal_2015f_reject format=jpg --overwrite
```

Appendix B.4. GRASS GIS Script for Supervised Image Classification

Listing A4. GRASS GIS code for machine learning (ML)-based supervised classification of Senegal based on the Support Vector Machine (SVM) algorithm.

```
1 # train a SVC model using r.learn.train
2 r.learn.train group=L_2023 training_map=training_pixels \
3 model_name=SVC n_estimators=500 save_model=svc_model.gz --overwrite
4 # perform prediction using r.learn.predict
5 r.learn.predict group=L_2023 load_model=svc_model.gz \
6 output=svc_classification --overwrite
7 # display
8 r.colors svc_classification color=roygbiv -e
9 d.mon wx0
10 d.rast svc_classification
11 d.grid -g size=00:30:00 color=grey width=0.1 fontsize=16 text_color=grey
12 d.legend raster=svc_classification title=''SVM 2023'' title_fontsize=19 \
13 font=''Helvetica'' fontsize=17 bgcolor=white border_color=white
14 d.out.file output=SVM_2023 format=jpg --overwrite
```

Appendix C. Quantitative Estimations of Land Cover Types in the Coastal Region of Senegal Based on the Processed Landsat 8-9 OLI/TIRS Images over the Evaluated Period (2015 to 2023)

Appendix C.1. Results of the processing of the Landsat 8 OLI/TIRS Image on February 2015

Location:	Senegal					
Mapset:	PERMANENT					
Group:	L8_20151					
Subgroup:	res_30m					
L8_2015f	_01@PERMANENT					
L8_2015f	_02@PERMANENT					
L8_2015f	_03@PERMANENT					
L8_2015f	_04@PERMANENT					
L8_2015f	_05@PERMANENT					
L8_2015f	_06@PERMANENT					
L8_2015f	_07@PERMANENT					
Result si	gnature file:	cluster	L8_2015f			
Region						
North:	1715415.00	East:	435015.00			
South:	1481685.00	West:	206085.00			
Res:	30.00	Res:	30.00			
Rows:	7791	Cols:	7631	Cells: 59	453121	
Mask: no						
Cluster p	arameters					
Nombre	de classes in	itiales:	10			
Minimum	class size:		17			
Minimum	class separat	ion:	0.000000			
Percent	convergence:		98.000000			
Maximum	number of ite	rations:	30			
Row samp	ling interval		77			
Col samp	ling interval	•	76			
oor bump	ing interval	•	10			
Sample si	ze: 6923 poin	ts				
meens and	atondand day	istiona	for 7 hords			
means and	Standard dev	lations	101 / Dallus			
moyennes	9313.63 9913.	36 11418	.5 12779 155	559.1 18683	.2 17049.6	
écart-typ	e 1408.81 165	5.33 262	0.26 4080.9	6172.67 87	92.36 7774.72	
initial m	eans for each	band				
classe 1	7904.83 82	58.03 87	98.21 8698.0	08 9386.46	9890.85 9274.9	
classe 2	8217.9 862	5.88 938	0.49 9604.95	5 10758.2 1	1844.7 11002.6	
classe 3	8530.97 89	93.73 99	62.77 10511.	8 12129.9	13798.6 12730.	3
classe 4	8844.03 93	61.58 10	545 11418.7	13501.6 15	752.4 14458	
classe 5	9157.1 972	9.43 111	27.3 12325.5	14873.3 1	7706.3 16185.8	
ciasse 6	9470.17 10	097.3 11	109.6 13232.	4 16245 19	660.1 17913.5	
ciasse 7	9783.24 10	465.1 12	291.9 14139.	3 17616.7	21614 19641.2	
ciasse 8	10096.3 10	833 1287	4.2 15046.1	18988.4 23	567.9 21368.9	
ciasse 9	10409.4 11	200.8 13	456.4 15953	20360.1 25	521.7 23096.6	~
ciasse 10	10722.4 11	568./ 14	UJJ. 16859.	9 21/31.8	21415.6 24824.	చ

class means/stddev for each band

class 1 (2503)

class 2 (174)

class 3 (41)

écart-type 842.571 891.022 1064.14 1331.77 1254.33 890.258 651.371 class 4 (26) moyennes 9312.5 9943.73 11357.9 12152.8 15320.6 15316.1 12905.9 écart-type 1334.09 1698.16 2286.65 2493.63 930.095 1614.89 1416.64 class 5 (97) moyennes 9063.18 9615.93 10987.1 12135.6 16577.5 18103.9 14902.9 écart-type 660.968 663.225 782.596 885.988 1296.56 1089.48 1060.51 class 6 (190) moyennes 9312.92 9975.98 11545 13060.4 17391.5 20272.1 17042.2 écart-type 605.69 613.508 738.417 788.717 1013.67 909.448 960.596 class 7 (398) moyennes 9686.85 10409.6 12166.7 14010.4 18333.7 22099.6 18938.7 écart-type 577.552 601.118 740.347 817.552 887.638 924.991 1002.24 class 8 (748) moyennes 9968.69 10749.5 12677.7 14839.1 19219 24041.5 20993.1 écart-type 384.465 399.768 541.802 640.277 811.262 764.889 1038.03 class 9 (1023) moyennes 10295.7 11120.8 13318.6 15784.4 20276.4 25806.6 23111.7 écart-type 326.204 350.963 499.745 613.788 743.646 678.212 995.761 class 10 (1723) moyennes 10810.3 11678.3 14315 17326.7 21862 27917.3 25880.4 écart-type 477.098 531.086 761.098 998.069 966.941 946.319 1281.54 Distribution des classes 10 classes, 94.03% points stable Distribution des classes 10 classes, 95.96% points stable Distribution des classes 10 classes, 96.23% points stable Distribution des classes 10 classes, 96.68% points stable Distribution des classes ######## iteration 5 ########### 10 classes, 97.21% points stable Distribution des classes 10 classes, 97.18% points stable Distribution des classes

moyennes 7708.27 7971.29 8281.61 7838.63 7724.56 7842.02 7776.85 écart-type 614.836 518.68 555.632 565.1 556.362 236.765 141.089

moyennes 8368.75 8750.26 9831.58 9975.27 13720.3 10955.7 9432.93 écart-type 376.061 402.119 588.14 812.133 1208.55 495.643 348.885

moyennes 8950.56 9432.93 10755.2 11252.4 14627.3 12748.4 10559.9

10 cl	asses,	97.75%	point	s stal	ble					
Distr	2480	des c	179		65		23	134		
	265		539		919	13	44	975		
#####	### ite	ration	8 ###	#####	###					
10 cl	asses,	97.66%	point	s stal	ble					
Distr	1bution	des c	lasses		65		22	120		
	2400		556		933	13	23	937		
	200		000		200	10	21	001		
#####	### ite	ration	9 ###	#####	###					
10 cl	asses,	97.86%	point	s stal	ble					
Distr	ibution	des c	lasses							
	2480		179		65	10	23	142		
	311		566		941	13	05	911		
#####	### ite	ration	10 ##	#####	####					
10 cl	asses,	98.02%	point	s stal	ble					
Distr	ibution	des c	lasses							
	2480		179		65		24	146		
	332		579		946	12	84	888		
##### 10 cl	##### f asses (inal r conver	esults gence=	#### 98.0%	#######)	##				
class	separa	bility	matri	х						
	1	2	2	1	-	6	7	0	0	10
	1	2	3	4	5	0	1	0	9	10
1	0									
2	2.6	0								
3	2.9	0.9	0							
4	3.5	1.7	1.0	0						
5	5.8	2.7	1.5	1.0	0	0				
6 7	7.8 9.8	4.2 5.4	2.6	1.2	1.1	0 8	٥			
8	12.5	6.9	4.3	2.2	2.8	1.6	0.8	0		
9	15.0	8.3	5.3	2.7	3.8	2.6	1.8	1.0	0	
10	13.9	8.4	5.7	3.1	4.3	3.2	2.5	1.9	1.1	0
class	means/	stddev	for e	ach ba	and					
class	1 (248	0)								
moyen	nes 770	2.51 7	964.65	8269	.03 782	1.72 7	687.6	7827.04	7769	.4
écart	-type 6	12.7 5	13.618	538.4	446 535	.084 3	96.623	175.90	6 116	.846
class	2 (179)								
moyen	nes 829	7.44 8	655.15	9673	.68 974	7.75 1	3631.1	10728.	5 928	7.23
ecart	-type 3	74.25	372.16	7 496	.471 64	7.696	1391.2	3 696.6	53 42	1.041
class	3 (65)									
moven	nes 895	4.78 9	466.29	1084	4.6 113	99.3 1	3997.9	12546.	1 104	92
écart	-type 6	54.232	681.1	13 82	0.521 1	001.57	1421.	5 1222.	53 83	6.924
class	4 (24)									
moyen	nes 105	31.6 1	1332.8	1319	0.9 144	15.4 1	6089.6	3 15780.	6 134	57.2
ecart	-type 1	243.88	1529.	2 200	2.57 21	26.12	1348.9	1895.	08 16	/8.55
class	5 (146)								
moyen	nes 889	, 8.16 9	461 10	810.7	12009.	3 1676	3 1865	8.5 153	24.3	
écart	-type 4	04.72	353.27	7 409	.337 64	9.647	1382.3	3 1197.	85 10	87.53
class	6 (332)								
moyen	nes 950	3.49 1	0204.1	1188	5.1 135	66.5 1	7903.4	21153.	7 179	68.3
ecart	-type 5	79.936	595.0	56 72	9.293 7	99.238	987.1	.19 961.1	223 9	28.767
class	7 (579)								
moven	nes 987	, 4.77 1	0634.7	1249	3 14531	.4 188	63.9 2	3223.6	20046	.3
écart	-type 4	97.731	523.5	5 685	.055 77	6.898	898.42	27 846.6	3 901	.884
	-									
class	8 (946)								
moyen	nes 101	45.7 1	0950.4	1301	1 15340	19793	.5 250	070.2 22	208.9	007
ecart	-туре З	10.816	345.6	0 499	.130 63	1.58 8	01.965	001.29	5 964	.907
class	9 (128	4)								
moyen	nes 104	, 79 113	19.6 1	3710.	5 16414	.9 209	43.1 2	26902 24	529.5	

écart-type 308.917 338.535 462.98 589.57 662.867 668.832 869.355

class 10 (888)

moyennes 11071.3 11960.8 14774.2 17995.2 22506.2 28565.2 26783.6 écart-type 469.146 531.252 724.073 878.44 835.179 791.24 1013.62 10 classes, 98.02% points stable ######## CLUSTER END (Fri Jul 28 16:58:35 2023) #########

Appendix C.2. Results of the processing of the Landsat 8 OLI/TIRS Image on February 2018

```
Location: Senegal
         PERMANENT
Mapset:
Group:
         L8_2018f
Subgroup: res_30m
L8_2018f_01@PERMANENT
L8_2018f_02@PERMANENT
L8_2018f_03@PERMANENT
L8_2018f_04@PERMANENT
L8_2018f_05@PERMANENT
L8_2018f_06@PERMANENT
L8_2018f_07@PERMANENT
Result signature file: cluster_L8_2018f
Region
 North:
          1715145.00 East:
                               435015.00
 South: 1481685.00 West: 209355.00
                               30.00
 Res:
              30.00 Res:
               7782 Cols:
 Rows:
                                   7522 Cells: 58536204
Mask: no
Cluster parameters
 Nombre de classes initiales: 10
 Minimum class size:
                              17
Minimum class separation:
                              0.000000
                              98.000000
Percent convergence:
Maximum number of iterations: 30
Row sampling interval:
                              77
Col sampling interval:
                              75
Sample size: 7009 points
means and standard deviations for 7 bands
moyennes 8857.44 9492.87 10953.4 12229.7 15198.4 18028.8 15884.1
écart-type 1621.26 1786.57 2482.6 3723.54 5842.65 8100.61 6660.89
initial means for each band
classe 1
           7236.18 7706.31 8470.82 8506.2 9355.74 9928.24 9223.22
classe 2
classe 3
classe 4
classe 5
           8677.3 9294.36 10677.6 11816 14549.2 17128.8 15144
classe 6
classe 7
           9397.86 10088.4 11781 13470.9 17145.9 20729.1 18104.4
classe 8
classe 9
classe 10 10478.7 11279.4 13436 15953.3 21041 26129.5 22545
class means/stddev for each band
class 1 (2403)
moyennes 7025.72 7388.7 7878.26 7537.53 7520.7 7696.79 7654.33
écart-type 876.124 788.054 722.17 679.73 615.7 351.733 278.397
class 2 (172)
moyennes 8244.99 8643.94 9646.46 9683.51 13048 10536.1 9337.4
écart-type 607.341 538.888 574.945 658.593 1473.34 507.789 685.588
class 3 (54)
movennes 8434.26 9040.37 10488.3 10949.8 13355.8 12442.6 10824.8
écart-type 1110.78 998.131 932.028 1023.89 1418.08 801.709 1082.7
class 4 (54)
moyennes 8482.3 9044.26 10774 11464.2 14641.1 14702 12465.4
écart-type 907.771 1145.32 855.87 991.749 1398.46 860.045 1151.78
```

class 5 (108)

7596.46 8103.32 9022.51 9333.66 10654.1 11728.4 10703.4 7956.74 8500.34 9574.2 10161.1 11952.5 13528.5 12183.6 8317.02 8897.35 10125.9 10988.6 13250.8 15328.6 13663.8 9037.58 9691.38 11229.3 12643.5 15847.6 18928.9 16624.2 9758.14 10485.4 12332.6 14298.4 18444.3 22529.2 19584.6 10118.4 10882.4 12884.3 15125.8 19742.7 24329.3 21064.8

moyennes 8777.68 écart-type 853.9	8 9379.79 10 549 797.446	0667.9 116 671.475 8	58.6 15965.4 16.731 1669.	17160.8 22 1007.6	14226.1 4 1139.25
class 6 (206) moyennes 8961.0 écart-type 753.4	7 9666.94 11 46 661.341 7	1222.5 1250 727.188 77	66.3 16796.6 7.205 1234.9	19213.9 8 854.702	15756.8 874.231
class 7 (398) moyennes 9340.80 écart-type 831.3	6 10100.9 1: 339 799.109	1741.2 134: 701.629 68	26.2 17780.8 34.796 833.6	21026.7 81 933.27	17500.4 3 783.303
class 8 (836) moyennes 9615.5 écart-type 484.6	2 10387.7 12 651 457.958	2217.9 142: 538.072 6	24.5 18744.5 01.26 827.49	22966.9 3 771.913	19275.4 901.151
class 9 (1315) moyennes 9896.03 écart-type 457.5	3 10698.6 12 581 436.544	2709.9 150 473.69 54	19.5 19718.5 3.46 717.103	24587.7 2 666.677 9	21016.1 920.163
class 10 (1463) moyennes 10460.0 écart-type 1034	6 11305.4 13 .73 1026.42	3649.4 1633 1039.6 113	32.8 21077.1 20.3 1101.26	26573.8 1037.7 1	23634.1 333.34
Distribution des	s classes				
2403	172	54	54	108	
206	398	836	1315	1463	
####### iterat: 10 classes, 93.9 Distribution des	ion 1 ###### 94% points s s classes	##### stable			
2346	222	61	56	112	
216	412	858	1464	1262	
######## iterat: 10 classes, 95.8	ion 2 ###### 86% points s	##### stable			
2327	236	65	58	117	
220	429	909	1527	1121	
######## iterat: 10 classes, 96.0	ion 3 ###### 66% points s	##### stable			
Distribution de:	s classes	66	EO	110	
2320	433	985	1528	1026	
<pre>######## iterat: 10 classes, 97.0 Distribution des</pre>	ion 4 ###### 05% points s s classes	##### stable			
2317	244	67	58	120	
245	450	1035	1522	951	
######## iterat: 10 classes, 97.0	ion 5 ###### 65% points s	##### stable			
2315	246	67	58	124	
254	468	1066	1513	898	
######## iterat: 10 classes, 97.8	ion 6 ###### 87% points s	##### stable			
Distribution des	s classes		50	400	
2314	246 492	68 1091	59 1490	126 861	
######## iterat:	ion 7 ######	######	1100	001	
Distribution de	72% points : s classes	stable			
2314	247	67	59	132	
265	527	1108	1468	822	
######## iterat: 10 classes, 97.	ion 8 ###### 73% points s	##### stable			
2314	247	67	60	139	
272	550	1137	1431	792	
####### iterat: 10 classes, 97.8	ion 9 ###### 82% points s	##### stable			
Distribution des	s classes				
2314	247	67	61	148	
283	505	1122	1408	/61	

######## iteration	10 ###	#######	#			
10 classes, 97.87%	points	stable				
Distribution des c	lasses					
2314	247	6	7	63		159
288	587	116	6	1382		736
	11 444		щ			
######### iteration	11 ###	####### -+-\]-	#			
Distribution des c	laccoc	SLADIE				
2314	247	6	7	65		166
300	600	118	0	1362		708
000			•	1002		
######## iteration	12 ###	#######	#			
10 classes, 97.97%	points	stable				
Distribution des c	lasses					
2314	247	6	7	67		174
306	618	119	9	1336		681
######## iteration	13 ###	#######	#			
10 classes, 97.82%	points	stable				
Distribution des c	Lasses	0	7			100
2314	247	0	/ F	68		183
320	631	121	5	1311		653
######## itoration	1/ ###		#			
10 classes 97 67%	nointe	etablo	#			
Distribution des c	lasses	Stable				
2314	247	6	7	71		189
339	649	121	6	1294		623
######## iteration	15 ###	#######	#			
10 classes, 97.75%	points	stable				
Distribution des c	lasses					
2314	247	6	7	78		187
366	664	121	4	1271		601
######## iteration	16 ###	#######	#			
10 classes, 97.86%	points	stable				
Distribution des c	Lasses	0	7	00		101
2314	247	6	<i>(</i>	1041		191
3/5	090	121	0	1241		563
######## iteration	17 ###		#			
10 classes 97 67%	noints	stable	π			
Distribution des c	lasses	DUUDIC				
2314	247	6	8	84		198
392	724	120	8	1214		560
######## iteration	18 ###	#######	#			
10 classes, 97.77%	points	stable				
Distribution des c	lasses					
2314	247	6	9	85		203
409	744	122	0	1180		538
######## iteration	19 ###	#######	#			
10 classes, 98.13%	points	stable				
Distribution des c	lasses	-	•	07		0.07
2314	246	101	0	1157		207
420	111	121	0	119/		213
############ final r	ogulta -		######			
10 classes (conver	gence=0		~~ #####			
TO CIERRAR (COUNEL	Pence-3	J. 1/0/				
class separability	matrix					
1 2	3	4	5	6	7	8 9

class means/stddev for each band

class 1 (2314)

```
moyennes 6973.65 7333.17 7802.18 7449.64 7428.58 7651.15 7624.97
écart-type 843.931 743.306 609.592 501.577 345.569 249.854 217.016
class 2 (246)
moyennes 8252.11 8657.06 9652.88 9648.4 12056.2 9895.76 8929.32
écart-type 557.912 494.393 540.394 611.288 2106.96 900.212 650.071
class 3 (70)
moyennes 8590.16 9205.93 10637.7 11065.5 12784.4 12166.4 10782.5
écart-type 1067.97 929.601 879.515 980.828 1360.11 857.334 1097.74
class 4 (87)
moyennes 8600 9184.85 10676.8 11445.1 15283.8 15305.9 12848.6
écart-type 912.171 1068.36 783.743 980.84 1744.45 1027.32 1099.21
class 5 (207)
moyennes 8858.84 9488.23 10930.6 12115.5 16366.1 18473.8 15114.5
écart-type 676.137 631.376 684.995 773.703 1487.35 981.082 958.443
class 6 (420)
movennes 9293.96 10069.1 11712.3 13349.1 17673.2 20665.3 17190.3
écart-type 922.304 860.24 762.823 749.532 931.792 978.143 799.221
class 7 (771)
moyennes 9572.57 10340.5 12145.3 14124.8 18643 22810.7 19095.9
écart-type 469.21 442.231 519.984 585.987 852.925 740.509 837.032
class 8 (1218)
moyennes 9858.67 10659.5 12653.4 14932 19617.3 24380.3 20745.2
écart-type 484.521 463.705 507.611 581.417 763.351 679.252 844.481
class 9 (1157)
moyennes 10151.4 10976 13175.7 15709.2 20443.3 25921.2 22794.1
écart-type 308.902 292.289 375.14 497.641 661.54 633.314 862.877
class 10 (519)
moyennes 10972.1 11840.8 14389.4 17280.3 21993 27486 24867.4
écart-type 1562.41 1542.91 1405.19 1333.89 1222.02 1065.41 1187.97
10 classes, 98.13% points stable
######## CLUSTER END (Fri Jul 28 19:59:34 2023) #########
Appendix C.3. Results of the processing of the Landsat 8 OLI/TIRS Image on February 2020
Location: Senegal
Mapset: PERMANENT
Group:
         L8_2020f
Subgroup: res_30m
L8_2020f_01@PERMANENT
 L8_2020f_02@PERMANENT
 L8_2020f_03@PERMANENT
```

L8_2020f_04@PERMANENT L8_2020f_05@PERMANENT L8_2020f_06@PERMANENT L8_2020f_07@PERMANENT Result signature file: cluster_L8_2020f Region North: 1715415.00 East: 435015.00 South: 1481685.00 West: 209355.00 30.00 30.00 Res: Res: Rows: 7791 Cols: 7522 Cells: 58603902 Mask: no Cluster parameters Nombre de classes initiales: 10 Minimum class size: 17 Minimum class separation: 0.000000 Percent convergence: 98.000000 Maximum number of iterations: 30 Row sampling interval: 77 Col sampling interval: 75 Sample size: 7019 points

means and standard deviations for 7 bands

moyennes 9083.83 9752.19 11309.8 12660.8 15669.2 18426 16517.6 écart-type 1543.97 1736.65 2521.06 3917.12 6100.01 8265.57 7020.52

7539.85 8015.54 8788.73 8743.63 9569.16 10160.4 9497.05

 $7882.96\ 8401.46\ 9348.96\ 9614.1\ 10924.7\ 11997.2\ 11057.2$

8912.27 9559.23 11029.7 12225.5 14991.4 17507.6 15737.5 9255.38 9945.15 11589.9 13096 16347 19344.4 17297.6

9598.49 10331.1 12150.1 13966.5 17702.5 21181.1 18857.7

9941.59 10717 12710.4 14836.9 19058.1 23017.9 20417.9

10284.7 11102.9 13270.6 15707.4 20413.6 24854.7 21978

classe 10 10627.8 11488.8 13830.8 16577.9 21769.2 26691.5 23538.1

moyennes 7211.87 7635.75 8230.97 7806.78 7768.17 7995.81 7969.81 écart-type 526.693 555.399 717.049 625.503 683.423 368.145 296.641

moyennes 8230.97 8631.27 9677.65 9672.28 13741.1 10679 9296.59 écart-type 527.748 570.343 706.969 853.031 1124.61 528.113 423.434

moyennes 8907.43 9529.78 11033 11653.5 13593.8 13001.9 11181 écart-type 702.35 683.603 1186.27 1550.73 971.094 1016.7 872.869

moyennes 8996.48 9559.69 10903.2 11524.1 15370.3 15205.8 12684.4 écart-type 798.4 847.117 1087.63 1263.82 1549.33 897.804 926.343

8226.06 8787.39 9909.19 10484.6 12280.3 13834 12617.3 8569.17 9173.31 10469.4 11355 13635.8 15670.8 14177.4

initial means for each band

class means/stddev for each band

classe 1

classe 2

classe 3

classe 4 classe 5

classe 6

classe 7

classe 8

classe 9

class 1 (2462)

class 2 (151)

class 3 (37)

class 4 (52)

230

439

897

1440

1161

class 5 (118) moyennes 8988.28	9631.89 1	1060.3 121	12.4 16470.8	3 17744.5 14	1596.6
écart-type 724.5	75 766.586	903.884 1	007.71 1483	12 1171.72	919.712
class 6 (212)					
moyennes 9239.58	9942.75 1	1523.7 129	51.1 17223.6	6 19755.3 16	6495.6
écart-type 641.9	1 639.603	760.009 81	6.876 1108.9	93 971.252 8	335.724
class 7 (427)					
moyennes 9520.33	10286 120	35.1 13822	.2 18250.7 2	21545.8 1826	53.6
écart-type 530.3	74 535.672	683.599 7	48.033 995.4	198 910.479	1078.38
class 8 (790)					
moyennes 9846.31	10634 125	13 14635.6	19310.4 234	32.2 20130	. 1
écart-type 393.0	07 413.585	577.216 6	79.58 1011.3	3 729.564 11	139.33
class 9 (1126)					
movennes 10185.5	11022 131	35.2 15626	.8 20457.7 2	25120.9 2189	98.5
écart-type 319.9	18 338.3 4	71.731 586	.261 961.04	5 652.206 11	145.82
• •					
class 10 (1644)					
moyennes 10724.7	11587.7 1	4063 16982	.8 21776.8 2	27057.3 2448	38.8
écart-type 475.2	97 518.812	729.047 9	25.558 919.8	304 968.935	1491.99
Distribution des	classes				
2462	151	37	52	118	
212	427	790	1126	1644	
######## iterati	on 1 #####	######			
10 classes, 93.9	6% points :	stable			
Distribution des	classes				
2417	190	46	58	118	
224	414	803	1347	1402	
######## iterati	on 2 #####	######			
10 classes, 95.8	1% points :	stable			
Distribution des	classes				
2404	203	44	64	127	
228	417	854	1426	1252	
######## iterati	on 3 #####	######			
10 classes, 96.6	8% points :	stable			
Distribution des	classes				
2400	206	45	66	135	

####### iterati	on 4 ####	#######		
10 classes, 97.0	1% points	stable		
Distribution des	classes			
2396	210	46	71	135
237	472	911	1454	1087
####### iterati	on 5 ####	#######		
10 classes, 97.2	2% points	stable		
Distribution des	classes			
2394	212	46	75	140
248	491	931	1453	1029
######## itorati	on 6 ####	****		
10 classes 97 5	19 nointe	etable		
Distribution des	classes	Stable		
2394	212	48	74	145
2004	506	940	1442	988
210	500	340	1442	300
######## iterati	on 7 ####	#######		
10 classes, 97.4	5% points	stable		
Distribution des	classes			
2394	211	51	73	150
290	535	927	1447	941
######## iterati	on 8 ####	######		
10 classes, 97.5	4% points	stable		
Distribution des	classes			
2393	210	54	75	154
312	551	939	1419	912
######## iteratio	on 9 ####	*######		
10 Classes, 97.6	3% points	stable		
Distribution des	classes		70	457
2392	210	55	1204	157
337	502	951	1394	003
######## itorati	on 10 ###	******		
10 classes 97 9	9% noints	stable		
Distribution des	classes	BUUDIC		
2391	211	56	80	159
353	576	965	1371	857
000	010	000	10/1	
######## iterati	on 11 ###;	########		
10 classes, 98.1	5% points	stable		
Distribution des	classes			
2391	211	56	83	159
367	598	972	1348	834
######### final	results a	###########	###	
10 classes (conv	ergence=9	3.1%)		
_				
class separabili	ty matrix			
1 0	2	۸ F	6 7	0
1 2	3	4 5	ο /	Ö
1 0				

	1	2	3	4	5	6	7	8	9	10
1	0									
2	1.9	0								
3	2.7	1.0	0							
4	3.9	2.1	0.9	0						
5	6.1	3.1	1.6	0.9	0					
6	6.6	3.9	2.2	1.4	1.0	0				
7	8.5	5.1	2.9	2.2	1.8	0.7	0			
8	9.7	5.9	3.5	2.8	2.6	1.4	0.8	0		
9	11.5	7.2	4.3	3.6	3.6	2.2	1.6	0.8	0	
10	11.0	7.3	4.7	4.0	4.1	2.8	2.3	1.6	0.9	0

class means/stddev for each band

class 1 (2391) inoyennes 7174.13 7597.81 8180.06 7743.75 7681.17 7961.31 7950.84 écart-type 474.355 506.243 651.214 496.461 399.352 301.276 273.692

class 2 (211) moyennes 8265.83 8662.6 9678.62 9648.93 12791.6 10147.2 9043.17 écart-type 474.465 474.914 566.938 690.234 1903.84 857.025 485.482

class 3 (56) moyennes 9047.8 9694.07 11237.7 11844.9 13414.8 12763.5 10983.3

écart-type 842.033 869.921 1189.56 1403.88 1106.82 1314.85 1024.01

class 4 (83)

```
moyennes 9380.73 10028 11507.2 12260.1 16175.5 15868 13405.5
écart-type 1038.06 1114.75 1325.39 1632.15 1924.21 859.971 1121.43
class 5 (159)
moyennes 8836.65 9450.75 10813.8 11997.1 16565.9 18847.2 15422.1
écart-type 403.779 359.336 415.253 545.655 1077.34 877.599 906.505
class 6 (367)
moyennes 9423.02 10182.4 11899.3 13572.1 17943 20712.5 17364.6
écart-type 612.1 615.543 754.174 823.19 1058.68 992.025 889.261
class 7 (598)
moyennes 9674.92 10440.4 12239.9 14200.3 18780.9 22750.7 19495.3
écart-type 384.698 387.804 541.838 641.686 1023.19 770.277 1025.82
class 8 (972)
moyennes 10047.9 10871.7 12888.1 15256.2 20058.7 24396.6 21007.5
écart-type 343.349 369.808 518.198 630.15 1057.62 740.142 1126.64
class 9 (1348)
moyennes 10407.7 11254.2 13522.1 16201.9 21042 26036.4 23049.6
écart-type 336.99 361.142 501.239 651.252 880.583 671.315 987.174
class 10 (834)
moyennes 10949.2 11823 14433.3 17487.2 22196.4 27709.5 25560.3
écart-type 491.77 547.304 748.697 934.506 897.309 844.818 1136.09
```

10 classes, 98.15% points stable

######### CLUSTER END (Fri Jul 28 18:25:15 2023) #########

Appendix C.4. Results of the processing of the Landsat 8 OLI/TIRS Image on February 2021

Location: Senegal Mapset: PERMANENT L8 2021f Group: Subgroup: res_30m L8 2021f 01@PERMANENT L8_2021f_02@PERMANENT L8_2021f_03@PERMANENT L8_2021f_04@PERMANENT L8_2021f_05@PERMANENT L8_2021f_06@PERMANENT L8_2021f_07@PERMANENT Result signature file: cluster_L8_2021f Region North: 1715415.00 East: 435015.00 South: 1481685.00 West: 209355.00 30.00 Res: 30.00 Res: 7791 Cols: Rows: 7522 Cells: 58603902 Mask: no Cluster parameters Nombre de classes initiales: 10 Minimum class size: 17 Minimum class separation: 0.000000 Percent convergence: 98.00000 Percent convergence: 98.000000 Maximum number of iterations: 30 Row sampling interval: 77 Col sampling interval: 75 Sample size: 7018 points means and standard deviations for 7 bands moyennes 9103.03 9794.56 11362.2 12712.1 15680.1 18312.7 16272.1 écart-type 1494.79 1731.05 2554.95 3927.55 6122.9 8260.3 6924.15 initial means for each band 10000 1 7608.24 8063.5 8807.27 8784.6 9557.25 10052.4 9347.93

classe	1	7608.24	8063.5 8807.27 8784.6 9557.25 10052.4 9347.93
classe	2	7940.42	8448.18 9375.03 9657.39 10917.9 11888 10886.6
classe	3	8272.59	8832.86 9942.8 10530.2 12278.5 13723.6 12425.3
classe	4	8604.77	9217.54 10510.6 11403 13639.2 15559.3 13964
classe	5	8936.94	9602.22 11078.3 12275.8 14999.8 17394.9 15502.7
classe	6	9269.12	9986.9 11646.1 13148.5 16360.5 19230.5 17041.4

classe 7 9601.29 10371.6 12213.9 14021.3 17721.1 21066.1 18580.1 classe 8 9933.47 10756.3 12781.6 14894.1 19081.8 22901.8 20118.8 classe 9 $10265.6\ 11140.9\ 13349.4\ 15766.9\ 20442.4\ 24737.4\ 21657.5$ classe 10 10597.8 11525.6 13917.2 16639.7 21803 26573 23196.2 class means/stddev for each band class 1 (2472) moyennes 7313.61 7696.41 8232.04 7837.92 7742.14 7931.25 7880.26 écart-type 523.008 574.873 740.83 667.615 597.157 326.44 221.817 class 2 (162) moyennes 8367.74 8788.43 9871.6 9907.87 13579.2 10720.3 9384.91 écart-type 551.281 578.474 738.688 868.216 1280.37 510.118 395.672 class 3 (39) moyennes 8860.13 9479.1 10889.1 11353.3 14026.3 12695 11036.6 écart-type 995.855 1068.1 1280.86 1258.34 1432.8 987.66 940.02 class 4 (52) moyennes 8990.67 9572.25 10911.4 11588.4 15314.2 15146.8 12747.7 écart-type 1053.52 1085.71 1273.12 1320.13 1385.28 1102.05 995.233 class 5 (111) moyennes 8919.6 9586.4 11049.8 12041.2 16704.5 17443.7 14294.6 écart-type 772.356 773.025 855.924 967.103 1465.14 1107.34 861.372 class 6 (191) moyennes 9221.2 9972.19 11635.4 13050.4 17569.3 19529.4 16048.3 écart-type 760.844 777.297 906.372 985.172 1371.94 1015.06 961.004 class 7 (375) moyennes 9554.95 10380.6 12217.9 13998.3 18422.8 21362.9 17907.5 écart-type 676.841 675.041 824.381 903.755 1005.47 983.878 1008.25 class 8 (768) moyennes 9829.27 10696.1 12661.2 14797.4 19473.4 23316.6 19666.1 écart-type 428.049 420.829 530.225 620.714 878.759 770.735 1045.84 class 9 (1262) moyennes 10151.2 11058.1 13225.5 15720.3 20503.2 25045.5 21495.6 écart-type 369.177 375.082 483.879 587.818 844.55 650.355 1165.65 class 10 (1586) moyennes 10682.9 11595.3 14094.6 16964.8 21697.6 26923.8 24278.5 écart-type 477.378 511.286 708.716 895.261 882.054 904.887 1404.13 Distribution des classes 2472 162 39 52 111 191 375 768 1262 1586 10 classes, 93.84% points stable Distribution des classes 2412 222 40 50 122 190 391 798 1414 1379 10 classes, 95.97% points stable Distribution des classes 2385 252 33 59 118 203 399 859 1451 1259 10 classes, 97.16% points stable Distribution des classes 2375 263 30 64 117 213 419 892 1454 1191 10 classes, 97.52% points stable Distribution des classes 2368 270 29 72 110 222 439 1457 921 1130 10 classes, 97.38% points stable Distribution des classes 2366 272 28 77 109 232 474 930 1452 1078

#####	### ite	eration	6 ###	#####	###					
10 cl	asses,	97.65%	point	s sta	ble					
Distr	ibutior	ı des c	lasses	3						
	2364		274		28		78	11	1	
	242		500		954	14	33	103	4	
#####	### ;+2	ration	7 ###		###					
10 c1	### ILE	07 82%	noint	-a ata	hlo					
Distr	ibutior	des c	lasses	3	DIC					
51501	2363		275	-	28		79	11	4	
	256		527		959	14	17	100	0	
#####	### ite	eration	8 ###	######	###					
10 cl	asses,	97.86%	point	s sta	ble					
Distr	ibutior	n des c	lasses	3						
	2363		275		28		80	12	0	
	266		554		967	13	394	97	1	
#####	### ;+~	ration	0 ###		###					
10 c1	### ILE	07 00%	9 ###		### blo					
Distr	ibutior	des c	lasses		DIG					
	2363		275	-	28		83	12	8	
	277		568		979	13	867	95	0	
#####	### ite	eration	10 ##	#####	####					
10 cl	asses,	98.03%	point	s sta	ble					
Distr	ibutior	n des c	lasses	3						
	2363		275		29		84	13	6	
	285		586		986	13	352	92	2	
#####	###### 4	inal m	0011+0	. ####	***	***				
10 cl	asses (conver	gence=	98.0%)	***				
10 01			8000	00107	,					
class	separa	bility	matri	ix						
	•	·								
	1	2	3	4	5	6	7	8	9	10
1	0									
2	2.0	0								
3	2.8	1.0	0							
4	4.0	1.7	0.9	0	<u>^</u>					
5	5.8	2.4	1.6	0.7	0	0				
6 7	6.2	3.1	2.0	1.3	0.9	0 7	0			
2	9.2	4.4 5 /	2.9	2.1	2.6	1 1	0 8	0		
9	13.4	6.5	4 4	3.6	3.6	2 1	1.6	0.8	0	
10	12.6	6.8	4.8	4.0	4.0	2.7	2.3	1.6	1.0	0
										-
class	means/	'stddev	for e	each b	and					
class	1 (236	33)								
moyen	nes 724	8.41 7	625.27	8135	.66 773	30.27 7	642.36	5 7879.	37 784	7.06
écart	-type 4	16.1 4	61.809	9 582.	787 424	4.33 31	.4.927	198.22	146.3	36
class	2 (275) 70 40 0	000 50	1000	7 0075	00 404	00.4.4	0400 5	04.04	
moyen	nes 84/	0.43 8	932.55		1 9975	.02 121 745 005	.83.4	10 101	9101	07 010
ecart	-туре а	38.712	566.3	842 67	3.216	45.985	2196.	19 101	4.59 5	87.313
class	3 (29)									
moven	nes 969	3.86_1	0405.4	1 1209	6.4 126	315.7 1	3407.4	12209	.3 107	04
écart	-tvpe 1	489.42	1526	72 15	77.5 12	226.12	1259.0	9 1301	.44 92	0.006
	51									
class	4 (84)									
moyen	nes 911	8.45 9	712.07	/ 1105	4 1180	7.6 152	279.8 1	15479 1	3169.4	:
écart	-type 8	347.439	899.7	74 112	8.4 134	47.33 1	213.07	7 1068.	09 106	3.26
class	5 (136	3)								
moyen	nes 865	54.04 9	337.13	3 1084	7.5 118	391.2 1	7562.1	18244	.7 146	72.5
ecart	-type 4	19.602	378.0	192 40	2.881 (517.514	1690.	/2 112	u.92 9	10.851
a] a a a	6 (200									
mover	0 (205	77 12 11 1	0268 1	1001	6 5 1 24	308 F 1	7771 4	20200	2 160	10 6
écart	-tvne 8	323 379	837	363 10	22.37	1097 31	1217	51 113	.∠ 100 6.29 1	023.16
COALL	0,46 0	.20.012	001.0		01			110	J. 20 I	-20.10
class	7 (586	5)								
moyen	nes 966		0504.9	1239	0.8 143	355.7 1	.8922 2	22427.3	18858	.6
écart	-type 4	194.386	484.5	571 57	7.002 6	639.285	5 909.5	522 843	.101 1	002.59
class	8 (986	5)								
moyen	nes 100)11.5 1	0920.3	3 1301	1.5 153	386.7 2	20210.8	3 24268	.9 203	83.3
écart	-type 4	132.35	438.11	17 562	.814 66	59.664	896.05	64 758.	305 92	5.124

######## CLUSTER END (Fri Jul 28 19:30:36 2023) ########

Appendix C.5. Results of the processing of the Landsat 9 OLI/TIRS Image on February 2022

```
Location: Senegal
Mapset: PERMANENT
Group:
         L8 2022f
Subgroup: res_30m
 L8_2022f_01@PERMANENT
 L8_2022f_02@PERMANENT
 L8_2022f_03@PERMANENT
 L8_2022f_04@PERMANENT
 L8_2022f_05@PERMANENT
 L8 2022f 06@PERMANENT
L8 2022f 07@PERMANENT
Result signature file: cluster_L8_2022f
Region
          1715145.00 East:
  North:
                               435015.00
  South: 1481685.00 West:
                               209355.00
               30.00 Res:
  Res:
                                   30.00
                                   7522 Cells: 58536204
 Rows:
                7782 Cols:
Mask: no
Cluster parameters
 Nombre de classes initiales: 10
 Minimum class size:
                              17
                              0.000000
 Minimum class separation:
                              98.000000
 Percent convergence:
 Maximum number of iterations: 30
                              77
 Row sampling interval:
 Col sampling interval:
                              75
Sample size: 7041 points
means and standard deviations for 7 bands
moyennes 8956.71 9688.81 11275.1 12528.6 15363.6 18204.7 16340.9
écart-type 1511.52 1718.3 2416.99 3735.33 5813.88 8173 7014.93
initial means for each band
           7445.19 7970.5 8858.07 8793.25 9549.73 10031.7 9325.94
classe 1
           7781.08 8352.35 9395.18 9623.32 10841.7 11848 10884.8
classe 2
           8116.98 8734.19 9932.29 10453.4 12133.7 13664.2 12443.7
classe 3
           8452.87 9116.04 10469.4 11283.5 13425.7 15480.4 14002.6
classe 4
           8788.76 9497.88 11006.5 12113.5 14717.6 17296.6 15561.4
classe 5
           9124.66 9879.73 11543.6 12943.6 16009.6 19112.9 17120.3
classe 6
            9460.55 10261.6 12080.7 13773.7 17301.6 20929.1 18679.2
classe 7
           9796.45 10643.4 12617.8 14603.8 18593.6 22745.3 20238.1
classe 8
classe 9
           10132.3 11025.3 13154.9 15433.8 19885.5 24561.5 21796.9
classe 10 10468.2 11407.1 13692 16263.9 21177.5 26377.7 23355.8
class means/stddev for each band
class 1 (2499)
moyennes 7149.81 7606.11 8327.64 7934.83 7897.52 8088.78 7974.9
écart-type 476.729 530.897 654.697 572.875 544.465 242.083 133.289
class 2 (177)
moyennes 8366.47 8874.42 9974.55 10024.6 13424.4 10727.8 9321.19
```

moyennes 8366.47 8874.42 9974.55 10024.6 13424.4 10727.8 9321.19 écart-type 480.74 474.197 597.638 749.492 998.659 442.422 297.4

class 3 (44)

moyennes 8977.66 9664.75 11152.6 11719.6 14047.7 12299.9 10322 écart-type 929.913 925.424 974.416 1071.45 935.147 695.042 524.734

class 4 (57) moyennes 8973.7 écart-type 1178	2 9634.61 11 .34 1172.76	LOO8.9 1167 1286.07 12	76 15389 151 292.94 1304.	.03.2 12441.3 08 1079.66 1	3 1085.64			
class 5 (118) moyennes 8716.79 9452.54 10918.9 11928 16323.4 17608.6 14432.4 écart-type 590.858 512.119 543.432 701.413 1159.46 820.033 896.658								
class 6 (236) moyennes 9167.5 écart-type 697.	9967.39 116 739 661.239	507.4 12914 686.203 75	4.8 17126.9 50.139 1032.	19303 16103 78 965.321 8	.9 303.594			
class 7 (420) moyennes 9447.7 écart-type 558.	6 10301.8 12 716 522.992	2089.2 1376 595.324 65	52.9 18023.4 51.946 809.9	21262.5 179 997 868.978 9	926.6 912.509			
class 8 (691) moyennes 9809.4 écart-type 555.	4 10698.2 12 148 530.208	2615.3 1457 604.799 69	72.7 18869.4 92.872 786.7	23083.1 198 2 826.893 98	399 54.473			
class 9 (1048) moyennes 10013. écart-type 449.	8 10930.4 13 179 412.151	3014.9 1532 437.629 54	26.5 19885 2 4.111 717.8	24925.2 21760 396 650.93 92).2 26.959			
class 10 (1751) moyennes 10494. écart-type 532.	8 11435.8 13 17 537.28 70	3838.4 1659 01.184 909.	97 21217.4 2 995 921.828	26858.5 24400 3 954.891 137).9 74.72			
Distribution de	s classes							
2499 236	177 420	44 691	57 1048	118 1751				
200	120	001	1010	1.01				
######## iterat	ion 1 ######	##### stable						
Distribution de	s classes	Stable						
2446	219	59	57	130				
231	429	698	1271	1501				
######## iterat 10 classes, 95. Distribution de	ion 2 ###### 48% points s s classes	##### stable						
2418	246	62	61	135				
238	430	752	1358	1341				
######## iterat	ion 3 ######	#####						
Distribution de	s classes	JULDIC						
2398	265	64	65	133				
255	436	794	1423	1208				
######## iterat 10 classes, 96.	ion 4 ###### 49% points a	##### stable						
Distribution de	s classes 271	69	66	140				
262	454	819	1476	1096				
######## iterat 10 classes, 96.	ion 5 ###### 69% points s	##### stable						
Distribution de	s classes	75		4.40				
2384 271	269 471	75 855	68 1488	148 1012				
####### iterat	ion 6 ######	#####	1100	1012				
10 classes, 97.	06% points s	stable						
2373	S Classes 275	80	68	158				
284	488	871	1492	952				
######## iterat 10 classes, 97.	ion 7 ###### 12% points s	##### stable						
Distribution de	s classes							
2361 292	274 523	92 873	71 1486	164 905				
####### itors+	ion 8 ######	+#####						
10 classes, 96.	79% points s	stable						
Distribution de	s classes		_					
2355	258	113	74 1457	178				
232	301	000	1401	000				

					-					
10 cJ	Lasses,	96.457	, point	ts stat	ole					
Disti	10ution	des c	CLASSES	5	160		70	10	e e	
	308		572		908	14	44	82	90 91	
	500		012		500	11	11	02	.1	
#####	#### ite:	ratior	10 ##	######	####					
10 c]	Lasses,	96.65%	point	ts stab	ole					
Distr	ibution	des d	lasses	5						
	2318		193		210		82	19	2	
	324		583		934	14	23	78	32	
#####	#### ite:	ratior	11 ##	######	####					
10 c]	Lasses, 9	97.40%	/ point	ts stał	ole					
Distr	ribution	des d	lasses	5						
	2292		211		215		85	19	97	
	343		586		960	14	07	74	5	
#####	#### ite:	ratior	12 ##	######	####					
10 c]	Lasses,	97.80%	{ point	ts stab	ole					
Distr	ribution	des d	lasses	5					-	
	2284		215		215		87	20	05	
	356		589		995	13	83	/1	.2	
			40 44							
##### 10 -7	+### 1te	ation	1 13 #1	*###### to otcl	+### ~]~					
10 01	Lasses, :	30.30/	, point	ts star -	ore					
Disti	2200	des c	2125565	5	015		OE	01	5	
	366		599		215	13	00 71	69	.5	
	500		000		1000	10	/1	00	.0	
#####	##### f	inal r	esults	s #####	*#####	###				
10 c]	lasses (conver	gence	=98.3%))					
			0	,,,,						
class	s separal	bility	matr	ix						
	1	5								
	1	2	3	4	5	6	7	8	9	10
1	0									
2	1.9	0								
3	3.4	1.4	0							
4	3.9	2.4	1.3	0						
5	6.8	4.2	2.7	0.8	0					
6	9.0	5.6	3.8	1.5	0.9	0				
7	10.8	6.8	4.7	2.2	1.6	0.8	0			
8	13.0	8.2	5.8	2.9	2.5	1.6	0.8	0		
9	17.2	10.3	7.3	3.7	3.5	2.6	1.8	0.9	0	
10	14.2	9.7	7.2	4.0	3.9	3.2	2.4	1.7	1.0	0
_										
class	s means/	stddev	/ for e	each ba	and					
-	4 (000	~ `								
class	3 1 (228)				~~ ==					
moyer	nes 702	5.48 / 70 770	464.3	9 8158.	.28 //	/8.01 /	121 4	5 8031. 21 70 C	61 /94	6.13
ecart	L-type I	10.112	220.3	943 324	±.92 10	54.599	131.40	51 79.2	:023 51	.5162
class	2 (217	`								
CIASS	2 (217)	, 2770	110 7	1 10140		1/1 00	35 62	8685 3	0 8785	76
écart	-tvne 6	79 055	5 564 8	R6 649	425 7	13 536	854 90	17 480	424 29	5 583
court	, oybe o	10.000	, 001.0	50 010	. 120 1	10.000	001.0	. 100.	121 20	0.000
class	3 (215)								
mover	nes 842	, 7.28 8	3962.44	4 10114	4.7 10	244.3 1	3546.	1 10937	.7 945	4.59
écart	-type 5	89.808	3 616.6	69 783	.836 10	006.66	898.8	21 722.	578 51	0.69
	51									
class	s 4 (85)									
moyer	nes 8974	4.04 9	9646.82	2 11063	3 1177	2.7 155	62.5	15252 1	2472.7	
écart	-type 1	091.02	2 1070	.91 117	70.3 1	258.08	1317.0	05 1278	3.05 11	52.57
	51									
class	5 (215))								
moyer	nnes 889	4.27 9	9662.64	4 11198	3.8 12	319.1 1	6667.8	3 18360	.8 151	74.8
écart	t-type 6	50.006	6 601.6	662 640	0.83 74	40.228	1243.4	47 914.	766 85	5.948
	-									
class	s 6 (366))								
moyer	nes 936	3.72 1	10204.3	3 11954	4.8 13	520 177	53.4 3	20518.5	5 17151	.1
écart	t-type 64	42.708	8 608.0	057 663	3.767	714.718	885.	718 931	.806 7	45.633

class 7 (599) moyennes 9692.46 10568.2 12430.5 14297.5 18566.7 22456.7 19229.1 écart-type 512.937 502.549 626.257 724.265 846.028 818.41 826.925

class 8 (1005) moyennes 9949.63 10862.3 12901.4 15109.7 19602.2 24435.6 21202.7 écart-type 527.455 484.451 494.992 618.607 810.149 750.457 868.985

Appendix C.6. Results of the processing of the Landsat 9 OLI/TIRS Image on February 2023

```
Location: Senegal
Mapset: PERMANENT
         L8 2023f
Group:
Subgroup: res_30m
 L8_2023f_01@PERMANENT
 L8 2023f 02@PERMANENT
 L8 2023f 03@PERMANENT
 L8 2023f 04@PERMANENT
 L8_2023f_05@PERMANENT
 L8 2023f 06@PERMANENT
 L8_2023f_07@PERMANENT
Result signature file: cluster_L8_2023f
Region
          1715145.00 East:
                                435015.00
  North:
  South: 1481685.00 West:
                               209355.00
               30.00 Res:
                                   30.00
  Res:
 Rows:
                7782 Cols:
                                    7522 Cells: 58536204
Mask: no
Cluster parameters
 Nombre de classes initiales: 10
                              17
 Minimum class size:
                               0.000000
 Minimum class separation:
 Percent convergence:
                               98.000000
 Maximum number of iterations: 30
 Row sampling interval:
                               77
 Col sampling interval:
                               75
Sample size: 7040 points
means and standard deviations for 7 bands
moyennes 8748.83 9249.98 10407.4 11511.3 14630.9 16933.1 14828.1
écart-type 1191.3 1448.72 2255.67 3457.16 5679.26 7632.14 6217.75
initial means for each band
classe 1
           7557.53 7801.27 8151.69 8054.12 8951.65 9300.92 8610.34
classe 2
           7822.27 8123.2 8652.95 8822.38 10213.7 10997 9992.06
classe 3
           8087 8445.14 9154.21 9590.64 11475.8 12693 11373.8
classe 4
            8351.73 8767.08 9655.47 10358.9 12737.8 14389 12755.5
classe 5
            8616.47 \ 9089.02 \ 10156.7 \ 11127.2 \ 13999.9 \ 16085 \ 14137.2
classe 6
           8881.2 9410.95 10658 11895.4 15261.9 17781.1 15518.9
classe 7
           9145.93 9732.89 11159.3 12663.7 16524 19477.1 16900.7
classe 8
           9410.67\ 10054.8\ 11660.5\ 13431.9\ 17786.1\ 21173.1\ 18282.4
classe 9
            9675.4 10376.8 12161.8 14200.2 19048.1 22869.2 19664.1
classe 10 9940.13 10698.7 12663 14968.4 20310.2 24565.2 21045.8
class means/stddev for each band
class 1 (2496)
moyennes 7397.33 7594.23 7783.32 7379.16 7315.58 7469.63 7457.21
écart-type 257.134 379.462 656.612 476.84 486.298 184.185 103.77
```

class 2 (158)

moyennes 7876.46 8178.05 9049.89 8908.23 12997.6 9679.61 8534.34 écart-type 525.091 609.018 853.878 1046.68 1198.88 489.001 400.555

class 3 (36)

moyennes 8382.67 8870.58 10132.7 10466.1 13936.5 11387.3 9487.14 écart-type 947.565 1065.53 1372.44 1691.4 1632.83 953.406 696.225

class 4 (57) moyennes 8251.86 écart-type 533.78	8600.88 99 37 587.414	571.46 9959 837.827 10	9.93 15437 1)29.4 1271.3	4481.2 1134 86 860 557.9	2.6 76			
class 5 (134) moyennes 8416.31 8815.56 9833.32 10574.2 15771.8 16461.1 13140.7 écart-type 406.687 433.512 557.12 723.845 1367.17 906.857 862.696								
class 6 (266) moyennes 8708.59 écart-type 475.2	9204.28 10 59 531.153	0390.3 1147 700.063 81	70 16474.1 1 18.458 1227.	.8107.3 1457 04 969.829	4.8 863.811			
class 7 (443) moyennes 9099.78 écart-type 568.16	9692.12 1: 51 626.07 1	1043.4 1246 793.584 804	57 17136.3 1 1.164 936.81	.9840.7 1635 5 918.436 8	7.9 28.39			
class 8 (737) moyennes 9302.5 9 écart-type 374.83	9950.57 114 3 425.163 !	478.8 13254 583.044 633	4.1 18110 21 3.254 877.58	.558.5 17941 31 798.585 9	.3 57.001			
class 9 (1139) moyennes 9569.47 écart-type 401.8	10281.3 1: 13 455.841	1997.1 1413 596 639.83	37.3 19165.5 38 825.612 6	5 23156.4 19 393.586 1018	494.1 .06			
class 10 (1574) moyennes 10089.2 écart-type 634.66	10861.3 12 65 725.644	2962 15506 1032.03 12	7 20357.8 2 216.96 1066.	25237.8 2231 29 1182.48	8.4 1657.15			
Distribution des	classes			101				
2496 266	158 443	36 737	57 1139	134 1574				
######## iteration 10 classes, 92.90	on 1 ###### 0% points :	##### stable						
2457	classes 189	47	67	139				
262	463	736	1386	1294				
######## iteration 10 classes, 94.94 Distribution des 2456	on 2 ###### 1% points s classes 190	##### stable 46	77	150				
265	461	799	1489	1107				
######## iteration 10 classes, 95.65	on 3 ###### 5% points a	##### stable						
Distribution des 2456	classes 189	46	81	170				
258	486	853	1514	987				
######## iteration 10 classes, 96.08	on 4 ###### 3% points :	##### stable						
2457	187	47	85	181				
269	506	908	1495	905				
######## iteration 5 ########### 10 classes, 96.83% points stable								
2457	186	47	91	190				
269	541	948	1455	856				
######## iteration 10 classes, 97.09	on 6 ###### 9% points :	##### stable						
2457	180	53	91	199				
285	564	970	1432	809				
######## iteration 10 classes, 97.64 Distribution des	on 7 ###### 1% points :	##### stable						
2456	178	56	91	204				
296	579	1010	1401	769				
######## iteration 10 classes, 97.64	on 8 ##### 4% points :	##### stable						
Distribution des	classes 174	61	0 2	207				
305	597	1051	1373	726				

10 cl Distr	asses, ibution	97.68% des c	points lasses	sta	ble					
	2454 316		169 615		63 1081	13	96 39	21 69	2 5	
#####	### ite	ration	10 ####	####	####					
IU CI Dietr	asses,	91.14%	points	sta	DIe					
DISCI	2451	ues c.	165		70		96	22	2	
	322		633		1110	13	03	66	8	
##### 10_cl	### ite asses.	eration 98.07%	11 ####	#### sta	#### ble					
Distr	ibution	des c	lasses							
	2447		164 643		75 1128	10	96 76	22 64	8	
#####	##### f	inal r	esults #	####	#######	##	10	01	0	
10 cl	asses (conver	gence=98	8.1%)					
class	separa	bility	matrix							
	1	2	3	4	5	6	7	8	9	10
1	0									
2	3.0	0								
3	2.0	1.1	0							
4	4.3	1.9	1.3	0						
5	6.2	3.3	1.9 (0.9	0					
6	8.3	4.5	2.5	1.8	0.8	0	0			
(8	8.0 11 1	4.9	2.9	2.3	1.4	0.8	0 7	0		
o Q	12 9	0.4 7.6	43 4	3.Z	2.5	2.5	1 5	0.8	0	
10	9.8	6.6	4.3 4	4.0	3.3	2.8	2.0	1.5	0.9	0
class	means/	'stddev	for eac	ch b	and					
		->								
class	1 (244	7)				AF 70				
moyen	nes 738	34.68 7	254 40	750. c co	19 7338	.65 72	100 1	449.93	7447.	4 700
ecart	-type 2	33.526	354.400	5 60	5.312 3	59.398	190.1	.3 96.7	428 65	.728
class	2 (164)								
moyen	nes 776	8.28 8	005.41 8	8737	.76 851	8.4 13	138.8	9607.0	3 8456	.8
écart	-type 2	205.996	186.28	5 24	2.11 33	0.13 1	262.87	607.5	91 379	.622
class	3 (75)									
CLASS	00 (10) nog 850	5 51 9	128 15	1050	1 1 100	28 9 1	1174 8	9722	17 872	5 32
écart	-type S	18.434	942.83	7 10	86.16 1	169.19	1692.	48 153	0.59 9	39.662
	51									
class	4 (96)									
moyen écart	nes 816 -type 4	3.46 8 12.115	518.08 9 431.61	9519 583	.66 986 .174 75	5.24 1 0.222	6131.8 1677.8	14749 1 1030	.6 115 .87 73	50 5.6
class	5 (228	3)								
moyen	nes 856	8.15 9	033.46	1015	5.7 110	75.6 1	6134 1	7188.2	13740	.3
écart	-type 4	83.059	558.08	1 77	6.923 9	04.11	1382.8	872.1	56 678	.826
class	6 (337	·)								
moyen	nes 887	, 1.33 9	394.43	1061	2 11902	16595	.4 192	21.5 1	5596.3	
écart	-type 4	02.996	432.52	557	.997 63	5.147	984.32	833.3	74 715	.065
-1	7 (645									
class	7 (043	0) 18 01	801 57	1136	6 10000	1 177	10 207	'03 / 1	7203 5	
écart	-type 5	521.521	573.69	9 73	8.973 7	56.273	952.2	23.4 1	.531 8	36.2
Court	oype e	21.021	010.00	0 10	0.010 1	00.210	002.2	.00 010	.001 0	00.2
class	8 (112	28)								
moyen	nes 946	3.09 1	0163.8	1181	5.7 138	62 189	02.5 2	2691.9	18913	.4
écart	-type 3	880.886	443.35	7 59	7.014 6	79.936	942.0	91 744	.636 8	87.704
c]	0 (107	(6)								
Class	9 (127 nog 978	0) 27 57 10	0519 4 ·	1240	6 4 147	45 2 1	9700 1	24299	8 210	58 5
écart	-tvpe 3	34.318	380.65	8 52	5.448 6	12.7 8	10.222	749.3	23 968	.629
5001 U	-JPC C	21.010	200.000			-2 0	_ ~ . 222		_0 000	
class	10 (64	6)								
moyen	nes 104	70 112	83.8 130	627.	1 16372	.5 209	92.3 2	6212.4	23777	.5
écart	-type 7	75.83	898.648	123	1.43 13	89.82	1174.1	8 1099	.88 13	60.82
#####	#######	######	## CLAS	SES	#######	######	######	#		

10 classes, 98.07% points stable

######## CLUSTER END (Fri Jul 28 19:46:42 2023) #########

References

- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global land use/land cover with Sentinel 2 and deep learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 4704–4707. https://doi.org/10.1109/IGARSS47720.2021.9553499.
- Ngom, N.M.; Mbaye, M.; Baratoux, D.; Baratoux, L.; Catry, T.; Dessay, N.; Faye, G.; Sow, E.H.; Delaitre, E. Mapping Artisanal and Small-Scale Gold Mining in Senegal Using Sentinel 2 Data. *GeoHealth* 2020, 4, e2020GH000310. https://doi.org/10.1029/2020 GH000310.
- Tong, X.; Brandt, M.; Hiernaux, P.; Herrmann, S.; Rasmussen, L.V.; Rasmussen, K.; Tian, F.; Tagesson, T.; Zhang, W.; Fensholt, R. The forgotten land use class: Mapping of fallow fields across the Sahel using Sentinel-2. *Remote Sens. Environ.* 2020, 239, 111598. https://doi.org/10.1016/j.rse.2019.111598.
- 4. Konarska, K.M.; Sutton, P.C.; Castellon, M. Evaluating scale dependence of ecosystem service valuation: A comparison of NOAA-AVHRR and Landsat TM datasets. *Ecol. Econ.* **2002**, *41*, 491–507. https://doi.org/10.1016/S0921-8009(02)00096-4.
- Anyamba, A.; Tucker, C. Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981–2003. J. Arid Environ. 2005, 63, 596–614. https://doi.org/10.1016/j.jaridenv.2005.03.007.
- Frederiksen, P.; Lawesson, J.E. Vegetation types and patterns in Senegal based on multivariate analysis of field and NOAA-AVHRR satellite data. J. Veg. Sci. 1992, 3, 535–544. https://doi.org/10.2307/3235810.
- Silva, J.M.; Sá, A.C.; Pereira, J.M. Comparison of burned area estimates derived from SPOT-VEGETATION and Landsat ETM+ data in Africa: Influence of spatial pattern and vegetation type. *Remote Sens. Environ.* 2005, 96, 188–201. https: //doi.org/10.1016/j.rse.2005.02.004.
- Martínez, B.; Gilabert, M.; García-Haro, F.; Faye, A.; Meliá, J. Characterizing land condition variability in Ferlo, Senegal (2001–2009) using multi-temporal 1-km Apparent Green Cover (AGC) SPOT Vegetation data. *Glob. Planet. Chang.* 2011, 76, 152–165. https://doi.org/10.1016/j.gloplacha.2011.01.001.
- Pimple, U.; Simonetti, D.; Hinks, I.; Oszwald, J.; Berger, U.; Pungkul, S.; Leadprathom, K.; Pravinvongvuthi, T.; Maprasoap, P.; Gond, V. A history of the rehabilitation of mangroves and an assessment of their diversity and structure using Landsat annual composites (1987–2019) and transect plot inventories. *For. Ecol. Manag.* 2020, 462, 118007. https://doi.org/10.1016/j.foreco.2020 .118007.
- Lemenkova, P. Mapping Wetlands of Kenya Using Geographic Resources Analysis Support System (GRASS GIS) with Remote Sensing Data. *Transylv. Rev. Syst. Ecol. Res.* 2023, 25, 1–18. https://doi.org/10.2478/trser-2023-0008.
- Ogilvie, A.; Poussin, J.C.; Bader, J.C.; Bayo, F.; Bodian, A.; Dacosta, H.; Dia, D.; Diop, L.; Martin, D.; Sambou, S. Combining Multi-Sensor Satellite Imagery to Improve Long-Term Monitoring of Temporary Surface Water Bodies in the Senegal River Floodplain. *Remote Sens.* 2020, *12*, 3157. https://doi.org/10.3390/rs12193157.
- 12. Mayaux, P.; Bartholomé, E.; Fritz, S.; Belward, A. A new land-cover map of Africa for the year 2000. *J. Biogeogr.* 2004, *31*, 861–877. https://doi.org/10.1111/j.1365-2699.2004.01073.x.
- 13. Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. ESRI 10m Annual Land Cover (2017–2023). 2024. Available online: https://gee-community-catalog.org/projects/S2TSLULC/#class-definitions (accessed on 2 July 2024).
- Acker, J.; Williams, R.; Chiu, L.; Ardanuy, P.; Miller, S.; Schueler, C.; Vachon, P.; Manore, M. Remote Sensing from Satellites. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2014. https://doi.org/10.1 016/B978-0-12-409548-9.09440-9.
- Hakimdavar, R.; Hubbard, A.; Policelli, F.; Pickens, A.; Hansen, M.; Fatoyinbo, T.; Lagomasino, D.; Pahlevan, N.; Unninayar, S.; Kavvada, A.; et al. Monitoring Water-Related Ecosystems with Earth Observation Data in Support of Sustainable Development Goal (SDG) 6 Reporting. *Remote Sens.* 2020, *12*, 1634. https://doi.org/10.3390/rs12101634.
- Taveneau, A.; Almar, R.; Bergsma, E.W.J.; Sy, B.A.; Ndour, A.; Sadio, M.; Garlan, T. Observing and Predicting Coastal Erosion at the Langue de Barbarie Sand Spit around Saint Louis (Senegal, West Africa) through Satellite-Derived Digital Elevation Model and Shoreline. *Remote Sens.* 2021, *13*, 2454. https://doi.org/10.3390/rs13132454.
- 17. Crippen, R.E. Calculating the vegetation index faster. *Remote Sens. Environ.* **1990**, *34*, 71–73. https://doi.org/10.1016/0034-425 7(90)90085-Z.
- 18. Li, J.; Lewis, J.; Rowland, J.; Tappan, G.; Tieszen, L. Evaluation of land performance in Senegal using multi-temporal NDVI and rainfall series. *J. Arid Environ.* **2004**, *59*, 463–480. https://doi.org/10.1016/j.jaridenv.2004.03.019.
- Lemenkova, P.; Debeir, O. Computing Vegetation Indices from the Satellite Images Using GRASS GIS Scripts for Monitoring Mangrove Forests in the Coastal Landscapes of Niger Delta, Nigeria. J. Mar. Sci. Eng. 2023, 11, 871. https://doi.org/10.3390/ jmse11040871.
- Ruan, L.; Yan, M.; Zhang, L.; Fan, X.S.; Yang, H. Spatial-temporal NDVI pattern of global mangroves: A growing trend during 2000–2018. *Sci. Total Environ.* 2022, 844, 157075. https://doi.org/10.1016/j.scitotenv.2022.157075.
- Campos, J.C.; Brito, J.C. Mapping underrepresented land cover heterogeneity in arid regions: The Sahara-Sahel example. *ISPRS J. Photogramm. Remote Sens.* 2018, 146, 211–220. https://doi.org/10.1016/j.isprsjprs.2018.09.012.

- 22. Syifa, M.; Park, S.J.; Lee, C.W. Detection of the Pine Wilt Disease Tree Candidates for Drone Remote Sensing Using Artificial Intelligence Techniques. *Engineering* **2020**, *6*, 919–926. https://doi.org/10.1016/j.eng.2020.07.001.
- Budde, M.; Tappan, G.; Rowland, J.; Lewis, J.; Tieszen, L. Assessing land cover performance in Senegal, West Africa using 1-km integrated NDVI and local variance analysis. J. Arid Environ. 2004, 59, 481–498. https://doi.org/10.1016/j.jaridenv.2004.03.020.
- 24. Tappan, G.; Sall, M.; Wood, E.; Cushing, M. Ecoregions and land cover trends in Senegal. J. Arid Environ. 2004, 59, 427–462. https://doi.org/10.1016/j.jaridenv.2004.03.018.
- Deans, J.; Diagne, O.; Nizinski, J.; Lindley, D.; Seck, M.; Ingleby, K.; Munro, R. Comparative growth, biomass production, nutrient use and soil amelioration by nitrogen-fixing tree species in semi-arid Senegal. *For. Ecol. Manag.* 2003, 176, 253–264. https://doi.org/10.1016/S0378-1127(02)00296-7.
- Cabral, A.I.; Costa, F.L. Land cover changes and landscape pattern dynamics in Senegal and Guinea Bissau borderland. *Appl. Geogr.* 2017, 82, 115–128. https://doi.org/10.1016/j.apgeog.2017.03.010.
- Conchedda, G.; Durieux, L.; Mayaux, P. An object-based method for mapping and change analysis in mangrove ecosystems. *ISPRS J. Photogramm. Remote Sens.* 2008, 63, 578–589. https://doi.org/10.1016/j.isprsjprs.2008.04.002.
- Silva, J.; Bacao, F.; Caetano, M. Specific Land Cover Class Mapping by Semi-Supervised Weighted Support Vector Machines. *Remote Sens.* 2017, 9, 181. https://doi.org/10.3390/rs9020181.
- Samasse, K.; Hanan, N.P.; Anchang, J.Y.; Diallo, Y. A High-Resolution Cropland Map for the West African Sahel Based on High-Density Training Data, Google Earth Engine, and Locally Optimized Machine Learning. *Remote Sens.* 2020, 12, 1436. https://doi.org/10.3390/rs12091436.
- Stoorvogel, J.; Kempen, B.; Heuvelink, G.; de Bruin, S. Implementation and evaluation of existing knowledge for digital soil mapping in Senegal. *Geoderma* 2009, 149, 161–170. https://doi.org/10.1016/j.geoderma.2008.11.039.
- 31. Pérez-Hoyos, A.; Udías, A.; Rembold, F. Integrating multiple land cover maps through a multi-criteria analysis to improve agricultural monitoring in Africa. *Int. J. Appl. Earth Obs. Geoinf.* **2020**, *88*, 102064. https://doi.org/10.1016/j.jag.2020.102064.
- Brandt, M.; Hiernaux, P.; Rasmussen, K.; Mbow, C.; Kergoat, L.; Tagesson, T.; Ibrahim, Y.Z.; Wélé, A.; Tucker, C.J.; Fensholt, R. Assessing woody vegetation trends in Sahelian drylands using MODIS based seasonal metrics. *Remote Sens. Environ.* 2016, 183, 215–225. https://doi.org/10.1016/j.rse.2016.05.027.
- 33. Lemenkova, P. Handling Dataset with Geophysical and Geological Variables on the Bolivian Andes by the GMT Scripts. *Data* 2022, 7, 74. https://doi.org/10.3390/data7060074.
- Duncan, C.; Owen, H.J.F.; Thompson, J.R.; Koldewey, H.J.; Primavera, J.H.; Pettorelli, N. Satellite remote sensing to monitor mangrove forest resilience and resistance to sea level rise. *Methods Ecol. Evol.* 2018, 9, 1837–1852. https://doi.org/10.1111/2041-2 10X.12923.
- Lemenkova, P.; Debeir, O. Multispectral Satellite Image Analysis for Computing Vegetation Indices by R in the Khartoum Region of Sudan, Northeast Africa. J. Imaging 2023, 9, 98. https://doi.org/10.3390/jimaging9050098.
- Purkis, S.; Klemas, V. Monitoring changes in global vegetation cover. In *Remote Sensing and Global Environmental Change*; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2011; Chapter 5, pp. 63–90. https://doi.org/10.1002/9781118687659.ch5.
- Lemenkova, P.; Debeir, O. Recognizing the Wadi Fluvial Structure and Stream Network in the Qena Bend of the Nile River, Egypt, on Landsat 8-9 OLI Images. *Information* 2023, 14, 249. https://doi.org/10.3390/info14040249.
- Diouf, A.; Lambin, E. Monitoring land-cover changes in semi-arid regions: Remote sensing data and field observations in the Ferlo, Senegal. J. Arid Environ. 2001, 48, 129–148. https://doi.org/10.1006/jare.2000.0744.
- Suomalainen, J.; Oliveira, R.A.; Hakala, T.; Koivumäki, N.; Markelin, L.; Näsi, R.; Honkavaara, E. Direct reflectance transformation methodology for drone-based hyperspectral imaging. *Remote Sens. Environ.* 2021, 266, 112691. https://doi.org/10.1016/j.rse.20 21.112691.
- Olson, D.; Anderson, J. Review on unmanned aerial vehicles, remote sensors, imagery processing, and their applications in agriculture. *Agron. J.* 2021, 113, 971–992. https://doi.org/10.1002/agj2.20595.
- Lemenkova, P.; Debeir, O. Satellite Image Processing by Python and R Using Landsat 9 OLI/TIRS and SRTM DEM Data on Côte d'Ivoire, West Africa. J. Imaging 2022, 8, 317. https://doi.org/10.3390/jimaging8120317.
- 42. Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; Green, S. Satellite remote sensing of grasslands: From observation to management. *J. Plant Ecol.* **2016**, *9*, 649–671. https://doi.org/10.1093/jpe/rtw005.
- Olson, D.; Chatterjee, A.; Franzen, D.W.; Day, S.S. Relationship of Drone-Based Vegetation Indices with Corn and Sugarbeet Yields. Agron. J. 2019, 111, 2545–2557. https://doi.org/10.2134/agronj2019.04.0260.
- 44. Lemenkova, P.; Debeir, O. R Libraries for Remote Sensing Data Classification by k-means Clustering and NDVI Computation in Congo River Basin, DRC. *Appl. Sci.* 2022, *12*, 12554. https://doi.org/10.3390/app122412554.
- Puertas, O.L.; Brenning, A.; Meza, F.J. Balancing misclassification errors of land cover classification maps using support vector machines and Landsat imagery in the Maipo river basin (Central Chile, 1975–2010). *Remote Sens. Environ.* 2013, 137, 112–123. https://doi.org/10.1016/j.rse.2013.06.003.
- Petropoulos, G.P.; Kontoes, C.; Keramitsoglou, I. Burnt area delineation from a uni-temporal perspective based on Landsat TM imagery classification using Support Vector Machines. *Int. J. Appl. Earth Obs. Geoinf.* 2011, 13, 70–80. https://doi.org/10.1016/j.jag.2010.06.008.

- Anees, S.A.; Mehmood, K.; Khan, W.R.; Sajjad, M.; Alahmadi, T.A.; Alharbi, S.A.; Luo, M. Integration of machine learning and remote sensing for above ground biomass estimation through Landsat-9 and field data in temperate forests of the Himalayan region. *Ecol. Inform.* 2024, *82*, 102732. https://doi.org/10.1016/j.ecoinf.2024.102732.
- Ibrahim, S.; Balzter, H.; Tansey, K. Machine learning feature importance selection for predicting aboveground biomass in African savannah with landsat 8 and ALOS PALSAR data. *Mach. Learn. Appl.* 2024, 16, 100561. https://doi.org/10.1016/j.mlwa.2024.100 561.
- 49. Wood, E.; Tappan, G.; Hadj, A. Understanding the drivers of agricultural land use change in south-central Senegal. *J. Arid Environ.* **2004**, *59*, 565–582. https://doi.org/10.1016/j.jaridenv.2004.03.022.
- Elberling, B.; Touré, A.; Rasmussen, K. Changes in soil organic matter following groundnut–millet cropping at three locations in semi-arid Senegal, West Africa. *Agric. Ecosyst. Environ.* 2003, 96, 37–47. https://doi.org/10.1016/S0167-8809(03)00010-0.
- 51. Hiraldo, R. Experiencing primitive accumulation as alienation: Mangrove forest privatization, enclosures and the everyday adaptation of bodies to capital in rural Senegal. *J. Agrar. Chang.* **2018**, *18*, 517–535. https://doi.org/10.1111/joac.12247.
- Liu, S.; Kairé, M.; Wood, E.; Diallo, O.; Tieszen, L. Impacts of land use and climate change on carbon dynamics in south-central Senegal. J. Arid Environ. 2004, 59, 583–604. https://doi.org/10.1016/j.jaridenv.2004.03.023.
- Tschakert, P.; Tappan, G. The social context of carbon sequestration: Considerations from a multi-scale environmental history of the Old Peanut Basin of Senegal. J. Arid Environ. 2004, 59, 535–564. https://doi.org/10.1016/j.jaridenv.2004.03.021.
- 54. Lufafa, A.; Bolte, J.; Wright, D.; Khouma, M.; Diedhiou, I.; Dick, R.; Kizito, F.; Dossa, E.; Noller, J. Regional carbon stocks and dynamics in native woody shrub communities of Senegal's Peanut Basin. *Agric. Ecosyst. Environ.* **2008**, *128*, 1–11. https://doi.org/10.1016/j.agee.2008.04.013.
- 55. Camara, A.; Hardy, K.; Dioh, E.; Gueye, M.; Piqué, R.; Carré, M.; Sall, M.; Diouf, M.W. Amas et sites coquilliers du delta du Saloum (Sénégal): Passé et présent. *L'Anthropologie* 2017, *121*, 204–214. https://doi.org/10.1016/j.anthro.2017.03.018.
- Paturel, J.E.; Mahé, G.; Diello, P.; Barbier, B.; Dezetter, A.; Dieulin, C.; Karambiri, H.; Yacouba, H.; Maiga, A. Using land cover changes and demographic data to improve hydrological modeling in the Sahel. *Hydrol. Process.* 2017, *31*, 811–824. https://doi.org/10.1002/hyp.11057.
- 57. Lemenkova, P. Mapping Climate Parameters over the Territory of Botswana Using GMT and Gridded Surface Data from TerraClimate. *ISPRS Int. J. Geo-Inf.* 2022, *11*, 473. https://doi.org/10.3390/ijgi11090473.
- Fritz, S.; You, L.; Bun, A.; See, L.; McCallum, I.; Schill, C.; Perger, C.; Liu, J.; Hansen, M.; Obersteiner, M. Cropland for sub-Saharan Africa: A synergistic approach using five land cover data sets. *Geophys. Res. Lett.* 2011, 38, 1–6. https: //doi.org/10.1029/2010GL046213.
- 59. Lemenkova, P. A GRASS GIS Scripting Framework for Monitoring Changes in the Ephemeral Salt Lakes of Chotts Melrhir and Merouane, Algeria. *Appl. Syst. Innov.* 2023, *6*, 61. https://doi.org/10.3390/asi6040061.
- Mbow, C.; Mertz, O.; Diouf, A.; Rasmussen, K.; Reenberg, A. The history of environmental change and adaptation in eastern Saloum–Senegal–Driving forces and perceptions. *Glob. Planet. Chang.* 2008, 64, 210–221. https://doi.org/10.1016/j.gloplacha.20 08.09.008.
- Ndour, A.; Laïbi, R.A.; Sadio, M.; Degbe, C.G.; Diaw, A.T.; Oyédé, L.M.; Anthony, E.J.; Dussouillez, P.; Sambou, H.; Hadji Balla Dièye, E. Management strategies for coastal erosion problems in west Africa: Analysis, issues, and constraints drawn from the examples of Senegal and Benin. *Ocean Coast. Manag.* 2018, 156, 92–106. https://doi.org/10.1016/j.ocecoaman.2017.09.001.
- 62. Ngom, F.; Tweed, S.; Bader, J.C.; Saos, J.L.; Malou, R.; Leduc, C.; Leblanc, M. Rapid evolution of water resources in the Senegal delta. *Glob. Planet. Chang.* 2016, 144, 34–47. https://doi.org/10.1016/j.gloplacha.2016.07.002.
- Lombard, F.; Soumaré, S.; Andrieu, J.; Josselin, D. Mangrove zonation mapping in West Africa, at 10-m resolution, optimized for inter-annual monitoring. *Ecol. Inform.* 2023, 75, 102027. https://doi.org/10.1016/j.ecoinf.2023.102027.
- Carney, J.; Gillespie, T.W.; Rosomoff, R. Assessing forest change in a priority West African mangrove ecosystem: 1986–2010. *Geoforum* 2014, 53, 126–135. https://doi.org/10.1016/j.geoforum.2014.02.013.
- Andrieu, J.; Lombard, F.; Fall, A.; Thior, M.; Ba, B.D.; Dieme, B.E.A. Botanical field-study and remote sensing to describe mangrove resilience in the Saloum Delta (Senegal) after 30 years of degradation narrative. *For. Ecol. Manag.* 2020, 461, 117963. https://doi.org/10.1016/j.foreco.2020.117963.
- Devaney, J.L.; Marone, D.; McElwain, J.C. Impact of soil salinity on mangrove restoration in a semiarid region: a case study from the Saloum Delta, Senegal. *Restor. Ecol.* 2021, 29, e13186. https://doi.org/10.1111/rec.13186.
- Neteler, M.; Beaudette, D.E.; Cavallini, P.; Lami, L.; Cepicky, J., GRASS GIS. In *Open Source Approaches in Spatial Data Handling*; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2008; pp. 171–199. https://doi.org/10.1007/978-3-540-74831-1_9.
- Wessel, P.; Luis, J.F.; Uieda, L.; Scharroo, R.; Wobbe, F.; Smith, W.H.F.; Tian, D. The Generic Mapping Tools Version 6. *Geochem. Geophys. Geosyst.* 2019, 20, 5556–5564. https://doi.org/10.1029/2019GC008515.
- 69. Lemenkova, P.; Debeir, O. Coherence of Bangui Magnetic Anomaly with Topographic and Gravity Contrasts across Central African Republic. *Minerals* 2023, *13*, 604. https://doi.org/10.3390/min13050604.
- Lemenkova, P. Mapping submarine geomorphology of the Philippine and Mariana trenches by an automated approach using GMT scripts. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2022, 76, 258–266. https://doi.org/10.2478/prolas-2022-0039.
- 71. Lemenkova, P. Tanzania Craton, Serengeti Plain and Eastern Rift Valley: Mapping of geospatial data by scripting techniques. *Est. J. Earth Sci.* **2022**, *71*, 61–79. https://doi.org/10.3176/earth.2022.05.

- 72. Lemenkova, P. Cartographic scripts for seismic and geophysical mapping of Ecuador. *Geografie* **2022**, 127, 195–218. https://doi.org/10.37040/geografie.2022.006.
- Neteler, M.; Bowman, M.H.; Landa, M.; Metz, M. GRASS GIS: A multi-purpose open source GIS. *Environ. Model. Softw.* 2012, 31, 124–130. https://doi.org/10.1016/j.envsoft.2011.11.014.
- 74. Neteler, M.; Mitasova, H. Open Source GIS—A GRASS GIS Approach, 3rd ed.; Springer: New York, NY, USA, 2008.
- 75. Woomer, P.; Tieszen, L.; Tappan, G.; Touré, A.; Sall, M. Land use change and terrestrial carbon stocks in Senegal. *J. Arid Environ.* **2004**, *59*, 625–642. https://doi.org/10.1016/j.jaridenv.2004.03.025.
- 76. Carney, J. "The mangrove preserves life": Habitat of African survival in the Atlantic world. *Geogr. Rev.* 2017, 107, 433–451. https://doi.org/10.1111/j.1931-0846.2016.12205.x.
- Galat-Luong, A.; Galat, G. La colonisation de la mangrove par Cercopithecus aethiops sabaeus au Sénégal. *Rev. Écol.* 1976, 30, 3–30. https://doi.org/10.3406/revec.1976.4910.
- 78. Faye, B.; Du, G. Agricultural Land Transition in the "Groundnut Basin" of Senegal: 2009 to 2018. *Land* 2021, 10, 996. https://doi.org/10.3390/land10100996.
- Branoff, B.L. Quantifying the influence of urban land use on mangrove biology and ecology: A meta-analysis. *Glob. Ecol. Biogeogr.* 2017, 26, 1339–1356. https://doi.org/10.1111/geb.12638.
- 80. Robequain, C. La végétation du Sénégal. Ann. Géogr. 1942, 51, 293–297. https://doi.org/10.3406/geo.1942.12096.
- 81. Manlay, R.J.; Cadet, P.; Thioulouse, J.; Chotte, J.L. Relationships between abiotic and biotic soil properties during fallow periods in the sudanian zone of Senegal. *Appl. Soil Ecol.* **2000**, *14*, 89–101. https://doi.org/10.1016/S0929-1393(00)00052-4.
- Bennour, A.; Jia, L.; Menenti, M.; Zheng, C.; Zeng, Y.; Barnieh, B.A.; Jiang, M. Assessing impacts of climate variability and land use/land cover change on the water balance components in the Sahel using Earth observations and hydrological modelling. *J. Hydrol. Reg. Stud.* 2023, 47, 101370. https://doi.org/10.1016/j.ejrh.2023.101370.
- Brandt, M.; Grau, T.; Mbow, C.; Samimi, C. Modeling Soil and Woody Vegetation in the Senegalese Sahel in the Context of Environmental Change. *Land* 2014, *3*, 770–792. https://doi.org/10.3390/land3030770.
- Mazzero, H.; Perrotton, A.; Ka, A.; Goffner, D. Unpacking Decades of Multi-Scale Events and Environment-Based Development in the Senegalese Sahel: Lessons and Perspectives for the Future. *Land* 2021, 10, 755. https://doi.org/10.3390/land10070755.
- Furian, S.; Mohamedou, A.O.; Hammecker, C.; Maeght, J.L.; Barbiero, L. Soil cover and landscape evolution in the Senegal floodplain: A review and synthesis of processes and interactions during the late Holocene. *Eur. J. Soil Sci.* 2011, 62, 902–912. https://doi.org/10.1111/j.1365-2389.2011.01398.x.
- Lézine, A.M. Evolution of the West African Mangrove During the Late Quaternary: A Review. *Géogr. Phys. Quat.* 1997, 51, 405–414. https://doi.org/10.7202/033139ar.
- Loum, M.; Viaud, V.; Fouad, Y.; Nicolas, H.; Walter, C. Retrospective and prospective dynamics of soil carbon sequestration in Sahelian agrosystems in Senegal. J. Arid. Environ. 2014, 100–101, 100–105. https://doi.org/10.1016/j.jaridenv.2013.10.007.
- Brink, A.B.; Eva, H.D. Monitoring 25 years of land cover change dynamics in Africa: A sample based remote sensing approach. *Appl. Geogr.* 2009, 29, 501–512. https://doi.org/10.1016/j.apgeog.2008.10.004.
- Dièye, E.; Diaw, A.; Sané, T.; Ndour, N. Dynamique de la mangrove de l'estuaire du Saloum (Sénégal) entre 1972 et 2010. Dynamics of the Saloum estuary mangrove (Senegal) from 1972 to 2010. *Cybergeo Eur. J. Geogr. Environ. Nat. Paysage* 2013, 629, 1–26.
- Lebigre, J.M. La dynamique des mangroves à travers leurs lisières: Éléments de diagnostic. *Trav. Lab. Géogr. Phys. Appl.* 1998, 17, 65–76. https://doi.org/10.3406/tlgpa.1998.957.
- 91. Diaw, T.; Loubersac, L.; Belbeoch, G. L'analyse des données Spot simulées sur les marais tropicaux. L'exemple des îles du Saloum (Sénégal). *Bull. Assoc. Géogr. Français* **1982**, *59*, 293–295. https://doi.org/10.3406/bagf.1982.5370.
- 92. Lombard, F.; Andrieu, J. Mapping Mangrove Zonation Changes in Senegal with Landsat Imagery Using an OBIA Approach Combined with Linear Spectral Unmixing. *Remote Sens.* **2021**, *13*, 1961. https://doi.org/10.3390/rs13101961.
- 93. Fent, A.; Bardou, R.; Carney, J.; Cavanaugh, K. Transborder political ecology of mangroves in Senegal and The Gambia. *Glob. Environ. Chang.* **2019**, *54*, 214–226. https://doi.org/10.1016/j.gloenvcha.2019.01.003.
- Bourgoin, J.; Valette, E.; Guillouet, S.; Diop, D.; Dia, D. Improving Transparency and Reliability of Tenure Information for Improved Land Governance in Senegal. *Land* 2019, *8*, 42. https://doi.org/10.3390/land8030042.
- 95. Kalema, V.N.; Witkowski, E.T.F.; Erasmus, B.F.N.; Mwavu, E.N. The Impacts of Changes in Land Use on Woodlands in an Equatorial African Savanna. *Land Degrad. Dev.* **2015**, *26*, 632–641. https://doi.org/10.1002/ldr.2279.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.