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Stabilization and Optimal Control of Interconnected SDE - Scalar PDE
System

Gabriel Velho1, Jean Auriol1, Riccardo Bonalli1, Islam Boussaada2

Abstract— In this paper, we design a controller
for an interconnected system consisting of a lin-
ear Stochastic Differential Equation (SDE) actuated
through a linear hyperbolic Partial Differential Equa-
tion (PDE). Our approach aims to minimize the
variance of the state of the SDE component. We
leverage a backstepping technique to transform the
original PDE into an uncoupled stochastic PDE.
As such, we reformulate our initial problem as the
control of a delayed SDE with a non-deterministic
drift. Under standard controllability assumptions, we
design a controller steering the mean of the states to
zero while keeping its covariance bounded. As final
step, we address the optimal control of the delayed
SDE employing Artstein’s transformation and Linear
Quadratic stochastic control techniques.

I. Introduction
The interest in interconnected systems of Ordinary

Differential Equations (ODEs) and Partial Differential
Equations (PDEs) emerged when delays in ODEs were
associated with transport equations, allowing in [1] for a
re-interpretation of the classical Finite Spectrum Assign-
ment [2]. Interconnections involving hyperbolic PDEs
and ODEs can model the propagation of torsional waves
in drilling systems [3], deepwater construction vessels [4],
or heat exchangers systems. Lyapunov and backstepping
methods then facilitated the design of stabilizing con-
trollers for such interconnected systems [5]–[8].

In realistic scenarios, dynamical processes are fre-
quently influenced by disturbances originating, e.g., from
imprecise measurements, parameter uncertainties, exter-
nal disruptions, etc. [9]. Such disturbances may consider-
ably alter the dynamics. Therefore, effectively mitigating
these uncertainties is crucial to establish the reliability
and safety of such controlled systems [10]. Stochastic Dif-
ferential Equations (SDEs) provide broad and accurate
modelization of a large class of uncertain systems [11].
Stochastic control enables the effective design of stabi-
lizing controllers for SDEs, which are also robust against
random fluctuations. Stabilizing SDEs in expectation
is a popular and effective control technique. However,
when doing so, one must make sure the variance remains
bounded to ensure reliability [10]. Robustness may also
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be reliably achieved by seeking controllers that keep the
state variance relatively small, see [10], [12].

In interconnected ODE-PDE systems, modeling uncer-
tainties that appear in the ODE dynamics is often key
to accuracy and robustness. Some methods have been
proposed to stabilize PDE+ODE systems in the presence
of bounded or model-based disturbances [7], [13]. It has
been shown that SDEs may offer a broader framework for
modeling such disturbances. Numerous methods exist for
addressing the issue of SDEs with delays [14], [15]. While
delays can be interpreted as transport PDEs, coupled
systems with more complexity have yet to be thoroughly
investigated. Our study aims to provide insights and
methodologies for effectively controlling such intercon-
nected SDE-PDE systems for the first time. Specifically,
in this paper, we bridge the gap between deterministic
PDE+ODE control and stochastic control by merging
methodologies from both fields. Our main contribution is
the introduction of a novel approach to reliably control a
PDE+SDE system with bidirectional coupling. The pro-
posed controllers are implementable and straightforward
to compute. Concretely our contribution is twofold:

• We propose a feedback law achieving the stabiliza-
tion of the PDE+SDE system, driving the mean of
the states to zero while bounding the variance.

• Additionally, we introduce an optimal control ap-
proach to minimize the SDE variance over a finite
time horizon, thus enhancing the robustness of the
control strategy with respect to disturbances.

Our approach leverages the backstepping methodology to
allow a reformulation of the coupled system as a system
of delayed SDE with non-deterministic drift. We address
our control objectives by employing Artstein’s transfor-
mation and Linear Quadratic (LQ) control techniques.

The paper is organized as follows. In Section II, we
outline the problem formulation. Next, in Section III,
we utilize the backstepping transformation to reduce
the problem to controlling an input delayed SDE with
a random drift term, while also establishing the well-
posedness of the system. In Section IV, we propose a
stabilizing feedback law for the SDE. Finally, in Section
V, we present an optimal control approach to minimize
the variance of the SDE.

II. Problem formulation
A. Notations

For a given n ∈ N \ {0}, state variables take values
in Rn, while control variables take values in R. We



assume we are given a filtered probability space (Ω, F ≜
(Ft)t∈[0,∞),P), and that stochastic perturbations are
due to a one-dimensional Wiener process Wt, which is
adapted to the filtration F . Let T > 0 be some given time
horizon. For any r ∈ N\{0}, we denote by L2

F ([0, T ],Rr)
the set of square integrable processes P : [0, T ] × Ω →
Rr that are F–progressively measurable, whereas the
subset C2

F ([0, T ],Rr) ⊆ L2
F ([0, T ],Rr) contains processes

whose sample paths are continuous. The spaces of semi-
definite and definite positive symmetric matrices in Rn

are denoted by S+
n and S++

n , respectively. If X ∈
L2

F ([0, T ],Rn), we denote by VX(·) its variance, that is
VX(t) ≜ E[(X(t) − E[X(t)])T (X(t) − E[X(t)])] ∈ R.
Finally, we recall that if f1 and f2 are two deterministic
functions in L2([0, T ],R), Itô formula yields

E
[(∫ t

0
f1(s)dWs

) (∫ t

0
f2(s)dWs

)]
=

∫ t

0
f1(s)f2(s)ds.

(1)

B. Control system
In this paper, we consider coupled PDE+SDE systems

of the form

dX(t) = (AX(t) + Bv(t, 0))dt + σ(t)dWt

ut(t, x) + λux(t, x) = η+(x)v(t, x)
vt(t, x) − µvx(t, x) = η−(x)u(t, x)
u(t, 0) = qv(t, 0) + MX(t)
v(t, 1) = ρu(t, 1) + Vin(t)
X(0) = X0, u(0, x) = u0(x), v(0, x) = v0(x),

(2)

in the time-space domain [0, +∞)×[0, 1]. The state of the
system is (X(·), u(·, x), v(·, x)) ∈ Rn × (L2([0, 1]))2. The
velocities µ > 0 and λ > 0 are assumed to be constant,
whereas the coupling terms η+ and η− are continuous
functions. The boundary coupling terms ρ and q verify
|ρq| < 1 to avoid an infinite number of unstable poles,
which is necessary to guarantee the existence of robust-
ness margins for the closed-loop system [16]. We also
assume q ̸= 0. The matrices A ∈ Rn×n, B ∈ Rn×1, M ∈
R1×n are constant, and σ is a deterministic diffusion in
L∞([0, T ],Rn). Finally, (X0, u0, v0) ∈ Rn × (L2([0, 1]))2

and the control input Vin takes values in R. The class
of system (2) naturally appear when modeling a heat-
exchanger connected to a temperature system subject
to random perturbations (e.g., the temperature of a
building disrupted by a random outside temperature or
sunlight). We defer the proof of the closed-loop well-
posedness of system (2) to Section III.

C. Objective and approach overview
The system naturally contains multiple feedback loops

or couplings that can potentially introduce instabilities.
The objective of the paper is twofold:

• First, we aim to design a feedback control law to
stabilize the mean of the system, driving it to zero
while ensuring the variance remains bounded.

• Then, we provide a more noise-robust controller
for the SDE state. This can be typically obtained
through variance minimization [12].

To achieve the aforementioned design, we propose the
following methodology:

1) First, we use an invertible backstepping transfor-
mation to map the coupled SDE-PDE system into
a cascade SPDE-SDE system.

2) Secondly, using the method of characteristics, we
prove the well-posedness of this latter system (and
consequently, of the original system). We also show
that the state X can be expressed as the solution
of an SDE with input delay and random drifts.

3) Then, using the Artstein transform, we design an
appropriate stabilizing control law.

4) Finally, we tackle the minimization of the variance
using classical tools from stochastic LQ control.

In our approach, the control law Vin will write Vin =
VBS + Veff . Here, the component VBS corresponds to
a backstepping controller that would stabilize the PDE
subsystem in the absence of the SDE. The component
Veff corresponds instead to the controller that will be
leveraged to solve the variance minimization problem.

III. Backstepping Transformation for System
Simplification.

In this section, we show that the original system (2)
can be rewritten as a delayed SDE with random drifts.

A. Backstepping transformation

Taking inspiration from [16], we consider the following
backstepping change of variables:(

α(t, x)
β(t, x)

)
=

(
u(t, x)
v(t, x)

)
+

∫ x

0
K(x, y)

(
u(t, y)
v(t, y)

)
dy

+ γ(x)X(t), (3)

where, K(x, y) =
(

Kuu(x, y) Kuv(x, y)
Kvu(x, y) Kvv(x, y)

)
and γ(x) =(

γα(x) γβ(x)
)T . The kernels Kuu, Kuv, Kvu, and Kvv

are continuous functions defined on the triangle domain
T ≜ {(x, y), x ∈ [0, 1], y ∈ [0, x]}, whereas γα and γβ are
in C1([0, 1]). On their respective domains of definition,
K and γ verify the following set of kernel equations:

ΛKx(x, y) + Ky(x, y)Λ + K(x, y)η(y) = 0,
Λγ′(x) + γ(x)Ā + λK(x, 0)M̄ = 0,
ΛK(x, x) − K(x, x)Λ = −η(x), γα(0) = −M,

K(x, 0)
(
λq −µ

)T + γ(x)B = 0, γβ(0) = 0,

(4)

where Λ = diag(λ, −µ), η =
(

0 η+

η− 0

)
, Ā = diag(A, A),

B = diag(B, B) and M̄ = diag(M, 01×n). The set of
equations (21) is well-posed and admits a unique solution
(Kuu, Kuv, Kvu, Kvv, γα, γβ) in

(
C0(T )

)4 ×
(
C1([0, 1])

)2,
see, e.g., [16]. Differentiating equation (3) with respect
to time and space (in the sense of distributions), and
integrating by parts, we can show that the target states



(α, β, X) are solutions to the following target system:
dX(t) = (AX(t) + Bβ(t, 0))dt + σ(t)dWt,
dα(t, x) + λαx(t, x)dt = γα(x)σ(t)dWt,
dβ(t, x) − µβx(t, x)dt = γβ(x)σ(t)dWt,
α(t, 0) = Qβ(t, 0), β(t, 1) = Veff (t),

(5)

where VBS is defined as
VBS(t) = −ρu(t, 1) − γβ(1)X(t)

−
∫ 1

0
Kvu(1, y)u(t, y)dy −

∫ 1

0
Kvv(1, y)v(t, y)dy.

(6)

Unlike the existing results in the literature on stabiliza-
tion of PDE+ODE systems [5], [16], we obtain additional
terms in the target system. These are due to the additive
noise in the SDE that is mapped back into the PDE,
through the boundary coupling. Consequently, the states
α and β are solutions of an SPDE (whose solution should
be understood in the weak sense [17]). As it will be seen
in the following, this noise cannot be entirely compen-
sated by the control input and will be mapped back into
the SDE as additional random drift terms. Note that,
in the absence of the SDE sub-system, the PDE would
be finite-time stable. However, due to the cancellation of
the term ρu(t, 1), the feedback operator is not strictly
proper. This flaw may cause delay/robustness issues as
emphasized in [16]. Partial cancellation of the reflection
and filtering methods have been respectively proposed in
[16] and [6] to guarantee the existence of robustness mar-
gins (with respect to delays and uncertainties). However,
these techniques do not directly adjust to the current
stochastic configuration. In particular, we should be able
to show the robust mean square stability but quantifying
the effects of these techniques on the variance seems
challenging. Such a robustness analysis is out of the scope
of this paper and left for future works.

B. Well-posedness of the closed loop
Lemma 1: If Veff is in C2

F ([0, T ]), then the closed-loop
target system (5) is well-posed, that is the processes t 7→
α(t, ·) and t 7→ β(t, ·) are in C2

F ([0, T ]; L2(0, 1)), and the
SDE state X is in C2

F ([0, T ];Rn).
Proof: Using the method of characteristics, we

have for all t > 1
µ and all x ∈ [0, 1], β(t, x) =

Veff

(
t − 1−x

µ

)
+

∫ t

t− 1−x
µ

γβ (x + µ(t − s)) σ(s)dWs. Since
γβ is continuously differentiable, we obtain [17, The-
orem 6.10] that the stochastic convolution term t 7→∫ t

t− 1−·
µ

γβ (· + µ(t − s)) σ(s)dWs, is sample path contin-
uous in L2(0, 1). Since Veff is in C2

F ([0, T ]), t 7→ β(t, ·) is
also sample path continuous in L2(0, 1). The regularity
of α can be proven in the same way. The solution of
the SDE system is sample path continuous if the input
t 7→ β(t, 0) is in L2

F [9]. Using the Burkholder-Davis-
Gundy inequality [18] we have that the stochastic process
t 7→

∫ t

t− 1
µ

γβ (µ(t − s)) σ(s)dWs is in L2
F , which in turn

means that β(t, 0) is in L2
F ([0, T ]), which concludes the

proof.

Since the backstepping transformation is a Volterra
transformation, it is boundedly invertible [1] , which
implies the well-posedness of the original system (2).

C. A delayed SDE
Using the method of characteristics, we have that X(t)

is the solution of the following input-delayed stochastic
differential equation with random coefficients{

dX(t) = (AX(t) + BVeff (t − h) + r(t))dt + σ(t)dWt

X(0) = X0, Veff (s) = β(0, 1 + µs) ∀s ∈ [−h, 0)
(7)

where h ≜ 1
µ and r(t) ≜ B

∫ t

t−h
γβ (µ(t − s)) σ(s)dWs.

Therefore, we now only focus on controlling the de-
layed SDE (7) and minimizing the variance of the state.
We follow a methodology similar to the one outlined in
[15]. However, the inclusion of the extra random drift
term r(t) requires to modify our approach to minimize
the variance, as this term cannot be predicted.

IV. Study of the delayed SDE : a stability
result and a minimal bound of the variance
In this section, we extend the Artstein transform [2]

to our stochastic setting to provide a predictor Y of the
state X that follows a non-delayed SDE. From now on,
we denote by T > h a possibly infinite final time.

A. Artstein transform
Let X be the process solving equation (7). The Art-

stein transform of X is the process Y (t), which is adapted
to F , that is defined by

Y (t) ≜ X(t) +
∫ t

t−h

eA(t−s−h)BVeff (s)ds. (8)

One readily verifies that Y satisfies the following non-
delayed stochastic equation{

dY (t) =
(
A(t)Y (t) + BVeff (t) + r(t)

)
dt + σ(t)dWt

Y (0) = 0,
(9)

where B ≜ e−AhB. We can now apply known results
from non-delayed stochastic control to steer (9) as de-
sired. However, it is for now unclear how to compute
the covariance of X, which we aim to estimate once the
covariance of Y is available. We have the following lemma

Lemma 2: Let X be the process solving equation (7),
and Y its Artstein transform defined in (8). Then, for all
t ∈ [h, T ], we have

X(t) = eAhY (t − h) +
∫ t

t−h

eA(t−s)r(s)ds

+
∫ t

t−h

eA(t−s)σ(s)dWs. (10)
Proof: Using the analytic formula for linear

SDEs [9], we obtain X(t) = eAhX(t − h) +∫ t

t−h
eA(t−s)r(s)ds +

∫ t

t−h
eA(t−s)BVeff (s − h)ds +∫ t

t−h
eA(t−s)σ(s)dWs. By expressing X(t − h) in

terms of Y (t − h), a change of variable in the
regular integral of Veff yields X(t) = eAhY (t − h) +



∫ t

t−h
eA(t−s)r(s)ds − eAh

∫ t−h

t−2h
eA(t−s−2h)BVeff (s)ds +∫ t−h

t−2h
eA(t−s−h)BVeff (s)ds+

∫ t

t−h
eA(t−s)σ(s)dWs, which

gives the desired result.
Equation (10) states that X(t) can only be controlled
through Y (t − h), in that the additional noise term∫ t

t−h
eA(t−s)σ(s)dWs cannot be controlled. The other

noise term can only be partially mitigated by Y (t − h).

B. Stabilization of the delayed SDE through the Artstein
transform.

If the pair (A, B) is controllable, Artstein’s predictor
enables the design of a feedback controller to stabilize
the delayed SDE in the sense that it ensures exponen-
tial convergence to zero of its mean, while keeping the
covariance bounded.

Theorem 3: Assume that the pair (A, B) is control-
lable. Define the feedback controller Veff (t) = −KY (t),
where Y is given by equation (8), and K is such that
H ≜ A − BK is Hurwitz. Then, the control law Vin(t) =
VBS(t) + Veff (t) drives the means of the states to zero
while keeping their variances bounded. That is, there
exist C > 0, (dependent on the parameters of the system
and K) and ν > 0 (dependent on the eigenvalues of A −
BK) , such that, for any initial conditions (X0, u0, v0),
for all x in [0, 1] and t > 0:

∥E[X(t)]∥ + ∥E[u(x, t)]∥ + ∥E[v(x, t)]∥ ≤ Ce−νt×
×

(
∥E[X0]∥ + ∥E[u0]∥ + ∥E[v0]∥

)
,

E
[
∥X(t)∥2]

+ E
[
∥u(x, t)∥2]

+ E
[
∥v(x, t)∥2]

≤ C

The proof of the Theorem can be found in Appendix IX.
Despite its theoretical advantages, the Artstein’s

transform encounters practical limitations. Discretizing
the integral during its computation can potentially ren-
der the closed-loop system unstable, as discussed in [19].
To address this issue, solutions such as filtering have
been proposed to implement the controller safely [6],
[19]. However, exploring these solutions further is beyond
the scope of our study. Interestingly, setting γβ(0) = K
in the backstepping transformation, we obtain dX(t) =
[(A − BK)X(t) + r(t)]dt + σ(t)dWt, which implies the
stability if (A − BK) is Hurwitz.

C. Minimum variance bound of the SDE
We leverage equation (10) to write X(t) as the sum

of a Ft−h-measurable process and a stochastic integral
depending only on values of dWs for s ∈ [t − h, t].
The independence of both terms yields a direct relation
between the variance of X(t) and of Y (t − h), which is
later used in the next section.

Lemma 4: Let X be the process solving equation (7),
and let Y be its Artstein transform (8). For all t ∈ [h, T ],
we have

VX(t) = Vmin(t)+E
[
[Y (t − h) + G(t − h)]T eAT h

×eAh[Y (t − h) + G(t − h)]
]

, (11)

where

Vmin(t) ≜
∫ t

t−h

σ(s)T
[
eA(t−s) + N(t − s)

]T

×
[
eA(t−s) + N(t − s)

]
σ(s)ds,

and G(t) ≜
∫ t

t−h

[∫ s+h

t
eA(t−τ)γβ(µ(τ − s))dτ

]
σ(s)dWs

and N(u) ≜
∫ 0

−u
e−Aτ γβ(µ(τ + u))dτ .

Proof: Fix t ∈ [h, T ]. We start by separating the
integral of r(s) in (10) into a Ft−h-measurable process
and a non-controllable process:∫ t

t−h

eA(t−τ)r(τ)dτ =
∫ t

t−h

∫ τ

τ−h

eA(t−τ)γβ(µ(τ − s))σ(s)dWsdτ,

Since the integrand in the double integral is bounded, we
can apply the stochastic Fubini theorem [20, Chapter 4,
Theorem 45] to obtain∫ t

t−h

eA(t−τ)r(τ)dτ =
∫ t−h

t−2h

(∫ s−h

t−h

eA(t−τ)γβ(µ(τ − s))dτ

)
×

σ(s)dWs +
∫ t

t−h

(∫ t

s

eA(t−τ)γβ(µ(τ − s))dτ

)
σ(s)dWs∫ t

t−h

eA(t−τ)r(τ)dτ = eAhG(t − h) +
∫ t

t−h

N(t − s)σ(s)dWs.

We can then rewrite the state X as the sum of a Ft−h

adapted process and a noise:

X(t) = eAh[Y (t − h) + G(t − h)]

+
∫ t

t−h

[
eA(t−s) + N(t − s)

]
σ(s)dWs.

(12)

We have that Y (t − h) and G(t − h) are σ(Ws : 0 ≤
s ≤ t − h)-measurable, and that for r ∈ [0, t − h], Wr

is independent from the stochastic integral in equation
(12) (see details in [15, Lemma 3]). Therefore, Y (t −
h) + G(t − h) is independent of the stochastic integral.
Consequently, the variance of the sum of the integrals is
equal to the sum of the variance of each integral. Using
equation (1) for f1(s) = f2(s) = (eA(t−s) +N(t−s))σ(s),
we obtain that the variance of the stochastic integral
corresponds Vmin. This concludes the proof.

Similarly to [15], we note that the variance of X is
bounded by a minimal variance caused by the delay
induced by the PDE.

V. Minimization of the variance through LQ
control

In the previous section, we designed a feedback con-
troller that stabilized in mean the interconnected PDE-
SDE system while guaranteeing a bounded variance.
However, such a control law may not guarantee that
the variance remains small. In what follows, we provide
an efficiently implementable control strategy that keeps
the state covariance of the delayed SDE consistently low
along the trajectory. For this, we propose to compute
controllers via techniques from Linear Quadratic (LQ)



control [21]. In this section, we suppose the final time T
is finite. The goal consists of minimizing the quadratic
functional cost JR, defined as:

JR(Veff , X) ≜ E

[∫ T

h

X(t)T Q(t)X(t)dt

]

+ E

[∫ T −h

0
Veff (t)T R(t)Veff (t)dt

]
,

(13)

where Q ∈ L∞([0, T ], S+
n ) and R ∈ L∞([0, T ], S++

n ).
This functional cost penalizes the weighted variance
along the trajectory, as well as the control effort. These
matrices are chosen based on the desired trade-off be-
tween state penalization and control effort penalization
throughout time. Our problem thus states:

min
Veff ∈U

JR(Veff , X), X solves SDE (7). (14)

Using equation (10), we replace the process X with the
process Y +G in JR. The benefit of this transformation is
that optimal control techniques for non-delayed systems
may be leveraged, e.g., [21].

A. Equivalent form of the system.
In this section, we use a change of variables to write the

cost as a linear quadratic cost in terms of a non-delayed
SDE. Let us introduce the state Y defined by

Y (t) ≜ Y (t) + G(t), (15)

where Y has been defined in equation (8). For t > h, let
us denote Vmin,Q(t) as

Vmin,Q(t) ≜
∫ t

t−h

σ(s)T
[
eA(t−s) + N(t − s)

]T

Q(t)·[
eA(t−s) + N(t − s)

]
σ(s)ds.

Lemma 5: The cost function JR rewrites as

JR(Veff , X) = E

[∫ T −h

0
Y (t)T Q(t)Y (t)dt

]

+ E

[∫ T −h

0
Veff (t)T R(t)Veff (t)dt

]
+

∫ T

h

Vmin,Q(t)dt,

(16)

where Q(t) ≜ eAT hQ(t + h)eAh is symmetric positive.

Proof: We can rewrite the term E
[
X(t)T Q(t)X(t)

]
in equation (13) using Ȳ . Adjusting the computations
proposed in Lemma 4, we directly obtain

E
[
X(t)T Q(t)X(t)

]
= E

[
Y (t − h)T Q(t − h)Y (t − h)

]
+ Vmin,Q(t).

This concludes the proof.
Lemma 6: The process Y satisfies the following SDE dY (t) =

(
AY (t) + BVeff (t) + r(t)

)
dt

+ (1 + g(0))σ(t)dWt,
Y (0) = Y0,

(17)

with r(t) =
∫ t

t−h
Γ(t − s)σ(s)dWs, Γ(u) = Bγβ(µu) +

g′(u) − Ag(u) and g(u) ≜
∫ h−u

0 e−Aτ γβ(µ(τ + u))dτ .
Proof: Let us remark that the function g is con-

tinuously differentiable and that for all t > h, G(t) =∫ t

t−h
g(t − s)σ(s)dWs. Ito’s formula yields

dG(t) = g(0)σ(t)dWt − g(h)σ(t − h)dWt−h

+
(∫ t

t−h

g′(t − s)σ(s)dWs

)
dt

Since g(h) = 0, we obtain

dY (t) = dY (t) + dG(t)
=

(
AY (t) + BVeff (t) + r(t) + AG(t) − AG(t)

)
dt

+
(∫ t

t−h

g′(t − s)σ(s)dWs

)
dt + (1 + g(0))σ(t)dWt

which finally yields equation (17).
We can now leverage the results from [21] to address
the LQ problem expressed in terms of Y . This approach
yields an optimal control solution minimizing (13) in the
form of a feedback in Y .

B. Solving the optimal control problem.
When addressing a Linear Quadratic (LQ) stochastic

control problem, the optimal control is characterized by a
solution to a Riccati equation. Since, in our case, the SDE
has a random coefficient (r), the corresponding Riccati
equation is a Backward SDE (BSDE). Solving BSDEs is
generally complex and requires sophisticated numerical
algorithms. However, in our case, we are able to ana-
lytically compute an explicit solution for the considered
BSDE, allowing a relatively straightforward computation
of the optimal control.

Proposition 7: The optimal control V ∗
eff minimizing

(13) is given by

V ∗
eff (t) = −R−1B

T (
P (t)Y (t) + ϕ(t)

)
, (18)

where P is a symmetric matrix solution to the determin-
istic Riccati ODE

Ṗ (t) = −AT P (t) − P (t)A − Q(t) + P (t)BR−1B
T

P (t),

with P (T − h) = 0, and where ϕ is given by

ϕ(t) =
∫ t

t−h

[∫ s+h

t

ΦΠ(t, τ)P (τ)Γ(τ − s)dτ

]
σ(s)dWs,

with ΦΠ(·, ·) the fundamental matrix associated to the
matrix function Π(·) defined as Π(t) ≜ P (t)BR−1B

T −A.
Proof: Since Vmin,Q(t) is independent from the

control variable, Lemma 5 shows that the minimization
problem (14) is equivalent to the following:

min
Veff ∈U

JR(Veff , Y ), Y solves SDE (17). (19)

where JR ≜ E
[∫ T −h

0 Y (t)T Q(t)Y (t)dt
]

+

E
[∫ T −h

0 Veff (t)T R(t)Veff (t)dt
]

. To solve this LQ



problem, we may apply the results in [21] to obtain
that the optimal control V ∗

eff is given by (18), with P
verifying the BSDE{

dP (t) =
[
−AT P (t) − P (t)A − Q(t)

+ P (t)BR−1B
T

P (t)
]

dt + Λ(t)dWt,

with P (T − h) = 0, and with ϕ verifying the BSDE{
dϕ(t) = [Π(t)ϕ(t) − P (t)r(t)] dt + ξ(t)dWt,

with ϕ(T − h) = 0. The BSDE verified by P is only
composed of deterministic coefficients, and therefore Λ =
0. As for the BSDE verified by ϕ, it is linear affine and
can, therefore, be solved explicitly. Using the method
described in [11, Chapter 10.2], we obtain

ϕ(t) = E

[∫ T −h

t

ΦΠ(t, τ)P (τ)r(τ)dτ

∣∣∣∣∣ Ft

]
. (20)

by writing r as a stochastic integral, the stochastic Fubini
theorem yields

ϕ(t) = E

[∫ T −h

t−h

(∫ max(T −h,s+h)

min(t,s)
Ψ(t, τ, s)dτ

)
σ(s)dWs

∣∣∣∣ Ft

]
where Ψ(t, τ, s) ≜ ΦΠ(t, τ)P (τ)Γ(τ − s). We conclude
the proof using the classical result [18] that for any
function f ∈ L2

F (0, T ) and any 0 ≤ t1 ≤ t2 ≤ T ,
E

[∫ t2
0 f(s)dWs

∣∣∣ Ft1

]
=

∫ t1
0 f(s)dWs.

In simulations, computing the stochastic integral is
straightforward as we have access to the random realiza-
tions of the Brownian motion that is sampled. However,
in practice, obtaining the Brownian motion trajectory
may not always be feasible. We can address this challenge
through Monte Carlo methods. A common approach in
stochastic control is to precompute numerous optimal
trajectories through simulation and store them. When
employing the algorithm online, users can then reference
these pre-generated optimal trajectories.

VI. Simulations

In this section, we present simulation results applying
our feedback stabilization method presented in Theorem
3 to an unstable one-dimensional SDE. This unstable
system is academic, the parameters are chosen to demon-
strate the efficiency of our method. The SDE parameters
are chosen as follows : A = 0.6, B = 1, σ(t) = 0.6 and
X0 = 2. The PDE parameters are : µ = 2, λ = 1,
η+ = η− = 0.3, M = ρ = 1 and q = 0.25.

Results in Figure 1 demonstrate that, even though the
delay caused by the PDE induces a short spike at the
start, the controller effectively stabilizes the state while
maintaining bounded deviation. Moreover, a higher gain
in the controller induces a lower variance of the state and
therefore a safer control.

Fig. 1. Mean and deviation (square root of the variance) of the
SDE state are depicted two systems stabilized with different gains.

The values were computed through a Monte-Carlo approach.

VII. Conclusion
In this paper, we have introduced two approaches

for the control of bidirectionally coupled PDE+SDE
systems. These two approaches utilize a combination of
classical PDE+ODE tools and stochastic control tech-
niques. One approach achieves stabilization in mean with
bounded variance of the states, while the other minimizes
the SDE variance to ensure additional robustness against
noise. We plan to explore further avenues for research,
including the generalization of the PDE to a system
of n × m linear first-order equations, as well as the
extension of the SDE framework to incorporate multi-
plicative noise. We also plan to investigate the potential
benefits of employing alternate backstepping techniques
used successfully in PDE+ODE systems, such as the
multi-step approach [22].
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VIII. Equation de noyau (temporaire)



λ(Kuu)x(x, y) + (Kuu)y(x, y)λ + Kuv(x, y)η−(y) = 0
λ(Kuv)x(x, y) − (Kuv)y(x, y)µ + Kuu(x, y)η+(y) = 0
λKuv(x, x) + Kuv(x, x)µ + η+(x) = 0
Kuu(x, 0)λq − Kuv(x, 0)µ + γα(x)B = 0
λγ′

α(x) + γα(x)A + Kuu(x, 0)λM = 0
γα(0) = −M,

(21)
as well as

−µ(Kvu)x(x, y) + (Kvu)y(x, y)λ + Kvv(x, y)η−(y) = 0
−µ(Kvv)x(x, y) − (Kvv)y(x, y)µ + Kvu(x, y)η+(y) = 0
−µKvu(x, x) − Kvu(x, x)λ + η−(x) = 0
Kvu(x, 0)λq − Kvv(x, 0)µ + γβ(x)B = 0
−µγ′

β(x) + γβ(x)A + Kvu(x, 0)λM = 0
γβ(0) = 0.

(22)

IX. Appendix - Proof of Theorem 3
In what follows, if X is a stochastic process, we denote

its expectation by mX(t) ≜ E[X(t)]. If u is a function of
time and space, we denote its expectation by mu(t, x) =
E[u(x, t)]. We denote by C a possibly overloaded constant
dependent on the parameters of the system.

Proof: Let (u, v, X) be the solution of the dynamics
(2), and (α, β) given by the backstepping transformation
(3), and Y the Artstein transform of X. We consider a

controller Vin = VBS + Veff with the backstepping con-
troller VBS given by (6) and the effective SDE controller
Veff given by Veff (t) = −KY (t). The gain K is chosen
such that H ≜ A − BK is Hurwitz, which is possible
since if (A, B) is controllable, then (A, B) is controllable
(see [15, Theorem 6]).

First part of the proof: mean exponential stabi-
lization. With this controller, for t > 0, Y follows the
dynamic

dY (t) =
(
HY (t) + r(t)

)
dt + σ(t)dWt.

where r(t) is given by the stochastic integral as in
equation (7). We note that it is therefore always of mean
0. The mean mY (t) is therefore given by

mY (t) = eHtmY (0).

At the initial time, the process Y is given by

Y (0) = X(0) +
∫ 0

−h

eA(−s−h)BVeff (s)ds

= X0 +
∫ 0

−h

eA(−s−h)Bβ(0, 1 + µs)ds.

Through the definition of the backstepping transforma-
tion, since the kernels K are bounded, we have that

∥β(0, x)∥ ≤ ∥v(0, x)∥ + C
(

∥X0∥ + ∥u0∥L2 + ∥v0∥L2

)
Therefore

∥mY (t)∥ ≤ Ce−νt
(

∥X0∥ + ∥u0∥L2 + ∥v0∥L2

)
Where ν is the highest eigenvalue of H. By taking the
expectation of (10), we obtain

mX(t) = eAhmY (t − h),

and by taking the expectation of the explicit value of
β(t, x) (as in the proof of Lemma 1), we obtain

mβ(t, x) = E
[
Veff

(
t − 1 − x

µ

)
+

∫ t

t− 1−x
µ

γβ (x + µ(t − s)) σ(s)dWs

]
= E

[
Veff

(
t − 1 − x

µ

)]
= −KmY

(
t − 1 − x

µ

)
.

We can obtain a similar equation for α. Therefore,
the expectations of Y (t), X(t), α(t, x) and β(t, x) are
exponentially decreasing. We conclude by bounding in
the exact same way the expectation of u and v through
the linear inverse backstepping transformation(

u(t, x)
v(t, x)

)
=

(
α(t, x)
β(t, x)

)
+

∫ x

0
L(x, y)

(
α(t, y)
β(t, y)

)
dy

+ γL(x)X(t),

where L is a bounded kernel.



Second part of the proof: bound on the variance.
We need first to bound the variance of Y (t). We do this
through its explicit formula:

Y (t) = eHtY (0)+
∫ t

0
eH(t−s)σ(s)dWs +

∫ t

0
eH(t−s)r(s)ds

therefore, by expanding the product and using Young
inequality on the crossed terms we obtain

E[Y (t)T Y (t)] ≤ C
(
E

[∥∥eHtY (0)
∥∥2]

+
∫ t

0

∥∥∥eH(t−s)σ(s)
∥∥∥2

ds

+
∫ t

0
eHT (t−s)E[r(s)T r(s)]eH(t−s)ds

)
.

Thanks to the Itô formula for the quadratic variation of
a stochastic integral, the expectation term in r can be
bounded as follows

E[r(s)T r(s)] ≤ h∥σ∥2
∞∥γ∥2

∞ ≤ C.

Since H is Hurwitz and all the other terms in the
integrals are bounded, we have that

E[Y (t)T Y (t)] ≤ C.

with C depending on the norms of the parameters of
the system. From this bound, we can deduce in the same
way that E[X(t)T X(t)] ≤ C by using (10). The bound on
the variance of α(t, x) and β(t, x) is deduced from their
explicit expression (always using Young inequality for the
crossed terms, then the Ito formula for the stochastic
integrals)

E[β(t, x)T β(t, x)] ≤ Ch∥σ∥2
∞∥γ∥2

∞

+ C∥K∥2E

[
Y

(
t − 1 − x

µ

)T

Y

(
t − 1 − x

µ

)]
Finally, the bound on u(t, x) and v(t, x) can be deduced
from the inverse backstepping transformation and the
fact that the kernels are bounded.
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