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Abstract — This paper focuses on the first step of a larger 

research program. The objective of this step is to model and 

control the initial part of a wind musical instrument (flute) which 

is the artificial mouth, for the purpose of precisely controlling the 

input pressure and the output flow that will be feeding the 

resonator of the instrument in order to get a very precise musical 

note. The modelling part will be done using Matlab/Simulink 

blocks that will present the system description and its parameters. 

The control law system design of the pressure inside the artificial 

mouth will be used in this modelling. For the control part, a 

frequency-domain approach is used to synthesize a traditional PI2 

controller and a CRONE controller. Finally, a comparative study 

shows that the CRONE controller leads to a better robust and 

stable degree of the pressure supply with respect to its 

uncertainties. 

 

Keywords- Wind musical instrument; pressure control; 

artificial mouth; CRONE controller; flute; PI2 Controller. 

I. INTRODUCTION 

Virtual modeling and construction of a musical instrument can 

afford to reproduce the exact sound of an existing instrument, 

even sounds that are unplayable in other parts of real physical 

instruments. Musical instruments are of different types: Beat, 

String, and wind instruments. The main focus here is a one type 

of wind musical instruments which is the flute. When modeling 

an acoustic tube, three principles must be kept in mind: 

Realism, low cost, and modularity. These three points are 

contradictory because for example, realism needs high cost. 

However, the main concept is the stability of the overall system 

in time and frequency domain. The three main parts of any wind 

instrument are the following: Mouth piece, resonator, and the 

horn or the radiator as seen in fig.1 [1]. 

 

Fig. 1 Artificial loop based on the ear of the musician 

Why developing a Model? Mainly to be able to play the flute 

numerically and precisely tune and control each musical note. 

In addition, modeling is a step towards optimizing the musical 

function of the flute and reduces error while playing music. 

Also this work will help beginners hear and play very accurate 

musical notes from their startup. 

Blowing machines (so-called artificial mouths) were developed 

since the early stage of research in physical and musical 

acoustics for studying wind instruments [2] [3]. When replacing 

a musician by an artificial mouth, what is seeked is obviously 

more controlled measurements, since the different parameters 

may be tuned independently by the experimenter. In the past, 

the blowing pressure was generally manually adjusted using a 

pressure reducer, which became a delicate task when it was 

desired to obtain a precise blowing pressure, or even impossible 

when regular ramps were necessary to measure the bifurcations 

very precisely. This is the reason why the first artificial mouths 

were then equipped with pressure regulation based on PID 

controllers [2] [3]. 

 

The first step in this study is to develop a simulator 

programmed with Matlab/Simulink which will aid in the design 

of an artificial mouth. The second step will be the realization of 

the experimental model and its characteristics by comparing 

numerical simulation and experimentation results. The 

objective is then to complete and recalibrate the simulator so 

that it highly maps the experimental setup. The third step is the 

study of dynamic phenomena within the wind instrument both 

numerically and experimentally. These phenomena will be 

studied first from a point of view of the physical acoustics 

perspective, in particular the study of the viscothermic losses 

characterized by non-integer (or fractional) behaviors [4], then 

from a musical acoustics perspective. 

 

Thus, this paper is divided into six sections. In section II, 

musical notes and their frequencies are presented. In section III, 

the general model of the flute instrument and its sub blocks are 

described with an emphasis on the first block e.g., the artificial 

mouth. In section IV, the process of modeling the artificial 

mouth is illustrated. Section V presents the control process of 



the pressure at the artificial mouth using PI and CRONE 

controllers with their simulated results in frequency and time 

domains. Section VI concludes this paper with some proposed 

future work. 

II. MUSICAL TONES DESCRIPTION 

 

Fig. 2 presents the different octaves, or doublings of the 

fundamental frequency, which are subdivided in twelve 

semitones. The frequency ratio between two semitones is 

constant and equal to √2
12

. The fundamental frequency of the 

middle (A=La) is set to 440 Hz in contemporary music [5]. 

 

 
Fig. 2. Musical notes with their corresponding frequencies 

 

Equally tempered tuning will be used. Note that a musical 

instrument is tuned such that it approximates a system. For 

purely mechanical and constructional reasons, there are very 

few instruments that can be tuned exactly. Notable exceptions 

are the violin family, because here, the player is able to exactly 

determine the fundamental frequency of the note to be played. 

This is also the reason why there often exist different versions 

of the same instrument. For instance, flutes exist in 

contemporary and baroque tuning. It is important to define each 

musical note with its frequency. This will allow for high 

precision control and tuning [5]. 

III. NON LINEAR MODELLING OF FLUTE ARTIFICIAL MOUTH 

Since the flute is composed mainly of three parts, we will 

focus now on modeling, controlling, and testing the mouth part 

by creating an artificial mouth and controlling its input and 

output pressure. For this reason, a physical setup was created to 

mimic the function of a flute. It is composed of a pressure 

source, pressure regulator, pressure sensor, servo-valve, flow 

sensor, artificial mouth, and the mouth piece of the flute.  

Fig.3 shows the artificial mouth with its corresponding input 

pressure from a controlled servo valve. The servo valve is fed 

with compressed air about 6 bars which in turn is reduced by a 

pressure reducer. It is controlled by a computer system to 

achieve the most desirable output. The air flow from the output 

of the servo valve is measured via an air flow sensor for proper 

regulation of the air flowing into the artificial mouth. At the 

output of the artificial mouth, a pressure sensor is installed to 

read the output pressure which is read again via the computer 

system. 

 
Fig. 3 Pressure controlled artificial mouth block diagram (see [3]) 

 

 As shown in fig.3, the artificial mouth is the most critical part 

in this design since its input and output pressures must be highly 

controlled to produce the required frequency musical tone. Since 

our main focus at this stage is the artificial mouth modeling and 

control, we will start studying the transfer function 

characteristics of this part with respect to pressure. 

 

 The flow input and pressure output relation from the 

artificial mouth is presented in fig.4. The air flow is the 

controlled output of the servo valve with respect to the desired 

pressure at the artificial mouth output. This figure can be 

enlarged a represented as a block diagram as seen in fig.5. 

 
Fig. 4. Artificial Mouth Block input and output 

 

Fig. 5 presents the block diagram of the nonlinear model of 

the artificial mouth with all the parameters related to flow, 

pressure, air density, surface area, volume, and the 

thermodynamic constants. 

 
 

Fig. 5. Block diagram of the nonlinear model of the artificial mouth 

 

Two different pressures can be observed in fig.3.The 

pressure P2(t) at the output of the servo-valve (input of the 

artificial mouth) and the pressure Pm(t) measured inside the 

artificial mouth. These pressures are being compared to the 

atmospheric pressure Patm.  

The pressure drop in the components and the 

interconnections are defined as follow: 

- pressure drop in the servo valve:  

 psv(t) = P1 – P2(t) ; (1) 



2
S .

Qsv(t) Qc(t)

t

d
0

. 
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+

+

-

Qmp(t)

Pm(0)

pm(t)
( )

dt

tdpm



- pressure drop in the servo valve artificial mouth connection 

pipe:  

 ppipe(t) = P2(t) – Pm(t) ; (2) 

- pressure drop in the wind instrument mouth piece: 

 pmp(t) = Pm(t) – Patm . (3) 

In this study, the servo valve and the artificial mouth are 

connected directly without any pipe, so one can consider that 

ppipe(t) = 0 and so P2(t) = Pm(t). 

Furthermore, these different pressures are linked by the relation: 

 psv(t) + pmp(t) = P1 – Patm = constant , (4) 

showing that if pmp(t) increases, then psv(t) decreases, and 

reciprocally. 

 

 The artificial mouth is the central part that connects the 

volume flow Qsv(t) from the servo valve to the pressure Pm(t) at 

the input of the mouth piece of the wind musical instrument.  

During the transient, dynamics induced by the filling of the 

mouth cavity has to be taken into account. Assuming air is a 

perfect gas, the state equation is given by: 

 ( ) ( )
m

r T
P t M t

V
= , (5) 

where r represents the thermodynamic constant of air equal to 

287 J.kg-1.K-1, T is the temperature of air at ambient conditions 

(equal to 293.5 K) and M(t) is the mass of the air inside volume 

V (representing the artificial mouth). The mass M(t) of air inside 

the cavity depends on the difference between the volume flow 

Qsv(t) at the input of the mouth and the volume flow Qmp(t) at 

the output (blown into the instrument). Since only small 

variations are considered, the air density  can be considered 

constant. In this case, the mass M(t) is given by:  

 ( ) ( ) ( )( ) ( )
0

0

t

sv mp
M t Q Q d M   = − + , (6) 

where the expression of Qmp(t) is given by Bernoulli law: 

 
( ) ( )

mp mp
Q t P t=   , (7)  

with 
2

S


=  and S the cross-section. 

 Fig.6 presents an example of time responses obtained with 

the simulator for the following scenario: 

An analysis of the nonlinear model using the simulator 

allowed us to conclude that the amplitude of 0.1V of the 

harmonic signal Uc(t) represents an upper bound of the small 

variations uc(t) around the operating point considered. 

 
 (a) (b) 

 
 (c) (d) 

Fig. 6. Time responses of the nonlinear model: control voltage Uc(t) (a), 
volume flow Qsv(t) and Qmp(t) (b), volume flow Qc(t) (c) and pressure 

Pm(t) (d) 

IV. LINEARIZED MODELLING OF AN ARTIFICIAL MOUTH 

In order to linearize the model of the artificial mouth, the 

initial condition Pm(0) is considered as an equilibrium pressure: 

( )0
e

m m
P P= . Therefore, Pm(t) is defined as: 

 ( ) ( )e

m m m
P t P p t= +  , (8) 

where pm(t) is a small variation around 
e

mP . 

As for the volume flow Qmp(t) inside the mouth piece:  

 ( ) ( )e

mp mp mp
Q t Q q t= + , (9) 

where ( ) ( )tp
R

tqPQ m
mp

mp
e

m
e
mp

1
and ==  , (10)  
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2e

m m

mp

e

mp m P P m

Q

R P P



=


= =


 . (11)  

Fig.8 presents the block diagram of the linearized model 

around the static equilibrium pressure 
e

mP  where Cam is the 

pneumatic capacity associated with the volume V of the 

artificial mouth:  ( )
Tr

V
sCam


=  .          (12)  

 

Fig.7 Block diagram of the linearized model of the artificial mouth 

 From the block diagram of fig.7, the transfer function H1(s) 

of the artificial mouth is deduced:
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where   /1and, 10 === ammpmp CRRH .  (14) 

The linearization of the servo-valve leads to a second order 

transfer function, Hsv(s), defined by: 
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The complete linearized model used for the design of the 

control law is represented by the transfer function G(s):  
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where  G0 = Ksv H0 . (17) 

 

V. CONTROL OF PRESSURE AT THE ARTIFICIAL MOUTH OUTPUT 

WITH THEIR RESULTS 

A. Values of the tested plant 

In this paper, we consider that the supply pressure P1 is 

uncertain. The different parameter values are: 
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For the control law, three transfer functions are defined: 
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( ) ( )
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
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+= 2for
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00

GGGsG

GsGGsG

nomnom
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Figure 8 presents the Bode plots of G(j) for three values of 

the supply pressure: P1 = 3 bar (in blue), P1 = 4.5 bar (in black) 

and P1 = 6 bar (in red). It shows significant uncertainties on the 

gain whereas the phase is constant. 

 
Fig. 8  Bode plots of G(j) for three values of the supply pressure: 
P1 = 3 bar in blue, P1 = 4.5 bar in black and P1 = 6 bar in red  

 

As for the linear feed forward, it is based on the inverse static 

gain of the linearized model used for the design of the control 

law, namely: 

 ( ) ( )tPGtU refnomff
1
_0
−=    . (20)  

B. User specifications 

The user specifications of the control system defined from 

a preliminary work [1] [2] are the following: 

- a phase margin M > 40°; 

- a open-loop gain crossover frequency u = 63 rad/s; 

- a steady-state error equal to 0 for a input ramp; 

- a maximum of the variation U of the control signal in the 

linear zone max[U] = 1 V. 
 

To have a significant comparison, the design of the two 

controllers PI2 and CRONE is defined in order to obtain the 

same response speed, the same stability margins and the same 

precision in steady-state in the case of the nominal linearized 

model. 

C. PI2 Controller synthesis 

For the nominal model, the user specifications can be 

respected by using a PI2 controller. The frequency response for 

the PI2 controller has the following form [11]: 
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The parameter ωi is defined referring to the first constraint of 

the user specifications as follows: 
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where the notation “tan” is the trigonometric function tangent. 

C0 is defined referring to the second constraint of the user 

specifications as follows: 
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where (j) is the open-loop transfer function. Thus, 
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With M = 45° and u = 63 rad/s, we obtain: 
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D. CRONE Control-System Design (CSD) methodology 

The CRONE (a French acronym which means fractional 

order robust control) CSD methodology is a frequency-domain 

approach developed since the eighties [6] [7] [8] [9]. It is based 

on the common unity-feedback configuration to be presented 

later. 

When the plant variations (due to plant parameter 

variations) are centered on frequency ωu, the plant phase 

variation (with respect to the frequency) is cancelled by those 

of the controller. Then there is no phase margin variation when 

frequency ωu 
varies. Such a controller produce a constant open 

loop phase whose Nichols locus is a vertical straight line named 

frequency template. This template ensures the robustness of 

phase and modulus margins and of resonant peaks of 

complementary sensitivity and sensitivity functions. 

The general form of the nominal open-loop transfer function 

nom(s) of the second generation CRONE control is defined by 

equation (27): 
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The first part of the above equation(30) represents the behavior 

at low frequencies with an integer order nl, the second 

represents the behavior at middle frequencies with non-integer 

order n varying between 1 and 2 around u, and the last 

represents the behavior at high frequencies with an integer order 

nh. As for the gain β0, it can be determined from the following 

relation [9]: 

 ( ) ( )( )( )
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0 /1/1/
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lnn
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With M = 45°, u = 63 rad/s,  Pa/V3566;20110 G  and 

in accordance with the methodology described in [9], we obtain 

the parameters of the open-loop transfer function: 
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When the nominal open-loop transfer is determined, the 

fractional controller CF(s) is defined by its frequency response:  

 ( ) ( ) ( ) jGjjC nomnomF /=  , (30) 

whose phase is variable. The synthesis of the rational controller 

CR(s) consists in identifying ideal frequency response CF(j) by 

a of a low-order transfer function. The parameters of a transfer 

function with a predefined structure are adapted to frequency 

response CF(j). The rational integer model on which the 

parametric estimation is based, is given by:  

 ( ) ( ) ( ) jAjBjCR /=  , (31) 

where B(j) and A(j) are polynomials of specified integer 

degrees nB 
and nA. All the frequency-domain system-

identification techniques can be used.  

From values given by equation (32), we obtain: 
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with 

0 1 2 3 4 5 6

 zi  (rad/s)  4.54 14.46  46.12  73.94 147 469

 pj  (rad/s) 3.46  8.42 26.85  85.6 273 870  
 

Fig. 9 presents the Bode plots of the two controllers: CPI2(j) (in 

blue) and CR(j) (in black). One can observe that the two 

controllers have the same values of gain and phase at  = u = 

63 rad/s. 

 
Fig. 9. Bode plots of CPI2(j) (in blue) and CR(j) (in black)  
 

E. Results and testing 

A- Fig.10 presents the structure of the Control Law System 

(CSL). The main function of the CSL is to satisfy robust 

tracking of the reference pressure Pref(t) of the artificial mouth. 

For this purpose, a control law system architecture presented 

below is designed. It consists of a robust controller synthesized 

with the CRONE methodology [6] [7] [8] allowing a control 

law by feedback pressure provided by a sensor system and a 

complementary control with a pressure feed forward.  

 

Fig. 10. Structure of the Control Law System (CSL) 

 

B- Fig.11 presents the Nichols loci of (j) obtained with 

the PI2 controller (Fig.11.a) and the CRONE controller 

(Fig.11.b) for the three cases (min, nom, max). As one can see, 

for the nominal case (in black), the phase margin (M = 45°) is 

the same with the two controllers. With the CRONE controller, 

the phase margin remains constant for all the cases (Fig.11.b), 

thus showing the robustness of the phase margin. It is not the 

case with the PI2 controller (Fig.11.a). 

Fig.12 presents the Bode plots of complementary sensitivity 

function T(s) (a) (b), and sensitivity function S(s) (c) (d) obtained 

with the PI2 controller (a) (c) and the CRONE controller (b) (d) 

for the three cases (min, nom, max). For the nominal case (in 

black), the bandwidth at -3dB (-3dB = 100 rad/s) and the 

resonant peak of T(j) (QT = 3dB) are the same with the two 

controllers. With the CRONE controller, the resonant peaks QT 

of T(j) (Fig.10.b) and QS of S(j) (Fig.12.d) remain constant 

for all the cases, thus showing the robustness of the resonant 

peaks. It is not the case with the PI2 controller (Fig.12.a and c). 
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 (a) (b) 

Fig. 11. Nichols loci of (j) obtained with the PI2 controller (a) and 

the CRONE controller (b) for the three cases: min (in blue), nom (in 

black) and max (in red) 

 
 (a) (b) 

 
 (c) (d) 

Fig. 12. Bode plots of T(j) (a) (b) and S(j) (c) (d) obtained with the 

PI2 controller (a) (c) and the CRONE controller (b) (d) for the three 

cases: min, nom and max 

 

Fig.13 presents the time responses of pm(t) (a) (b) and uc(t) 

(c) (d) obtained with the PI2 controller (a) (c) and the CRONE 

controller (b) (d) applied to the nonlinear model (simulator) from 

a constant reference pressure Pref = 1250 Pa, with a amplitude of 

the variation pref(t) equals to 275 Pa (small variation) and for the 

three cases (min, nom, max). For the nominal case (in black), the 

rise time and the first overshoot (Fig. 13.a and b) of the small 

variation pm(t) are the same with the two controllers. With the 

CRONE controller, the first overshoot (Fig.13.b) remains 

constant for all the cases, thus showing the robustness of the 

stability degree. 

As for the variation of the control signal uc(t) (Fig. 13.c and 

d), it is smaller than the maximum U = 1 V in all the cases. 

  
 (a) (b) 

  
 (c) (d) 

Fig. 13. Step responses of Pm(t) (a) (b) and Uc(t) (c) (d) obtained with: 
the PI2 controller (a) (c) and the CRONE controller (b) (d) for P1 = 3 

bar in blue, P1 = 4.5 bar in black and P1 = 6 bar in red 

VI. CONCLUSION AND FUTURE WORKS 

A simulator programmed with MatLab/Simulink was 

developed and used to design a control law system of the 

pressure inside an artificial mouth. Simulation results show that 

CRONE CSD methodology leads to a better robustness of the 

stability degree with respect to uncertainties of the supply 

pressure in addition to a more tunable frequency of different 

musical notes. 

The next step will be realizing the experimental model and 

its characteristics by comparing both numerical simulation and 

experimentation results. The objective will be to complete and 

recalibrate the simulator so that it is as faithful as possible to the 

experimental setup.  
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