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Abstract 

Background A previous study highlighted the role of antibiotic-induced dysbiosis in the tick microbiota, facilitat-
ing the transstadial transmission of Babesia microti from nymph to adult in Haemaphysalis longicornis. This study 
builds on previous findings by analyzing sequence data from an earlier study to investigate bacterial interactions 
that could be linked to enhanced transstadial transmission of Babesia in ticks. The study employed antibiotic-treated 
(AT) and control-treated (CT) Haemaphysalis longicornis ticks to investigate shifts in microbial community assembly. 
Network analysis techniques were utilized to assess bacterial interactions, comparing network centrality measures 
between AT and CT groups, alongside studying network robustness and connectivity loss. Additionally, functional 
profiling was conducted to evaluate metabolic diversity in response to antibiotic treatment.

Results The analysis revealed notable changes in microbial community assembly in response to antibiotic treat-
ment. Antibiotic-treated (AT) ticks displayed a greater number of connected nodes but fewer correlations compared 
to control-treated (CT) ticks, indicating a less interactive yet more connected microbial community. Network centrality 
measures such as degree, betweenness, closeness, and eigenvector centrality, differed significantly between AT and 
CT groups, suggesting alterations in local network dynamics due to antibiotic intervention. Coxiella and Acinetobacter 
exhibited disrupted connectivity and roles, with the former showing reduced interactions in AT group and the lat-
ter displaying a loss of connected nodes, emphasizing their crucial roles in microbial network stability. Robustness 
tests against node removal showed decreased stability in AT networks, particularly under directed attacks, confirm-
ing a susceptibility of the microbial community to disturbances. Functional profile analysis further indicated a higher 
diversity and richness in metabolic capabilities in the AT group, reflecting potential shifts in microbial metabolism 
as a consequence of antimicrobial treatment.
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Conclusions Our findings support that bacterial interaction traits boosting the transstadial transmission of Babesia 
could be associated with reduced colonization resistance. The disrupted microbial interactions and decreased net-
work robustness in AT ticks suggest critical vulnerabilities that could be targeted for managing tick-borne diseases.

Keywords Haemaphysalis longicornis, Babesia microti, Microbiota, Microbial community assembly, Network analysis

Background
Ticks are obligate hematophagous arthropods that play a 
significant role in the transmission of various infectious 
agents, such as bacteria (e.g., Borrelia and Anaplasma), 
viruses (e.g., tick-borne encephalitis virus, TBEV), and 
protozoan parasites (e.g., Babesia and Theileria) [1]. The 
Asian long-horned tick, Haemaphysalis longicornis, has 
been associated with more than 30 human and animal 
pathogens, raising medical and veterinary concerns [2]. 
Originating from Eastern Asia, this tick has the capability 
to rapidly spread into new areas, presenting an emerging 
disease threat (e.g., recent invasion of USA) [2]. Notably, 
H. longicornis has been identified as a vector for Babesia 
[3]. Among Babesia pathogenic species, B. microti has 
gained significant recognition as the primary etiological 
agent responsible for babesiosis in humans, particularly 
in the USA [4, 5]. This hemoparasite can infect small 
rodents like mice and voles, serving as the primary reser-
voir hosts for B. microti.

The typical mode of Babesia transmission involves 
transovarial transmission through adult tick to their off-
spring [6,  7]. Transovarial transmission enhances spe-
cies diversification by facilitating host switching to other 
vertebrate hosts [8]. In addition to transovarial transmis-
sion, Babesia pathogens exhibit transstadial transmission 
[9]. However, transovarial transmission of B. microti has 
been found absent in ticks belonging to the genus Ixodes, 
including Ixodes ricinus [10] as well as in ticks outside the 
Ixodes genus, such as Rhipicephalus haemaphysalis [11]. 
Consequently, this pathogen relies exclusively on trans-
stadial transmission after acquisition from an infected 
host [10]. Furthermore, Gray et  al. [10] experimen-
tally demonstrated that while transstadial transmission 
occurs, the parasite does not persist after molting.

Combination therapies, typically involving an anti-
protozoal agent and an antibiotic, were recommended 
and applied for the treatment of human babesiosis [12]. 
Antibiotics ingested with the tick’s blood meal have the 
potential to disrupt the tick microbiota, leading to tick 
gut dysbiosis [5]. Ticks harbor a range of pathogenic 
microorganisms alongside endosymbionts and commen-
sals, emphasizing the impact of these microbes on tick 
fitness and pathogen transmission [13,  14]. Microbiota 
dysbiosis may either reduce [15] or increase [16] the tick’s 
susceptibility to tick-borne pathogens (TBPs), poten-
tially shaping tick-borne diseases (TBDs) ecology. In the 

context of B. microti, gut microbiota has been found to 
play a role in facilitating the transstadial transmission of 
this pathogen from nymphs to adult H. longicornis ticks 
[16]. Furthermore, in their study, Wei et  al. [16] found 
that antibiotics administered to mouse hosts altered the 
microbiota of adult ticks, with significant differences in 
the abundance of Coxiella and Acinetobacter between the 
antibiotic-treated group (AT) and the untreated control 
group (CT). Coxiella was the most abundant genus in CT 
adults, whereas Acinetobacter dominated in AT adults, 
indicating a shift in the microbiota composition due to 
antibiotics [16]. Similar evidence has been observed in 
Plasmodium falciparum parasites, where antibiotics have 
been shown to increase parasite colonization in mosqui-
toes [17], an effect mediated by the vector microbiota 
[17]. This highlights the significance of tick-microbiota 
interactions for vector competence, including the mod-
ulation of tick vector capacity by influencing pathogen 
colonization of tick tissues [18]. Overall, the evidence 
suggests a potential role of colonization resistance in the 
context of TBPs [19] where the microbiota within ticks 
may resist the colonization or transmission of TBPs like 
B. microti [16], a protection disrupted by antibiotic-
induced dysbiosis [20].

Colonization resistance is the phenomenon where 
established microbial communities prevent the invasion 
and establishment of new, often pathogenic, species [21, 
22, 242523]. This study aims to build upon the findings 
of Wei et al. [16] by identifying bacterial interaction traits 
associated with reduced colonization resistance and 
enhanced transstadial transmission of Babesia in ticks. 
While microbial diversity traits linked to colonization 
resistance have been extensively studied in vectors like 
ticks [16] and mosquitoes [17], employing a network-
based approach to examine the impact of antibiotics on 
tick microbiota offers a comprehensive method for evalu-
ating factors affecting microbial community interactions, 
structure, and functionality. Microbes with co-occur-
rence patterns are known to be influenced by metabolic 
interactions and competition for resources [26, 27], offer-
ing the potential to capture crucial community character-
istics that may not be revealed in analyses based solely on 
microbial diversity or abundance [27, 28].

Network approach enables the detailed mapping 
of community interactions [29], potentially revealing 
how antibiotics disrupt normal microbial relationships 
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essential for pathogens such as Babesia. For example, 
it can identify how altered interactions of key taxa like 
Coxiella and Acinetobacter may compromise the com-
munity’s ability to resist Babesia colonization. By assess-
ing changes in metrics such as modularity and centrality, 
network analysis provides quantitative evidence of the 
effects of disturbance on microbial community organiza-
tion [30]. For instance, increased modularity and altered 
centrality in antibiotic-treated ticks may indicate a less 
compartmentalized with strong separation between com-
munities and potentially less resilient microbial network, 
facilitating Babesia establishment and proliferation.

Furthermore, networks allow the evaluation of emerg-
ing system properties such as the robustness of micro-
bial communities [30], which allows deciphering how 
changes impact community structure and function, 
particularly in response to the loss [29,  31] and addi-
tion [31] of specific nodes or bacterial taxa. Ultimately, 
this approach not only enhances our comprehension of 
how antibiotics indirectly influence Babesia dynamics by 
altering host microbiota but may also contribute to pre-
dictive modelling of disease transmission, offering crucial 
insights for the effective management of TBDs. There-
fore, this study aims to explore the repercussions of anti-
biotic-induced dysbiosis on microbial interactions within 
Haemaphysalis longicornis ticks. Specifically, it targets 
the identification of bacterial interaction traits associated 
with colonization resistance and heightened transstadial 
transmission of B. microti. Employing a network-based 
approach, the study intends to comprehensively map 
and analyze the structural, functional, and interactive 
aspects of tick microbiota under antibiotic exposure. The 
research holds a scientific merit by elucidating the impact 
of antibiotics on tick microbiota and subsequent patho-
gen transmission dynamics. It advances our understand-
ing on the impacts of antibiotics on tick microbiota and 
subsequent B. microti transmission dynamics.

Methods
Original 16S rRNA datasets
In this study, we used available 16S rRNA amplicon 
sequence datasets generated by Wei et al. [16]. Sequenc-
ing was performed on an Illumina MiSeq system and the 
resultant data has been deposited in the National Center 
for Biotechnology Information (NCBI)’s GenBank, 
under Sequence Read Archive (SRA) accession numbers 
SRP322057 and SRP323180. The raw data was collected 
as part of a study evaluating the effects of antibiotics on 
the microbiota of H. longicornis ticks and their implica-
tions for B. microti transmission, comparing the micro-
biota of nymphal ticks fed on Babesia microti-infected 
mice treated with antibiotics (AT) with the control-
treated group (CT).

Analysis of 16S rRNA amplicon sequences
To facilitate a comprehensive exploration of the tick 
microbiota’s composition and function, we retrieved 16S 
rRNA sequences from the Sequence Read Archive (SRA) 
repository within the Quantitative Insights Into Micro-
bial Ecology (QIIME2) 2023.7 environment. Briefly, the 
q-fondue script, following the methodology outlined by 
Bolyen et  al. [32], facilitated the download process. The 
sequence data (demultiplexed fastq files) underwent 
denoising, quality trimming, merging, chimera removal, 
and filtering using DADA2 software [33] implemented 
within the QIIME2 [32]. Taxonomic assignment to 
Amplicon Sequence Variants (ASVs) was accomplished 
using the Classify-Sklearn Naive Bayes method based 
on the 16S rRNA SILVA database v.138 [34]. The result-
ing taxonomic table was collapsed at the genus level, and 
subsequently employed for network analysis and pathway 
prediction.

Bacterial co‑occurrence networks analysis
Co-occurrence networks were constructed for the CT 
and AT groups using taxonomic information at the genus 
level to investigate the effect of antibiotic treatment on 
community assembly. The prevalence of Coxiella and Aci-
netobacter within the microbiota in CT and AT groups 
respectively [16] suggested a possible influence of both 
taxa on community assembly and stability in response to 
antibiotic treatment. In addition, global co-occurrence 
networks were constructed for each condition (CT and 
AT) after the individual removal of Coxiella and Acine-
tobacter to assess their specific impacts. In the graphi-
cal visualization of microbial community assemblies, 
bacterial taxa are represented by nodes and the signifi-
cant interactions between taxa are represented by edges. 
Sparse Correlations for Compositional data (SparCC) 
method [35] implemented in the SpiecEasi R package 
[36] analysis was used to identify significant positive 
(weight > 0.75) or negative (weight < -0.75) interactions 
between taxa, Gephi software 0.10.0 [37] was employed 
to visualize and analyze network features [i.e. number 
of nodes and edges, network diameter, modularity, aver-
age degree, weighted degree, clustering coefficient and 
centrality]. Additionally, the Core Association Network 
(CAN) analysis identified common microbial associa-
tions between CT and AT networks, conducted using the 
Anuran toolbox [38] within the Anaconda Python envi-
ronment (Anaconda Software Distribution, 2023).

Comparative network analysis
The network comparisons between the same taxa in 
two different bacterial networks were conducted using 
the package Network Construction and Comparison for 
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Microbiome Data (NetCoMi) [39] in R v.4.0.3 (R Core 
Team, 2023) [40], and performed using RStudio (RStudio 
Team, 2020) [41]. By comparing networks: (i) between 
CT and AT groups, (ii) between CT and AT groups after 
individual removal of Coxiella (woC) and Acinetobacter 
(woA), and (iii) within the same CT or AT group in the 
presence and after the individual removal of both taxa, 
the study aims to understand how these taxa influence 
network structure. The Jaccard index was computed to 
assess dissimilarities in local centrality measures (degree, 
betweenness centrality, closeness centrality, and eigen-
vector centrality) between the two networks [i.e., CT vs. 
AT; CT vs. CT (woC); CT (woC) vs. AT (woC)], provid-
ing insights into the impact of antibiotic treatment and 
taxa presence and absence on network structure. This 
index evaluates the similarity between sets of ’most cen-
tral nodes’ in networks, defined as nodes with centrality 
values above the empirical 75% quartile. It ranges from 
0 (totally different) to 1 (unique). The associated p-val-
ues, P(J ≤ j) and P(J ≥ j), indicate the probability that the 
observed Jaccard index value is ’less than or equal to’ or 
‘higher than or equal’ to’ the Jaccard value expected at 
random, considering the total number of taxa in both 
sets [42]. The ARI was calculated to test the dissimilarity 
of clustering in the networks. ARI values range from − 1 
to 1. Negative and positive ARI values mean lower and 
higher than random clustering, respectively. An ARI 
value of 1 corresponds to identical clustering, and 0 to 
dissimilar clustering. The p-value test if the calculated 
value is significantly different from zero [39].

Local connectivity of Acinetobacter and Coxiella 
in the microbial community
The effect of antibiotic treatment on specific taxa was 
analyzed by determining the direct associations of 
Acinetobacter and Coxiella with the rest of the bacte-
rial microbiota in the CT and AT groups. This analysis 
aimed to understand how these taxa influenced the over-
all microbial community structure. Sub-networks rep-
resenting the positive and negative associations of local 
connectivity were constructed in Gephi 0.10.0 [37], with 
connections between microbes quantified using SparCC 
(SparCC > 0.75 or < -0.75) as implemented in the Spie-
cEasi R package [36], enabling the identification of key 
microbial associations influenced by antibiotic treatment.

Centrality measures and module dynamics in networks 
of CT and AT microbiota
To understand the networks structure of the CT and AT 
groups, the centrality measures distribution among dif-
ferent taxa, including Coxiella and Acinetobacter, were 
analyzed. The function of each taxon within the net-
work was assessed using measures of within-module (Zi) 

and among-module (Pi) connectivity [43]. The meas-
ures allowed the taxa to be categorized into four differ-
ent roles according to their connectivity: (i) network 
hubs: taxa that serve as central connectors both within 
their module and across the entire network, with high 
connectivity (Zi > 2.5 and Pi > 0.62), (ii) module hubs: 
highly connected taxa within their own module but not 
significantly connected to other modules (Zi > 2.5 and 
Pi ≤ 0.62), (iii) connectors: taxa that primarily link differ-
ent modules together, indicating their role in connecting 
disparate parts of the network (Zi ≤ 2.5 and Pi > 0.62), and 
(iv) peripheral taxa: taxa with limited connections within 
the module and minimal interactions with other modules 
(Zi ≤ 2.5 and Pi ≤ 0.62). The Zi and Pi values were calcu-
lated using the "code-zi-pi-plot" package [44, 45] in R (R 
Core Team, 2023) [40], considering only positive inter-
actions. Visualization was done using GraphPad Prism 
version 8.0.1 (GraphPad Software, San Diego, California, 
USA), enabling the analysis of taxon positions within the 
networks. This analysis helps identify major key players 
influencing community assembly in response to antibi-
otic treatment.

Identification of keystone taxa
To pinpoint microbial taxa that play crucial roles in main-
taining the stability and function of the tick microbiota, 
keystone taxa were identified based on three criteria as 
described by Mateos-Hernandez et  al. [46]: (i) ubiqui-
tousness (microbial taxa present across all the samples of 
an experimental group), (ii) eigenvector centrality higher 
than 0.75, and (iii) abundance higher than the mean clr 
value (i.e., higher than that of the mean relative abun-
dance of all taxa in an experimental group).

Network robustness analysis using node removal 
and addition
The stability of the CT and AT networks was evalu-
ated and compared to determine if antibiotic treatment 
impacts the stability and resilience of the tick microbiota 
network in response to node disturbances. The robust-
ness of the networks was compared under two types of 
disturbances: node removal and addition. The compari-
sons were made between: (i) CT and AT groups, (ii) CT 
and AT groups after individual removal of Coxiella and 
Acinetobacter, and (iii) within the same CT or AT group 
in the presence and after the individual removal of each 
taxon. To evaluate network resistance to node removal, 
an attack tolerance test was conducted using Network 
Strengths and Weaknesses Analysis (NetSwan) [47] in 
R v.4.0.3 (R Core Team, 2023) [40], performed using the 
RStudio (RStudio Team, 2020) [41]. The networks under-
went both random and directed attacks. For directed 
node removal, three scenarios were employed: (i) a 
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directed attack removing nodes in decreasing order of 
their betweenness centrality (BNC) value, (ii) a cascading 
attack recalculating BNC values after each node removal, 
and (iii) a degree centrality removal prioritizing nodes 
with the highest degree centrality values.

Conversely, a node addition analysis was performed 
following the approach outlined by Freitas et  al. [48] in 
R v.4.3.1 (R Core Team, 2023), and performed using the 
RStudio (RStudio Team, 2020) [41]. In this analysis, new 
nodes were randomly connected to the existing network, 
and resultant changes were quantified by evaluating the 
size of the Largest Connected Component (LCC) and 
the Average Path Length (APL). To enhance the preci-
sion of the network’s robustness assessment, multiple 
simulations were conducted with varying sets of nodes, 
introducing 500, 700, and 1000 nodes. The outcomes 
were graphically represented using GraphPad Prism 9.0.2 
(GraphPad Software Inc., San Diego, CA, USA). For all 
comparisons made between the control (CT, CT (woC) 
and CT (woA)) and antibiotic-treated (AT, AT (woC) and 
AT (woA)) groups, a delta value was calculated. For node 
removal analysis, it was the difference in the fraction of 
nodes needed to achieve a connectivity loss of 0.80. For 
the addition of nodes, delta values for LCC size and APL 
were calculated by subtracting values in the CT network 
from those in the AT network after adding 100 and 1000 
nodes.

Functional profile prediction
A step-forward analysis was performed to predict micro-
bial functional traits, specifically enzymatic pathways, 
utilizing PICRUSt2 (Phylogenetic Investigation of Com-
munities by Reconstruction of Unobserved States) stan-
dalone version [49]. Gene catalogues, including Kyoto 
Encyclopedia of Genes and Genomes (KEGG), Orthologs 
(KO), Enzyme Classification numbers (EC), and Clus-
ter of Orthologous Genes (COGs) [50], along with the 
MetaCyc database [51], were employed to annotate major 

pathway categories and facilitate mapping. Following the 
output table, the taxa’s contribution to predicted meta-
bolic pathways was investigated. To ensure robust statis-
tical analysis, various methods were employed. Initially, 
alpha diversity was assessed using observed features [52] 
and Pielou’s evenness metrics [53] via the q2-diversity 
method in QIIME2 plugin. Subsequently, differences 
in pathway frequency were evaluated using the DESeq2 
package [54] in R v.4.0.3 (R Core Team, 2023) [40], ena-
bling the identification of statistically significant altera-
tions in pathway abundance between the CT and AT 
groups. This analysis resulted in a Volcano plot with 
Benjamini correlation, providing a visual representation 
of the significance and magnitude of pathway abundance 
changes. Analyses were performed using the RStudio 
Integrated Development Environment (IDE) v.2023.03.0-
daily + 82.pro2 (RStudio Team, 2020) [41].

Results
Changes in microbial community assembly and node 
centrality in response to antibiotic treatment
The potential impact of antibiotics on the assembly of 
microbial communities in ticks’ microbiota and the infec-
tion of Babesia was investigated, specifically examining 
changes beyond bacterial composition, richness, and rela-
tive abundance. To explore this, microbial co-occurrence 
patterns through co-occurrence networks were analyzed. 
It was observed that AT exhibited a greater number of 
connected nodes compared to CT, showing topological 
variations between both groups (Table 1). In contrast, CT 
displayed the highest number of correlations compared 
to AT (Fig.  1 A-B, Table  1). However, a similar balance 
between positive and negative correlations was observed 
in both groups (Table 1), suggesting that antibiotic treat-
ment reduces the level of interaction within the com-
munity but does not change its nature. Additionally, CT 
displayed lower modularity and diameter values than AT 
(Table 1). The core association network (CAN) revealed 

Table 1 Topological features of taxonomic co-occurrence networks

a Control group (CT networks at threshold of 0.75). bAntibiotics group (AT, networks at threshold of 0.75)

Topological features CTa ATb CT (woC) AT (woC) CT (woA) AT (woA)

Connected nodes 106 115 105 114 103 114

Edges 2245 1095 2206 1079 2202 1104

Positives 1305 (58.1%) 653 (59.6%) 1274 (57.8%) 641 (59.4%) 1277 (58%) 435 (39.4%)

Negatives 940 (41.9%) 442 (40.4%) 932 (42.2%) 438 (40.6%) 925 (42%) 669 (60.6%)

Modularity 1.54 1.64 1.56 1.66 1.59 1.61

Network diameter 5 7 5 7 5 7

Average degree 42.36 19.04 42.02 18.93 47.75 19.37

Weighted degree 7.059 3.583 6.69 3.47 7.02 3.93

Clustering coefficient 0.809 0.753 0.82 0.76 0.82 0.77
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71 core associated nodes between CT and AT networks 
(Fig.  1C) demonstrating variability in community con-
figuration in these two conditions. NetCoMi was used 
to test dissimilarities between local network centrality 
measures of the CT and AT networks, Jaccard index was 
calculated for degree, betweenness centrality, closeness 
centrality and eigenvector centrality (Jacc = 0, lowest sim-
ilarity and Jacc = 1, highest similarity). All these measures 
between the two networks were found to be lower than 
expected by random (P (≤ Jacc) < 0.05, Table 2).

The most abundant genera in the CT adults were 
Ammoniphilus and Coxiella. However, the gut micro-
biota in AT adults was dominated by Acinetobacter [16]. 
To understand the role of Coxiella and Acinetobacter in 
the community assembly, the local connectivity in the 
CT and AT groups was visually inspected. Both networks 
displayed two principal modules with negative and posi-
tive co-occurring interactions between their nodes. In the 
CT group’s microbial community of infected ticks with 
Babesia, Coxiella occupied a central position, displaying 
numerous interactions with other genera (Fig.  1D, Sup-
plementary Table S1). However, visual inspection of the 
networks showed that the treatment caused a shift in 
the bacterial community assembly patterns with a nota-
ble reduction in Coxiella’s co-occurrence network with 
other taxa (Fig.  1E, Supplementary Table  S1). Although 
the local connectivity sub-networks between CT and 
AT groups were unique in their connections, Coxiella 
maintained common direct association with four taxa in 

both networks (Fig.  1F). Similarly, Acinetobacter in CT 
showed high centrality and extensive connections with 
various taxa (Fig.  1G, Supplementary Table  S1). Antibi-
otics disrupted Acinetobacter’s interactions, reducing its 
connectivity and affecting the microbial community co-
occurrence network resulting in a loss of a few connected 
nodes (Fig. 1H, Supplementary Table S1). However, Aci-
netobacter maintained a common direct association with 
eight taxa in both groups (Fig.  1I). Markedly, Coxiella 
and Acinetobacter presented a direct association of co-
exclusion, which was maintained in the AT group (Fig. 
D-I, Supplementary Table S1).

When analyzing the distribution of connections (Zi 
and Pi connectivity), a similar pattern was observed in 
both CT (Fig.  1J) and AT (Fig.  1K) networks. All taxa, 
including Coxiella and Acinetobacter, were classified as 
peripheral, indicating that they do not function as cen-
tral hubs within their respective networks. Despite the 
absence of central nodes within CT and AT networks, 
eight taxa met the criteria to be considered keystone taxa 
for the CT and six for the AT group microbiota (Table 3). 
In general, the topological variations, the changed clus-
tering patterns of Coxiella and Acinetobacter and the 
absence of other central hubs demonstrate notable differ-
ences in community assembly between both conditions 
and a considerable susceptibility to antibiotic treatment. 
This behavior suggests a possible influence of both taxa 
on community assembly as support for the destabilizing 
effect that antimicrobial treatment can cause.

Influence of Coxiella and Acinetobacter on the assembly 
and hierarchy of the microbiota in response to antibiotic 
treatment
To investigate the impact of Coxiella and Acinetobacter 
on community assembly in response to antibiotic treat-
ment, the topology of the network was analyzed after 
individual removal of both taxa (woC and woA), compar-
ing the CT and AT groups (Table 1). Removal of Coxiella 
resulted in a loss of interactions in both CT (woC) and 
AT (woC) networks (Fig.  2 A-B, Table  1) compared to 
conditions with the taxon present (Table  1), suggesting 
potential stability conferred by the bacteria in its endo-
symbiont condition. Similar to those observed in the 

Table 2 Jaccard index for comparison between CT and AT 
network

Jaccard index for co-occurrence networks with the threshold of 0.75, *p < 0.05, 
***p < 0.0002

Local centrality measures CT vs. AT

Jaccard P(≤ Jacc) P(≥ Jacc)

Degree Centrality 0.098 0.000096 *** 0.999981

Betweenness Centrality 0.071 0.000004 *** 0.999999

Closeness Centrality 0.111 0.000163 *** 0.999962

Eigenvector Centrality 0.200 0.028440 * 0.987292

Hub taxa 0.200 0.028440 * 0.987292

Fig. 1 Antibiotic treatment effects on microbiota diversity and community assembly in Babesia-infected ticks. Global co-occurrence networks of (A) 
CT and (B) AT networks. C Core Association Network between CT/AT networks. Coxiella’s local connectivity in (D) CT and (E) AT networks. F Direction 
of associations of common direct neighbor to Coxiella between CT and AT groups. Acinetobacter’s local connectivity in (G) CT and (H) AT networks. 
I Direction of associations of common direct neighbor to Acinetobacter between CT and AT groups. Within-module and among-module 
connectivity, Zi-Pi plot of the individual genera from (J) CT and (K) AT groups. Only nodes with at least one significant correlation are represented. 
Node colors are based on modularity class metric and equal color means modules of co-occurring taxa. The size of the nodes is proportional 
to the eigenvector centrality of each taxon. The colors in the edges represent strong positive (green) or negative (red) correlations (SparCC > 0.75 
or <  − 0.75)

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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presence of Coxiella, there was a balance between posi-
tive and negative interactions in the CT (woC) and AT 
(woC) networks, with cooperation being slightly greater 
(Fig.  2 A-B, Table  1). Moreover, after removing Acine-
tobacter, a decrease in the number of interactions was 
observed in both CT (woA) and AT (woA) (Fig.  2 C-D, 
Table 1) compared to conditions with the taxon present. 
However, a disproportion between positive and negative 
associations was evident in AT (woA) compared to CT 
(woA) (Fig. 2 C-D, Table 1), indicating increased compe-
tition post-taxa removal. Furthermore, the decrease in 
interactions of cooperation and co-exclusion (Table  1), 
upon comparing networks of the same condition after 
individual bacteria removal suggests a reconfiguration of 
the remaining taxa.

The impact of individual removal of Coxiella (woC) 
and Acinetobacter (woA) on the interaction patterns 
between CT and AT networks (Table 4) were compared, 

Table 3 Keystone taxa of the bacterial communities of CT and 
AT groups

Condition Keystone taxa by condition

CT Ammoniphilus
Noviherbaspirillum
Microtrichales
Brevundimonas
Amycolatopsis
Nocardia
Symbiobacteraceae
Longimicrobiaceae

AT Methyloceanibacter
Lysobacter
Comamonadaceae
Methylonatrum
Sediminibacterium
Xanthobacteraceae

Fig. 2 Comparative analysis of microbial co-occurrence networks in CT and AT groups: Impact of Coxiella and Acinetobacter removal. Global 
co-occurrence networks after Coxiella’s removal of (C) CT(woC) and (D) AT(woC). Global co-occurrence networks after Acinetobacter’s removal of (E) 
CT(woA) and (F) AT(woA). The colors in the edges represent positive (green) or negative (red) correlations. In global networks, the node colors are 
based on modularity class metric and equal color means modules of co-occurring taxa. The size of the nodes is proportional to the eigenvector 
centrality of each taxon
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as well as within the same condition before and after in-
silico manipulation of the taxa (Supplementary Table S2 
and S3). Jaccard index values were lower than expected 
by random (P (≤ Jacc) < 0.05) in woC (CT vs. AT) and 
woA (CT vs. AT) comparison, respectively (Table  4). 
Moreover, the centrality measures were higher than 
expected by random (P (≥ Jacc) < 0.05) in CT vs. CT 
(woC) (Supplementary Table S2) and CT vs. CT (woA) 
(Supplementary Table  S3) comparison, respectively. 
Jaccard index values of the AT vs. AT (woC) and AT 
vs. AT (woA) comparisons, were higher than expected 
by random (P (≥ Jacc) < 0.05) except for betweenness 
centrality and closeness centrality which had a random 
distribution. Comparing node clustering for woC (CT 
vs. AT) and woA (CT vs. AT) revealed low ARI values, 
indicating the antibiotic treatment strongly influences 
microbial community clustering patterns (Table  5). In 
contrast, ARI values were close to 1 within the same 
condition (CT and AT) after individual taxon removal 
(Table 5). High ARI values indicated strong similarities 
and suggested that despite the topological variations 
(Table  1) the impact of in-silico manipulation of Cox-
iella and Acinetobacter on clustering patterns under the 
same conditions is moderated.

Changes in network robustness in response to antibiotic 
treatment
The robustness of the CT and AT co-occurrence net-
works was compared to determine if the effect of anti-
biotic treatment compromises stability against node 
removal and addition. Assessment of connectivity loss 
showed that directed attacks (degree, cascading, and 
betweenness methods) (Fig.  3A-B and Supplementary 
Fig. S1A) had more significant impacts on both CT and 
AT networks compared to the random method (Sup-
plementary Fig. S1B, Supplementary Table  S4). During 
node removal, delta values were calculated by subtracting 
the fraction of nodes necessary to achieve a connectiv-
ity loss of 0.8 of CT minus AT network. Degree-directed 
node removal yielded a negative delta value, indicat-
ing AT’s greater robustness compared to CT (Fig.  3A, 
Supplementary Table  S4). Conversely, cascading and 
betweenness node removal showed positive values, sug-
gesting antibiotic treatment reduces network stability 
against both types of directed attacks (Fig.  3B, Supple-
mentary Fig. S1A, Supplementary Table  S4). The delta 
value equal to 0 confirms that, regardless of the possi-
ble community-destabilizing effect of antibiotic treat-
ment, the robustness of the CT and AT networks is not 
affected by random attacks (Supplementary Fig. S1B, 
Supplementary Table S4). Comparing robustness against 
node removal between CT and AT networks after indi-
vidual Coxiella (Fig.  3C-D, Supplementary Fig. S1C-D) 
and Acinetobacter (Fig. 3E-F, Supplementary Fig. S1E-F) 
removal showed that only in the absence of Coxiella and 
after directed attack in degree and betweenness, the AT 
network was more robust than the CT network (Fig. 3C 
and Supplementary Fig. S1C). Additionally, positive delta 
values in the absence of Acinetobacter and after directed 
attack in degree and cascading (Fig.  3E-F) highlight the 
susceptibility of the AT group to external perturbations 
and suggest a possible stabilizing potential exerted by the 
taxon when present (Supplementary Table S4).

For node addition, 1000 nodes were added, and two key 
network properties were quantified: LCC (Fig. 3G, Sup-
plementary Table S5) and APL (Fig. 3H, Supplementary 

Table 4 Jaccard index for comparison between CT and AT groups after Coxiella and Acinetobacter ‘s removal

Jaccard index for co-occurrence networks with the threshold of 0.75, *p < 0.05, **p < 0.005, ***p < 0.0002

Local centrality measures CT (woC) vs. AT (woC) CT (woA) vs. AT (woA)

Jaccard P(≤ Jacc) P(≥ Jacc) Jaccard P(≤ Jacc) P(≥ Jacc)

Degree Centrality 0.135 0.001021 ** 0.999708 0.059 0.000003 *** 1.000000

Betweenness Centrality 0.111 0.000163 *** 0.999962 0.111 0.000163 *** 0.999962

Closeness Centrality 0.154 0.003070 ** 0.998979 0.200 0.028440 * 0.987292

Eigenvector Centrality 0.176 0.010149 * 0.996063 0.154 0.003070 ** 0.998979

Hub taxa 0.176 0.010149 * 0.996063 0.154 0.003070 ** 0.998979

Table 5 Network clustering comparisons

Conditions Network comparison Adjusted 
Rand index 
(ARI)

p‑value

Without Coxiella
(woC)

CT (woC) vs. AT (woC) -0.002 0.87

Without Acinetobacter
(woA)

CT (woA) vs. AT 
(woA)

-0.011 0.36

CT-Coxiella CT vs. CT (woC) 0.71 0

AT-Coxiella AT vs. AT (woC) 0.98 0

CT-Acinetobacter CT vs. CT (woA) 0.93 0

AT- Acinetobacter AT vs. AT (woA) 0.96 0
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Table S5). Applying the nodes addition strategy increased 
the LCC for the AT group compared to the CT group 
(Fig.  3G, Supplementary Table  S5). Specifically, The AT 
group’s average robustness increased at the 750th node 
addition, followed by a similar rise in the CT group at 
the 800th node addition. Both groups showed a rapid 
increase in robustness by the 900th node added. Regard-
ing the APL test, initially, the AT group exhibited slightly 
higher values than the CT group until the addition of 
the 800th node, after which the CT network rapidly 
increased (Fig. 3H, Supplementary Table S5). Ultimately, 

APL values for both groups converged to approximately 
equal values upon the addition of 1000th node. How-
ever, the observed overlap and increase in APL values 
in both CT and AT networks suggest that the addition 
of nodes causes a loss of functional connectivity within 
the networks independently of the effect of antibiotic 
treatment (Fig. 3H, Supplementary Table S5). The higher 
LCC and APL values of AT compared to CT were high-
lighted by negative delta values after adding the 100th 
and 1000th nodes (Fig. 3G-H, Supplementary Table S5). 
This persisted after Coxiella (Fig. 3I-J) and Acinetobacter 

Fig. 3 Robustness comparison after removal and addition of nodes between the CT and AT groups. Connectivity loss measured after directed 
(degree and cascading) attack in CT and AT networks: (A) CT/AT (degree), and (B) CT/AT (cascading), Connectivity loss measured against directed 
(degree and cascading) attack between the CT and AT networks after Coxiella’ removal: (C) CT(woC)/AT(woC) (degree), and (D) CT(woC)/AT(woC) 
(cascading). Connectivity loss measured against directed (degree and cascading) attack between the CT and AT networks after Acinetobacter’s 
removal: (E) CT(woA)/AT(woA) (degree), and (F) CT(woA)/AT(woA) (cascading). Robustness comparison between CT and AT networks 
after the addition of nodes. The largest connected component (LCC) and average path length (APL) values are represented and compared 
between CT and AT networks: (G) CT/AT (LCC), and (H) CT/AT (APL). Robustness comparison between CT and AT networks after Coxiella’s removal: 
(I) CT(woC)/AT(woC) (LCC), and (J) CT(woC)/AT(woC) (APL). Robustness comparison between CT and AT networks after Acinetobacter’s removal: (K) 
CT(woA)/AT(woA) (LCC), and (L) CT(woA)/ AT(woA) (APL)
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(Fig. 3K-L) removal, with higher LCC and APL values in 
AT networks Fig. 3I-L, Supplementary Table S5), except 
for LCC values after adding the 1000th nodes in Cox-
iella-removed networks, showing a positive delta value 
(Fig. 3I, Supplementary Table S5).

Influence of the removal of Coxiella and Acinetobacter 
on network robustness within the CT and AT groups
To demonstrate the direct influence of both bacte-
ria within the same condition (CT or AT) after node 
removal, the robustness of the networks was analyzed 
and compared after individual removal of Coxiella 
(woC) (Fig.  4A-D, Supplementary Fig. S2A-D) and 
Acinetobacter (woA) (Fig.  4E-H, Supplementary Fig. 
S2E-H). The removal of Coxiella did not modify the 
robustness of the networks within the same condi-
tion against directed (Fig.  4A-D) and random attacks 
(Supplementary Fig. S2A-D). In contrast, the removal 
of Acinetobacter conferred robustness and stabil-
ity to the AT (woA) network during a connectivity 
loss of 0.8 after the directed attack in degree (Fig.  4F) 
and, in addition, to CT (woA) network in betweenness 
(Fig.  4G). This behavior highlights the important role 

of Acinetobacter within the community conditioned by 
its high abundance and possible potential for antibiotic 
resistance.

During the addition of nodes, the LCC values was 
higher in the CT network following Coxiella removal 
(Fig. 5A). In contrast, an overlap was observed between 
the AT and AT (woC) networks (Fig.  5B), suggest-
ing that the absence of the taxon did not influence the 
response to the addition of nodes. On the other hand, 
the presence of Acinetobacter conferred stability in 
both CT and AT conditions (Fig. 5C-D). The robustness 
conferred by Acinetobacter may be due to its poten-
tial for resistance to antibiotic treatment and therefore 
its possible action in maintaining stability. Interest-
ingly, only the LCC value measured in the AT network 
after the addition of 1000 nodes demonstrated greater 
robustness in the absence of the taxon (Fig.  5D). The 
overlap and increase in APL values within the same 
condition for the CT and AT groups in the presence 
and after the individual removal of each taxon continue 
to suggest loss of functional connectivity and increase 
in competition within the network with the addition of 
nodes (Fig. 5E-H).

Fig. 4 Robustness comparison after node removal within groups (CT and AT). Connectivity loss measured after directed attack (degree 
and betweenness) in Coxiella’s presence (wC) and removal (woC): (A) CT (wC vs. woC) and (B) AT (wC vs. woC) in degree, (C) CT (wC vs. woC), 
and (D) AT (wC vs. woC) in betweenness. Connectivity loss measured after directed attack (degree and betweenness) in Acinetobacter’s presence 
(wA) and removal (woA) between the same group: (E) CT (wA vs. woA), and (F) AT (wA vs. woA) in degree, (G) CT (wA vs. woA), and (H) AT (wA vs. 
woA) in betweenness
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Changes in predicted functional profiles in response 
to antibiotic treatment
The alterations in microbial community composition 
and structure were assessed to determine whether they 
affected the inferred functional profile of tick microbi-
ota. A thorough analysis was conducted, comparing the 
composition, diversity, and relative abundance of meta-
bolic pathways in the microbiota of H. longicornis ticks 
from both the AT and CT groups. The investigation 
revealed a greater richness in functional profiles within 
the AT group compared to the CT group. Specifically, 
diversity metrics such as observed features (Fig. 6A) and 
Pielou’s evenness index (Fig. 6B) were higher for the AT 
group compared to the CT group. Differences were also 
observed in the relative abundance of pathways between 
the functional profiles of AT and CT groups (Fig.  6C, 
Supplementary Table S6). Analysis revealed both unique 
and shared predicted metabolic pathways within the 
microbiota of both groups. Specifically, five pathways 
were identified as unique to the CT tick microbiota, while 
the AT tick microbiota exhibited eleven unique pathways 
within which the 2-heptyl-3-hydroxy-4(1H)-quinolone 
biosynthesis pathway is found (Fig.  6D, Supplementary 

Table  S7 and 8). Furthermore, both microbiota shared 
398 pathways (Fig.  6D, Supplementary Table  S7 and 8), 
predominantly associated with biosynthesis, as docu-
mented on MetaCyc database [51].

Discussion
Our findings provide support for the hypothesis that anti-
biotic treatment (AT) disrupts the microbial community 
assembly and network interactions within H. longicornis 
ticks. This disruption affects key taxa such as Coxiella 
and Acinetobacter, and complement those of Wei et  al. 
[16] in understanding how antibiotics disrupt coloniza-
tion resistance within tick microbiota, thereby facilitating 
the transstadial transmission of B. microti. Colonization 
resistance is a critical ecological function provided by 
the native microbiota as it prevents the establishment 
and proliferation of pathogens within the host [55]. This 
resistance is mediated by several mechanisms, includ-
ing competition for resources [26, 27] and modulation of 
the host’s immune response [56, 57]. The network-based 
traits associated with AT and their influence on reduced 
colonization resistance and enhanced Babesia transsta-
dial transmission can be summarized: 1) the AT group 

Fig. 5 Robustness comparison against addition of nodes after taxa’s removal between the same groups (CT and AT). LCC values are represented 
and compared in Coxiella’s presence and removal between the same groups: (A) CT (wC vs. woC), and (B) AT (wC vs. woC). LCC values are 
represented and compared in Acinetobacter’s presence and removal between the same groups: (C) CT (wA vs. woA), and (D) AT (wA vs. woA). APL 
values are represented and compared in Coxiella’s presence and removal between the same groups: (E) CT (wC vs. woC), and (F) AT (wC vs. woC). 
APL values are represented and compared in Acinetobacter’s presence and removal between the same groups: (G) CT (wA vs. woA), and (H) AT (wA 
vs. woA)
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had more connected nodes but less interactive microbial 
community compared to the CT group. 2) Despite hav-
ing more connections, the AT group had fewer correla-
tions and greater modularity compared to the CT group. 
3) There were significant differences in network centrality 
measures between AT and CT groups and in the connec-
tivity and network roles of key taxa such as Coxiella and 
Acinetobacter. 4) The robustness tests (i.e., node removal 
strategies) demonstrated that the AT networks were less 
stable against specific attacks compared to CT networks. 
And 5) The AT group displayed a greater richness in 
functional profiles.

Enhanced network connectivity and modularity 
in AT microbiota
Antibiotic treatment modifies the community assembly 
as a consequence of the reduction of microorganisms 
due to its bacteriostatic or bactericidal effect [58,  59]. 
Consequently, interactions such as co-occurrence 

(positive correlation) or co-exclusion (negative cor-
relation) may change [60,  61]. We found topological 
variations indicating distinct community assembly 
between the CT and AT groups, with a decrease in the 
number of interactions between community members. 
However, no considerable changes were evident in 
the nature of the interactions, with a balance between 
cooperation and co-exclusion existing in both groups. 
This change in topology may reflect a shift towards a 
microbial community where fewer dominant interac-
tions exist, potentially reducing competitive exclusion 
and colonization resistance. The interactions estab-
lished between microorganisms within communities 
can alter the susceptibility of their members to antibi-
otic treatment [57]. The nature and number of interac-
tions established can determine whether the resistance 
of a microbial species to a certain antibiotic confers a 
protective effect [57, 62].

Fig. 6 Predicted functional profile analysis. Comparative analysis of predicted functional profiles between CT (green) and AT groups (red). 
A Observed features, and (B) Pielou’s evenness index were employed to assess pathway alpha diversity. C Differential abundance of predicted 
metabolic pathways. Volcano plot showing the differential abundance of pathways in CT and AT microbiota. The pathways with significant 
differences (Wald test, p < 0.05) between the groups are represented by pink dots. D Venn diagram illustrates shared and unique predicted bacterial 
pathways between the CT and AT microbiota
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Altered centrality measures
Analyzing antibiotic effects on node centrality and net-
work strength in Babesia-infected ticks’ co-occurrence 
networks revealed significant insights into microbial 
interaction dynamics under perturbations. Specifically, 
differences in local network centrality measures (degree, 
betweenness centrality, closeness centrality, and eigen-
vector centrality) between CT and AT groups highlights 
distinct microbial network patterns. Interestingly, the AT 
group showed greater adaptability to disruptions with 
additional nodes, while both groups exhibit similar over-
all robustness. Furthermore, taxa such as Coxiella and 
Acinetobacter showed disrupted connectivity in the AT 
group. Coxiella exhibited reduced interactions, whereas 
Acinetobacter experiences a loss of connected nodes, 
underscoring their critical roles in maintaining microbial 
network stability. This provides insights by demonstrat-
ing differences in network centrality measures and the 
roles of key taxa like Coxiella and Acinetobacter between 
both groups which deepen our understanding of how 
antibiotic treatment impacts tick microbiota dynamics.

Impact of key taxa including Coxiella and Acinetobacter
In their initial study, Wei et  al. [16] observed that anti-
biotic treatment led to a significant alteration in the 
diversity and abundance of the tick gut microbiota. They 
noted shifts towards genera like Acinetobacter, known 
to thrive under antibiotic pressure [16], and a decreased 
in Coxiella, which typically acts as an endosymbiont in 
ticks [63], providing protection against tick-borne path-
ogens (TBPs) [55, 64]. This alteration suggests a disrup-
tion of the balanced microbial ecosystem that typically 
supports colonization resistance to Babesia infection. 
Our study further demonstrated that these shifts are not 
just alterations in abundance but also critical changes 
in the connectivity and network roles of key taxa such 
as Coxiella and Acinetobacter. The reduced interaction 
within the microbial community and the loss of con-
nected nodes indicates a weakened network structure, 
reducing the microbiota’s ability to collectively resist 
new colonization by pathogens, in this case, Babesia spe-
cies. Symbiont-mediated protection, predicted through 
ecological modelling, is increasingly observed in natural 
insect populations, serving as a potent mechanism to 
maintain symbiont prevalence [55]. Ticks harbor vari-
ous nutritional symbionts, including Coxiella-like endo-
symbionts (CLE) [65], Francisella-like endosymbionts 
(FLE) [66] and Rickettsia [67]. Additionally, ticks can 
occasionally harbor other symbionts, such as Wolbachia 
[68] and Arsenophonus [69], which are less commonly 
found in ticks. Experimental evidence demonstrates 
vertically transmitted symbiont’s protective role against 

pathogens or predators. Notably, studies show that anti-
biotics targeting Coxiella-LE and Rickettsia-LE reduce 
their densities [70], potentially affecting host fitness. 
This is exemplified in H. longicornis, where tetracycline 
treatment reduced Coxiella-LE levels, affecting the tick’s 
fitness [70]. Additionally, the obligate Coxiella-like sym-
biont has been shown to manipulate the reproduction of 
its host, Amblyomma americanum [71].

Despite varying assembly patterns, Acinetobacter con-
tributed to the stability of the AT group following node 
removal. Recently, this genus has been identified in the 
microbiome of field collected H. longicornis larvae, 
nymphs, and adults, with a higher abundance in larvae 
[72]. Additionally, it was detected in the midgut microbi-
ome of fed specimens collected in China, demonstrating 
that Acinetobacter can stably colonize the midgut of H. 
longicornis [73]. Known for its broad antibiotic resistance 
[74,  75], this genus monitors antibiotic resistance genes 
and underscores ticks’ potential as pathogen reservoirs 
[70]. For instance, the pathogen Acinetobacter bauman-
nii shows high antimicrobial resistance development and 
acquisition of new resistance determinants [70,  76,  77]. 
Its response to antibiotics under iron limitation and 
oxidative stress is of interest, given its ability to express 
resistance to a wide range of antibiotics used in human 
medicine [78, 79].

Furthermore, the analysis of keystone taxa identifi-
cation in both the CT and AT groups revealed distinct 
compositions between the two groups. Ammoniphilus, 
Noviherbaspirillum, and others were prominent in the 
CT group, whereas Methyloceanibacter, Lysobacter, and 
others were notable in the AT group. This suggests a shift 
in the microbial ecosystem following antibiotic interven-
tion. These findings are consistent with prior research 
highlighting the significant role of specific bacterial taxa 
in tick microbiota and their potential susceptibility to 
antibiotics [18] [46]. These disruptions in microbial com-
munity assembly and node centrality likely contribute to 
the reduced colonization resistance observed in the AT 
group, as the antibiotics compromise the integrity and 
stability of the microbial network, making it more sus-
ceptible to colonization by pathogens like Babesia. Inte-
grating community structure with functional dynamics 
represents a fundamental pursuit in microbial ecology 
[80], necessitating the exploration of microbial co-occur-
rence patterns and the identification of keystone taxa 
essential for ecosystem processes. The intricate interplay 
elucidated in this study among antibiotic treatment, key-
stone taxa, and microbial community dynamics provides 
profound insights beyond diversity studies. These find-
ings establish a scientific basis for potential interventions 
targeting the modulation of tick microbiota to mitigate 
tick-borne diseases [81].



Page 15 of 19Kratou et al. BMC Microbiology          (2024) 24:322  

Robustness against network perturbations
The concept of robustness, which refers to the resist-
ance of a network, can be elucidated through percola-
tion theory [82], offering insights into information flow 
among network nodes [30]. Prior studies have employed 
in silico node removal to evaluate microorganism influ-
ence on plant microbiota properties [83]. This approach 
validated as a tool for predicting ecosystem behavior [30], 
suggests network robustness as indicative of microbial 
community resilience in diverse animal species, from 
arthropods [84, 46] to mammals [85]. This approach aims 
to induce infection-refractory states in ticks or other 
vectors [86, 87], ultimately reducing or blocking vector-
borne pathogen transmission [88]. In this study, percola-
tion theory was applied to evaluate network robustness 
by assessing loss in connectivity through degree, cascad-
ing, betweenness, and random attacks [30]. The results 
showed node removal had a more pronounced effect 
on both CT and AT networks compared to the random 
method, especially in the betweenness method. These 
findings suggest that while antibiotics administration can 
be discerned in the robustness test, its impact on bacte-
rial community assembly appears limited compared to 
other disturbance factors [84]. This observation is con-
sistent with previous research demonstrating a signifi-
cant reduction in network robustness following directed 
attacks in the microbiota of mice exposed to antibiotics 
and fed a high-fat diet, as compared to untreated mice on 
the same diet [85]. From the result of this study, it can 
be proposed that specific antibiotics may target keystone 
taxa, potentially leading to ecosystem collapse [85]. The 
mechanisms by which antibiotics modulate the taxo-
nomic and functional profiles of the tick microbiota are 
yet to be determined.

Functional implications
The analysis of predicted metabolic profiling of the 
microbiota was incorporated based on the novel bioin-
formatics tool PICRUSt2 [49]. Researching the effects of 
antibiotics on the functional characteristics of the micro-
biota of H. longicornis ticks has yielded some interest-
ing results. In addition to changes in assembly patterns 
and community robustness, the functional profiles of 
microorganisms are affected as a consequence of antibi-
otic treatment. The AT had greater functional richness 
and evenness, implying broader metabolic capabilities 
compared to the CT group. This suggests that antibiot-
ics may influence the metabolic diversity of the microbi-
ota. Despite the existence of shared metabolic pathways, 
unique metabolic pathways were evident in both groups, 
denoting metabolic differences. Changes in the physico-
chemical properties of the ecosystem and the biological 
products that certain species produce may contribute 

to antibiotic resistance in other species [57]. Among the 
unique metabolic pathways in the AT group, the 2-hep-
tyl-3-hydroxy-4(1H)-quinolone biosynthesis pathway 
was found. This molecule, known as the Pseudomonas 
quinolone signal (PQS), is important for its role in the 
quorum-sensing system that regulates biofilm formation, 
secondary metabolite production, pigment and virulence 
factor production, motility, and membrane vesicle forma-
tion [89]. Previous studies have revealed that exposure 
to subinhibitory concentrations of antibiotics induces 
the production of PQS in Pseudomonas aeruginosa [90]. 
Additionally, PQS has been shown to influence not only 
P. aeruginosa populations but also other bacterial species, 
regulating microbial communities within a specific eco-
system [91]. Therefore, in our study, antibiotic treatment 
may be triggering these cell-to-cell mechanisms to adapt 
and survive, facilitating the overgrowth of Pseudomonas 
species and other antibiotic-resistant bacteria. This could 
reduce the growth of beneficial endosymbionts species in 
the tick microbiome, which play an important role in tick 
metabolism and reproductive fitness [71, 92]. A disrupted 
microbiome could reduce tick’s resistance to coloniza-
tion of pathogens and other antibiotic-resistant bacteria, 
increasing the risk of transmitting diseases to the host. 
Furthermore, the proliferation of these bacteria species 
can potentially turn ticks into reservoirs and spread-
ers of antibiotic-resistant genes [93]. This underscores 
the importance of understanding the role of commensal 
organisms, such as Coxiella-like endosymbionts and Aci-
netobacter as significant metagenomic biomarkers [94]. 
For instance, the clinical significance of variances in anti-
microbial susceptibility profiles among distinct genomic 
clusters of Acinetobacter has been elucidated [95], while 
the escalating recognition of efflux systems in facilitat-
ing multidrug resistance in Acinetobacter further under-
scores their critical role [96, 97].

Study limitations
This study has four major limitations: 1) Working with a 
small sample size may not capture the full spectrum of 
microbial diversity in both the AT and CT groups. Rare or 
less abundant microbial taxa might be underrepresented 
or missed, leading to an incomplete picture of the microbi-
ome [98] and making the findings less robust for drawing 
definitive conclusions about the diversity and composi-
tion of the tick microbiome between both groups [99]. 2) 
Bacterial community structures vary significantly across 
tick life stages [100]. In some cases, the interaction pat-
tern (co-occurrence or co-exclusion) changed according 
to the development stage [101]. For instance, higher bac-
terial diversity was observed in nymphal stages compared 
to adult stages of Ixodes ricinus ticks, likely due to distinct 
host-selection behaviors between immature and mature 
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ticks [100]. These variations can significantly impact how 
antibiotics affect the tick microbiota. 3) Our study utilized 
metagenomic data to characterize the functional profiles 
of the tick microbiota, focusing on potential genes and 
pathways present, but did not directly assess their active 
expression or functional significance under antibiotic 
exposure. Using richness and evenness metrics provide 
valuable insights into the diversity and distribution of 
functional pathways but may not fully capture functional 
redundancy, where different microbial species perform 
similar roles. This redundancy can mask changes in com-
munity composition without altering richness or even-
ness. This contrasts with meta-transcriptomics, which 
can provide direct insights into actively expressed genes 
by studying transcriptional regulation, metabolite dynam-
ics, and protein signaling within tick microbial communi-
ties under antibiotic treatment. 4) Antibiotics targeting 
bacterial communities can disrupt microbial diversity and 
abundance, impacting microbiota-host interactions and 
potentially compromising the tick’s ability to control path-
ogens [102]. These changes can also influence ecological 
niches, community stability, and interactions within the 
environment. Previous research has highlighted specific 
tick genes like longicin which is defensin-like protein of H. 
longicornis exerting anti-microbial and anti-fungal activ-
ity [103] and TROSPA, serum amyloid A, and calreticu-
lin, which are implicated in vector-pathogen interactions 
during Babesia infection [104]. Further investigation into 
these biomarkers and proteins would enhance our under-
standing of how tick microbiota responds to antibiotics 
during Babesia infection, providing a better understand-
ing of the tick immune response under antibiotics expo-
sure and bring insights for optimizing treatment strategies 
against tick-borne diseases.

Conclusions
The current study provided a comprehensive explora-
tion of the H. longicornis microbiota’s response to anti-
biotic treatment, particularly in the context of B. microti 
transstadial transmission. The investigation into co-
occurrence networks and keystone taxa showed the vul-
nerability of the tick microbiota to antibiotic-induced 
perturbations, observing notable differences in network 
centrality measures (degree, betweenness, closeness, and 
eigenvector centrality) and distinct keystone taxa com-
positions. Specifically, antibiotic treatment altered the 
clustering pattern of key taxa such as Coxiella and Acine-
tobacter, leading to a less robust microbial network and 
increased susceptibility to disturbance. Remarkably, the 
study uncovered novel insights into the functional con-
sequences of antibiotic treatment, revealing increased 
functional richness and evenness in the antibiotic-treated 
group, implying broader metabolic capabilities and 

potential shifts in the importance of specific functions. 
These results suggest that antibiotic treatment can dis-
rupt the microbial balance within ticks, decreasing their 
resistance to pathogen colonization. These findings carry 
broader ecological implications, emphasizing the need 
to consider functional aspects in understanding antibi-
otic-mediated reduction of colonization resistance and 
its implications for Babesia transstadial transmission. 
Our results offer a more detailed comprehension of tick 
microbiota dynamics under antibiotic treatment, reveal-
ing insights that were not evident through traditional 
assessments of bacterial diversity or abundance alone.

The intricate interplay between antibiotic treatment, 
microbial community dynamics, and functional profiles 
underscore the complexity of the tick microbiota, offering 
avenues for further research to manipulate these micro-
bial communities for effective control of tick-borne dis-
eases. In this context, anti-microbiota vaccines have been 
designed to modulate the tick microbiome by targeting 
essential microbial taxa [46,  105]. The use of co-occur-
rence networks and centrality measures to identify key 
taxa provides a robust method for developing these vac-
cines [105]. Anti-microbiota vaccines have been shown to 
effectively modulate the tick microbiome, impacting tick 
performance and pathogen colonization, thus support-
ing the development of this strategy for controlling tick-
borne pathogens [106, 46, 107]. Additionally, alternative 
strategies in other vectors, such as paratransgenesis and 
phage therapy, have been explored to target specific taxa, 
which have demonstrated success in reducing pathogen 
load and vector competence [108, 109].
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