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ON SPARSITY AND SUB-GAUSSIANITY IN THE JOHNSON-LINDENSTRAUSS

LEMMA ∗, ∗∗

Aurélien Garivier and Emmanuel Pilliat1

Abstract. We provide a simple proof of the Johnson-Lindenstrauss lemma for sub-Gaussian variables.
We extend the analysis to identify how sparse projections can be, and what the cost of sparsity is on
the target dimension. The Johnson-Lindenstrauss lemma is the theoretical core of the dimensionality
reduction methods based on random projections. While its original formulation involves matrices with
Gaussian entries, the computational cost of random projections can be drastically reduced by the use
of simpler variables, especially if they vanish with a high probability. In this paper, we propose a
simple and elementary analysis of random projections under classical assumptions that emphasizes the
key role of sub-Gaussianity. Furthermore, we show how to extend it to sparse projections, emphasizing
the limits induced by the sparsity of the data itself.

Résumé. Nous présentons ici une preuve simple du lemme de Johnson-Lindenstrauss pour les vari-
ables sous-Gaussiennes, qui permet d’identifer à quel point les matrices de projections peuvent être
creuses et avec quelles conséquences pour la dimension cible. Le lemme de Johnson-Lindenstrauss est
au cœur des méthodes de réduction de dimension par projections aléatoires. Son énoncé initial impli-
quait des matrices de variables Gaussiennes, mais il a ensuite été montré que des variables plus simples,
pouvant être nulles avec une probabilité importante, présentaient les mêmes garanties théoriques tout
en réduisant drastiquement le coût de calcul. Nous proposons dans cet article une analyse simple et
élémentaire des projections aléatoires qui met en lumière le rôle clé de la sous-Gaussianité. En outre,
nous montrons comment étendre cette analyse aux matrices creuses, en mettant au jour les limites
induites par des données elles-même parcimonieuses.
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1. Introduction

The celebrated Johnson-Lindenstrauss lemma [10] ensures the existence low-distortion embeddings of points
from high-dimensional into low-dimensional Euclidean space. If x1, . . . , xn ∈ Rp, where p is a (large) integer,
and if ϵ > 0 is a tolerance parameter, then there exists a matrix A in the set Md,p(R) of real matrices with d
rows and p columns such that

∀1 ≤ i, j ≤ n, (1− ϵ)∥Axi −Axj∥2 ≤ ∥xi − xj∥2 ≤ (1 + ϵ)∥Axi −Axj∥2 (1)
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as soon as

d ≥ 8 log(n)

ϵ2 − ϵ3
. (2)

The classical proof of this result is an elegant illustration of the Probabilistic Method [2]: when drawing
the entries of A at random from independent Gaussian distributions, Property (11) is satisfied with positive
probability when the output space is large enough. It results from a simple deviation bound for the chi-
square distribution, and hence builds on the specificity of the Gaussian distribution. This proof is not only
mathematically remarkable, but it also gives mathematical foundations for random projections, a simple and
computationally efficient dimensionality reduction technique in unsupervised machine learning (see e.g. [3, 6, 9,
15,16] and references therein).

In 2001, [1] showed that random projections can easily be extended to non-Gaussian matrices. In particular,
Rademacher, or {−1, 0, 1}-valued entries can just as well be chosen, leading to even simpler algorithms suitable
for database applications. The proof provided in this article relies on moment bounds and is somewhat specific
to those two families of distributions. It is generally considered [12] that ”a uniform distribution is easier to
generate than normals, but the analysis is more difficult”. Even faster methods for sparse data or streams where
then devised [5,11] using random hashing constructions and more involved moment bounds. Very recently and
concurrently to our work, [13] has proposed a unified analysis of sparse Johnson-Lindenstrauss methods based
on the Hanson-Wright inequality, while [7] tries to identify the optimal rate of sparsity in the data as a function
of the dimension d, the number of points n and the tolerance parameter ϵ.

The main contribution of this paper is twofold. The first purpose is to highlight that sub-Gaussianity is
indeed an elementary property of random matrix entries that suffices to ensure the success of random projec-
tions. Contrary to [13], our analysis is entirely elementary, and exploits sub-Gaussianity in an original way.
A connection to the Hanson-Wright inequality is proposed at the end of the paper. To begin, we give here a
simple proof that any 1-sub-Gaussian law with variance 1 offers the same guarantees as the Gaussian law. Our
analysis explains simply why {−1, 0, 1}-valued variables with a proportion up to 2/3 of coefficients equal to 0
are a safe choice, but also makes it possible to design many variants, and to go further in the understanding
of much sparser random projections. Interestingly, our treatments of the lower and the upper bound of (11)
are not totally symmetric. While the upper deviations of sub-Gaussian variables can be handled by Chernoff’s
bound just as those of the Gaussian law, the lower deviations can obviously be much smaller (after all, constant
variables are sub-Gaussian) and hence require a different argument. The second purpose of this paper is to build
on this analysis to clearly emphasize the conditions on the data under which much sparser projection matrices
can be considered. The take-home message is that the distances are preserved if and only if the proportion of
non-zero entries in the projection matrix A multiplied by the number significant coefficients in each vector xi
is sufficiently large.

The paper is organized as follows. Section 2 provides a new analysis of random projections without assump-
tions on the data. Section 2.1 proposes a deviation bound for the averages of squared sub-Gaussian variables.
The obtained bound are applied in Section 2.2 to derive the classical Johnson-Lindenstrauss lemma for sub-
Gaussian random matrices. We discuss in Section 2.3 a few examples of choices of the distribution P for random
projections. Section 3 investigates the possibility of much sparser projection matrices and of the theoretical limit
to the minimal sparsity. Theorem 2, with its rather simple proof in Section 5, extends the previous analysis with
minimal changes to sparse matrices. Theorem 3 gives the order of magnitude of the minimal allowed sparsity
to obtain a quasi-isometry with high probability, at the price of poly-logarithmic terms. The optimality of this
result is discussed in Section 3.3. A connection to the Hanson-Right inequality is proposed in Section 4, before
the proofs of the main theorems in Section 5.

2. Data-agnostic random projections

We recall in this section known but fundamental results that are of constant use in the sequel. The originality
lies in the fact that the Johnson-Lindenstrauss lemma is stated from the start for sub-Gaussian variables.
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Furthermore, we were not able to find anywhere else the elegant derivation of Equation (3) written like this.
Section 2.3 contains a simpler derivation of results published in [1], with a discussion on their optimality.

2.1. Chernoff’s method for squared sub-Gaussian variables

Let X be a random variable assumed to be 1-sub-Gaussian, which means that ∀λ ∈ R,E[eλX ] ≤ eλ
2/2. This

implies in particular that E[X] = 0 and that Var[X] ≤ 1. We derive in this section a deviation bound for the
empirical mean of independent copies of X2:

Proposition 1. If X1, . . . , Xn are iid 1-sub-Gaussian random variables with variance 1, then

P
(
1− ϵ ≤ X2

1 + · · ·+X2
d

d
≤ 1 + ϵ

)
≤ 2e

−d
(

ϵ2−ϵ3

4

)
.

For Gaussian variables, this is a well-known application of Chernoff’s method that is to be found in many
probability textbooks. Inspired in particular by Theorem 2.6 of [18], we propose an extension to sub-Gaussian
variable with an argument that is (as far as we know) original. The proof requires to treat the upper- and the
lower bound separately, which is done is the two following subsections.

2.1.1. Proof of the upper bound

Chernoff’s method requires to bound the exponential moments E
[
eℓX

2
]
of X2 with ℓ > 0 for the right

deviations and with ℓ < 0 for the left deviations. We start with the right deviations, for which we will see right
away that a reduction to the Gaussian case is possible without further assumption. Following [18] (Theorem
2.6), and remarking that for all x ∈ R, and ℓ > 0,

eℓx
2

=

∫ ∞

−∞
eλx

e−
λ2

4ℓ

2
√
πℓ

dλ ,

if X is 1-sub-Gaussian we obtain by Fubini’s theorem that for every ℓ ∈ (0, 1/2)

E
[
eℓX

2
]
= E

[∫ ∞

−∞
eλX

e−
λ2

4ℓ

2
√
πℓ

dλ

]
=

∫ ∞

−∞
E
[
eλX

] e−
λ2

4ℓ

2
√
πℓ

dλ

≤
∫ ∞

−∞
e

λ2

2
e−

λ2

4ℓ

2
√
πℓ

dλ =

∫ ∞

−∞
e−

λ2(1−2ℓ)
4ℓ

dλ

2
√
πℓ

=
1√

1− 2ℓ
,

which holds with equality if and only if X ∼ N (0, 1). Equivalently: observe that if G ∼ N (0, 1), Fubini’s
theorem implies that

EX

[
eℓX

2
]
= EX

[
EG

[
e
√
2ℓX G

]]
= EG

[
EX

[
e
√
2ℓGX

]]
≤ EG

[
eℓG

2
]
=

1√
2π

∫
R
eℓu

2

e−
u2

2 du =
1√

1− 2ℓ
(3)

with equality if and only if X ∼ N (0, 1).
Hence, all sub-Gaussian variables have exponential moments bounded by those of a Gaussian law, which

permits the right-deviations to be handled the usual way. If Z1, . . . , Zd are independent random variables with
the same distribution as X2, then for every positive ϵ, Markov’s inequality implies that

P
(
Z1 + · · ·+ Zd

d
≥ 1 + ϵ

)
= P

(
eℓ(Z1+···+Zd) ≥ edℓ(1+ϵ)

)
≤ E[eℓZ1 ]d

edℓ(1+ϵ)
= e−d(ℓ(1+ϵ)−lnE[eℓZ1 ]) .
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The concave function ℓ 7→ ℓ(1+ϵ)−lnE[eℓX ] = ℓ(1+ϵ)+ 1
2 log(1−2ℓ) is maximized at ℓ∗ such that 1+ϵ = 1

1−2ℓ∗ ,

that is at ℓ∗ = 1
2

(
1− 1

1+ϵ

)
= ϵ

2(1+ϵ) . Hence, P(Z1 + · · ·+ Zd ≥ (1 + ϵ)d) ≤ e−d I(ϵ) with

I(ϵ) = ℓ∗(1 + ϵ)− lnE[eℓ
∗X ] =

ϵ− log(1 + ϵ)

2
.

This expression can be slightly simplified in many different ways. Let us illustrate the very useful ”Pollard
trick”: taking g(ϵ) = ϵ − log(1 + ϵ), since g(0) = g′(0) = 0 and since g′′(ϵ) = 1/(1 + ϵ)2 is convex, by Jensen’s
inequality

ϵ− log(1 + ϵ)

ϵ2/2
=

∫ 1

0

g′′(sϵ)2(1− s)ds ≥ g′′
(
ϵ

∫ 1

0

s 2(1− s)ds

)
= g′′

( ϵ
3

)
,

and hence I(ϵ) =
ϵ− log(1 + ϵ)

2
≥ ϵ2

4
(
1 + ϵ

3

)2 ≥ ϵ2 − ϵ3

4
. In summary,

P
(
Z1 + · · ·+ Zd

d
≥ 1 + ϵ

)
≤ e

−d
(

ϵ2−ϵ3

4

)
. (4)

2.1.2. Proof of the lower bound

There is no hope to prove that E
[
e−ℓX2

]
≤ 1√

1+2ℓ
for any ℓ > 0 for all 1-sub-Gaussian distributions,

since it is for example not the case if X = 0 almost surely. In the context of the Johnson-Lindenstrauss
lemma, it is very natural to assume that the entries of the random matrix have variance 1, so that at least
E[∥Axi −Axj∥2] = ∥xi − xj∥2. Under this assumption, it is maybe possible to bound the negative exponential
moments bounded by those of the standard Gaussian. and to conclude (as in the Gaussian case) by remarking
that I(−ϵ) ≥ I(ϵ), i.e. that the left-deviations of the Chi-square are lighter than the right deviations. But we
do unfortunately not have a proof for that.

Instead, we remark that if Var[X] = 1, the sub-Gaussianity inequality E[eλX ] ≤ eλ
2/2 implies by Taylor

expansion around λ = 0 that E[X4] ≤ 3. Using that e−u ≤ 1− u+
u2

2
, we obtain that E

[
e−ℓX2

]
≤ 1− ℓ+ 3ℓ2

2

and hence

P
(
Z1 + · · ·+ Zd

d
≤ 1− ϵ

)
≤ e

−d
(
ℓ(−1+ϵ)−ln

(
1−ℓ+ 3ℓ2

2

))
.

Since − ln(1− u) ≥ u+ u2/2,

ℓ(−1 + ϵ)− ln

(
1− ℓ+

3ℓ2

2

)
≥ ℓϵ− 3ℓ2

2
+

(ℓ− 3ℓ2/2)2

2
≥ ℓϵ− ℓ2 − 3ℓ3

2
=
ϵ2

4
− 3ϵ3

16

for ℓ = ϵ/2. It follows that

P
(
Z1 + · · ·+ Zd

d
≤ 1− ϵ

)
≤ e

−d
(

ϵ2

4 − 3ϵ3

16

)
≤ e

−d
(

ϵ2−ϵ3

4

)
. (5)

2.2. Application to the Johnson-Lindenstrauss lemma

Now that we have proved that squares of sub-Gaussian variables concentrate as well as squares of Gauss-
ian variables, we recall for the sake of self-containment the argument that permits to obtain the Johnson-
Lindenstrauss lemma with no assumption on the data:

Theorem 1 (Johnson-Lindenstrauss Lemma). Let x1, . . . , xn ∈ Rp and ϵ > 0. For every d ≥ 8 log(n)
ϵ2−ϵ3 there

exists a matrix A ∈ Md,p(R) such that

∀1 ≤ i, j ≤ n, (1− ϵ)∥Axi −Axj∥2 ≤ ∥xi − xj∥2 ≤ (1 + ϵ)∥Axi −Axj∥2 . (6)
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Proof. In the sequel, we assume that Ai,j = Ti,j/
√
d , 1 ≤ i ≤ d, 1 ≤ j ≤ p, where the (Ti,j) centered, standard

independent variables of a 1-sub-Gaussian distribution P :

E[Ti,j ] = 0, Var[Ti,j ] = 1, E
[
eλTi,j

]
≤ e

λ2

2 .

For a vector y ∈ Rp, define Y = Ay and for all i ∈ {1, . . . , d}

Zi =

√
d Yi
∥y∥

=

p∑
j=1

yj
∥y∥

Ti,j .

Then, as for all λ ∈ R

E
[
eλZi

]
=

p∏
j=1

E
[
eλ

yj
∥y∥Ti,j

]
≤

p∏
j=1

e
y2
j λ2

2∥y∥2 = e
λ2

2 ,

Zi is 1-sub-Gaussian. Since

∥Ay∥2

∥y∥2
=

1

d

d∑
i=1

(√
dYi
∥y∥

)2

=
1

d

d∑
i=1

Z2
i ,

Equations (4) and (5) yield:

P
(
∥Ay∥2

∥y∥2
/∈ [1− ϵ, 1 + ϵ]

)
= P

(
1

d

d∑
i=1

Z2
i > 1 + ϵ

)
+ P

(
1

d

d∑
i=1

Z2
i < 1− ϵ

)
≤ 2 e

−d
(

ϵ2−ϵ3

4

)
≤ 2

n2

as soon as d ≥ 8 log(n)
ϵ2−ϵ3 . By the union bound,

P

 ⋃
1≤i<j≤n

{
∥A(xi − xj)∥2 /∈

[
(1− ϵ)∥xi − xj∥2, (1 + ϵ)∥xi − xj∥2

]} ≤ n(n− 1)

n2
< 1 ,

hence giving the desired conclusion. □

Observe that the constant 8 in Condition (2) is the best that can be obtained from this proof. The dependency
in 1/ϵ2 also appears to be necessary, but the second-order term ϵ3 is slightly improvable. In the Gaussian case,
the proof above allows to use

d =
4 log(n)

ϵ− log(1 + ϵ)
≤ 8 log(n)

ϵ2

(
1 +

ϵ

3

)2
,

as we saw in Section 2.1.1. For sub-Gaussian variables, the simple expression (2) covers at the same time left-

and right-deviations. Also not that choosing d ≥ 4 log(n2/δ)
ϵ2−ϵ3 permits Property (11) to hold with probability at

least 1− δ.

2.3. What distribution should we use in random projections?

We have seen that any 1-sub-Gaussian distribution of variance 1 presents just the same guarantees as the

standard Gaussian for random projections. This is for example the case of P =
δ−1 + δ1

2
, or of P = U([ −

√
3,
√
3]), which are very simple laws that are fast to sample from. Indeed, their exponential moment functions

are cosh(λ) and sinh(
√
3λ)/(

√
3λ) respectively, which are upper-bounded by eλ

2/2. One may wonder, after
Achlioptas in [1], how sparse a random projection matrix can be (sparse matrices require fewer computations).

Proposition 2. If X is a 1-sub-Gaussian random variable of variance 1, then P (X = 0) ≤ 2/3, with equality

if and only P(X = −
√
3) = P(X =

√
3) = P(X ̸= 0)/2.
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Proof. Let us write X = ζ U , where ζ ∼ Bern(q) and U is a centered random variable. The requirement
Var[X] = 1 implies E[U2] = 1/q. If X is 1-sub-Gaussian, then E[X4] = qE[U4] ≤ 3, and since E[U4] ≥ E[U2]2 =
1/q2 this implies that q ≥ 1/3. Moreover, the choice q = 1/3 is possible only if E[U4] ≥ E[U2]2, that is if
U2 = 1/q almost surely. The choice

P =
q

2
δ− 1√

q
+ (1− q)δ0 +

q

2
δ 1√

q
(7)

with q = 1/3 is indeed the suggestion of Achlioptas, and it is 1-sub-Gaussian. The justification of this choice
in [1] is pretty involved, while we here only need to check that for all λ ∈ R,

E[eλX ] = 1− p+ p cosh

(
λ
√
p

)
= 1 +

∞∑
k=1

λ2k

pk−1(2k)!
≤ eλ

2/2 = 1 +

∞∑
k=1

λ2k

2k k!

whenever q ≥ 1/3. A sufficient condition for the inequality is that for all k ≥ 1,

1

qk−1(2k)!
≤ 1

2k k!
⇐⇒ qk−1 ≥ 2k k!

(2k)!
. (8)

For k = 1 this is always true, for k = 2 it requires that q ≥ 4× 2

24
=

1

3
. A simple induction shows that if

q ≥ 1/3, the condition is also satisfied for all k ≥ 3. Reciprocally, if q < 1/3 then E[eλX ]− eλ
2/2 ∼λ→0 −cλ4

for a positive constant c, and P is not 1-sub-Gaussian. □

This shows that Achlioptas’ suggestion is the only ”optimal” choice in terms of sparsity for a variance 1
and 1-sub-Gaussian distribution. Nevertheless, many other choices are possible, such as for example P =
1
12δ−2 +

1
6δ−1 +

1
2δ0 +

1
6δ1 +

1
12δ2.

3. Very Sparse Random projections

We say that a random matrix with independent entries is q-sparse if each coefficient has probability at least
1− q to be equal to zero. In the previous section, we showed that the minimal probability q for the non-zeros
values of a suitable 1-sub-Gaussian distribution P is 1/3. In fact, this result was proven in [12] with more
complicated moment arguments. It allows to take a target dimension d ≥ 8 log(n)/(ϵ2 − ϵ3) – see (2)– to get a
ϵ-quasi-isometry with nonzero probability, whatever the data x.

This does not exclude the possibility of using q-sparse projection matrices with q < 1/3, however. Technically
speaking, the previous analysis remains quite conservative in that the sub-Gaussianity of Zi is deduced from
the sub-Gaussianity of each of its summands. We may expect to gain a lot of sparsity by using the fact that a
sum can be a lot more concentrated than each of its components. Figure 1 suggests that, at least under certain
conditions on the data, much sparser matrices may be considered.

In this section, we present two results aimed at quantifying the minimum sparsity q necessary to maintain
the quasi-isometry condition with a dimension d on the order of log(n)/ϵ2. In particular, Theorem 3 shows that

q can be as small as maxi̸=j
∥xi−xj∥2

∞
∥xi−xj∥2

2
. To finish, we establish that this is in fact a theoretical limit and that q

must be at least of this magnitude.

3.1. Towards maximal sparsity

Let U ∈ Rd×p be a matrix of iid 1-sub-Gaussian entries with variance 1, and ζ ∈ Rd×p be a matrix of iid
Bernoulli variables of parameter q independent from U that is used to mask a proportion 1−q of the coefficients.
We assume that for all i, k,

Aik =
1√
dq
ζikUik . (9)
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Figure 1. Admissible value ϵ, in function of the sparsity parameter q of the random projection
entries. Each data point xi ∈ R10000 has independent Gaussian entries. The projection matrix
A has independent entries with distribution q

2δ− 1√
dq

+(1− q)δ0+ q
2δ 1√

qd
. The target dimension

is d = 500. The blue line shows mini,j
∥A(xi−xj)∥2

∥xi−xj∥2 , while the red line shows maxi,j
∥A(xi−xj)∥2

∥xi−xj∥2 .

The value q = 1/3 seems to play no special role, much sparser matrices seem to respect pairwise
distances just as well.

For the coefficients of U , one can take Achlioptas’ choice 1
6δ−

√
3 +

2
3δ0 +

1
6δ

√
3 to gain yet another fraction of

sparsity on top of the mask. We apply the matrix A to n points x1, . . . , xn in a high-dimensional space Rp,
and we look for the minimal conditions under which the quasi-isometry property (11) still holds with positive
probability. We propose a first result in that direction.

Theorem 2. Let x1, . . . , xn ∈ Rp and ϵ > 0. For every d ≥ 36 log (2n2)

ϵ2 − ϵ3
and every

q ≥ max
i ̸=j

18∥xi − xj∥44 + 2∥xi − xj∥2∞∥xi − xj∥22
ϵ2∥xi − xj∥42

log(2d) , (10)

it holds with positive probability that

∀1 ≤ i, j ≤ n, (1− ϵ)∥Axi −Axj∥2 ≤ ∥xi − xj∥2 ≤ (1 + ϵ)∥Axi −Axj∥2 . (11)

In particular, Theorem 2 establishes that there exists a q-sparse matrix in Md,p(R) satisfying the quasi-

isometry condition if d ≳ log(n)/ϵ2 and q ≳ maxi ̸=j
∥xi−xj∥2

∞
ϵ2∥xi−xj∥2

2
log(d) up to a constant factor. Hence, if the

coefficients of the differences xi − xj for i ̸= j are of the same order of magnitude 1/
√
p, then q is allowed to

be of order log(d)/(ϵ2p), which is much smaller than 1/3 if p ≫ 1/ϵ2. The cost in terms of target dimension is
only a multiplicative constant (that is not optimized in the previous reasoning). The proof of Theorem 2 relies
on similar ideas as in the preceding section, and will be provided in the next section.

In Theorems 1 and 2, the target dimension is of order log(n)/ϵ2. It turns out that if we allow slightly larger
target dimensions of order polylog(n)/ϵ2, then we can decrease even further the sparsity parameter q. For the
sake of completeness, we state this version of the quasi-isometry property (11) in high-probability instead of
just with positive probability.
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Theorem 3. Let x1, . . . , xn be arbitrary vector in Rp and let A ∈ Rd×p be a random matrix with independent
entries Aik = 1√

dq
ζikUik with

q ≥ max
i̸=j

∥xi − xj∥2∞
∥xi − xj∥22

. (12)

Then for any δ ∈ (0, 1) and any d such that

d ≥ 12

ϵ2
log(3n/δ)

(
1 +

√
4 log(nd/δ) + 2 log(nd/δ)

)2
, (13)

the ϵ-quasi-isometry property (11) holds with probability at least 1− δ.

Up to a poly-logarithmic factor in n and δ, the minimal dimension d0 satisfying Condition (13) is still of

order 1/ϵ2. The parameter q can be chosen as small as maxi ̸=j
∥xi−xj∥2

∞
∥xi−xj∥2

2
while keeping the original guarantee

of Johnson Lindenstrauss (11) with nonzero probability under the same condition (2) up to a poly-logarithmic
factor: we require d ≥ d0(n, 1, ϵ) instead of d ≥ 8 log(n)/(ϵ2 − ϵ3). In comparison to Theorem 2, we removed
a factor of order 1/ϵ2 in the minimal allowed sparsity q, at the cost of a poly-logarithmic factor in the target
dimension.

3.2. About the sparsity conditions (12) and (10).

Condition (12), can be understood as a ”not-too-high-sparsity” condition on the differences xi − xj , which
we formalize as follows. For any constants κ < κ′ ∈ (0, 1) and integer any s ∈ {1, . . . , p}, we say that a vector v

is (κ, κ′, s)-full if ∥v∥∞ ≤
√
κ′/s and if it has at least s coordinates whose absolute value are at least equal to√

κ/s, that is

∥v∥∞ ≤
√
κ′/s and |{k : |vk| ≥

√
κ/s}| ≥ s . (14)

This implies in particular that ∥v∥2 ≥ κ ≥ κ
κ′ s∥v∥2∞. Hence, if a set of vectors {x1, . . . , xn} is such that all the

differences xi − xj are (κ, κ′, s)-full for i ̸= j, then a sufficient condition implying (12) is

q ≥
(
κ′

κ

)
1

s
. (15)

In other words, we can take a matrix A which has only a proportion q ≳ 1/s of nonzero coefficients. This
condition is for instance very weak in the dense case where the differences xi − xj are (κ, κ′, p)-full for all
i ̸= j, since it only requires A to have a proportion nonzero coefficients of order q ≳ 1/p. In that case, all
the coefficients of each difference xi − xj are uniformly spread over the p dimensions, in the sense that up to
constants κ, κ′, |xik − xjk| ≍ 1/

√
p for any k.

Condition (12) becomes however much stronger when there exists a difference xi − xj which is s-sparse for
a small s, that is |{k : xik ̸= xjk}| ≤ s. Indeed, in such a sparse case, ∥xi − xj∥2∞/∥xi − xj∥22 ≥ 1/s, and the
condition q ≥ 1/s is necessary to satisfy (12).

3.3. Theoretical limit to the sparsity

It turns out that the condition q ≳ 1/s is in some sense optimal if we impose the dimension d to be of order
1/ϵ2 up to a poly-logarithm. Experimentally, Figures 2 and 3 dually confirm that random projections remain
equally efficient as long as the proportion of non-zero coefficients is clearly above the minimum between 1/s
and 1/3. The following optimality result is based on the following intuition. Let y be (1, 1, s)-full vector, that
is ∥y∥ = 1 and yi ∈ {−1/

√
s, 1/

√
s, 0}. If A ∈ Rd×p is any random matrix whose coefficients are independent

and such that for all (i, k), P(Aik ̸= 0) ≤ q, then,

P(Ay = 0) ≥ P(∀(i, k) ∈ d× S,Aik = 0) = (1− q)ds = eds ln(1−q) ≥ e
−ds

q
1−q .
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Figure 2. Admissible value ϵ in function of the sparsity parameter q of the random projection
entries (logarithmic scale), for different values of the sparsity s of the data. Each data point
xi ∈ R10000 has exactly s non-zero components, which are independent Gaussian entries. The
coefficients of the projection matrix A are independent and have distribution q

2δ− 1√
dq

+ (1 −

q)δ0 +
q
2δ 1√

qd
. The target dimension is d = 500. The blue line shows mini,j

∥A(xi−xj)∥2

∥xi−xj∥2 , while

the red line shows maxi,j
∥A(xi−xj)∥2

∥xi−xj∥2 . Observe that the scales of the ordinates are different

between the plots.
It can be observed that quasi-isometry is ensured whenever q × s is sufficiently large.

Hence, if q ≤ 1/(2ds), then P(Ay = 0) > 1/e. In other words, there is no hope to satisfy the quasi-isometry
property (11) with high probability if q ≤ 1/(2ds). This argument misses however the regime where ϵ2/s ≲ q ≲
1/s if d ≍ 1/ϵ2. The following theorem provides a general optimality result for all q < 1/(240s), and hence fills
the gap between ϵ2/s and 1/s when d ≍ 1/ϵ2 up to a poly-logarithmc factor.

Theorem 4. Assume that A ∈ Rd×p has iid coefficients distributed according to Archilotpas’ distribution with
parameter q – see Eq. (7). Let y ∈ Rp be a unit vector with coordinates in {−1/

√
s, 1/

√
s, 0}. If dqsϵ2 ≤ 1/2,

qs < 1/240, then

P(∥Ay∥2 ∈ [1− ϵ, 1 + ϵ]) ≤ 1− e−5000 .

In other words, if d ≍ 1/ϵ2 up to a polylog, then Theorem 4 only requires that q ≲ 1/s up to a polylog. We
take a probability 1− e−5000 that is very close to 1 in the theorem to match the two regimes where dqs ≳ 1 and
dqs ≲ 1. In the proof of Theorem 4, we also show that in the sub-case where dqs ≥ 1/2048, the probability of
success P(∥Ay∥2 ∈ [1 − ϵ, 1 + ϵ]) is smaller than 1/2. The proof, which is given at the end of section 5 relies
on the Tchebychev’s inequality and on a control of the moments of order 2, 4, 6 and 8 of the random variable
∥Ay∥.



10 TITLE WILL BE SET BY THE PUBLISHER

Figure 3. Admissible value ϵ, in function on the sparsity parameter s of the data (logarithmic
scale), for different values of the sparsity q of the projection matrix. Each data point of the
n = 100 data point xi ∈ R10000 has independent coefficients that are non-zero with probability
s/p; the non-zero coefficients are independent and uniformly distributed on {−1,+1}. The
projection matrix A has independent entries with distribution q

2δ− 1√
dq

+(1−q)δ0+ q
2δ 1√

qd
. The

target dimension is d = 500. The blue line shows mini,j
∥A(xi−xj)∥2

∥xi−xj∥2 , while the red line shows

maxi,j
∥A(xi−xj)∥2

∥xi−xj∥2 .

We observe that the values q ≥ 1/3 ensure the quasi-isometry property whatever the data. For
smaller values of q, the number s of non-zero coefficients needs to be larger than 1/q.

4. En passant: concentration of non-negative quadratic forms

The upper bound given in Section 3.1 is in fact strongly connected to the Hanson-Wright inequality for
sub-Gaussian random variables – see e.g. [14], and [13] for an application to the Johnson-Lindenstrauss lemma.
This inequality is known with precise constants for Gaussian chaos of order 2 – see Example 2.12 in [4] – and
it has been generalized with non-explicit constants to sub-Gaussian vectors, e.g. in Theorem 6.2.1 of [17]. In
the case where the quadratic form is assumed to be non-negative, the constants were established to be the
same as in the Gaussian case in [8]. For completeness, we conclude this paper by giving a succinct statement
and proof of the Hanson-Wright inequality for sub-Gaussian vectors when the quadratic form is assumed to be
non-negative.

A random vector X ∈ Rn is said to be 1-sub-Gaussian if, for any u ∈ Rd, E[euTX ] ≤ exp (∥u∥22/2). In

particular, if Z1, . . . , Zd are independent real random variable and 1-sub-Gaussian, that is E[eλZi ] ≤ eλ
2/2, then

for any orthogonal matrix P , PZ is a 1-sub-Gaussian vector. In contrast to [14], we do not require in the
following proposition the coordinates of X to be independent.
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Proposition 3 (See also Theorem 2.1 of [8]). Let S be any d×d symmetric matrix with non-negative eigenvalues,
and X be a 1-sub-Gaussian vector. Then, for any ℓ ∈ [0, 1/(2∥S∥op)),

EX [eℓX
TSX ] ≤ exp

(
ℓTr(S) +

ℓ2∥S∥2
F

1−2ℓ∥S∥op

)
.

As a consequence of Proposition 3 and following the same computations as in Theorem 10 of [4], it holds
that with probability at least 1− δ,

XTSX ≤ Tr(S) +
√
4∥S∥2F log(1/δ) + 2∥S∥op log(1/δ) ,

for any δ ∈ (0, 1). In comparison to Theorem 6.2.1 of [17], the constants are explicit and the same as in the
Gaussian case. This does however apply only to non-negative matrices. Proposition 3 can be deduced from the
proof of Thereom 2.1 in [8] in the case µ = 0 and σ = 1, but we still provide a short proof as the underlying
ideas are at the core of the upper bounds in the proofs of this paper.

Proof of Proposition 3. Let us write S = P Diag(µ1, . . . , µn)P
T , where µ1 ≥ · · · ≥ µn ≥ 0 and P is an

orthogonal matrix. Let also Y be the sub-Gaussian vector equal to PX, and ℓ > 0. By Fubini’s theorem,

EX

[
eℓX

TSX
]
= EX

[
e
∑n

i=1 ℓµiY
2
i

]
= EG

[
EX

[
e
∑n

i=1

√
2ℓµiYiGi

]]
≤ EG

[
e
∑n

i=1
1
2 ℓµiG

2
i

]
,

where G1, . . . , Gn are independent standard and centered Gaussian random variables. Then,

EG

[
e
∑n

i=1
1
2 ℓµiG

2
i

]
=

n∏
i=1

1√
1− 2ℓµi

= eℓTr(S)
n∏

i=1

exp
(
− 1

2 log(1− 2ℓµi)− ℓµi

)
≤ exp

(
ℓTr(S) +

n∑
i=1

ℓ2µ2
i

1−2sµi

)
,

where the first inequality comes from the inequality − 1
2 log(1−2ℓµi)−ℓµi =

∫ ℓ

0
2sµi

1−2sµi
ds ≤ ℓ2µ2

i

1−2ℓµi
. We conclude

the proof by remarking that
∑n

i=1
ℓ2µ2

i

1−2sµi
≤ ℓ2∥S∥2

F

1−2s∥S∥op
.

□

5. Proofs of Theorems 2, 3 and 4

While the proof of Theorem 2 remains as close as possible to that of Theorem 1, it provides some intuitions for
the proof of Theorem 3.

5.1. Proof of Theorem 2

Let U ∈ Rd×p be a matrix of iid 1-sub-Gaussian entries with variance 1, and ζ ∈ Rd×p be a matrix of iid
Bernoulli variables of parameter q independent from U that is used to mask a proportion 1−q of the coefficients.
We assume that for all i, k,

Aik =
1√
dq
ζikUik , (16)

and write as before Y = Ay and Zi =
√
dYi

∥y∥2
.

Following the previous analysis, we need to bound E[ exp(λZ2
i )], and we know how to do it from E[ exp(λZi)]

when Zi is sub-Gaussian thanks to the argument of Inequality (3). Since Zi =
∑p

k=1 yk
ζikUik

∥y∥2
√
q is a sum

of many small contributions, for any fixed λ we can bound lnE[ exp(λZi)] using only the local behavior of
ψ(λ) := lnE[ exp(λUi,k)] around 0, which is of order λ2/2 even when ψ is not upper-bounded by that quantity.
But using Inequality (3) would require a uniform control of ψ, which we cannot provide. We are hence obliged
to take another path, by conditioning on the mask variables (ζik) and focusing on the ”typical” behavior.
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Namely, let for each i ∈ {1, . . . , d} and for 0 ≤ ϵ ≤ 1 let

Gi =

{(
1− ϵ

3

)
∥y∥22 ≤

p∑
k=1

y2i
q
ζik ≤

(
1 +

ϵ

3

)
∥y∥22

}
.

By Bernstein’s inequality applied on the
[
0,

∥y∥2
∞

q∥y∥2
2

]
-valued independent variables

(
y2
i

q∥y∥2
2
ζik

)
1≤k≤p

, which have

variance
y4
i

q2∥y∥4
2
q(1− q) ≤ y4

i

q∥y∥2
2
,

P(Ḡi) ≤ 2 exp

− ϵ2/18∑p
k=1

y4
i

q∥y∥4
2
+

∥y∥2
∞ϵ

9q∥y∥2
2

 ≤ 2 exp

(
− qϵ2∥y∥42
18∥y∥44 + 2∥y∥2∞∥y∥22

)
,

which is smaller than 1/(2d) as soon as

q ≥ 18∥y∥44 + 2∥y∥2∞∥y∥22
ϵ2∥y∥42

log(2d) . (17)

On the event Gi, the behaviour of Yi is as expected: conditioning on (ζi,k)k,

E [exp (λZi)1Gi
] =

p∏
k=1

E

[
exp

(
λyk

√
dζikUik

∥y∥2
√
dq

)
1Gi

]

=

p∏
k=1

E
[
E
[
exp

(
λ
ykζikUik

∥y∥2
√
q

)
1Gi

∣∣∣∣ ζi,1, . . . , ζi,k]]

≤
p∏

k=1

E
[
exp

(
λ2y2kζik
2∥y∥22q

)
1Gi

∣∣∣∣ ζi,1, . . . , ζi,k]

= E

[
exp

(
λ2

2

p∑
k=1

y2k
∥y∥22q

ζik

)
1Gi

∣∣∣∣∣ ζi,1, . . . , ζi,k
]

≤ exp

(
λ2

2

(
1 +

ϵ

3

))
so that Zi/

√
1 + ϵ/3 is 1-sub-Gaussian and by Equation (3)

E
[
exp

(
ℓZ2

i

1 + ϵ
3

)
1Gi

]
≤ 1√

1− 2ℓ
.

Left deviations may be treated similarly. Hence, on the event G =
⋂d

i=1Gi, the behaviour of ∥Y ∥ is just as in
the non-sparse case: for all ϵ ≤ 1, by Equations (4) and (5)

P
(
G ∩

{
∥Ay∥2

∥y∥2
/∈ [1− ϵ, 1 + ϵ]

})
≤ P

(
G ∩

{
1

d

d∑
i=1

Z2
i

1 + ϵ
3

>
1 + ϵ

1 + ϵ
3

})
+ P

(
G ∩

{
1

d

d∑
i=1

Z2
i

1− ϵ
3

<
1− ϵ

1− ϵ
3

})

≤ P

(
G ∩

{
1

d

d∑
i=1

Z2
i

1 + ϵ
3

> 1 +
ϵ

3

})
+ P

(
G ∩

{
1

d

d∑
i=1

Z2
i

1− ϵ
3

< 1− ϵ

3

})

≤ 2 e
−d

(
ϵ2−ϵ3

36

)
.
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Consequently,

P

 ⋃
1≤i<j≤n

{
∥A(xi − xj)∥2 /∈

[
(1− ϵ)∥xi − xj∥2, (1 + ϵ)∥xi − xj∥2

]}
≤ P (Ḡ) +

∑
1≤i<j≤n

P
(
G ∩

{
∥A(xi − xj)∥2

∥xi − xj∥2
/∈ [1− ϵ, 1 + ϵ]

})
<

1

2
+ n2 e

−d
(

ϵ2−ϵ3

36

)
≤ 1

as soon as q satisfies Eq.(17) and d ≥ 36 log (2n2)
ϵ2−ϵ3 .

5.2. Proof of Theorem 3

Let ⊙ be the Hadamard product, so that A = 1√
dq
ζ ⊙U . We assume that y is unit vector of Rp representing

one of the unit vector
xi−xj

∥xi−xj∥ , and we write as before Y = Ay. The coefficients of wi =
1√
dq
ζi· ⊙ y are equal to

wik = 1√
dq
ζikyk, and

Y 2
i = 1

dq

∑
k′,k

ζikζik′UikUik′ykyk′ = (UT
i· wi)

2 .

The upper bound

Yi/∥wi∥ is 1-sub-Gaussian conditionally to ζ. Hence, if G is a standard Gaussian random variable, it holds
conditionally to ζ that for any ℓ in [0, 1/(2max ∥wi∥2)),

EU

[
eℓY

2
i

]
= EG

[
EU

[
e
√
2ℓYiG

]]
≤ EG

[
eℓ∥wi∥2G2

]
=

1√
1− 2ℓ∥wi∥2

≤ exp
(
ℓ∥wi∥2 + ℓ2∥wi∥4

1−2ℓ∥wi∥2

)
,

where the last inequality comes from the fact that − 1
2 log(1− 2ℓ∥wi∥2)− ℓ∥wi∥2 =

∫ ℓ

0
2s∥wi∥4

1−2s∥wi∥2 ds ≤ ℓ2∥wi∥4

1−2ℓ∥wi∥2 .

Hence, conditionally to ζ, we have that

Pζ(∥Ay∥2 ≥ 1 + ϵ) ≤ Eζ

[
exp

(
ℓ

d∑
i=1

∥wi∥2 +
dℓ2 maxi ∥wi∥4

1− 2ℓmaxi ∥wi∥2
− ℓ(1 + ϵ)

)]
. (18)

Let us now integrate according to ζ. The wik’s are independent, identically distributed random variables with

law yk√
dq
B(q). Moreover, Var(w2

ik) ≤ y4
k

d2q2E[ζ
4
ik] ≤ 1

d2qy
4
k. Bernstein’s inequality together with a union bound

over the d possible indices i = 1, . . . , d gives that with probability at least 1− δ/(3n2),

max
i

∥wi∥2 ≤ 1
d +

√
2 1
d2q∥y∥

4
4 log(3n

2d/δ) + 1
dq∥y∥

2
∞ log(3n2d/δ) .

The assumption (12) implies that q ≥ ∥y∥2∞. Since ∥y∥2 = 1, ∥y∥44 ≤ ∥y∥2∞ and the following event G holds
with probability at least δ/(3n2):

G =
{
max

i
∥wi∥2 ≤ 1

d

(
1 +

√
4 log(3nd/δ) + 2 log(3nd/δ)

)}
=

{
∀i, ∥wi∥2 ≤ Ψ

d

}
. (19)

where for simplicity we write Ψ = 1+
√
4 log(3nd/δ)+2 log(3nd/δ). Using the inequality eu ≤ 1+u+(e−2)u2

for any u ∈ [0, 1], we have that for any ℓ ∈ [0, dq
∥y∥2

∞
),
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E

[
exp

(
ℓ

d∑
i=1

∥wi∥2
)]

=
∏
i,k

(
q exp( ℓ

dqy
2
k) + 1− q

)
≤
∏
i,k

exp
(
q(exp( ℓ

dqy
2
k)− 1)

)
≤ exp(ℓ+ (e− 2) ℓ

2

dq∥y∥
4
4)

≤ exp(ℓ+ (e− 2) ℓ
2

d ) .

Let us now integrate the conditional probability Pζ(∥Ay∥2 ≥ 1 + ϵ) over ζ. For any ℓ ∈ [0, d/(4Ψ)), we have

P(∥Ay∥2 ≥ 1 + ϵ) ≤ E

[
exp

(
ℓ

d∑
i=1

∥wi∥2 +
dℓ2 maxi ∥wi∥4

1− 2ℓmaxi ∥wi∥2
− ℓ(1 + ϵ)

)
1G

]
+

δ

3n2

≤ E

[
exp

(
ℓ

d∑
i=1

∥wi∥2 + 2ℓ2A2

d − ℓ(1 + ϵ)

)]
+

δ

3n2

≤ exp
(
(e− 2) ℓ

2

d + 2ℓ2 Ψ2

d − ℓϵ
)
+

δ

3n2

The second inequality comes from Equation 18, which holds true under the event G defined in (19). The
third inequality comes from the fact that ℓ ≤ d/(4Ψ2) ≤ d ≤ dq/∥y∥2∞ and the above upper bound on

E[exp(ℓ
∑d

i=1 ∥wi∥2)].
Choosing ℓ = dϵ/(2(e− 2) + 4Ψ2) ≤ d/(4Ψ2), we get

P(∥Ay∥2 ≥ 1 + ϵ) ≤ exp

(
− dϵ2

2(e− 2) + 4Ψ2

)
+

δ

3n2
.

Hence, if d ≥ d0 = 12 log(3n/δ)Ψ2/ϵ2, we obtain that

P(∥Ay∥2 ≥ 1 + ϵ) ≤ exp

(
−2 log

3n

δ

)
+

δ

3n2
≤ 2δ

3n2
.

A union bound all the n(n− 1)/2 ≤ n2 pairs gives that

P

 ⋃
1≤i<j≤n

{
∥A(xi − xj)∥2 ≥ (1 + ϵ)∥xi − xj∥2

} ≤ 2δ/3 . (20)

The lower bound

For the lower bound, we use the same arguments as in section 2.1.2. We still have that E[(Ay)2i ] = 1/d for
any i ∈ {1, . . . , d}, but we since the variables (Ay)i are not sub-Gaussians, do not have the bound E[(Ay)4i ] ≤ 3.
Instead, we bound the fourth moment as follows:
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E[(Ay)4i ] ≤
3

d2q2

∑
k ̸=k′

q2y2ky
2
k′ +

1

d2q2

d∑
k=1

qy4kE[U4
ik]

≤ 3

d2
+

3∥y∥2∞
d2q

≤ 6

d2
.

Hence,

P
(
∥Ay∥2 ≤ 1− ϵ

)
≤ exp

(
d ln

(
1− ℓ

d
+ 3

ℓ2

d2

)
+ ℓ(1− ϵ)

)
≤ exp

(
3
ℓ2

d
− ℓϵ

)
.

Choosing ℓ = ϵ/6, we obtain that

P(∥Ay∥2 ≤ 1− ϵ) ≤ exp(−dϵ
2

12
) .

If d ≥ d0 ≥ 24 log(3n/δ), then we obtain

P(∥Ay∥2 ≤ 1− ϵ) ≤ δ/(3n2) .

Hence, from a union bound over the at most n2 possible pairs xi, xj , we obtain that

P

 ⋃
1≤i<j≤n

{
∥A(xi − xj)∥2 ≤ (1− ϵ)∥xi − xj∥2

} ≤ δ/3 . (21)

We conclude from the upper bound (20) and the lower bound (21) that if q ≥ maxi ̸=j
∥xi−xj∥2

∞
∥xi−xj∥2

2
and if

d ≥ d0(n, δ, ϵ), the ϵ-quasi isometry property (11) holds with probability at least 1− δ, that is

P

 ⋃
1≤i<j≤n

{
∥A(xi − xj)∥2 /∈

[
(1− ϵ)∥xi − xj∥2, (1 + ϵ)∥xi − xj∥2

]} ≤ 2δ/3 + δ/3 ≤ δ .

5.3. Proof of Theorem 4

Let y be a unit vector of Rp. If dqs ≤ 1/2048, then we have that

P(∥Ay∥2 ̸∈ [1− ϵ, 1 + ϵ]) ≥ P(Ay = 0) ≥ e
−ds

q
1−q ≥ e−5000 ,

which proves the result in that case.
In what follows, we assume that dqs ≥ 1/2048. Chebychev’s inequality implies that

P(∥Ay∥2 ∈ [1− ϵ, 1 + ϵ]) = P((∥Ay∥2 − 1)2 ≤ ϵ2)

≤
Var

[
(∥Ay∥2 − 1)2

]
E [(∥Ay∥2 − 1)2]− ϵ2

.

Subsequently, we give a lower bound of E[(∥Ay∥2 − 1)2] and an upper bound of Var[(∥Ay∥2 − 1)2]. We denote
by X a random variable following the distribution of one coefficients of A. X can be written 1√

dq
ζ U , where

ζ ∼ Bern(q) an U ∼ U({−1, 1}) are independent. It holds in particular that for any k ≥ 1, E[X2k+1] = 0 and
E[X2k] = 1

dkqk−1 .
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Lower bound of E[(∥Ay∥2 − 1)2].

E
[
(∥Ay∥2 − 1)2

]
= E

[
∥Ay∥4

]
− 1 = E

( d∑
i=1

p∑
k=1

p∑
l=1

AikAilykyl

)2
− 1

=
∑

i1,i2,k1,k2,l1,l2

E

 ∏
u∈{1,2}

Aiuku
Aiuluyku

ylu

− 1 ,

where the final sum is over all (i1, i2) ∈ [d]2 and all (k1, k2, l1, l2) ∈ [p]4. Let us fix i1, i2 such that i1 = i2. Since
E[Aik] = E[A3

ik] = 0 for any i, k, either k1 = k2 = l1 = l2 or there is exactly two pairs of equal indices among
(k1, k2, l1, l2). Since there are exactly 3 possible ways of matching 2 pairs among the four indices, we have that

∑
k1,k2,l1,l2

E

 ∏
u∈{1,2}

AiukuAiuluykuylu

− 1 = E[X4]∥y∥44 + 3E[X2]2
(
∥y∥42 − ∥y∥44

)
=

1

d2qs
+

3

d2

(
1− 1

s

)
.

If i1 ̸= i2, then we necessarily have that k1 = l1 and k2 = l2 for nonzero contributions. Hence, in that case,

∑
k1,k2,l1,l2

E

 ∏
u∈{1,2}

Aiuku
Aiuluyku

ylu

− 1 = E[X2]2∥y∥42 =
1

d2
.

Combining the two cases, we obtain that

E
[
(∥Ay∥2 − 1)2

]
=

d

d2qs
+

3d

d2

(
1− 1

s

)
+
d(d− 1)

d2
− 1 ≥ 1

dqs
. (22)

Upper bound of Var[∥Ay∥2 − 1)2].

Var
[
(∥Ay∥2 − 1)2

]
≤ E

[
(∥Ay∥2 − 1)4

]
= E[∥Ay∥8]− 4E[∥Ay∥6] + 6E[∥Ay∥4]− 4E[∥Ay∥2] + 1

≤ E[∥Ay∥8]− 4E[∥Ay∥6] + 6

dqs
+ 3 +

18

d
.

The inequality comes from the above computation of E[∥Ay∥4]. In what follows, we first upper-bound E[∥Ay∥8]
and then we lower-bound E[∥Ay∥6]. For the latter, the idea is to cancel out the terms of constant order or of
order 1/(dqs). Following the same lines as in the computation of E[∥Ay∥4], we observe that

E[∥Ay∥8] =
∑

(iu),(ku),(lu)

E

 ∏
u∈{1,2,3,4}

Aiuku
Aiuluyku

ylu

 , (23)

where the sum is over all ((iu)u=1,...,4, (ku)u=1,...,4, (lu)u=1,...,4) ∈ [d]4 × [p]8. Let us consider the following sets
for the indices (iu):

(1) (iu) ∈ I1 if the iu’s are pairwise distinct. in that case, |I1| = d(d− 1)(d− 2)(d− 3) ≤ d4

(2) (iu) ∈ I2 if there are exactly two equal indices among the iu’s. In other words, (iu) is a permutation of
(i, i, i′, i′′) where i, i′, i′′ are pairwise distinct. Here, |I2| = 6d(d− 1)(d− 2) ≤ 6d3
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(3) (iu) ∈ I3 if there are exactly three equal indices among the iu’s, i.e (iu) is a permutation of (i, i, i, i′)
where i ̸= i′. Here, |I3| = 4d(d− 1) ≤ 4d2

(4) (iu) ∈ I4 if all the iu’s are equal. Here, |I4| = d
(5) (iu) ∈ I5 if there are exactly two pairs of equal indices among the iu’s. Here, |I5| = 3d(d− 1) ≤ 3d2

The sets (Iv) are disjoint, and the reader can check that the sum of their sizes is equal to d4. Let us fix
(iu) ∈ [d]4, and consider the five following cases, each corresponding to one of the sets (Iv).

(1) If (iu) ∈ I1, then the expectation of the product over u ∈ {1, 2, 3, 4} is nonzero only if ku = lu for all
u ∈ {1, 2, 3, 4}. Hence,

∑
(ku),(lu)

E

 ∏
u∈{1,2,3,4}

Aiuku
Aiuluyku

ylu

 =
1

d4
∥y∥82 =

1

d4
.

(2) If (iu) ∈ I2, we assume that without loss of generality that (i1, i2, i3) are pairwise distinct and that i3 =
i4. In that case, we have a nonzero contribution only if k1 = l1, k2 = l2 and if either (k3 = l3 = k4 = l4)
or there are two matching pairs among the indices (k3, l3, k4, l4) (3 possible matching). Hence, using
the fact that ∥y∥2 = 1 and ∥y∥44 = 1/s:

∑
(ku),(lu)

E

 ∏
u∈{1,2,3,4}

Aiuku
Aiuluyku

ylu

 ≤ 1

d4q
∥y∥42∥y∥44 +

3

d4
∥y∥82 =

1

d4qs
+

3

d4
.

(3) If (iu) ∈ I3, we assume that i1, i2 are distinct and that i2 = i3 = i4. In that case, we have a nonzero
contribution if k1 = l1 and if either (k2 = l2 = k3 = l3 = k4 = l4) or if there are 3 matching pairs among
(k1, l2, k3, l3, k4, l4) (5 · 3 = 15 possible matchings). Hence, using also that qs ≤ 1,

∑
(ku),(lu)

E

 ∏
u∈{1,2,3,4}

Aiuku
Aiuluyku

ylu

 ≤ 1

d4q2
∥y∥22∥y∥66 +

15

d4
∥y∥82 ≤ 16

d4q2s2
.

(4) If (iu) ∈ I4, then there is a nonzero contribution in one of the three following cases. Either the ku’s
and lu’s are all equal, or there are 2 groups among the ku’s and lu’s, each made of 4 indices that are all
equal ( 12

(
8
4

)
= 35 possibilities), or there are 4 matching pairs (7 · 5 · 3 = 105 possible matching). Hence,

∑
(ku),(lu)

E

 ∏
u∈{1,2,3,4}

AiukuAiuluykuylu

 ≤ 1

d4q3
∥y∥88 +

35

d4q2
∥y∥84 +

105

d4
∥y∥82 ≤ 141

d4q3s3
.

(5) If (iu) ∈ I5, assume without loss of generality that i1 = i2, i3 = i4 and i2 ̸= i3. Then there are two
possibilities for each pairs (i1, i2) and (i3, i4). Either k1 = l1 = k2 = l2 (resp. k3 = l3 = k4 = l4) or
there are three pairs of equal indices among k1, l1, k2, l2 (resp. k3, l3, k4, l4). This gives

∑
(ku),(lu)

E

 ∏
u∈{1,2,3,4}

Aiuku
Aiuluyku

ylu

 ≤
(

1

d2q
∥y∥44 +

3

d2
∥y∥42

)2

≤ 16

d4q2s2
.

Decomposing the equation (23) into these five above cases and using the assumption dqs ≥ 1, we obtain that

E[∥Ay∥8] ≤ 1 +
6

dqs
+

18

d
+

4 ∗ 16
d2q2s2

+
141

d3q3s3
+

3 ∗ 16
d2q2s2

≤ 1 +
6

dqs
+

18

d
+

253

d2q2s2
,
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which implies that

Var
[
(∥Ay∥2 − 1)2

]
≤ E[∥Ay∥8]− 4E[∥Ay∥6] + 6

dqs
+ 3 +

12

d

≤ 4 +
12

dqs
− 4E[∥Ay∥6] + 253

d2q2s2
+

30

d
.

We now show that the term 4 + 12
dqs is smaller than 4E[∥Ay∥6]. Doing the same reasoning as above, we can

write

E[∥Ay∥6] =
∑

(ju),(ku),(lu)

E

 ∏
u∈{1,2,3}

AiukuAiuluykuylu

 , (24)

where the sum is over all (ju), (ku), (lu) in [d]3 × [p]6. The product is always non-negative, and we consider the
sets

J1 = {(j, j, j) : j ∈ [d]} and J2 = {(j1, j2, j3) : two of the ju are equal and distinct from the other one} .

We have that |J1| = d3 and |J2| = 3d(d− 1), so that

E
[
∥Ay∥6

]
≥

∑
(ju)∈J1,(ku),(lu)

E

 ∏
u∈{1,2,3}

AiukuAiuluykuylu

+
∑

(ju)∈J2,(ku),(lu)

E

 ∏
u∈{1,2,3}

AiukuAiuluykuylu


= ∥y∥62 + 3d(d− 1)

1

d3q
∥y∥44∥y∥22

= 1 +
3

dqs
− 3

d2qs
≥ 1 +

3

dqs
− 3

d2q2s2

To conclude, we obtain

Var
[
(∥Ay∥2 − 1)2

]
≤ 4 +

12

dqs
− 4E[∥Ay∥6] + 253

d2q2s2
+

30

d

≤ 256

d2q2s2
+

30

d
.

Combining this latter upper bound with (22), we conclude that

P(∥Ay∥2 ∈ [1− ϵ, 1 + ϵ]) ≤
256

d2q2s2 + 30
d

1
dqs − ϵ2

≤
256
dqs + 30qs

1− dqsϵ2
≤ 1/2 ,

where we used in the last inequality the assumption that dqsϵ2 ≤ 1/2, qs ≤ 1/240 and dqs ≥ 2048. This
concludes the proof of Theorem 4.

Acknowledgment. The authors are thankful to Pierre Bellec, to the editor Nicolas Verzelen and to the
anonymous associate editor who helped improving the redaction of this paper.

References

[1] Dimitris Achlioptas. Database-friendly random projections. In Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems, PODS ’01, page 274–281, New York, NY, USA, 2001. Association for Com-

puting Machinery.



TITLE WILL BE SET BY THE PUBLISHER 19

[2] Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley, New York, second edition, 2004.
[3] Ella Bingham and Heikki Mannila. Random projection in dimensionality reduction: applications to image and text data. In

Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’01,

page 245–250, New York, NY, USA, 2001. Association for Computing Machinery.
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