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Abstract: A linearization method based on the work of Nguyen [Analyse systématique du 

concept de comportement linéaire équivalent en ingénierie sismique, PhD., université Paris-
Est; EDF; ESTP, Cachan (2017)] is extended in this paper. The method is based on the fitting 
of the relative acceleration transfer function of a linear SDOF oscillator on non-linear relative 
acceleration transfer functions to obtain the equivalent dynamic parameters in terms of fre-
quency and viscous damping ratio. This paper proposes formulas for the fitting and introduces 
an additional parameter in the non-linear transfer function numerical calculation. Elastic per-
fectly plastic, linear kinematic hardening and non-linear kinematic hardening materials behav-
iors are considered. The cases of wide and narrow band input motions are explored. The line-
arization method results are compared to formulas from the literature and evaluated according 
to goodness of fit criteria. The method gives good results regarding relative speed and accel-
eration values and less accurate results regarding the maximum displacement prediction. This 
method should be considered in the case of the determination of transferred motions and fa-
tigue analysis. 
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Introduction 

For a structure or a mechanical system, a seismic input motion can be regarded as an imposed cyclic 
load history. If the input is strong enough, it can induce irreversible changes because the system evolves 
out of its reversible domain. Moreover, as the input motion is a succession of cycles, the system accu-
mulates irreversible changes at each cycle, this is specially the case when a permanent force (gravity, 
pressure) applies in addition to the seismic input motion. Here are some examples of this phenomenon 
that were already studied: 

- Accumulation of seismically induced sliding of gravity dams, where the reservoir water pressure 
acts as a permanent force (Labbé, 2023); 

- Accumulation of seismically induced settlements of a soil column overlying a bedrock during an 
earthquake, where gravity acts as a permanent force. This problem was studied by Vincens et 
al (2003) who proposed a settlement predictive formula; 

- Accumulation of circumferential plastic strain (ratcheting) in straight pressurized pipes under 
seismically induced cycles of torsion, where pressure is a permanent load. This was studied by 
Boussaa and Labbé (1992) who proposed a formula to approximate ratcheting. 

These kinds of mechanical problems can be modeled by elastic-plastic SDOF or MDOF oscillators and 
have been studied thoroughly in the last decades. Many linearization techniques and formulas have 
been proposed. The first notable study is the one by Caughey (1960) who explored the steady-state 
response of the hysteretic oscillator under harmonic forces. Iwan and Paparizos (1988) studied the 
response of strongly yielding oscillators and showed their frequency shift when they are strained out of 
their linear domain. They also highlighted the importance of the response content at low frequency re-
garding the prediction of the plastic drift. Following the idea of Karnopp and Scharton (1966), Paparizos 
and Iwan (1988) studied the non-linear part of the elastic-plastic oscillator response as a “plastic pro-
cess” viewed as a Brownian motion. They proposed formulas for the plastic drift response statistics. 
From this concept, Borsoi and Labbé (1989) derived a method to determine the probability of collapse 
of elastic-perfectly plastic oscillators excited by white-noise type input motions. Later, from the same 
paradigm, Feau (2008) proposed a formula for the mean ductility demand. Formulas for frequency shift 
ratio and equivalent viscous damping ratio were also proposed by Jacobsen (1930), Reddy and Pratap 
(2000), Blandon (2005) and more recently by Liu et al. (2014 and 2015). 
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Other methods are also found in the literature, such as in the series of article of Bouc and Boussaa 
(1998, 2001, 2002). They derived formulas for the mean drift response of the elastic-perfectly plastic 
oscillator under zero and non-zero mean random load, through resolution of the stochastic equation of 
motion, where the motion is decomposed into a non-stationary drift term and a stationary oscillatory 
term. More recently, Boussaa and Bouc (2018) refined the method to propose satisfactory prediction of 
the elastic-perfectly plastic oscillator’s velocity power spectral density under wide-band random excita-
tions. 

This article follows in the footsteps of papers by Nguyen (2017) and by Labbé & Nguyen (2019, 2020 
and 2021) who studied the margins of non-linear oscillators under zero-mean wide band random exci-
tation and highlighted the importance of the input motion frequency content. They also proposed a line-
arization method which consists in finding the equivalent dynamic parameters (equivalent resonance 
frequency and equivalent viscous damping ratio) by fitting the relative acceleration transfer function of 
the linear oscillator on the numerical transfer function of the non-linear oscillator. This work extends and 
improves this method by proposing an additional parameter introduced at the denominator of the non-
linear transfer function calculation and by testing three fitting formulas. Moreover, the method is applied 
to more situations. Different plastic behaviors (from perfectly plastic to non-linear kinematic hardening), 
zero and non-zero imposed initial static force, and wide band and narrow band input motions are stud-
ied. The method is evaluated by goodness of fit criteria. In the literature, most of the linearization meth-
ods aim to find a good relative displacement estimate. This is not the goal of this paper. It rather aims 
to obtain good predictions of the relative acceleration and relative speed non-linear responses. It finds 
its interest in civil engineering studies to obtain transferred motions or to perform fatigue analysis. 

Considered input motions 

Different types of input motions are considered in this paper: wide-band signals, representing rock site 
ground level seismic input motions and narrow-band signals representing the seismic motion filtered by 
a structure. Signals are defined by their power spectral density (PSD), which consists in the filtering of 
a one-sided truncated white noise, denoted by 𝑆0, defined on the [0 Hz, 50 Hz] frequency interval. 

As proposed by Nguyen (2017), this white noise is filtered by a Kanai-Taijimi (1960) filter, a Clough and 
Penzien (1975) filter to reduce the low frequency content of the motion, and a low-pass filter to control 
the high frequency content. The resulting PSD is expressed below, with 𝐻𝐶𝑃 and 𝐻𝐿𝑃 being respectively 
the Clough and Penzien and low-pass filter transfer functions: 

𝑆(𝜔) =  
1 + 4𝜉𝐾𝑇

2 Ω𝐾𝑇
2

(1 − Ω𝐾𝑇
2 )2 + 4𝜉𝐾𝑇

2 Ω𝐾𝑇
2  |𝐻𝐶𝑃|2|𝐻𝐿𝑃|2 𝑆0 (1) 

with: 

𝐻𝐶𝑃(𝜔) =
𝛺𝐶𝑃

2

(1 − 𝛺𝐶𝑃
2 ) + 2𝑖𝜉𝐶𝑃Ω𝐶𝑃

 (2) 

 

𝐻𝐿𝑃(𝜔) =
1 𝜔𝐿𝑃

2⁄

(𝛺𝐿𝑃
2 − 1) + 2𝑖𝜉𝐿𝑃Ω𝐿𝑃

 (3) 

 
 

Ω𝐾𝑇 =
𝜔

𝜔𝐾𝑇
 ; 𝛺𝐶𝑃 =  

𝜔

𝜔𝐶𝑃
 ; Ω𝐿𝑃 =  

𝜔

𝜔𝐿𝑃
 ; 𝜔 = 2𝜋𝑓 

 
The signal generation procedure is described in Labbé (2021). Each sample 𝛾𝑖(𝑡) last 20 seconds and 
the strong phase of each signal is controlled by a time-envelope curve 𝐸(𝑡) of 𝛼-type (Jennings, et al., 
1968) whose expression is: 
 

𝐸(𝑡) =  𝛼1𝑡(𝛼2−1) exp(−𝛼3𝑡) (4) 

 
The 𝛾𝑖(𝑡) samples correspond to the wide band input motions. To obtain narrow band input motions, we 
considered a simple five story structure represented in figure 1 which plays the role of a filter. Each story 
has the same stiffness 𝑘𝑠. The motion 𝛾𝑖(𝑡) is the ground motion. Then, we calculate the relative 
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acceleration response 𝛾𝑓𝑖(𝑡) at the fifth story, only controlled by the structure first mode of frequency 𝑓1 

and modal linear viscous damping 𝜉1. This response is our considered narrow band input. The wide 
band and narrow band input motions characteristics are summed up in table 1.  
 

 

Figure 1: Five story structure filter 

 

 

Table 1: Input motions parameters 

 
The statistics of the signals, more precisely, the central frequency, the peak frequency and the band-
width, are studied. One thousand samples of wide and narrow band signals are respectively generated. 
The mean PSDs are represented in figure 2, the mean pseudo acceleration response spectra are shown 
in figure 3. The amplitude values are normed. 
 
Noting 𝑚𝑖 the spectral moment of order 𝑖 of a stationary random process with zero mean, we use the 
Rice formula to obtain the central frequency of the PSD input motions: 
 

𝑓𝑐 =
1

2𝜋
√

𝑚2

𝑚0
  (5) 

 
The proposed bandwidth measure determines the “frequency standard deviation” which corresponds to 
the square root of the difference between the squared PSD central frequency and the squared PSD 
peak frequency. The higher the standard deviation is, the wider the process bandwidth is (Preumont, 

- Parameter Value Unit

Frequency range - 0.05 - 50 [Hz]

2.5 [Hz]

0.5 [-]

0.125 [Hz]

1 [-]

10 [Hz]

1 [-]

1.33 [-]

2.5 [-]

0.5 [-]

Number of story 5 [-]

75000000 [N/m]

0.05 [-]

3.2 [Hz]

Kanai-Tajimi filter

Clough and Penzien 

filter

Low-pass filter

Time envelope curve

Structure to obtain 

narrow band signals

𝑓𝐾𝑇

𝜉𝐾𝑇

𝑓𝐶𝑃

𝜉𝐶𝑃

𝑓𝐿𝑃

𝜉𝐿𝑃

𝛼1

𝛼2

𝛼3

𝑘𝑠

𝑓1

𝜉1
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1994; Vanmarcke 1984). The measure is denoted by 𝛿1 : 
 

𝛿1 = √1 −
𝑚1

2

𝑚0𝑚2
 (6) 

 
It indicates a narrow band process when the value is close to zero and a wide band process at a value 
close to one. The values of the central frequency, the peak frequency and the bandwidths are calculated 
on the mean PSDs obtained from the one thousand samples. The results are reported in table 2. 
 
 

 

Table 2: Input motion statistics 

 

 

 

 

Figure 2: Mean PSD of: a) Wide band signals, b) Narrow band signals  

 

 

 

Figure 3: Mean pseudo acceleration response spectrum of: a) Wide band signals, b) Narrow band signals 

 

Parameter Unit Wide band signal Narrow band signal

Cenral frequency [Hz] 3.17 3.35

Peak frequency [Hz] 2.20 3.2

Bandwidth δ1 [-] 0.59 0.19
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The Elastic-Plastic Oscillator 

Material Behavior: 

As mentioned, the mechanical system that is considered here is the non-linear single degree of freedom 
oscillator. Its equation of motion is: 
 

𝑋̈𝑡𝑜𝑡 + 2𝛽𝜔0𝑋̇𝑡𝑜𝑡 + 𝐹(𝑋𝑡𝑜𝑡) =  −𝛾(𝑡) (7) 

 
Where 𝑋𝑡𝑜𝑡 is the total displacement, 𝛽 the viscous damping ratio, 𝜔0 the circular frequency, 𝐹 the spring 

force and 𝛾 the input motion which can be a sample of a wide band or a narrow band signal as defined 

previously. By noting 𝑋𝑒 the elastic displacement and 𝑋𝑝 the plastic displacement, we obtain the follow-

ing additive decomposition: 
 

𝑋𝑇𝑂𝑇 = 𝑋𝑒 + 𝑋𝑝 (8) 
 
Then, the force 𝐹 can be written as: 
 

𝐹(𝑋𝑡𝑜𝑡) =  𝜔0
2(𝑋𝑡𝑜𝑡 − 𝑋𝑝) (9) 

 
Different behaviors are considered in this paper. They are all independent of time dissipative behaviors. 
This choice is often made for the study of metallic materials such as steel, the studied plastic laws are 

listed below, with the definition of the Von-Mises yield criteria 𝑓 and their flow rule 𝑋̇𝑃 in the case of one-
dimensional plasticity. 
 
Perfect plasticity (EPP): 
 

𝑓 =  |𝐹| − 𝐹0 (10) 
 

𝑋̇𝑝 = 𝜆 𝑠𝑖𝑔𝑛(𝐹) (11) 
 
Linear Kinematic Hardening (LKH) or the so-called Prager model (1955): 
 

𝑓 =  |𝐹 − 𝑞| − 𝐹0 (12) 
 

𝑋̇𝑝 = 𝜆 𝑠𝑖𝑔𝑛(𝐹 − 𝑞) (13) 

 

𝑞̇ = 𝐻𝑋𝑝̇ (14) 

 
Non-Linear Kinematic Hardening (NLKH) or the so-called Armstrong-Frederick model (1966): 
 

𝑓 =  |𝐹 − 𝑞| − 𝐹0 (15) 
 

𝑋̇𝑝 = 𝜆 𝑠𝑖𝑔𝑛(𝐹 − 𝑞) (16) 
 

𝑞̇ = 𝐶𝑋𝑝̇ − 𝜇𝑞|𝑋̇𝑝| (17) 

 

The complementarity conditions, 𝜆 ≥ 0, 𝑓 ≤ 0, 𝜆𝑓 = 0, apply for these three models. 

In the above, 𝐹0 is the yield force, 𝜆 the plastic multiplier, 𝑞 the elasticity domain translation. 𝐻, 𝐶 and 𝜇 
are parameters model. These three models were chosen because they do no exhibit the same accu-
mulation of plastic strain, or here, plastic displacement. The perfect plasticity model is known to be the 
least conservative one and it exhibits ratcheting at asymptotic behavior when the system is loaded by a 
non-zero mean cyclic force. On the contrary, the LKH model is known to only manifest elastic or plastic 
shakedown when the asymptotic behavior is reached, even under non-zero mean cyclic force. The 
NLKH model was made to propose a better representation of the stress-strain curve but also to give a 
more precise evaluation of the ratcheting strain, one which is overall more satisfactory than the perfect 
plasticity model in this regard. The literature is full of information on this subject, one could argue on the 
precision of the NLKH model and on its tendency to be conservative or not and that’s why many models 
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were invented later on such as the Chaboche one (1989 and 1991). This article does not aim to critic or 
evaluate the precision of these models. More information can be found in the works of Lemaitre and 
Chaboche (1988) and of Maitournam (2019). Other model, such as models with damage, will be con-
sidered in future works. 
 

Parameters values: 

For all the calculations, the linear viscous damping ratio 𝛽 is always chosen to be equal to 5%. For the 

EPP and LKH models, the initial oscillator stiffness 𝑘0 varies regarding the central frequency of the input 

motion sample. The value H of the LKH model is chosen to be 10% of 𝑘0. For the NLKH model, the 
values found in Lemaitre and Chaboche (1988) are chosen and fixed to simulate a 316 L steel, 𝑘0 =
210 000 MN, 𝐶 = 30 000 MN, 𝜇 = 60, 𝐹0 = 300 MN. In this study, for each sample, the natural frequency 

of the oscillator is tuned to be equal to the central frequency of the input motion 𝛾𝑖 or 𝛾𝑓𝑖 such as 
𝑓0

𝑓𝑐
= 1. 

 

Numerical resolution: 

The chosen temporal numerical scheme is the mean acceleration implicit gamma beta Newmark 
scheme. The time step is 0.001s. The plasticity step is solved by a predictor-corrector algorithm. More 
information for the case of 1D plasticity can be found in Yaw (2017). All the calculations and algorithms 
were done with Python 3. 
 

Example of results: 

Equation (8) separates the elastic and the plastic part of the total displacement. It also separates the 
stationary oscillatory part which is the elastic displacement and the non-stationary non oscillatory part, 
the plastic displacement. The plastic displacement can be interpreted as a drift of the total displacement. 
Under a non-zero mean input motion, the system accumulates more plastic displacement at each cycle. 
This effect is called ratcheting, the force-displacement curve translates in the plastic flow direction after 
each cycle. An example is presented in the case of the NLKH oscillator. A sample of its total displace-
ment response is obtained for a zero mean wide band input motion 𝛾𝑖(𝑡) (see figure 4). Its response is 
also obtained for the same input motion, but in the case of a non-zero mean force equals to two-third of 
the yield strength 𝐹0. This response is represented in figure 5, highlighting the ratcheting effect. 
 
 

 

Figure 4: Sample of the NLKH oscillator response under a zero mean wide band input motion 

 

Figure 5: Sample of the NLKH oscillator response under a non-zero mean wide band input motion 
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Equivalent linearization by transfer function 

This part focuses on the improvement of the proposed linearization method described in Nguyen (2017). 
This method aims to determine the equivalent dynamic parameters, the equivalent resonant frequency 
𝑓𝑒𝑞 and the equivalent viscous damping ratio 𝜉𝑒𝑞, by fitting the linear relative acceleration transfer func-

tion (RATF) on the numerical non-linear RATF. The choice of the RATF over the relative displacement 
transfer function (RDTF) has been made because of the zero-frequency content high value of the rela-
tive displacement response PSD. This specificity has already been discussed by Iwan and Paparizos 
(1988). It would perturb the fitting or make it impossible. The RATF formula is: 
 

𝐻𝑙𝑖𝑛(𝜔) =
−𝜔2

−𝜔2 + 2𝑖𝛽𝜔0𝜔 + 𝜔0
2

(18) 

 
 

In the above, the parameters have the same meaning as in equation (7). The numerical RATF is noted 
𝐻𝑒𝑥𝑝. It is obtained by calculating the ratio of the relative acceleration response Fourier transform ℱ𝑒𝑥𝑝 

over the Fourier transform of the input motion ℱ𝑖𝑛𝑝. Zero-padding is used to obtain better accuracy. In 

this ratio is added an “epsilon” value which is an additional parameter added at the denominator in order 
to reduce some non-physical peak that could appear because of the numerator that would be divided 
by an almost zero value. Three real epsilon values and three complex epsilon values are chosen. The 
case of no epsilon value is also treated. Thus, seven transfer functions are calculated per sample of 
response. We note 𝐻𝐶𝑒𝑥𝑝𝑗 , 𝐻𝑅𝑒𝑥𝑝𝑗 𝐻𝑒𝑥𝑝0 respectively the numerical transfer functions obtained with a 

complex, a real and no epsilon parameter. Below are their expressions: 
 

𝐻𝐶𝑒𝑥𝑝𝛼(𝜔) =
ℱ𝑒𝑥𝑝(𝜔)

𝛼(1 + 𝑖)max (ℱ𝑖𝑛𝑝) + ℱ𝑖𝑛𝑝(𝜔)
(19) 

 

𝐻𝑅𝑒𝑥𝑝𝛼(𝜔) =
ℱ𝑒𝑥𝑝(𝜔)

𝛼max(ℱ𝑖𝑛𝑝) + ℱ𝑖𝑛𝑝(𝜔)
(20) 

 
𝛼 = [0.01 ; 0.02 ; 0.05 ] 

 

𝐻𝑒𝑥𝑝0 =
ℱ𝑒𝑥𝑝(𝜔)

 ℱ𝑖𝑛𝑝(𝜔)
 (21) 

 

The fitting consists in finding the pair (𝑓𝑒𝑞 ;  𝜉𝑒𝑞) that minimizes the difference between 𝐻𝑙𝑖𝑛 and 𝐻𝑒𝑥𝑝. 

Inspired by Nugyen (2017), we propose three functions Δ𝑖 to minimize: 
 

Δ1 = ∑ ((𝑅𝑒 (𝐻𝑒𝑥𝑝(𝑛)) − 𝑅𝑒(𝐻𝑙𝑖𝑛(𝑛)))
2

+ (𝐼𝑚 (𝐻𝑒𝑥𝑝(𝑛)) − 𝐼𝑚(𝐻𝑙𝑖𝑛(𝑛)))
2

)

𝑓𝑚𝑎𝑥

𝑛=𝑓𝑚𝑖𝑛

2

 (22) 

Δ2 = ∑ (|𝐻𝑒𝑥𝑝(𝑛)| − |𝐻𝑙𝑖𝑛(𝑛)| )
2

𝑓𝑚𝑎𝑥

𝑛=𝑓𝑚𝑖𝑛

(23) 

Δ3 = ∑ (𝑅𝑒 (𝐻𝑒𝑥𝑝(𝑛)) − 𝑅𝑒(𝐻𝑙𝑖𝑛(𝑛)))
2

+ (𝐼𝑚 (𝐻𝑒𝑥𝑝(𝑛)) − 𝐼𝑚(𝐻𝑙𝑖𝑛(𝑛)))
2

𝑓𝑚𝑎𝑥

𝑛=𝑓𝑚𝑖𝑛

(24) 

 
The Levenberg-Marquardt algorithm is applied for the mean-squares minimization problem. The lmfit 
python module is used, the tolerance is 1.50 10E-08, the default value. 
 
There are three functions tested, we call 𝑀𝑖 the method of fitting that minimizes the function Δ𝑖. For each 
method, there are seven numerical transfer function to fit. It raises to 21 the number of fit per sample of 
response to an input mention. To determine which method gives the best result, a goodness of fit meas-
urement inspired by Anderson (2004) is used. Other goodness of fit criteria can be found in Kristekovà 
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et al (2006 and 2009). Two measures are used and applied on the relative displacement, the relative 
speed and the relative acceleration responses. The goodness of fit measures are the cross-correlation 
and the ratio of peak values between the non-linear responses and the linear equivalent responses 
(linear oscillator of parameter 𝑓𝑒𝑞 and 𝜉𝑒𝑞). We call 𝐶𝑑𝑖𝑠𝑝𝑙, 𝐶𝑠𝑝𝑒𝑒𝑑 , 𝐶𝑎𝑐𝑐𝑒𝑙 the three cross-correlations 

grades and 𝑃𝑑𝑖𝑠𝑝𝑙, 𝑃𝑠𝑝𝑒𝑒𝑑 , 𝑃𝑎𝑐𝑐𝑒𝑙  the three peak values grades: 

 

𝐶(𝑎1(𝑡), 𝑎2(𝑡)) = max (
∫ 𝑎1(𝑡)𝑎2(𝑡)𝑑𝑡

√∫ 𝑎1
2𝑑𝑡 √∫ 𝑎2

2𝑑𝑡
 ; 0) (25) 

 

𝑃(𝑎1(𝑡), 𝑎2(𝑡)) =
max (|𝑎1|)

max (|𝑎2|)
(26) 

 
The closer theses grades are to 1, the better the fit is. An example is show figure 6. The 𝐶𝑎𝑐𝑐𝑒𝑙  grades 
are plotted regarding the demand of ductility for thirty samples of responses in the case of wide band 
input motions 𝛾𝑖(𝑡). 
 

 

Figure 6: Relative acceleration cross-correlation grades for the M1, M2, M3 methods – Wide band input 
signals 

From figure 6, we see that method M3 gives overall better results than the two other methods. M2 is 
arguably the less precise method. The red circle on the method M3 plot highlights the interest of the 
epsilon addition. In this case, the 5% complex epsilon gives more precise results increasing the cross-
correlation grade. In consequence of these results, we study method M3 only for the rest of this study. 
To decide which epsilon value gives the best (𝑓𝑒𝑞 ;  𝜉𝑒𝑞) parameters set for each sample, a mean of the 

(26) and (27) grades is done according to this equation: 
 

𝑁 =  (3𝐶𝑎𝑐𝑐𝑒𝑙 + 3𝐶𝑠𝑝𝑒𝑒𝑑 + 0.5𝐶𝑑𝑖𝑠𝑝𝑙 + 2𝑃𝑎𝑐𝑐𝑒𝑙 + 2𝑃𝑠𝑝𝑒𝑒𝑑 + 0.5𝑃𝑑𝑖𝑠𝑝𝑙) 11⁄  (27) 
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Each epsilon value is tested, the one that has the 𝑁 value the closest to 1 determines the best (𝑓𝑒𝑞 ;  𝜉𝑒𝑞) 

set retained. In this regard, 𝑓𝑒𝑞/𝑓0 and 𝜉𝑒𝑞 regarding the ductility demand are plotted respectively on 

figures 7 and 8. The case of 1000 wide band 𝛾𝑖(𝑡) and 1000 narrow band 𝛾𝑓𝑖(𝑡) input motions samples 

are explored. For each type of input motion, the case of zero-mean force and non-zero mean force 
equals to two-third of the yield strength are represented. For the sake of brevity, only the results for the 
EPP and LKH models are represented. The results are compared to the formulas proposed in Jacobsen 
(1930) and Liu et al.’s (2014). 
 
Regarding the ratio 𝑓𝑒𝑞/𝑓0, the results are compared to the secant stiffness formula: 

 

𝑓𝑒𝑞

𝑓0
= √

1 + 𝛼(𝑑 − 1)

𝑑
 (28) 

 
Regarding the 𝜉𝑒𝑞 value, the results are compared to the Jacobsen (1930) approach developed in Liu 

et al.’s (2014): 
 

𝜉𝑒𝑞 = 𝜉0 +
2(1 − 𝛼)(𝑑 − 1)

𝜋𝑑(1 + 𝛼(𝑑 − 1))
 (29) 

 
and to the Liu et al.’s (2014) formula: 
 

𝜉𝑒𝑞 = 𝜉0 +
2(1 − 𝛼)(𝑑 − 1)

𝜋𝑑(1 + 𝛼(𝑑 − 1))((0.7763 + 0.2886 𝑓0⁄ ) + (0.5651 + 1.8410 𝑓0⁄ ) exp(𝛼 − 𝑑)⁄ )
 (30) 

 
 
Overall, the secant stiffness formula does not predict the same equivalent frequency ratio as the RATF 
fit. This formula depends on the demand of ductility but does not take into account a potential non-zero 
mean force. As observed and as expected, the equivalent parameters curves are different in the case 
of non-zero mean force as, for the same dynamic level of excitations, the system has accumulated more 
plastic displacement than for the zero mean force case. So, for the same ductility value, the non-zero 
mean force case predicts a lower frequency shift ratio and a lower equivalent viscous damping ratio. 
Regarding the equivalent viscous damping ratio, the Jacobsen formula does not give good results. Liu 
et al.’s formula give better results in the case of zero mean force and wide band input signals even if it 
is less precise for low ductility demand and it does not predict the good asymptotic value. The predictions 
are less accurate for the case of narrow band signals and the formula is not adapted in the case of non-
zero mean force input motions as discussed above. In the case of the LKH oscillator under non-zero 
mean force, we can observe a change of slope for a certain ductility demand in the evolution tendency 
of the equivalent parameters. This result can be explained in the sense that as discussed before, the 
LKH asymptotic behavior can either be elastic or plastic shakedown. But before the asymptotic state is 
reached, the system accumulates plastic displacement just as the EPP or the NLKH model. The first 
slope represents this phase whereas the second one, reached for a certain ductility demand, represents 
the phase when the system exhibits plastic shakedown. 
Nugyen (2017) showed up the influence of the ratio 𝑓0 𝑓𝑐⁄  on the values of equivalent dynamic parame-
ters. We can observe in figure 7 and 8 that equivalent parameters evolution tendencies are not the same 
when the input signal bandwidth is wide or narrow. This is another result that highlights the importance 
of the frequency content of the input motion on the mechanical system dynamic response. In future 
works, formulas for the frequency shift ratio and equivalent damping will be proposed based on the 
presented results. 
 
The goodness of fit mean grades are represented in figure 9 for the EPP behavior. The blue envelope 
represents the perfect notation. The method gives overall good results in terms of relative speed and 
relative acceleration criteria. However, the displacement criteria, especially the displacement peak 
value, obtained poor grades. This result is not surprising, as the fit is done regarding the response RATF 
that does not capture the plastic drift value. Moreover, a sample of the equivalent linear oscillator relative 
displacement response is always zero-mean which is not the case for the non-linear oscillator. Thus, 
this is very unlikely to predict the peak of displacement value with the method proposed in this article. 
Nonetheless, the method would give good results regarding the transferred dynamic motion. 
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Figure 7: Equivalent frequency over natural frequency ratio regarding ductility demand for wide band 
(WB) and narrow band (NB) input motions 

 

Figure 8: Equivalent viscous damping ratio regarding ductility demand for wide band (WB) ad narrow 
band (NB) input motions 
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Figure 9: Mean grades in the case of the EPP oscillator for wide band (WB) and narrow band (NB) input 

motions 

 

Conclusion 

 
This paper presents an equivalent linearization method based on the fitting of the linear relative accel-
eration transfer function on the non-linear one to obtain the equivalent dynamic parameters 𝑓𝑒𝑞 and 𝜉𝑒𝑞. 

This method was first introduced in Nguyen (2017). Three fitting formulas, based on the difference of 
the transfer function, are proposed. One is retained. An additional value has been introduced in the 
algorithm to improve the calculation of the non-linear numerical transfer function. 
 
Equivalent dynamic parameters 𝑓𝑒𝑞 and 𝜉𝑒𝑞 versus ductility demand curves have been plotted. The in-

fluence of the input motion bandwidth has been highlighted. For the same ductility demand, the equiv-
alent viscous damping tends to be higher for the case of narrow band signals than for the case of wide 
band ones. Formulas from the literature have been compared with this article fitting method. Overall, 
these formulas do not fit for every situation and do not take into account the frequency content of the 
input motions. Formulas based on the presented results will be proposed in future works. 
 
The proposed method has been evaluated by mean of goodness of fit criteria. The relative speed and 
acceleration criteria showed that this article linearization method gives good results regarding these 
measures. However, it gives poor results regarding the prediction of the relative displacement response 
peak value. This assessment is tightly linked to the choice made for the fitting. Thus, the proposed 
linearization method should be used, for example, for the prediction of transferred input motion or for 
fatigue analysis. 
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