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Abstract
Hymenoscyphus fraxineus is an invasive forest fungal pathogen that induces severe

dieback in European ash populations. The spread of the disease has been closely mon-
itored in France by the forest health survey system. We have developed a mechanistic-
statistical model that describes the spread of the disease. It takes into account climate
(summer temperature and spring rainfall), pathogen population dynamics (foliar in-
fection, Allee effect induced by limited sexual partner encounters) and host density.
We fitted this model using available disease reports. We estimated the parameters of
our model, first identifying the appropriate ranges for the parameters, which led to a
model reduction, and then using an adaptive multiple importance sampling algorithm
for fitting. The model reproduces well the propagation observed in France over the
last 20 years. In particular, it predicts the absence of disease impact in the south-east
of the country and its weak development in the Garonne valley in south-west France.
Summer temperature is the factor with the highest overall effect on disease spread,
and explains the limited impact in southern France. Among the different temperature
indices tested, the number of summer days with temperatures above 28°C gave the best
qualitative behavior and the best fit. In contrast, the Allee effect and the heterogeneity
of spring precipitation did not strongly affect the overall expansion of H. fraxineus in
France and could be neglected in the modeling process. The model can be used to infer
the average annual dispersal of H. fraxineus in France.

Keywords: Hymenoscyphus fraxineus; Ash dieback; forest disease; invasive patho-
gen, reaction-diffusion equation; AMIS algorithm, Bayesian inference
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1 Introduction

Biological invasions significantly impact ecosystems, with both major ecological and eco-
nomic impact (Mollot et al., 2017; Pyšek et al., 2020). In particular, invasive pathogenic
microorganisms are important threats for forest ecosystems and the problem has increased
over the last decades (Santini et al., 2013; Desprez-Loustau et al., 2016; Eschen et al., 2023;
Ghelardini et al., 2016). This has been associated with the globalization trends, and in partic-
ular intensified international trade and increased movement of ornamental plants worldwide
(Santini et al., 2013; Sikes et al., 2018). Evaluating the potential distribution of an invasive
forest pathogen is necessary to assess the threat it poses to a particular area (Paap et al.,
2022). This represents a challenge for organisms that are still spreading and therefore do not
occupy all the areas in which they could develop (Bebber, 2015). Consequently, it is difficult
to understand the factors that shape the niche for invasive organisms, as only the realized
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niche, which is constrained by dispersal, is available, while the potential niche remains un-
known. A good knowledge of the dispersal of invasive forest pathogens is therefore necessary
to properly assess their impact and also to design adequate management strategies (Hudgins
et al., 2017). Dispersal is strongly affected by landscape heterogeneity, both in terms of host
availability and climate. Indeed, host density is a key feature in explaining disease emer-
gence and spread (Ward et al., 2022; Keesing et al., 2010). To properly manage invasive
pathogens, it is therefore essential to assess how dispersion, host distribution and climate
jointly shape their impact (Meentemeyer et al., 2012). Ash dieback is a typical example of a
severe epidemic induced by an invasive fungal pathogen. The causal agent, Hymenoscyphus
fraxineus (anamorph Chalara fraxinea), was first reported in the Baltic region at the end of
the 20th century (Kowalski, 2006; Agan et al., 2022). The disease has spread to western and
southern Europe over the last 30 years, causing severe dieback in affected ash stands (Coker
et al., 2019; Marçais et al., 2022).

The life cycle of H. fraxineus takes place mainly on ash leaves, which are infected by
ascospores in late spring and summer (Gross et al., 2014). Leaves remain symptomless for
most of the summer (Cross et al., 2017) until late August, when necrotic lesions develop.
After leaf fall, the pathogen survives in forest litter on the rachis, which encompasses the
petiole and the midrib of the compound leaf (Gross et al., 2014). It produces pseudosclerotial
plates on colonized rachises, which are melanized tissues offering protection against desicca-
tion and microbial competitors. H. fraxineus is able to survive and produce apothecia on
pseudoclerotial rachises for several years (Gross and Holdenrieder, 2013; Kirisits, 2015; Laub-
ray et al., 2024). The majority of inoculum is produced by fruiting bodies, i.e. apothecia,
which develop on pseudosclerotial rachis, although apothecia can occasionally be observed
on other tissues infected by H. fraxineus such as shoots or the collar of young trees (Kowalski
and Holdenrieder, 2009; Kirisits and Freinschlag, 2012; Baxter et al., 2023). Asexual spores,
i.e. conidia, are considered to have a limited role in disease dispersal (Gross et al., 2014;
Marçais et al., 2022). Their main role is that of spermatia, H. fraxineus being a heterothallic
fungus (Gross et al., 2012). The encounter of sexual partners on the forest floor can be a
limiting factor at low ash densities or low infection levels, leading to a significant Allee effect
(Laubray et al., 2023). Apothecia formation takes place from spring to midsummer, depend-
ing on location in Europe. Dispersal is by airborne ascospores, with an average dispersal
distance of around 1 to 2 km (Timmermann et al., 2011; Grosdidier et al., 2018a). Apothecia
and ascospore production, as well as the infection process, require humid conditions and are
favored by rainy weather during the apothecia production period (Dvořák et al., 2016, 2023;
Havrdová et al., 2017; Chumanová et al., 2019). Ash dieback is caused by colonization of
twigs from infected leaves in late summer and autumn (Gross et al., 2014). At this stage
of the disease, the limiting environmental condition is temperature. H. fraxineus survives
poorly at temperatures of 36°C and above (Hauptman et al., 2013). Consequently, transfer
of the pathogen from leaves to shoots may be limited after hot summers, and ash dieback
is of limited severity in the Mediterranean climate of southeastern France (Grosdidier et al.,
2018b). Nevertheless, H. fraxineus can infect and reproduce on ash leaves without inducing
significant shoot mortality (Marçais et al., 2023). Infected ash trees then behave as healthy
carriers. This occurs under specific micro/meso climatic conditions, notably after summer
heat waves, on isolated trees or in hedgerows (Grosdidier et al., 2020).
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In this article, we aim to develop a spatio-temporal model describing the expansion of
H. fraxineus, taking into account climate data (in time and position) and ash tree density.
By estimating the model parameters, we can measure the impact of local conditions on
epidemic expansion. In particular, we try to identify the temperature index that gives the
best qualitative and quantitative results among a set of temperature indices related to the
intensity of heat during the summer.

We are developing a mechanistic-statistical model comprising three nested sub-models:
(1) a reaction-diffusion model describing the expansion of leaf infection by H. fraxineus
and the subsequent colonization of leaf debris in the litter (rachis); (2) a stochastic model
describing the development of dieback symptoms as a function of leaf spore infection; (3) a
stochastic model describing observation data as a function of symptoms and quadrats visited.
We use a Bayesian framework to estimate the model parameters. The model and statistical
inference methods we use are consistent with previous work by Roques et al. (2011) on pine
processionary moth expansion processes, and by Abboud et al. (2019, 2023) on the invasion
of a phytopathogenic bacterium.

In Section 2, we describe the data used to fit the model while in Section 3, we describe the
three sub-models of our mechanistic-statistical model. Section 4 is devoted to the statistical
inference method used for parameter estimation. We first proceed to a rough estimation
of the parameters leading to a model reduction (more technical details about this step are
given in Appendix). Then we use an adaptive multiple importance sampling algorithm to
estimate the posterior distribution of the parameters of the reduced model. This method is
repeated for different temperature indices. Section 5 presents the numerical results (para-
meters estimation and model dynamics) only for the best temperature index (the comparison
and discussion of the different temperature indices is postponed in Appendix). The model
validation is also discussed in this section. Finally, we discuss in Section 6 the biological
information provided by the parameter estimation, the temperature index selection as well
as the dynamics of this model.

2 Data description and assumptions

2.1 Disease prevalence
Since the first report of ash dieback in France in 2008 (Ioos et al., 2009), the disease progress
has been tightly monitored by the forest health survey system (Département de la Santé
des Forêts, DSF). The DSF implements a database which stores records of health problems
observed in France by a network of foresters trained for the diagnosis of damages induced
by abiotic, entomological or microbial causes. Altogether, from 2008 to 2023, about 6000
health problems were recorded on ash, with numbers ranging from 100 to 750 per year.
Each record include a date, a geographic location, a host, a list of observed problems and
an associated prevalence as well as a brief description of the affected ecosystem. A specific
effort was done by the DSF to monitor ash dieback (so called observation strategy), with,
in particular, reports of ash dieback absence. We collapsed reports made the same year
on the same location and removed reports made in 2021-23 on emerald ash borer (Agrilus

4



planipennis) absence as it wasn’t possible to conclude for them on H. fraxineus presence
/ absence. Altogether we have 2840 reports of ash dieback presence, 2428 reports of ash
dieback absence and 743 reports of a problem different without any reference to ash dieback.
We assumed that ash dieback was absent in these last reports, as is not reported and the
reports are usually far from any previous report of ash dieback (median distance of 50 km).
The symptoms induced by H. fraxineus are no very specific and a reliable diagnostic needs
confirmation in the laboratory. Thus, new reports of ash dieback in area previously disease-
free were usually confirmed by a qPCR test in laboratory, using the protocol of Ioos et al.
(2009) (69% of the case in a previously disease-free 16 ˆ 16 km2 quadrat). Figure 16 show
the infection data from 2008 to 2023. Data are grouped by 16 ˆ 16 km2 quadrat.

2.2 Ash density and meteorological data
The model’s dynamics depends on ashes density, rainfall during the spring and heat during
the summer. Even though in the long term ash dieback leads to tree mortality, we neglected
it in our model, assuming that the host density is constant in time and uniform within each
quadrat. This is an acceptable assumption as data shows that the volume of ash did not yet
significantly decrease in the parts of France with the oldest presence of ash dieback (Gomez-
Gallago and Marçais, 2022). Figure 17 shows the basal area of ashes in France on each
quadrat. The data is computed from the database of the french forest inventory from 2006
to 2018 (https://inventaire-forestier.ign.fr/dataifn/). Informations on meteorological data
collection are also given in Appendix D. The main ascospore production period in north-east
France is from the 15 of June to the 15 of July (Grosdidier et al., 2018a). However, in the
Pyrénées, apothecia may be observed as early as beginning of May (Marçais et al., 2023).
For our estimation, precipitation during the period of apothecia production was computed
as June rainfall that is represented in Figure 18. Concerning the temperature impact on
the colonization by H. fraxineus, we tested several temperature indices. Figure 19 shows
the evolution of the index which gives the best qualitative and quantitative results: the
number of days during July and August with the maximal temperature above 28˝C. Both
meteorological and ash density data are grouped by the same 16 ˆ 16 km2 quadrat grid used
for ash dieback reports by the DSF.

3 Model description
The full model is composed of three nested sub-models. The first one describes the dynamics
of leaf infection (production and diffusion of spores, leaf infection). The second model
represents the development of crown symptoms on ashes, i.e. shoot mortality and dieback,
depending on leaf infection given by the first model. Finally, the third model describes the
statistical model for data.

3.1 Reaction-diffusion model for the leaf infection
We detail here the reaction-diffusion model describing the dynamics of leaf infection by
H. fraxineus. The cycle of rachis colonization follows three steps, represented in Figure 1:
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production of spores on colonized rachises on the forest floor during spring, spores diffusion
and infection of leaves during the summer, and colonization of the newly produced rachises
by H. fraxineus during fall.

We denote by Rapxq the quantity of rachises colonized by H. fraxineus at the spring of
the year a in location x.

late Spring-
Summer of year

a

Summer of year
a

Fall of year a

Spores production
on colonized rachis

Ra

Ñ

Spores diffusion +
leaf infection by

spores
Ñ

new colonized rachis
Ra`1

Figure 1: Reproduction cycle of Hymenoscyphus fraxineus.

Late spring and summer of the year a: spores production
The pathogen produces apothecia on colonized rachises, which then produces spores (asco-
spores). We assume that the production of apothecia depends on humidity, and is subject to
an Allee effect under a quantity of colonized rachises r as suggested by Laubray et al. (2023).
The Allee effect is induced by a limited encounter of sexual partners at low rachis density
on the forest floor. According to Laubray et al. (2023), we propose to encode it in the model
by reducing the ascospores production rate when the quantity of colonized rachises Rapxq is
below a threshold r. Here, as it is usual to model Allee effect, the ascospores production is
quadratic in Rapxq under r. The spores quantity νapxq produced in location x during late
spring and summer of the year a is then given by

νapxq “

$

&

%

Hapxq Rapxq if Rapxq ě r

Hapxq
Rapxq2

r
if Rapxq ă r

(1)

with

Hapxq “ β0 ` β1 hapxq (2)

which depends linearly on the rainfall hapxq in June of year a at location x (see Figure 18)
to account for the effect of the humidity condition on spore production. We therefore expect
a positive parameter β1.
Late spring / summer of the year a: spores diffusion
The spores quantity νapxq produced by rachises of the forest floor throughout late spring /
summer diffuses at long range (Grosdidier et al., 2018a) and infects the leaves. We assume
that H. fraxineus release spores uniformly during the τ “ 60 days diffusion period (June and
July). The dynamics of the spores quantity wapt, xq located in x at time t is then given by
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the following reaction-diffusion equation
Bwapt, xq

Bt
“ D ∆wapt, xq `

νapxq

τ
(3)

with wap0, xq “ 0, ∆ is the Laplacian operator and D is the diffusion coefficient. At the end
of the diffusion period of year a, the spores quantity is then wapτ, .q.
Fall of year a: colonization of newly produced rachises
In the fall, infected leaves are shed resulting in the production of newly colonized rachises
on the forest floor. The local amount of infected leaves shed depends on both the ashes
density d (represented in Figure 17) and on the level of leaf infection assumed to be linearly
dependent on the spores quantity wapτ, xq at the end of the diffusion period. We denote by
χapxq the quantity of colonized rachis produced in the location x at the end of the summer
of year a. It is assumed that, above a saturation threshold S, the increase in spore load does
not increase infection because all leaves are already infected. Then, χapxq can be expressed
as

χapxq “ pwapτ, xq ^ Sq dpxq. (4)

It is known that both in artificial conditions (laboratory, container in nursery) and forest
litter, colonized rachises can produce apothecia during several years (Gross and Holdenrieder,
2013; Kirisits, 2015; Laubray et al., 2024). We assumed that colonized rachises fully persist
during at least two years. The total colonized rachis quantity Ra`1 on the forest floor thus
depends on the quantity produced during two successive falls and is given by

Ra`1pxq “ χapxq ` χa´1pxq . (5)

Note that we do not account for a poor survival of H. fraxineus at temperature above 35˝C
in rachises on the forest floor. In shaded forest conditions, the effect of high temperatures at
soil level is supposed to be low and negligible compared to the temperature impact on the
pathogen survival in the crown.

The initialization of the model has then to be made for two initial years and is made
from observation data. We discuss it at Section 3.2.
Numerical scheme: Numerically, we use the same spatial discretization for the model as
for the rainfall ha, temperature Ta and ash dieback observation data (see Section 3.3), that
is a discretization at the scale of one quadrat of 16 ˆ 16 km2. The model is computed by a
Crank–Nicolson scheme. We consider the Neumann boundary conditions ∇wapt, .q ¨ n “ 0,
where n denotes the normal to the boundary. However, note that, for convenience, we
numerically consider a rectangular domain, where the density of ashes is zero outside France
(that is, we neglect the countries bordering France). The boundary condition is then on the
bounds of this rectangular domain and not directly on the bounds of France. Neglecting
spore coming from the borders may be justified as at the simulation onset, all areas close
to Germany and the Flemish part of Belgium were already affected by ash dieback, which
is taken into account by the initialization. Others borders of France (Wallonia part of
Belgium, SW part of Switzerland, Italy, Spain) were affected by ash dieback after the French
neighboring part. This condition is of course met when the border is maritime. At the end
of the section, Table 1 gives the notations of the principal modeled quantities.
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3.2 Model for the symptoms development
The development of crown dieback is caused by the transfer of the pathogen from infected
leaves to the shoots before leaf shedding. The infection then remains latent and becomes
perceptible during the winter following the infection. We assume that an ash tree without
symptom, in location x, develops dieback observable the year a, with a probability linearly
depending on the pathogen quantity infecting its leaves in the year a´1, that is proportional
to χa´1pxq. Reports made in December of the year n were counted as occurring in the year
n`1 as most of them concern young stand where symptoms can be seen quicker. Making the
assumption that pathogen quantities by tree are uniform in each quadrat, this probability
is proportional to χi

a´1{dpiq where χi
a “

ş

ωi
χapxq dx is the total pathogen quantity in the

quadrat ωi and dpiq the density of ashes in the quadrat ωi. Moreover, this also depends on
the temperature during the summer of the year a´1. H. fraxineus is negatively impacted by
high temperatures (Hauptman et al., 2013; Grosdidier et al., 2018b). It was shown that the
transfer from infected leaves to shoots, and thus the shoot mortality and dieback symptoms
are hampered when the summer temperatures are too high (Marçais et al., 2023). Finally,
an ash tree of the quadrat ωi develops observable symptoms the year a with probability

rqi
a “

χi
a´1fpT i

a´1q

rS dpiq
^ 1, (6)

where rS is the parameter tuning the proportionality and where T i
a is a temperature index

quantifying heat during the summer of the year a. We will consider several temperature
indices. For instance, one of them is the number of days in July and August of year a for
which the maximal daily temperature is over 28˝C on the quadrat ωi (see Section C for the
description of the different indices, and Figure 14 for their corresponding results). We will
consider that f is of the form

fpT q “

„

1 ´
T

γ

ȷκ

`

, (7)

where γ is the threshold of the temperature variable from which the symptoms development
is no more possible and the power κ ą 0 describes how is the impact of low (but positive)
values of T (namely the impact of few days with temperature getting over 28˝C for the
selected model).

Moreover, if a tree develops symptoms, the symptoms persist from one year to the fol-
lowing one with a probability that we denote by Cpers. Therefore, the probability that a tree
of quadrat ωi has dieback symptoms during the year a is

qi
a “ Cpers qi

a´1 ` p1 ´ Cpers qi
a´1q rqi

a . (8)

Now, it is natural to consider that conditionally to the pathogen leaves infection rate (or
equivalently the colonized rachis quantity), the symptoms development of one tree does not
depends on the symptoms development of the other trees.
Initialisation of the model
The new colonized rachis quantity χ2007 and χ2008 for the two first years had to be imputed
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Figure 2: Prevalence intensity of ash dieback symptoms for the years 2008 (left) and 2009 (right) used to
compute initial colonize rachis quantities.

from exogenous information. They were derived from the average local prevalence intensity
of ash dieback observed by the DSF in each quadrat in 2008 and 2009 and denoted by
Ψi

2008 and Ψi
2009, using the INLA package of R to obtain a smoothed map. In 2009, we

assumed that ash dieback also appeared in northern France due to pathogen invasion from
the flemish region of Belgium and we attributed low prevalence values to quadrats adjacent
to that border (5%). Both quantities Ψi

2008 and Ψi
2009 are given in Figure 2. We assume that

χ2006 can be neglected, meaning that the pathogen was almost absent in 2006 and then that
ash diebacks were very limited in 2007 (qi

2007 « 0q. Then we approximate q2008 and q2009 up
to a multiplicative constant Cinit

qi
2008 « Cinit Ψi

2008 , qi
2009 « Cinit Ψi

2009 , (9)

and then from (8), we directly impute the colonized rachis quantities by

χi
2007 « Cinit Ψi

2008 ˆ
rS dpiq

fpT i
2007q

, χi
2008 « Cinit

Ψi
2009 ´ Cpers Ψi

2008
p1 ´ Cpers Cinit Ψi

2008q
ˆ

rS dpiq

fpT i
2008q

.

3.3 Statistical model for the observation data
For each a P J2008, 2023K, we denote by Ia the set of indices of observed quadrats during the
year a and for each i P Ia, we set obsapiq the number of observed plots in quadrat i during
the year a. The observed data are given by ppk

apiqqaPJ2008,2023K,iPIa,kPJ1,obsapiqK where pk
apiq is the

proportion of infected trees for the k-th observed plot from quadrat i in year a. As noticed
in Section 3.2, reports made in December are counted as occurring in the following year. At
each plot, around m “ 30 trees are observed so that m obsapiq is the number of observed
trees in quadrat i.

We assume that each tree is observed at most once during all the observation period, such
that the different observations are independent. As most stands are observed only once and
since trees are not marked in the few stands observed more than one time, this assumption
is reasonable. Therefore, we can derive the number N i

a of infected trees observed for the
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Notation designation Equation
a year
x location
i index of quadrat ωi

Rapxq quantity of rachises colonized by H. fraxineus at the spring Fig.1,(5)
νapxq spores quantity produced in x during late spring and summer (1)

ωapt, xq spores quantity at time t in June and July (3)
χapxq colonized rachis produced at the end of the summer (4)

rqi
a probability that a tree develops observable symptoms (6)

qi
a probability that a tree has dieback symptoms (8)

papiq observed proportion of trees with symptoms (11)

Table 1: Notations for the modeled quantities

quadrat i in the year a, through a binomial mechanism from the quantities qi
a given by the

model of symptoms (Eq. (8)) by

N i
a „ Binpm obsapiq, qi

aq. (10)

Moreover, conditionally on the process pqi
aqa,i, it is natural to consider that variables pN i

aqa,i

are independent.
Letting papiq the observed proportion of infected trees for the quadrat i in the year a

defined by

papiq “
1

obsapiq

obsapiq
ÿ

k“1
pk

apiq, (11)

then the number of infected trees observed in the quadrat ωi is pm obsapiq papiqqa,i; it is a
realisation of pN i

aqa,i. The data ppapiqqa,i are represented in Figure 16.

4 Statistical Inference

4.1 Parameters
The model is composed of the following ten parameters:

• Rachis colonization model: the diffusion coefficient D (Eq. (3)), the spores pro-
duction parameter β0, the humidity impact measurement parameter β1 (Eq. (2)), the
Allee effect parameter r (Eq. (1)), the colonized rachis saturation quantity S (Eq. (4)),
the multiplicative constant Cinit for colonized rachis initialization (Eq. (9));

• Symptoms development model: the tuning parameter rS of the symptoms develop-
ment Bernoulli parameter (Eq. (6)), the threshold γ of the temperature variable which
control the possibility of transfer of the infection from the leaves to the shoots, the
parameter κ of the temperature function f (Eq. (7)), and the probability of symptoms
persistence Cpers (Eq. (8)).
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It is easy to see that, for all α ą 0, the parameters θ “ pD, β0, β1, r, γ, κ, S, Cinit, rS, Cpersq

and rθ “ pD, β0, β1, αr, γ, κ, αS, Cinit, αrS, Cpersq give the same model dynamics. In fact,
changing the coefficient α just means a change of the measure unit of the colonized rachis.
We arbitrarily set the parameter rS “ 1000 in the following in order to set the rachis measure
unit.

4.2 Likelihood
We use data from years 2008 to 2019 to estimate our model parameters and we keep data from
2020 to 2023 to measure the model’s forecast capabilities. By assumption of independence
between observations, conditionally on the process pqi

aqa,i, and by (10), the likelihood of a
set of parameters θ “ pD, β0, β1, r, γ, κ, S, Cinit, rS “ 1000, Cpersq is given by

Lpθq “

2019
ź

a“2008

ź

iPIa

ˆ

m obsapiq

m obsapiq papiq

˙

`

qi
apθq

˘m obsapiq papiq `

1 ´ qi
apθq

˘m obsapiq p1´papiqq (12)

where papiq is the function of the observations ppk
apiqq1ďkďobsapiq defined by (11) and pqi

apθqqa,i

is the process of the dieback symptoms probabilities defined by (8) for the model described
in Sections 3.1 and 3.2 with the set of parameters θ. At a first look, the likelihood seems very
simple but the processes pqi

apθqqa,i are derived from the reaction diffusion process so that it
is impossible to have an explicit formula for the optimal θ. It is why we choose a bayesian
approach to optimise the likelihood.

4.3 Bayesian method for the parameters estimation
In this section, we describe the process that leads to the parameters estimation. We have
chosen to compute the posterior distribution of the parameter θ by the Adaptive Multiple
Importance Sampling (AMIS) algorithm (Cornuet et al., 2012) described in Section 4.3.2.
Even if the main aim of AMIS is to overcome the difficulty to choose a proposal distribution
as close as possible to the posterior distribution, authors strongly require that a significant
part of the computing effort be spent on the initialization stage. That is crucial to design
an efficient importance sampling algorithm and we have first proceeded to an initial rough
estimation of the parameters. The purpose of this stage is twofold: to see if some parameters
can be dropped or fixed to a constant and also to have a proposal not so far from the
posterior. The results of this procedure are described in the following sections, while the
technical details are postponed in Appendix.

4.3.1 First estimation of the parameters: model reduction and parameter ini-
tialization

It is well known that the initialization of the algorithms is one of the main difficulties in the
parameters estimation by iterative methods. The process used for the first rough estimation
of the parameters as well the numerical results are described in Appendix A. This approach
leads to a model reduction setting four parameters to specific values. In particular, it stands
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out that the probability of the symptom persistence Cpers is equal or very close to 1. This is
consistent with field observation. Ash dieback usually result in severe mortality of at least
small and medium shoots and those can be observe on the tree during several years with thus
persistent symptoms. Moreover, the parameters β1 seems to be negligible with respect to β0
in (2), meaning that the rainfall variations have a minor impact on the long range dispersal
of H. fraxineus. Furthermore, the Allee effect parameter r is negligeable in the more likely
zone of parameters. Finally, on our first estimates, it appears that the posterior distribution
of the parameter γ is, for the temperature index considered in Section 5, almost degenerated
in a value close to, but strictly larger than 21.5 (see Section A.3).

After the first numerical tests, we then set the probability of symptoms persistence (Cpers)
to one, the Allee effect parameter (r) and impact of the rainfall (β1) to zero and the threshold
γ of the temperature index to 21.50001:

Cpers “ 1, β1 “ 0, r “ 0, γ “ 21.50001. (13)

In addition, this first step gives a rough estimation of the parameters D, β0, κ, S and
Cinit for the initialization of the AMIS algorithm, described in the next section.

4.3.2 Adaptive Multiple Importance Sampling Algorithm

Following the model reduction (13), the posterior distribution of the set of parameters θ “

pD, β0, κ, S, Cinitq is computed by the AMIS algorithm described by Algorithm 1 (Cornuet
et al., 2012). The principle of the algorithm is the following: at each step 1) we sample N
sets of parameters according to a normal proposal distribution N pm1, Σ1q; 2) we compute
the weight associated to each parameter (included parameters samples of previous steps)
with respect to the likelihood function, the prior density and the proposal density; 3) we
update the proposal distribution according to the parameters weights. This algorithm then
provides weighted parameters sets describing the posterior distribution of θ.

This algorithm has the advantage to allow the parallelization of the likelihood computa-
tions of the sampled parameters at each iteration step and to recycle all simulated parameters
(which is particularly important when the likelihood is costly to compute). Moreover, the
efficiency of the AMIS algorithm for banana shape target (as suggested by our first estim-
ation step for the 2-dimensional posterior distribution of pD, β0q, see Figure 10a) has been
illustrated by Cornuet et al. (2012). The main difficulty is to determine the initial proposal
distribution (namely the mean m1 and the covariance matrix Σ1).

Even though the first estimation of the parameters reveals a strong correlation between
some parameters (in particular between β0 and D, see Figure 10a), our prior information
remains imprecise. We then choose five independent uniform distributions for our prior as
the dependency will be corrected by the algorithm:

πpθq “ Ur0,D̄sˆr0,β̄0sˆr0,κ̄sˆr0,S̄sˆr0, ĘCinitspD, β0, κ, S, Cinitq

with D̄, β̄0, κ̄, S̄ and ĚCinit sufficiently large such that they don’t impact the posterior distri-
bution.

We initialize the proposal distribution by independent normal distribution (i.e. the co-
variance matrix Σ1 is diagonal) whose the means and the variances are roughly estimated

12



initialization of the mean m1 and the covariance matrix Σ1
for k “ 1 ¨ ¨ ¨ NL do

θki „ N pmk, Σkq, i “ 1 ¨ ¨ ¨ N {new parameters sample}
rwli Ð

Lpθliqπpθliq
1
k

řk
ℓ“1 gmℓ,Σℓ

pθliq
l “ 1 ¨ ¨ ¨ k, i “ 1 ¨ ¨ ¨ N {weights}

wli Ð rwli{
řk

ℓ“1
řN

ι“1 rwℓι {normalized weights}
mk`1 Ð

řk
l“1

řN
i“1 wli θli {proposal distribution update}

Σk`1 Ð
řk

l“1
řN

i“1 wli pθli ´ mk`1q pθli ´ mk`1qt

end for

Algorithm 1: Adaptive Multiple Importance Sampling Algorithm for parameter estimation of the reduced
model. The function gm,Σ is the density of a normal distribution N pm, Σq with mean m P R5 and covariance
matrix of size p5, 5q. For θ “ pD, β0, κ, S, Cinitq, Lpθq “ LpD, β0, β1 “ 0, r “ 0, γ “ 21.50001, κ, S, Cinit, rS “

1000, Cpers “ 1q is the likelihood function defined in Section 4.2 with the model reduction (13).

thanks to the first estimation step (see Section A.2 for more details). The values of the mean
m1 and the covariance matrix Σ1 are given in Table 2 for the temperature index used for the
numerical results of the next section.

mD “ 18 mβ0 “ 24 mκ “ 0.05
mS “ 90 mCinit “ 0.0085
σ2

D “ 0.4 σ2
β0 “ 3 σ2

κ “ 1.5 ˆ 10´5

σ2
S “ 1 σ2

Cinit “ 1 ˆ 10´8

Table 2: Initial values of the mean m1 “ pmD, mβ0 , mκ, mS , mCinit q and the covariance matrix Σ1 “

diagpσ2
D, σ2

β0
, σ2

κ, σ2
S , σ2

Cinit
q of the AMIS Algorithm 1 for the temperature index T28.

The convergence of the algorithm is discussed in Appendix B.

5 Numerical Results for the best temperature index
(T28)

The method described in Section 4.3 have been repeated for several temperature indices. The
qualitative and quantitative behaviors of the model for these different temperature indices are
discussed in Section C in Appendix. In this section, we only present the numerical results for
the model where the temperature variable T i

a is the number of days of July and August of the
year a for which the temperature is over 28˝C on the quadrat ωi (called the temperature index
T28 ). Among the temperature indices tested, T28 gives the best qualitative performance (in
particular, it correctly explains the lack of expansion of ash dieback in south-east France, see
Section 5.2) as well as the best quantitative performance (highest likelihood for the period
2008-2023 among the temperature indices tested, see Section C).

We run1 Algorithm 1 with NL “ 60 iterations, the samples size N “ 10000, the initial-
1Simulations are run on the babycluster of the Institut Élie Cartan de Lorraine.
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Figure 3: Marginal posterior distributions of the five estimated parameters β1, D, Cinit, κ and S.

ization of the posterior distribution given in Table 2 and the temperature index T28. We
first present the computed posterior distributions. Then we plot the dynamics for the best
parameter set. Finally we discuss the validation of the model.

5.1 Posterior distributions of parameters
The one-dimensional posterior distributions of the five estimated parameters are presented
in Figure 3. They give the acceptable ranges for the five estimated parameters β1, D, Cinit,
κ and S.

The correlation coefficients between estimated parameters are summarize in Table 3. In
addition, the 2-dimensional posterior distributions of the parameters pβ0, Dq and pS, κq, for
which the correlations are the highest, are presented in Figure 4. As already observed in the
first estimation step (see Appendix A and Figure 10a), there is a strong negative correlation
between parameters β0 and D, which can be interpreted as follows: increasing β0 increases
the source term νapxq{τ in (3) (amount of spores produced at x) and then speeds up the
propagation of H. fraxineus, which is counterbalanced by decreasing the diffusion coefficient
D. However, increasing β0 and decreasing D increases the local infection / colonization.

Both parameters S and κ are also correlated. S set the maximal spore load possible
(χapxq in (4)). This will determine the amount of foliar infection at a given environmental
condition. κ determines how high summer temperatures control the rate of leaf infection
transfer to shoot infection. When the spore load and thus the leaf infection are higher (high
S), there is a compensation by a stronger and more gradual control of the transfer of the
pathogen from leaves to shoots (higher κ).
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D β0 κ S
β0 -0.97
κ 0.06 -0.04
S 0.09 -0.11 0.58

Cinit -0.09 0.08 0.02 -0.14

Table 3: Correlation coefficients between estimated parameters.
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Figure 4: 2-dimensional posterior distributions of the parameters pβ0, Dq and pS, κq.

5.2 Predicted expansion of ash dieback for the best set of para-
meters

In this section, we present the model dynamics for the parameters set, among the parameters
sampled by the AMIS algorithm, which maximises the likelihood. It corresponds to the
parameter θmax “ pDmax, βmax

0 , 0, 0, 21.50001, κmax, Smax, Cmax
init , 1000, 1q with

Dmax “ 18.51; βmax
0 “ 23.26; κmax “ 0.056;

Smax “ 92.0; Cmax
init “ 0.00855.

(14)

Figure 5 represents the evolution of the predicted probability that an ash tree develops
observable symptoms (bernoulli parameter qi

a in (8)) from a “ 2008 to a “ 2019, i.e. for the
period used for the estimation, with the parameter set θmax. The front propagation, repres-
ented by the white crosses for the data on Figure 5, is generally well captured by our model.
In some years, isolated reports were made well in advance of the predicted propagation front,
in areas not contiguous to previously infected areas (2011 in central France, 2012-13 in the
Cotentin, 2015 in the Charentes). They are often reports in ash plantation, in particular in
the Cotentin, 2012-13. However, they usually remained isolated reports and led to a clear
regional outbreak only in 2015 in the Charentes (central western France). After 2015, ash
dieback is still predicted to expand in western, and, to a lesser degree, in southwest France,
while it expansion is predicted to stop in southeast France. Expansion is limited by high
summer temperatures in this region. This fits well the observations as no further ash dieback
expansion is observed in southeast France after 2015.
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Figure 5: Evolution of the estimated probability that an ash tree of the quadrat ωi develops observable
symptoms (Bernoulli parameter in (8)) for the set of parameters θmax given by (14) which maximizes the
likelihood for the temperature index T28. Crosses: observations data papiq (see (11)) from 2008 to 2019.
Black crosses if no observed symptoms and white, cyan, magenta and red crosses for proportions of trees
with dieback symptoms in s0, 0.25s, s0.25, 0.5s, s0.5, 0.75s and s0.75, 1s respectively.
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Figure 6: Prediction of the Bernoulli parameter (8) for the set of parameters θmax given by (14) (fitted on
data from 2008 to 2019 for the temperature index T28) from 2020 to 2023. Crosses: observation data from
2020 to 2023 (see Figure 5 for the color coding).

Figure 6 represents the prediction of the probability that an ash tree will develops observ-
able symptoms (qi

a) for years 2020 to 2023 for the parameter θmax. Note that this parameter
was estimated with data from 2008 to 2019 and that we are in a context of prediction. We
can see that the model fits well what is observed in 2020-2023. In particularly, it predicts
that ash dieback will expand toward Spain in the eastern part of the Pyrénées throughout a
relatively narrow corridor. Notice that no observation of ash dieback has been reported by
the DSF in this area during the fitted period 2008-2019, ash dieback was observed for the
first time in the Pyrénées in 2020. The corridor corresponds to an area of higher elevation
where summer temperature remains cooler and ash density is significant (Figure 17). Report
of ash dieback remained scarce in the Garonne valley and the ash dieback prevalence of the
few reports available in the area in 2020-23 is limited (under 10%).

Figures 7 and 8 represent the dynamics of the spore quantity wa´1pτ, xq and of the
saturated spore quantity wa´1pτ, xq ^ S respectively, from 2010 to 2019. Note that, due to
the delay between infection and the dieback visibility, graphs compare obervation data of
the year a and (saturated) spore quantities of the year a ´ 1. We observe that, except on
the propagation front, the zone is either infected and saturated or non infected (wapτ, xq “

wapτ, xq ^ S P t0, Su), meaning that in infected zones, the rachis infection given by (4) is
maximal and the spores quantity is non limiting. We also observe that the spore quantity
decreases the first two years in east France, probably reflecting that the initial conditions
over estimates the quantities of colonized rachis in 2007 and 2008 in order to compensate
the neglected symptoms before 2008. In addition, we can notice that, as nothing limits the
propagation of spores in the model, they entirely colonize France. High summer temperatures
only impact the development of the dieback symptoms, as observed in Figure 5.

5.3 Model validation
To complete Figures 5 and 6, we computed the Root Mean Square Error (RMSE) for each
year a, for a “ 2008 to a “ 2023, given by

RMSEpaq “

d

ř

iPIa

řobsapiq
k“1 ppk

apiq ´ qi
aq2

ř

iPIa
obsapiq
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Figure 7: Evolution of the spore quantity wa´1pτ, xq, for the set of parameters θmax given by (14), from
2010 to 2019. Crosses: observation data from 2010 to 2019 (see Figure 5 for the color coding).

Figure 8: Evolution of the saturated spore quantity wa´1pτ, xq ^ S, for the set of parameters θmax given by
(14), from 2010 to 2019. Crosses: observation data from 2010 to 2019 (see Figure 5 for the color coding).

18



Year a
ř

iPIa
obsapiq RMSEpaq RMSEp2008 Ñ aq

2008 183 0.2222 0.2222
2009 753 0.1465 0.1641
2010 504 0.1898 0.1735
2011 620 0.2387 0.1954
2012 515 0.1940 0.1951
2013 438 0.2621 0.2062
2014 493 0.2739 0.2170
2015 520 0.2720 0.2249
2016 410 0.2437 0.2267
2017 341 0.2956 0.2323
2018 254 0.2484 0.2331
2019 132 0.2207 0.2328
2020 346 0.3071 0.2381
2021 215 0.3286 0.2421
2022 166 0.3413 0.2455
2023 111 0.3819 0.2487

Table 4: Number of observed parcels in the year a, RMSE of the year a, and RMSE of the period from 2008
to the year a, with a from 2008 to 2023, for the model fitted with data from 2008 to 2019.

where pk
apiq (resp. qi

a) is the observed Bernoulli parameter (resp. the Bernoulli parameter
estimated by the model of the previous section (that is for the set of parameter θmax given
by (14))). It allows us to measure the accuracy of the model for each year. In addition, we
also compute, for each year a, the RMSE of the period from 2008 to the year a given by

RMSEp2008 Ñ aq “

g

f

f

e

řa
y“2008

ř

iPIy

řobsypiq
k“1 ppk

ypiq ´ qi
yq2

řa
y“2008

ř

iPIy
obsypiq

.

Contrary to RMSEpaq, it gives a lower weight to the year with a low number of measures on
the period. They are given in Table 4. Smaller is the RMSE, better is the prediction. We
expect a model that fits better, at least, that a model that gives a purely random prevision.
To check this, we simulated random imputations of the qi

a by a uniform distribution on r0, 1s

and computed the empirical distributions of the RMSEpaq, for a in the period 2008-2023,
for this purely random model. Simulations of 100000 replica always give RMSEpaq between
0.35 and 0.50. In addition, the first percentiles of the empirical distributions are between
0.42 and 0.52, clearly greater than the ones of our fitted model.

Note that our model is clearly better than the one of purely random prevision. We can
also remark that years from 2008 to 2019 with many observations (column

ř

iPIa
obsapiq)

are well fitted because they have a great contribution in the whole likelihood that as to be
maximised. Remember that data from 2020 to 2023 were not used in the fit, which explains
a RMSE that gradually increases during the period, although it remains still clearly lower
than the one of a random model.
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6 Discussion
We developed a complex mechanistic-statistical model describing the expansion of ash die-
back, taking into account climate factors (temperature and rainfall), Allee effect, and hetero-
geneity in ashe tree density. We estimated the parameters of our model by first identifying
appropriate ranges for parameters, which led to a model reduction. We then used an Ad-
aptive Multiple Importance Sampling Algorithm for fitting the model. We tested several
temperature indices. The temperature index T28, which corresponds to the number of days
in summer with a temperature exceeding 28°C, provided the highest forecast likelihood, in
the sense that, for the parameter set maximizing the likelihood on the fitted period 2008-
2019, it obtained the best likelihood for the period 2008-2023. In addition the model with
the temperature index T28 leads to good qualitative features. Specifically, for this index, the
model well depicts the qualitative propagation behavior that has been observed in France
over the past 20 years. In particular the model successfully reproduces the absence of disease
spread in southeast France and the limited spread of the disease in southwest France, with
a more significant development occurring once the disease reaches the Pyrénées mountains.
Both the Allee effect and the heterogeneity of the rainfall in spring do not have a significant
impact on the overall expansion of H. fraxineus in France and can be neglected in the mod-
eling. Similar qualitative behaviors and likelihoods have been obtained with other indices,
such as the number of days in summer with temperatures exceeding 24°C, 26°C or 30°C (in-
dices T24, T26 and T30), not allowing selection of one of these indices (index T26 even leads
to better likelihood for the fitted period 2008-2019). Nevertheless, these temperature indices
lead to the same estimation range for parameters (excluding the parameters of the temper-
ature impact function f), then leading to similar conclusions about the model dynamics.
However, our results suggest that the index corresponding to temperatures exceeding 35°C
(index T35) should be excluded. This index does not accurately reproduce the propagation
dynamics of the data, particularly failing to show the absence of disease in southeast France.

For the selected temperature index T28, the developed model adequately reproduces
several key features of the ash dieback dynamics observed in France. First, the dynamics
of the inoculum, i.e. the amount of infected rachises in the litter, show a quick and sharp
transition from low to high levels within 1-2 years. This very abrupt transition, which has
a significant impact on most local stands just a few years after the first observation of the
disease in an area, corresponds to the observed dynamics in France (Grosdidier et al., 2020).
Then the model well depicts the absence of dieback in many places, although it predicts the
complete colonisation of France by H. fraxineus. This is in agreement with the prediction
that the pathogen is able to complete its cycle everywhere in France (Marçais et al., 2023).
We do have indications that this prediction has some validity. A specific survey in southeast
France (Avignon) during 2023 summer was able to locate ash trees with leaf infections by
H. fraxineus, although shoot infections were absent (Marçais, unpublished). Ash dieback is
still not reported around Avignon in accordance with our model which predicts no presence
of disease in the area in 2023. H. fraxineus may thus be present much more widely in SE
France than previously thought, but does not appear to induce any damage as predicted
by our model. The model also adequately predicts that the impact of ash dieback will be
very limited in the Garonne valley. In SW France, the apparent stop of ash dieback spread
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in 2015 and the colonization of the Pyrenées after 2019 is predicted by the model, even
though only data from 2008-19 where used for model calibration. Following the widespread
presence reported in the Pyrénées after 2020, the DSF conducted extensive surveys in the
Garonne valley and confirmed that although the disease may occasionally be found there,
its prevalence and severity remain very limited. Our model outputs are in agreement with
the hypothesis of Marçais et al. (2023) that undetected spread through foliar infection with
limited induced dieback may explain the arrival in the Pyrénées in 2020, with a jump of
about 200 km from the closest previous known disease location.

We thus confirm that summer high temperatures are a major climatic factor that affect
the impact and spread of ash dieback, as was shown by Hauptman et al. (2013), Grosdidier
et al. (2018b) and Marçais et al. (2023). The parameter γ was estimated at 21.5 for the
model with the temperature index T28, which means that ash dieback stops to be reported
by the DSF in area where temperature exceeds 28°C for more than 21.5 days during the
summer in most years. This occurs in France mainly in the SE, although during the period
of 2018-2020, it occurred in a much larger area of France. The function f decreases very
sharply close to 21.5 from 0.8 to 0 and is thus almost a threshold function (κ estimated
at 0.056, see Figure 12a). This may be caused by the poor survival of H. fraxineus at
temperature above 35°C (Hauptman et al., 2013). Leaf temperature in the crown may reach
value up to 5°C above the air temperature (Granier et al., 2007). Another cause of this strong
threshold is probably the observation process. Ash dieback is reported by the forest health
survey system when it reaches a level that impacts stand management. When H. fraxineus
induced little shoot mortality because summer temperature are unfavorable, the trees are
able to compensate by producing new foliage and do not show significant dieback. Ash
dieback is then not reported as a forest health problem. Moreover, in southeast France, the
species of ash trees F. excelsior is replaced by F. angustifolia and becomes less economically
important in the forests, leading to less thorough observation by the DSF and fewer reports
of ash dieback.

A feature taken into account in the model is the local ash density (average local basal
area of ash per ha). Host density is recognized as a key factor in explaining the spread of
pathogens, particularly invasive parasites that affect forests, either microorganisms or insects
(Hudgins et al., 2017; Keesing et al., 2010). In the model, it scales the production of inoculum
throughout the production of infected rachises that fall on the forest floor each autumn, and
thus disease transmission. It was demonstrated that population of ash with a high basal area
are more severely impacted by H. fraxineus (Grosdidier et al., 2020; Chumanová et al., 2019).
The fast colonization of central France (Massif central) as well as the spread of the disease
through a corridor between the massif central and the Pyrenées could be partly driven by
high ash density in the area. However, we did not observe a slower spread toward the west
of France after 2015, despite a very low ash density in the area. The ash density that we
used is based on forest inventory data, which only accounts for ash trees in forests. It could
inadequately represent ash density in western France where the acreage of forest is low while
hedges are very frequent. Ash trees in the hedges are not taken into account by the forest
inventory data, resulting in a likely underestimation of the overall ash density in western
France.

By contrast, some factors known to affect ash dieback could be neglected in modeling the
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spread of the disease. It was shown that a component Allee effect significantly affects the
population dynamics of H. fraxineus and is induced by limited encounters of sexual partners
(i.e. the mating types) at low density of colonized ash rachises in the forest litter (Laubray
et al., 2023). Hamelin et al. (2016) showed that an Allee effect induced by a mating limitation
significantly reduces the spread rate of Mycosphaerella fijiensis. We did not find any evidence
that this is the case for ash dieback. The Allee effect observed for H. fraxineus is a weak
Allee effect, the production of ascospores remaining positive even at very low density of the
colonized rachises. This may explain the limited impact of Allee effect on the spread of
ash dieback. Another factor that could be neglected is the impact of rainfall. H. fraxineus
production of apothecia and ascopores has been shown to be positively related to spring and
summer rainfall (Havrdová et al., 2017; Chumanová et al., 2019; Dvořák et al., 2023) and we
therefore expected that it would significantly affect the disease spread. This is not the case. A
possibility is that rainfall in France during spring seldom hampers the pathogen sporulation
completely. In fact, Figures 7 and 8 suggest that, due to the saturation effect, the impact of
the rainfall heterogeneity would have played a role only on the propagation front. Marçais
et al. (2023) showed that rainfall enables the fulfillment of H. fraxineus cycle in all French
regions, even in the southeast where the disease is not observed. It remain possible that
spread of H. fraxineus will be reduced in mediteranean areas drier than southeast France.
However, in these areas the period of apothecia production is likely to start earlier, in late
winter or early spring, during a rainy enough period for the pathogen’s cycle to be fulfilled.
In the Pyrénées, apothecia were produced as early as May 1st (Marçais et al., 2023). Also,
the pathogen may be able to produced enough apothecia for efficient dispersal in favorable
wet sites even during dry springs.

In conclusion, we have proposed a model that well describes the dynamics of dieback
symptoms caused by H. fraxineus in France. Our numerical analysis suggests that the
density of ash trees and high temperatures, particularly the number of days in summer with
temperatures exceeding 26-28°C, play significant roles in the spread of the pathogen and
the development of dieback symptoms. Additionally, the statistical estimation of the model
parameters has allowed us to quantify the impact of these local environmental parameters,
as well as the global propagation parameters such as the diffusion parameter D and the
reproduction parameter β0. In future research, we plan to further investigate the local speed
of propagation in the reaction-diffusion model, which is dependent on the local ash tree
density.

A First rough estimation and model reduction
We present in this appendix the first estimation of the parameters leading to the model
reduction (13) as well as the initialization of Algorithm 1. This step have been repeated
for several temperature indices, however we show here the numerical results only for the
temperature index T28 (i.e. T i

a is the number of days of July and August of the year a for
which the temperature exceeds 28˝C in the quadrat ωi), which gives the best qualitative
and quantitative behaviors (see Section C for a comparison of the model behavior for the
different temperature indices).
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A.1 A Metropolis-Hasting algorithm with iteration dependent pro-
posal distribution

In order to obtain a first rough estimation of the parameters, we realized ten runs of
a Metropolis-Hasting algorithm with a proposal distribution depending on the iteration
step (see Algorithm 2) initialized with different initial conditions. At each iteration only
one of the parameters D, β0, β1, r, γ, κ, S, Cinit, Cpers is changed (we remind that rS is set
to 1000, see Section 4.1) according to a Gamma distribution with a not too small vari-
ance. Testing parameters one by one allows to not reject a bloc of new parameters be-
cause only one parameter is not adequate and, combined with the large variances of the
proposal distribution, allows users to capture a fast convergence of parameters which are
not strongly correlated to the others ones towards the ‘main support’ of the posterior
distribution. More precisely, for i P J1, 9K, at the k “ 9ℓ ` i-th iteration, and setting
θ “ pD, β0, β1, r, γ, κ, S, Cinit, rS, Cpersq “ pθ1, . . . , θ8, rS, θ9q then

rθ “ prθ1, . . . , rθ8, rS, rθ9q „ Qk
p.|θq ðñ

#

rθi „ Γ
`

λ, θi

λ

˘

rθj “ θj, @j ‰ i
(15)

and qkprθ|θq is the density of the gamma distribution Γ
`

λ, θi

λ

˘

with scale parameter λ and
shape parameter θi{λ, that is with mean θi and variance θ2

i {λ. Moreover, without prior
information, we choose for rπ a uniform distribution on r0, D̄s ˆ r0, β̄0s ˆ r0, β̄1s ˆ r0, r̄s ˆ

r0, γ̄sˆr0, κ̄sˆr0, S̄sˆr0, ĚCinitsˆt1000uˆr0, 1s with D̄, β̄0, β̄1, r̄, γ̄, κ̄, S̄ and ĚCinit sufficiently
large such that parameters don’t reach the upper bounds of there domains.

initialization of θ0

k Ð 0
while k ď N do

θ̂ „ Qkp. | θkq {new parameter to be tested}
δ Ð

Lpθ̂q rπpθ̂q qkpθk | θ̂q

Lpθkq rπpθkq qkpθ̂ | θkq

u „ U r0, 1s

if u ď δ then
θk`1 Ð θ̂ {acceptation of the new parameter}

else
θk`1 Ð θk {rejection of the new parameter}

end if
k Ð k ` 1

end while

Algorithm 2: Metropolis-Hastings Algorithm with a proposal distribution depending on the iteration step.

Figure 9 shows the evolution of the parameters computed by Algorithm 2, with the
iteration dependent proposal distribution (15) with λ “ 200, starting from ten different initial
parameters. Notice that the initial prevalence shape given by Ψ2008 and Ψ2009 constraints
some parameters. In fact, the conditions q2008 ă 1 and q2009 ă 1 combined to Eq. (9) imply
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(a) Evolution of D. (b) Evolution of β0.
(c) Evolution of maxa,i hi

a β1{β0.

(d) Evolution of r. (e) Evolution of γ. (f) Evolution of κ.

(g) Evolution of S. (h) Evolution of Cinit. (i) Evolution of Cpers.

(j) Evolution of the log-likelihood.

Figure 9: Dynamics of the parameters and the log-likelihood for the Metropolis-Hastings Algorithm 2, with
the iteration dependent proposal distribution (15) with λ “ 200, starting from 10 different initial parameters
θ0. Note that Figures 9b, 9c and 9d are represented on a log-scale.
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that Cinit ă 0.0125. In addition, the initially non infected quadrats (i.e. such that Ψi
2009 “ 0)

with positive dieback observation in 2010 (i.e. pi
2010 ą 0) have to satisfy qi

2010 “ rqi
2010 ą 0

(see Eq. (8)) which implies, for the temperature index T28, that γ ą 19.5.
For five parameters, the convergence is very quick and seems independent from the four

other parameters. In fact, we observe a fast convergence of the probability of the symptom
persistence Cpers towards 1 (Figure 9i). In addition, the parameters γ, κ, S and Cinit quickly
converge around fixed values or in restricted ranges of values (Figures 9e, 9f, 9g and 9h).

The parameter β1 reaches values such that the contribution of the term β1 ha in Ha

defined by (2) is small with respect to β0. In fact, Figure 9c represents the evolution of
maxa,i hi

a
β1
β0

, where maxa,i hi
a “ 322.2 is the maximum of the local rainfall in June in France

between 2008 and 2019 (i.e. the period of data used for the estimation). This extreme value
is reached in the South East of France in 2010 (see Figure 18b). In Figure 9c, all runs reach
values below 0.06 suggesting that β1 ha is neglectable with respect to β0.

Even if a range of values of parameters D, β0 and r seems to emerge for the runs with
the best likelihoods, the convergence of these parameters is not clear. A rough estimation of
these parameters is done in the next session.

Finally this step allows to reduce the model setting Cpers “ 1 and β1 “ 0 and to identify
suitable zones for the parameters γ, κ, S and Cinit.

A.2 Log-likelihood on a coarse grid
Following the model reduction given by the previous section, we then compute the log-
likelihood on a coarse grid in order to catch a suitable zone for the parameter initialization
of the AMIS algorithm 1. Without idea of the scale of the parameters (particulary for β0
and r), we used a large coarse grid that we refined toward the identification of the best zone
of parameters.

Figure 10a represents, for each fixed parameters β0 and D on a (refined) coarse grid, the
maximal log-likelihood computed for different values of r, γ, κ, S and Cinit, that is

max
rPIr;γPIγ ;κPIκ;SPIS ;CinitPICinit

tLpD, β0, β1 “ 0, r, γ, κ, S, Cinit, rS “ 1000, Cpers “ 1qu (16)

where

Ir “ t0, 10´10, 10´9 . . . , 104, 105
u, Iγ “ t21.001, 21.501, . . . , 23.001u,

Iκ “ t0.025, 0.05, . . . , 0.25u, IS “ t80, 90, 100u,

ICinit “ t0.008, 0.0085, 0.009u (17)

are the discretisation points on the coarse grid for the r, γ, κ, S and Cinit components
respectively. Note that the chose of the set Iγ is due to some irregularities of the log-
likelihood in the variable γ (see Section A.3).

The maximal log-likelihood on the coarse grid equals -24727.26 and is obtained for the
set of parameters

D “ 18; β0 “ 24; κ “ 0.05; γ “ 21.501
S “ 90; Cinit “ 0.0085; r “ 10´8.
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(a) Maximal log-likelihood (16).
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(b) Best Allee effect parameter r.

Figure 10: Maximal log-likelihood (16) (left) and value of the Allee effect parameter r leading to this
maximal log-likelihood (right) for the coarse grid (17), β P t10, 12, . . . , 50u, D P t12, 13, . . . , 30u and with the
model reduction β1 “ 0, Cpers “ 1 and rS “ 1000.
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(a) vγ “ 21.001.
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(b) vγ “ 21.501.
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(c) vγ “ 22.001.
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(d) vγ “ 22.501.
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(e) vγ “ 23.001.

Figure 11: Maximal log-likelihood (16) for the coarse grid (17) except for the parameter γ which is fixed to
the value vγ and with the model reduction β1 “ 0, Cpers “ 1 and rS “ 1000.

Moreover, we identify a banana shape zone for the choice of the parameters β0 and D (see
Figure 10a).

Figure 10b represents the value of the Allee effect parameter r leading to this maximal log-
likelihood, that is the argument of the maximum in Ir of the maximal log-likelihood (16).
Note that this figure is represented on a kind of log-scale. We observe that the previous
banana shape zone is included in the region where the Allee effect parameter r is less than
0.0001 and negligeable. In fact although the maximal value of the log-likelihood is obtained
for r “ 10´8, setting r “ 0 insteed of 10´8 makes the log-likelihood goes from -24727.26054
to -24727.26067.

Figure 11 represents the maximal log-likelihood with respect to β0 and D, as in Fig-
ure 10a, but for different fixed values of γ. We can notice that the maximal likelihood is
non-monotonic in γ. However, we identify that the best likelihood is for γ «ą 21.5.

Finally, this step leads to the model reduction r “ 0. Moreover, we identified an ini-
tialisation zone for the parameters D and β0 as well as refined zone for the initialisation of
γ.
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Figure 12: Function of the temperature impact f defined by (7) for different values of γ and κ.

A.3 An almost degenerated posterior distribution for γ

Further to the reduction model and the first rough estimations of parameters induced by the
steps of Sections A.1 and A.2, we run an AMIS algorithm for the parameters estimations
(see Cornuet et al. (2012)). We do not give details here on the parameters of the algorithm,
however we refer to Section 4.3.2 where the algorithm and the parameters are given for the
final estimation step (after the reduction model given in this section).

Even if we observe a fast convergence of the support of the one-dimensional posterior
distributions as well as their rough shapes, the stabilisation of the distributions was not
observed after 150 runs of the AMIS algorithm. The slow convergence is due, in particular,
to the almost degenerated and non-symmetric form of the posterior distribution for the
parameters γ which weights values very close to (but larger than) 21.5. In fact sampled
parameters, generated by normal proposal distributions by the AMIS algorithm, contain a
large number of “non appropriated” parameters.

The non regularity of the posterior distribution of the parameter γ in 21.5 is due to the
form of the function of the temperature impact f given by (7). In Figure 9f, we observe
that the parameter κ converges toward small values (less than 0.2), and in fact around 0.05
after convergence in the best zone (see Section A.2 and runs of Figure 9f with the best log-
likelihoods). Then, for the best zone of parameters, the function of the temperature impact
T ÞÑ fpT q is abrupt close to T “ γ (see Figure 12).

Moreover, due to the discrete nature of the temperature data, which are a mean of four
entire values (see Section D), the log-likelihood contains some irregularities in these discrete
values, in particular in γ “ 21.5.

By the previous arguments (almost degenerated posterior distribution and best log-
likelihood for γ very close to, but strictly larger than 21.5), we reduce the model setting
γ “ 21.50001.
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B Convergence of the AMIS algorithm
We discuss, in this section, the convergence of the AMIS Algorithm 1 which led to the
numerical estimation of pD, β0, κ, S, Cinitq presented in Section 5. Following Abboud et al.
(2019), we compute the deviation measure between two consecutive iterations k ´ 1 and k
of the algorithm, defined for a partition P of the space of parameters R5

` by

DpP , k ´ 1, kq “ max
cPP

|ρkpcq ´ ρk´1pcq| (18)

with ρkpcq the estimated probability of the element c of the partition P given by

ρkpcq “

k
ÿ

i“1

N
ÿ

ℓ“1
wℓi1θℓiPc

where θℓi and wℓi are the parameters sampled by the algorithm and their weights respectively.
Figure 13 represents the deviation measure for five partitions, illustrating the convergence

of the five one-dimensional posterior distributions. For example, the first picture on Figure 13
is the deviation measure for a partition Pβ0 “ prn cβ, pn ` 1qcβrqnPN ˆ R4 with cβ small
and illustrates the convergence of the marginal posterior distribution of the parameter β0.
Although there are not presented here, we also checked the convergence of the 2-dimensional
posterior distributions. We observe that the convergence of the AMIS algorithm occurs in
about 10 iterations.

Importantly, notice that the convergence of the AMIS algorithm toward the posterior
distribution is not proved. In fact, although we observe a convergence of our algorithm, it is
not excluded that it converges toward parameters for which the log-likelihood are around a
local maximum. To restrict this effect, the computation of the log-likelihood on a coarse grid
described in Section A.2 have been done first for a large scale of parameters values, before
to be refined on the coarse grid presented in Section A.2.

C Model behavior for different temperature indices
We tested five different temperature indices for the choice of the temperature variable pT i

aqa,i

impacting the symptoms development (see Eq. (4)): T24, T26, T28, T30 and T35, denoting
the mean number of days, between July 1 and August 31, for which the daily maximal
temperature exceeds 24˝C, 26˝C, 28˝C, 30˝C and 35˝C respectively. The threshold of 30˝C
and 35˝C were chosen because Hauptman et al. (2013) showed that H. fraxineus survives
only few hour in infected ash shoots at temperature above 35˝C. The temperature of 28˝C is
the maximal temperature where the fungus grows in vitro (Hauptman et al., 2013). However,
leaves temperature often exceeds air temperature by several degrees (Granier et al., 2007)
and we thus tried lower temperature thresholds (24˝C and 26˝C).

Figure 14 shows the results obtained with the different temperature indices tested. Quant-
itatively, all parameters indices give comparative log-likelihoods. We observed however that
the best log-likelihood is obtained for the temperature index T26, for the period 2008-2019
(period of the data used for the estimation) but that T28 gives a better likelihood for the
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Figure 13: Deviation measure (18) for five partitions Pβ0 , PD, PCinit , Pκ, PS illustrating the convergence
of the five one-dimensional distributions.

period 2008-2023 (where 2020-2023 is the predictive period). The temperature index T35
gives the worst log-likelihood. Qualitatively, contrary to other temperature indices, the in-
dex T35 allows to describe the limited expansion neither in the southeast of France nor in
the Garonne valley. The limited expansion in the Garonne valley seems less strong for the
temperature index T30 than T24, T26 and T28.

Figure 15 shows the marginal posterior distributions estimated by Algorithm 1 for the
different temperature indexes. We first observe that the posterior distribution of the para-
meter Cinit is almost the same for the five temperature indices. This parameter, in fact,
describes the intensity of the prevalence of the dieback symptoms for the years 2008 and
2009, given by (9), and does not directly depend on the temperature index. The posterior
distributions of parameters β0 and D are with relatively similar supports. Therefore, al-
though the distributions are quite different, all temperature indexes lead to the same order
for the intensity of spore production β0 as well as the diffusion coefficient D. The posterior
distributions of the parameter γ can obviously not been compared as they represent different
quantities. However, contrary to the temperature index T28 which led to an almost degen-
erated distribution to γ (see Section A.3), we obtained a posterior distribution with density,
although spiky, for other temperature indexes.
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T24

log-likelihood :
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Figure 14: Bernoulli parameters (8) (heat map) and log-likelihood at the years 2019 and 2023 for the set of
parameters which maximizes the likelihood and for the temperature indices T24, T26, T28, T30 and T35,
as well as the observation data (crosses) of both years (see Figure 5 for the color coding).
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Figure 15: Marginal posterior distributions estimated by Algorithm 1 for the different temperature indices
T24, T26, T28, T30 and T35.

D Data visualisation
This section describes different data used for the inference. We give first the variable of
interest that is the proportion of infected trees from 2008 to 2023 (Figure 16). Density of
ashes in France is given in Figure 17. The density values are derived from the IGN data from
2006 to 2015 (https://inventaire-forestier.ign.fr/dataifn/). The meteorological data used are
Safran data from Météo-France. Safran data are computed on a 8 x 8 km grid over France
(Quintana-Seguí et al., 2008). We computed relevant meteorological variables and then
averaged them over the 16 x 16 km quadrat. Each data is then a mean of four (occasionally
one, two or three, on the border of France) meteorological stations located on the quadrat.
Figures 18 and 19 describe the June rainfall and the number of days with temperature above
28˝C in July and August, respectively.
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Figure 16: Proportion of infected trees among the observed trees from 2008 to 2023. Dark blue quadrats
are non observed quadrats. Medium blue quadrats are non infected observed quadrats. From light blue to
red quadrats: few infected to strongly infected observed quadrats.
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Figure 17: Basal area of ashes (F. excelsior and F. angustifolia) in France.
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Figure 18: Rainfall of June (sum of the solid and liquid precipitation) from 2009 to 2018. (Source: Safran
data from Météo-France).
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Figure 19: Number of days with maximal temperature over 28˝C during the summer (July and August) in
France from 2009 to 2022. (Source: Safran data from Météo-France).
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