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Abstract 

Although Antarctica is the most isolated continent on Earth, its remote location does not protect it 

from the impacts of human activities. Antarctic metazoans such as filter-feeding invertebrates are a 

crucial component of the Antarctic benthos. They play a key role in the benthic-pelagic carbon flux in 

coastal areas by filtering particles and planktonic organisms from the sediment–water interface. Due 

to their peculiar ecological niche, these organisms can be considered a wasp-waist in the eco-system, 

making them highly sensitive to marine pollution. Recently, anthropogenic particles such as micro-

nanoplastics and manufactured nanoparticles (MNP) have been classified as contaminants of emerging 

concern (CEC) due to their small size range, which also overlaps with the preferred particle size 

ingested by aquatic metazoans. Indeed, it has been demonstrated that some species such as Antarctic 

krill can ingest, transform, and release MNPs, making them newly bioavailable for other Antarctic filter-

feeding organisms. Similarly, the production and use of anthropogenic MNP are rapidly increasing, 

leading to a growing presence of materials, such as nano-sized metal-oxides, in the environment. For 

these reasons, it is important to provide evidence of the adverse effects of such emerging 

contaminants at sub-lethal concentrations in environmental risk assessments. These contaminants 

may cause cascade effects with consequences not only on individuals but also at the com-munity and 

ecosystem levels. In this review, we discuss the state-of-the-art knowledge on the physiological and 

molecular effects of anthropogenic MNP in Antarctic aquatic metazoans. We further highlight the 

importance of identifying early biomarkers using sessile metazoans as sentinels of environmental 

health. 
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Introduction 

No region in the world escapes the negative effects of anthropogenic pollution. Although 

Antarctica is the most isolated continent, its remote location does not protect this region from the 

adverse impacts of human activities (Aronson et al. 2011; Chu et al. 2019; da Silva et al. 2023). Scientific 

research stations occupy > 390,000  m2, with a disturbance footprint of 5,200,000 m 2 of ice-free land 

impacting over half of all large coastal ice-free areas (Brooks et al. 2019) thus posing a threat to marine 

coastal ecosystems. The Antarctic region has unique benthic ecosystems in coastal areas hosting 

diverse and rich communities that thrive in such an extreme and fragile environment (Griffiths 2010). 

Chown et al. (2017) suggested that the prospect for biodiversity health of the Antarctic region for 2020, 

and beyond to 2050, 9is similar to that for the rest of the planet in terms of global habitat degradation, 

biodiversity loss, and pollution from either global and local sources. The impact of anthropogenic 

pollutants of emerging concern on Antarctic marine ecosystems is still poorly understood; however, 

various studies suggest that Antarctic marine species may be more sensitive to these chemicals 

compared to their temperate counterparts (King and Riddle 2001; Aronson et al. 2011; Bergami et al. 

2019). Indeed, these communities are well adapted to stable harsh conditions and thus they are highly 

sensitive to any anthropogenic effects. 

Fraser et al. (2018) have demonstrated that storm-forced surface waves and ocean eddies can 

dramatically enhance oceanographic connectivity for drifting particles in surface layers, allowing some 

non-Antarctic species to reach the Southern Ocean crossing the Antarctic Circumpolar Current (ACC), 

suggesting that this region is not as isolated as previously thought. Furthermore, Lacerda et al. (2019) 

in a backtracking dispersal model study suggest that plastic pollutants found in the Southern Ocean 

did not originate from latitudes lower than 58°S, but indicating that these could enter the ACC. 

Moreover, Waller et al. (2017) demonstrated that deployed surface drifters at the north of the mean 

position of the polar front were able to disperse southwards across the Polar Front. Considering these 

factors, it is crucial to evaluate the impacts of pollutants coming from global circulations and local 

sources on marine fauna, obtaining valuable biomarkers at sub-lethal concentrations and at the first 

line of response. Legacy pollutants have been already reported in environmental matrices, such as 

metals (Chu et al. 2019; Palmer et al. 2021), polycyclic aromatic hydrocarbons (PAHs), total petroleum 

hydrocarbons (TPH), and organochlorines such as polychlorinated biphenyls and dichloro-diphenyl-

trichloroethane and metabolites. Regarding emerging pollutants, salicylic acid (drug), and bisphenol A 

(BPA; plasticizer) were detected in ocean waters around King George Island (Marcotti-Murua et al. 

2020) along with many other such as drugs/medicines, endocrine disruptors, pyrethroids, 

perfluorinated compounds, and sunscreens (Olalla et al. 2020; Perfetti-Bolaño et al. 2022). Legacy and 

emerging persistent organic pollutants (POPs) were also found in tissue samples of benthic 

invertebrates near Rothera Point at Western Antarctic Peninsula, being the most abundant 

hexachlorobenzene (HCB), and BDE-209, as well as, heptachlor, oxychlordane, and mirex (Krasnobaev 

et al. 2020). 

Nowadays, plastic pollution in Antarctica begins to cause serious concern, since plastic litter in 

the Southern Ocean can derive from a variety of sources, including waste from research stations and 

fishing operations within the Treaty Area and, through transport by ocean currents and windgenerated 

water movements, from outside the Treaty Area (Zhang et al. 2020a; da Silva et al. 2023). 

Recently, particles that could enter the Southern Ocean or be introduced from Antarctic 

coasts, such as anthropogenic micro (MP) and nanoplastics (NP) and manufactured nanoparticles, 

including those used in various applications like personal care products (e.g., titanium dioxide, 

nanoTiO2), have been classified as contaminants of emerging concern (CEC) (Blair et al. 2017). 

Regarding MP they can be defined as any synthetic solid particle or polymeric matrix, with regular or 

irregular shape and with size ranging from 1 μm to 5 mm, of either primary or secondary manufacturing 



origin, which are insoluble in water (Frias and Nash 2019; Bermúdez and Swarzenski 2021)and those 

with size < 1000 nm are named nanoplastics (Allen et al. 2022). Both MP and nanoplastics as well as 

manufactured nanoparticles (< 100 nm) are a source of high concern due to their small size range 

overlapping with the preferred particle size ingested by aquatic metazoans (Galloway and Lewis 2016). 

The ingestion of MNP may lead to choking, blocked digestive tracts, damage to organs, debilitation, 

and ultimately death (Derraik 2002). Indeed, the negative effects can be attributed to two main 

pathways: (1) physical stress after ingestion (blockage, energy expenditure for egestion) which can 

reduce the energy available from nutrients and alter metabolic processes, and (2) leakage of additives 

from plastic (plasticizers as BPA and phthalates) and ions released from metal/metal-oxide NP (Ag, 

ZnO, CeO) which can potentially affect aquatic organisms impacting mobility, reproduction, 

development and survival (Andrady 2011; Cole et al. 2011; Ross and Morales-Caselles 2015; Anderson 

et al. 2016). Studies on the implications of MNP on organisms are a very recent area of environmental 

sciences (Koelmans et al. 2015), and it is important to cover the current gaps in Antarctic aquatic 

metazoans. Nanoplastics may be directly released in the aquatic environment or formed by the 

degradation of larger plastic debris (Koelmans et al. 2015; Lambert and Wagner 2016). MNP are not 

only accumulated near cities and areas of high human activity but they have also been detected in 

remote locations such as a mountain lake in Mongolia (Free et al. 2014) and at the Poles (Obbard et al. 

2014; da Silva et al. 2023). In the Southern Ocean and Antarctic coasts, large plastic debris (macro- and 

mesoplastic) has been extensively recorded in Antarctic Sea Waters (ASW) (e.g., Lacerda et al. 2019; 

Suaria et al. 2020). Isobe et al. (2017) found high concentrations of MP in Southern Ocean waters, 

especially in areas close to Antarctica compared to offshore stations. These authors suggest that MP 

can be transported from a considerable distance spreading between oceans, due to the absence of 

larger plastic debris at the studied stations. MP in Antarctica constitutes an alarming concern since, as 

reviewed by Waller et al. (2017), their concentration in Antarctica marine ecosystems can reach levels 

comparable to those found in highly populated regions. Recently, plastic debris has been found in all 

of 12 stations sampled around the Antarctic Peninsula, with a total average concentration estimated 

at 1794 items/km2, with more than 50% of them represented by MP (Lacerda et al. 2019). In a spatio-

temporal assessment, Garza et al (2023) showed an increasing number of microplastic in superficial 

and benthic sea water from three points at Western Antarctic Peninsula fjords (Marian Cove of King 

George Island, Borgen Cove of Anvers Island, and Sheldon Cove of Adelaide Island). The study 

considered 2017 to 2020 and recorded high concentrations in the localities studied, reaching until 516 

MP/L. In Potter Cove (King George Island) MP has also been registered with concentrations until 55.67 

MP/L (Antacli et al. 2024). A comparison of a pristine area with another with human presence in 

Livingston Island (Maritime Antarctica), it was found that both zones have been equally impacted by 

this type of pollutant, suggesting that they are prone to the accumulation and retention of microdebris 

(Monràs-Riera et al. 2023). 

Wastewaters released from sewage treatment plants of scientific Antarctic stations are 

suspected to carry anthropogenic MNP to pristine marine ecosystems. On the other hand, it is 

hypothesized that MP fragments and fibers could also be transported by seawater and wind from 

South America, revealing multiple transport ways (Cunningham et al. 2022). Recently, MP have been 

found in the excreta of many Antarctic and Sub-Antarctic species as penguins (Bessa et al. 2019; Le 

Guen et al. 2020) and as reviewed by Taurozzi and Scalici (2024) 3526 MPs were retrieved from the 

stomachs (3013), pellets (398), guano (75), and pouch contents (40) of Antarctic seabirds. This suggests 

potential input of these contaminants through the diet. Indeed, MP have been recorded in Antarctic 

sponges (Corti et al. 2023), krill, and salps (Wilkie Johnston et al. 2023; Zhu et al. 2023a), as well as in 

benthic invertebrates including mollusks (Bergami et al. 2023; Gonzalez-Pineda et al. 2024; Sfriso et al. 

2020) and vertebrates as fishes (Botari et al. 2022; Ergas et al. 2023; Geng et al. 2023; Mancuso et al. 

2023; Zhu et al. 2023b). As such these anthropogenic particles are transported along the food web up 



to higher predators, such as the mentioned penguins and possibly marine mammals. In some Antarctic 

areas, even the most remote and pristine such as the Ross Sea, MP have been recorded in sediment 

samples, with a total of 1661 items ranging from 0.3 to 22 mm in length, with fibers as the most 

frequent (Munari et al. 2017). Also in Ross Sea MP has been detected in fresh snow samples with a 

mean of 29 particles/L (Aves et al. 2022). Besides, in water samples from the Weddell Sea, 

Leistenschneider et al. (2021), MP were found in 65% of surface water samples and 11.4% of 

subsurface samples with n = 34 and 79, respectively, with an estimate of 45% coming from vessel-

induced contamination. MPs have been found also in twelve Antarctic benthic invertebrates collected 

in the Ross Sea, with the filter-feeding and grazers organisms being the ones having the highest amount 

(Sfriso et al. 2020). More recently, plastic traces have been recorded from Antarctic sea ice cores, with 

polyethylene (PE), polypropylene (PP), and polyamide (PA) being the most common, and the 

availability of these pollutants in the trophic web was discussed (Kelly et al. 2020). For instance, it has 

been demonstrated that some species, such as the Antarctic krill, can actively ingest MP and transform 

them into n ones, after digestive fragmentation, making them more available for Antarctic bottom 

filter-feeders (Dawson et al. 2018). Nanoplastics (polyethylene terephthalate, PET) have been found in 

sea ice, at a concentration of 52.3 ng/ml (Materić et al. 2022). Although MP contamination in Antarctic 

benthic species and marine coastal environments is indeed increasing, very limited information on 

their impact on such delicate communities has been provided so far. 

Among CEC, manufactured nanoparticles such as nano metal-oxides, (Clemente et al. 2012) 

originating from sewages and wastewaters including also industrial wastes are increasing worldwide 

and can pose a threat to marine species (Haynes et al. 2017). For example, 100–900 and 20–50 µg/L 

of nano-TiO2 have been measured in surface water and more in the depth of the Mediterranean Sea 

mainly attributed to the wide use of sunscreen products by tourists at sea (Labille et al. 2020). Nano-

TiO2, like other metal-oxide NP, have the potential to be toxic to cells and tissues, likely attributed to 

their nanometric size, high surface area, and reactivity (Blaise et al. 2008; Johnson et al. 2009; Scown 

et al. 2010; Schultz et al. 2014). The nano-size facilitates their movement across cellular membranes, 

interfering with their structural integrity (Moore 2006), and allowing them to enter the organelles 

where they can generate ROS that can damage DNA and proteins (Stadtman and Levine 2003; 

Dizdaroglu and Jaruga 2012). The main route of NP exposure on aquatic metazoans is likely through 

diet. Filter-feeder species that feed by straining suspended matter and food particles from water, such 

as many forage fishes, crustaceans, and aquatic molluscs, may be particularly exposed to these 

anthropogenic NP present in the water column (Schirmer et al. 2013). 

Regarding Antarctic species, few studies have assessed the effects of anthropogenic NPs as 

polystyrene nanoparticles (PS NP) used as proxy for nanoplastics (Bergami et al. 2019; 2020; Manno et 

al. 2022) and nano-TiO2 alone and in combination with PS NP (Rondon et al. 2024a). 

Although some scientific research stations have greywater treatment plants, evidence 

indicates that microfibres from clothing or microbeads from personal care products such as soaps, 

toothpaste, or laundry detergents may be still released into the environment. Unfortunately, the 

development of efficient MP removal technologies applied to wastewater treatment plants (WWTP) is 

still in progress, and there is no reliable method yet established on a commercial scale (Ali et al. 2021; 

Dey et al. 2021; Ramirez Arenas et al. 2022). For this reason, we discuss the effects of anthropogenic 

NP in marine metazoans, focussing o, physiological and molecular levels (Fig. 1). These NP are not 

commonly monitored in the environment but have the potential to enter the environment and cause 

adverse ecological effects, particularly regarding their transfer across aquatic food webs to top 

predators. An example of microplastic foodweb transfer, Jiang et al. (2023) found a significant positive 

correlation between microplastic abundance and trophic level with a correlation coefficient = 0.717 

and p < 0.05 in China waters. This kind of analysis has not been performed with Antarctic organisms, 

representing an important gap in knowledge. Filter-feeder bivalves play an important role in food 



webs, and while these species have been assessed in ecotoxicology studies, Antarctic species have not 

yet been evaluated. 

We emphasize the necessity of assessing the potential synergic effects of these micro- and 

nano-pollutants to create more realistic scenarios. Until now, combined effects of MNP-nanometal 

have only been assessed in marine and freshwater algae (Thiagarajan et al. 2019; Das et al. 2022), and 

not in aquatic metazoans. Due to fewer publications in nanoplastics and nanomaterials, in comparison 

to microplastics, we performed a bibliometric analysis on the evolution in time of research studies on 

this topic, including transcriptomics studies. The main aim of the present review is to compile 

information on the physiological and molecular effects of micro- and nano-plastic metals in aquatic 

metazoans, highlighting the importance of these kinds of analyses in Antarctic aquatic metazoans, with 

especial emphasis on current gaps. Here we also present the knowledge gaps on Antarctic filter-

feeding species and discuss the importance of having sentinel species for detection of emerging 

pollutants in the Southern Ocean focussing on the development of relevant early molecular 

biomarkers. In this review, we also propose to extend these studies to Antarctic filter-feeders 

metazoans to obtain valuable biomarkers that can measure the biological response that reproducibly 

changes upon exposure to environmental pollutants related to nano-pollution. 

Metrics of anthropogenic nanoparticles studies in aquatic metazoans 

In order to have a picture of the effort studying micro- and nanoparticles in aquatic metazoans, 

a metric comparison has been performed with a number of publications about anthropogenic 

nanoparticles published from the year of first publication until the current year. For this purpose, we 

used PubMed webpage (https:// pubmed. ncbi. nlm. nih. gov/) at 05 June 2024, with advanced search, 

introducing the following keywords for all fields: (1) microplastic AND aquatic AND metazoa; (2) 

nanoplastic AND aquatic AND metazoa; (3) nano metal AND aquatic AND metazoa; and (4) 

transcriptomic AND nanoparticle AND aquatic AND metazoa. The publications found in PubMed that 

did not involve metazoan or nanoparticles were excluded from the analysis. Publications of the year 

2024 were discarded to avoid a misunderstanding, as the search was conducted mid-year. 

The articles about microplastic in aquatic metazoans increased constantly during the years (Fig. 

2) and were scarce from 2011 to 2014, being less to 10 publications for each of these years, beginning 

at augmentation in 2015 with 16 articles and reaching 100 for 2018 and the peak in 2023 with 368 

publications. Considering publications on nanoplastic, a in recent years, a clear concern about nano-

metals and particuconstant increase over time was found (Fig. 3), with a single larly nanoplastic 

interacting with aquatic metazoans was estabpublication in 2014 and 2015, reaching 10 in 2018 and 

then up lished in ecotoxicological research. However, transcriptomic to 42 in 2020 and 97 in 2022. In 

2023, 126 studies regarding studies assessing ecophysiological impacts and searching for nanoplastics 

and aquatic metazoans were found on PubMed. In regard to nano-metals studies with aquatic 

metazoans, the numbers of publications fluctuated over time (Fig. 4), beginning early in 2003 with a 

single study and reaching peaks in 2015, 2018, and 2022 with 22, 32, and 44 publications, respectively. 

The year 2023 reaches 26 publications in this thematic. Finally, the number of publications about man-

made nanoparticles with transcriptomic approaches in aquatic metazoans resulted low from 2007 to 

2016, with 2 publications maximum per year (Fig. 5). Afterward, some peaks were found in 2017, 2021, 

and 2022 with 7, 13, and 9 publications, respectively and reaching 7 for 2023 (Fig. 5). These metrics 

suggest that, in recent years, a clear concern about nano-metals and particularly nanoplastic 

interacting with aquatic metazoans was established in ecotoxicological research. However, 

transcriptomic studies assessing ecophysiological impacts and searching for suitable molecular 

biomarkers have not yet reached more than 10 publications per year so far. These observations 

underline the need for linking gene expression results with other cellular, biochemical, or macro-

https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/


physiological approaches. On the other hand, these observations highlight the alarming knowledge 

gap regarding the effects of nanoparticle mixtures in aquatic metazoans. Using the PubMed database, 

such studies could not be found, differently from the extensive research done for example with human 

macrophages, assessing the toxicity of a mixture of silver and polystyrene (PS) nanoparticles (Ilić et al. 

2022). For this reason, realistic studies using the combination of two or more types of man-made 

nanoparticles are needed to investigate potential synergistic exposures and assess what might be 

occurring in the environment, including remote polar regions. Considering the strong gap in 

ecotoxicological studies of these nanoparticles in Anctarctic metazoans, we follow with a review of the 

most relevant studies of the effects in aquatic metazoans in the world, from this biobliometric analysis. 

 

Physiological and molecular effects of MNPs in aquatic metazoans 

The negative physiological consequences of MNPs exposure can highly vary. In studies 

conducted with aquatic invertebrates (from planktonic crustaceans to annelids, mollusks, and macro-

crustaceans) and fishes, the following eco-physiological effects have been reported: (1) Altered feeding 

behavior, with a downward shift in the preference for prey, reducing feed consumption (Cole et al. 

2015); (2) gut blockage and increased gut transit (Wright et al. 2013; Watts et al. 2015); (3) reduced 

lipid accumulation and energy allocation (Wright et al. 2013; Cole et al. 2015); (4) reduced growth (Lee 

et al. 2013; Bergami et al. 2017; Jeong et al. 2017; Bringer et al. 2021); (5) altered reproduction (Lee et 

al. 2013; Cole et al. 2015; Sussarellu et al. 2016; Jeong et al. 2017); (6) increased oxidative stress (Paul-

Pont et al. 2016; Jeong et al. 2017; Capolupo et al. 2021; Wang et al. 2021; Hoyo-Alvarez et al. 2022); 

(7) increased rate of cell apoptosis (Li et al. 2022b); (8) altered ion transport (Li et al. 2022b); (9) 

dysregulation of the immune system (PaulPont et al. 2016; Bergami et al. 2019; Sendra et al. 2020; 

Capolupo et al. 2021; Wang et al. 2021); (10) decrease in offspring quality, with reduction of oocyte 

quality and sperm mobility and reduced of larval growth (Lee et al. 2013; Besseling et al. 2014; 

Sussarellu et al. 2016); (11) neurotoxicity (Oliveira et al. 2013; Chen et al. 2017; Capolupo et al. 2021; 

Santos et al. 2021; Hoyo-Alvarez et al. 2022); (12) behavioral alterations in mobile organisms, such as 

swimming ability, speed, distance traveled and avoidance (Chen et al. 2020; Santos et al. 2021; Kim et 

al. 2022), and altered valve movement in bivalves (Bringer et al. 2021); (13) histopathological damages 

in organs as liver and digestive tract (Kim et al. 2022; Li et al. 2022a); (14) embryotoxicity also 

coexposed to acidification (Rowlands et al. 2021); and finally (15) mortality (Lee et al. 2013; Cole and 

Galloway 2015; Manno et al. 2022). 

These different types of reported effects clearly show how MNPs can damage not only 

individuals but also whole populations or species that would impact other species of the trophic 

network, thus potentially affecting the entire community structure. Since few studies have been 

carried out to determine relevant physiological parameters in marine invertebrates following 

nanoplastic exposure, such as oxygen consumption (Cole et al. 2015), cellular ROS production (Jeong 

et al. 2017), and apoptosis induction, it is crucial to take these physiological, biochemical and cellular 

measures for a better physiological understanding of the effect of nanoplastic exposure. 

Physiological data can be used to describe the health status of cells as well as whole organisms 

following manmade nanoparticle exposure in marine Antarctic metazoans; furthermore, these data 

could be related to molecular data as transcriptomics or enzymatic activities approaches. The 

assessment of molecular effects in response to MNPs is key to obtain early biomarkers of stress and 

also to disclose the first responses which could produce severe eco-physiological changes. Few studies 

have been conducted to evaluate the molecular effects, such as transcriptomic, in responses of MNPs. 

In a microarray study on oysters from French Atlantic coasts exposed to polystyrene (PS) microplastics, 

Sussarellu et al. (2016) found differentially expressed genes potentially involved in pathways of 



reproductive parameters. Such gene expression alteration was in accordance with eco-physiological 

effects reported in the same study, notably a decrease in oyster reproduction parameters. 

Interestingly, hormone receptors and transcripts involved in different hormone pathways were 

differentially expressed, suggesting an endocrine disregulation, probably because of stress or 

chemicals present in microplastics such phthalates, which are recognized as endocrine disruptors. 

Other studies reported the following relevant findings on aquatic model organisms based on target 

gene expression analyses: Detoxification transcripts as phase 3 xenobiotic metabolization ABC 

transport has been found as modulated by MNPs in single exposures and in combination with arsenic 

in the marine rotifer Brachionus plicatilis (Kang et al. 2021). In another rotifer species, Brachionus 

koreanus, a synergies effect of accommodated fractions of crude oil and nanoplastics produced an 

transcriptional alteration with enrichment of molecular pathways with differentially expressed genes 

as “gene expression,” “Cellular transport,” and “Cellular response to stress” (Jeong et al. 2021). In the 

water flea Daphnia magna an alteration of stress-response gene expression was observed after 

microplastic exposure (Imhof et al. 2017). In other water flea species (Diaphasoma celebensis), 

different sizes of polystyrene (PS) beads altered several anti-oxidant gene expression with a significant 

effect reported for some enzymatic activities (Yoo et al. 2021). Molting-related genes (clap and cstb) 

were up-regulated in larvae and juveniles of the shrimp Artemia franciscana exposed to polystyrene 

(PS) nanoplastics, explaining the alteration in molting frequency observed (Bergami et al. 2017; Varó 

et al. 2019). Likewise, a set of transcripts potentially implicated in the growth of the juvenile shrimp 

Macrobrachium nipponense was affected by different concentrations of nanoplastics (from 5 to 40 

mg/L) (Li et al. 2022a). In this shrimp species, molting-related genes were down-regulated by 

nanoplastic exposure and associated with a decrease in molting rate (Fan et al. 2022). This study also 

shows an enzymatic activity dysregulation for antioxidant enzymes. Ion regulation-related transcripts 

have been altered in gills of M. nipponense after nanoplastic exposure (Li et al. 2022b). Considering 

filter-feeding bivalves, in gills of the mussel Mytilus spp. exposed to polystyrene (PS) microplastics, an 

up-regulation of genes lysozyme, Pyruvate Kinase, Super Oxide Dismutase, and Glutathione Peroxidase 

was observed, as well as the down-regulation of Catalase gene, suggesting a potential oxidative stress 

being concordant with the increase in ROS (Paul-Pont et al. 2016). 

In the mussel Mytilus galloprovincialis exposed to nanoplastics alone and combined with 

carbamazepine, different transcripts of biotransformation and detoxification resulted modulated in 

gills, as well as others transcripts as GST, p53, HSP70, and Lys (Brandts et al. 2018). In the same study, 

the authors observed an increase in HSP70 transcript in the digestive gland after exposure to 

nanoplastics. In oyster species Crassostrea virginica and Isognomon alatus, the genes coding for bax 

and mitochondrial 12S increased after combined exposure to nanoplastics and arsenic in gills, 

suggesting a mitochondrial effect and augmentation of programmed cell death (Lebordais et al. 2021). 

Interestingly, evaluating immune transcript effects of two pulse nanoplastic exposures in haemocytes 

of Mytilus spp. showed both a decrease of proliferating cell nuclear antigen (PCNA) and tumor 

suppression protein p53 in the first exposure (Auguste et al. 2020). Other immune-related genes were 

affected as extrapallial protein precursors with up-regulation, meanwhile, Lyso and the antimicrobial 

peptide MytB were downregulated. In the same study, after the second nanoplastic exposure, five 

immune genes were upregulated suggesting an overall shift in immune parameters acting as a 

compensatory mechanism to maintain immune homeostasis. 

Furthermore, in a study applying enzymatic activity biomarkers Jeong et al. (2017) found higher 

enzymatic activities for oxidative stress-related enzymes on the marine copepod Paracyclopina nana 

exposed to polystyrene (PS) MNPs, in line with the significant increase of intracellular ROS levels in 

exposed copepods. Other two studies on fishes show a significant increase of Acetylcholinesterase 

(AChE) activity in fishes exposed to MNPs (Oliveira et al. 2013; Chen et al. 2017), demonstrating 

neurotoxic effects as well as the validity of these enzymatic biomarkers for these emerging pollutants. 



Moreover, enzymatic activity profiles could validate or correlate transcriptomics analyses, after direct 

or parental pollutant exposures, as shown in Rondon et al. (2016). 

Regarding Antarctic metazoans, a pioneer study on the Antarctic sea urchin Sterechinus 

neumayeri coelomocytes, exposed to polystyrene (PS) nanoplastics (at 1 and 5 µg/ ml), a significant 

modulation of antioxidant genes has been reported (Bergami et al. 2019). This study is an example of 

how molecular research, through the selection of valuable molecular biomarkers, can enhance the 

knowledge about the effects of MNPs on aquatic metazoans, being concordant with physiological 

results. Considering the valuable information provided by these studies, evaluating the negative effects 

at the molecular level of MNPs on Antarctic filter feeders is a first step to outline the consequences of 

the presence of these emerging pollutants in remote polar environments. 

Physiological and molecular impacts of nanometals in aquatic metazoans 

Regarding now the effects of other classes of nanoparticles, increasing concentrations of metal 

nanomaterial, such as nano-TiO2 and nano-Aluminium Oxide (nano-AlO), has been found to increase 

mortality in model aquatic metazoans such as D. magna (Lovern and Klaper 2006) and Artemia spp. 

(Rajasree et al. 2011; Ates et al. 2013b, 2015; Bhuvaneshwari et al. 2018). Other negative effects 

observed in these species include alteration in swimming behavior, with animals unable to move for 

prolonged periods (Rajasree et al. 2011), oxidative stress (Ates et al. 2013a, 2015; Bhuvaneshwari et 

al. 2018) gut completely filled with nanoparticles aggregates inducing tissue degradation (Arulvasu et 

al. 2014), morphological and internal damage (Bhuvaneshwari et al. 2018), reduced male gametes 

motility (Kowalska-Góralska et al. 2019), fatty acids landscape alterations (Roma et al. 2022), apoptosis 

increase, and DNA damage (Arulvasu et al. 2014). In other species such as the marine mussel Mytilus 

galloprovincialis exposed to nano-TiO2, a significant increase in DNA damage detected with comet 

assay has been reported (D’Agata et al. 2014). For other molluscs such as the bivalve Tegillarca 

granosa, the exposure to n TiO2 produced a significant increase of three tested neurotransmitters (DA, 

GABA, and AChE), with a significantly lower AChE activity (Guan et al. 2018) as well as the 

downregulation of genes encoding modulatory enzymes (AChE, GABAT, and MAO) and receptors 

(mAChR3, GABAD, and DRD3) for the neurotransmitters tested, showing a neurotoxic effect. 

Acute exposure of nTiO2 in a neotropical fish, Prochilodus lineatus, decreased plasma 

osmolality and  Ca2+ levels, with an inhibition of Na+/K+-ATPase,  H+-ATPase and carbonic anhydrase 

activities in gills. Meanwhile, during a sub-chronic exposure, although no change was detected in 

plasma osmolality, ionic balance, and enzyme activities, an increase in total mitochondria-rich cells 

density was found in this species (Carmo et al. 2018). In the case of common carp Cyprinus carpio, 

exposure to the same anthropogenic nanoparticle induced a reduction in the enzymatic activities of 

Glutathione S-tranferases and Catalase, in some tissues (Lee et al. 2012). In other studies on the same 

species exposed to Aluminium nanoparticles, an increase in the enzymatic activity of SOD and GPX and 

a decrease in CAT were found (García-Medina et al. 2022). 

Similarly to MNPs physiological effects, few studies on man-made nanoparticles have 

evaluated other eco-physiological parameters, such as apoptosis (Arulvasu et al. 2014) and oxygen 

consumption alterations (Hu et al. 2017), and no data are available on cellular ROS production. 

Recently, Jovanović et al (2016) studied the effect of n TiO2 at the community level, reporting changes 

in the structure of the macroinvertebrate community of Vlasi county (Republic of Serbia) after 

treatment and increasing the concern about the negative effect on the whole ecosystem. The 

physiological perturbations of nano metal-oxides, such as n TiO2, should be assessed for filter feeders 

from Antarctica to deepen the potential environmental impacts of this emerging pollutant and 

potentially prevent perturbations at population and higher ecology levels. 



At the gene expression level, the exposure to man-made metal nanoparticles has been found 

to affect the following transcriptional pathways in aquatic organisms (Revel et al. 2017): (1) defense 

mechanisms with the induction of stress-related and detoxified gene expression; (2) immune system 

with the alteration of genes related to immunity, inflammation, and apoptosis. These could lead to 

increased vulnerability of organisms against pathogens and infectious diseases; (3) cell membrane 

transporters, with the alteration of vesicular transport and membrane-related genes expression, 

modifying membrane permeability and cell transport; (4) metabolism pathways as the oxidative 

phosphorylation which have a key role in ATP generation in aerobic organisms; (5) DNA repair 

pathways, indicating an induction of DNA damage after nano-metal exposure; (6) nervous system, 

suggesting the neurotoxic effect of metals nanoparticles; (7) growth and development, with the 

induction of genes involved in developmental and hormonal regulation, and exoskeleton genes for 

some organisms; and finally (8) reproduction, with strong gene expression alteration in reproductive 

tissue (such as fish ovaries). In filter-feeding bivalves, M. galloprovincialis individuals co-exposed to 

nano-TiO2 and cadmium displayed a down-regulation of abcd1 transcript (Della Torre et al. 2015). In 

the same species, a modulation of ROS stress response was registered in gills and digestive glands after 

silver nanoparticles exposure (Gomes et al. 2014). In a transcriptome-wide analysis of n-TiO2 single and 

combine exposure with 2,3,7,8-TCDD in M. galloprovincialis a GO-terms overrepresentation of up-

regulated transcript involved in cytoskeletal in digestive gland was observed (Banni et al. 2016). These 

transcriptomic data, which are the first level of response in the organisms, provide useful information 

about the impact of nano-metal pollution. 

In freshwater environments, transcriptomic analysis of the Antarctic crustacean Branchinecta 

gaini, revealed that xenobiotic metabolism gene P450 was upregulated at 100 and 200 μg ml-1 n-TiO2, 

while the expression levels of cathepsin L and of antioxidant genes such as superoxide dismutase and 

glutathione peroxidase were significantly reduced with increasing concentrations of n-TiO2 (González-

Aravena et al 2022). The latter study suggests that Antarctic metazoans could be used as bioindicators 

of nanoparticles stress. 

 

Toward the perspective of biomarkers in Antarctic benthic filter‑feeding organisms 

Regarding the impact of MNPs and nano-pollutants, multiapproach studies will allow us to 

understand the key physiological mechanisms affected by their exposure and the adaptive or 

detrimental responses displayed by individuals in polluted environments (Fig. 6). Since physiological 

phenotypes often manifest late in an organism’s life cycle, it is crucial to develop new strategies that 

allow for early detection of responses to MNPs and nano-pollutants exposure. The most promising 

method for early assessment of contaminant exposure relies on molecular biomarkers which can be 

applied just after a few hours or days of exposure, representing the earliest functional response 

detectable in an organism (Table 1). 

Despite the efforts to evaluate MNPs and man-made nanoparticles toxicity at different 

concentrations and exposure times, and using different particle sizes, shapes, and compositions (Kögel 

et al. 2020), few studies have addressed the use of biomarkers in assessing MNP and nanoparticle 

exposures. Molecular biomarkers (gene expression and enzymatic activity) in response to pollution 

have been adopted in ecologically important species, such as the blue mussel and common frog 

(Carlsson and Tydén 2018; Revel et al. 2019), yielding successful results. 

Given the growing amount of multi-omics data at the whole genome scale on diverse 

environmentally relevant species, genome-wide transcriptomic approaches could be adopted in 

overlooked Antarctic metazoans exposed to emerging stressors to find relevant biomarkers, which can 

then be validated through targeted gene expression. This strategy allows for the detection of 



potentially toxic contaminants well before real adverse effects occur (Clemente et al. 2012). We 

propose here to apply this biomarker strategy to suspension-feeding bivalves which use their gills to 

capture natural particulate matter, filtering water for eating and taking up high quantities of 

anthropogenic nanoparticles (Corsi et al. 2023). Hence, Antarctic benthic filter feeders should be used 

as a sentinel for nano-pollutants, as discussed in Corsi et al. (2023), evaluating the ecotoxic effects of 

MNPs and nano metals-oxides through the use of biomarkers of the exposure to these emergent 

pollutants. 

Another relevant molecular analysis when considering biomarker perspectives is the 

characterization of epigenetic-based events. Nanoplastics/metals have been clearly shown to affect 

DNA methylation patterns at the intra- and transgenerational level in several model species (Bicho et 

al. 2020; Zhang et al. 2020b; Yu et al. 2021). Major metabolic processes, such as oxidative 

phosphorylation in Danio rerio (Van Aerle et al. 2013), oxidative stress (Lee et al. 2012; Ates et al. 

2013a, b, 2015; Bhuvaneshwari et al. 2018), and mitochondrial energy metabolism (Trevisan et al. 

2019) are affected in several aquatic metazoans by MNPs and manmade nanoparticles. 

The cellular metabolism is a key player in epigenome modifications (Reid et al. 2017). Recent 

studies have highlighted that metabolites derived from multiple metabolic pathways linked to 

mitochondrial metabolism and oxidative stress can affect the activity of enzymes involved in histone 

post-translational modifications and DNA methylation and demethylation (Narne et al. 2017; Reid et 

al. 2017). Histone and DNA methylation modifying enzymes are also sensitive to oxidative stress (Niu 

et al. 2015). Therefore, it could be expected that nanoplastics/metals may lead to changes in the 

epigenome through their effect on the metabolism of aquatic species. The effect of the environment 

on epigenetic carriers of information has been studied across a wide range of marine species, 

particularly in the field of ecotoxicology (Hutton and Brander 2023). While it is now generally accepted 

that pollution profoundly impacts the epigenome of various aquatic species (Bhandari 2023), few 

studies have focused on Antarctic metazoans. One such study assessed epigenetic modifications in the 

Antarctic limpet Nacella concinna, which was exposed to different environments. The authors found 

changes in DNA methylation patterns in different environments (subtidal and intertidal) and after 

acclimatization in a common garden setting. This suggested that epigenetic factors play an important 

role in physiological flexibility associated with environmental niches (Clark et al. 2018).  

Further efforts are necessary to address the role of epigenetic modifications in phenotypic 

plasticity in Antarctic species. Generating reference genomes for key models is a crucial step to enable 

the application of advanced epigenetic techniques. Developing epimarkers as early indicators of 

pollution is also a promising approach for monitoring ecosystem health (Rondon et al. 2017; 

Anastasiadi and Beemelmanns 2023). L. elliptica has recently been shown to be highly sensitive to MNP 

and has been suggested as a good sentinel species for which epimarkers would be an interesting tool 

to assess (Rondon et al. 2024a). 

 

Conclusion 

Having a global vision of the molecular and eco-physiological effects of emerging pollutants 

such as MNPs and nano-metals is crucial to understand the consequences they will bring to 

ecosystems. It is important to provide clear evidence of the adverse effects of these pollutants at 

sublethal concentrations in environmental risk assessments, since they may generate a cascade effect 

with consequences not only at the level of individuals but also at community and ecosystem levels 

(Clemente et al. 2012). In addition, it is critical to understand the combined effect of these two types 

of emerging pollutants, which could be complementary and/ or have synergistic effects. Finally, MNPs 

could release toxic additives such as BPA and phthalates, which are known to be endocrine disruptors 



for aquatic metazoans (MathieuDenoncourt et al. 2015), enhancing the toxic capacity of these 

pollutants. For this reason, an integrative approach should be applied to evaluate the toxicity of nano-

pollutants, for example, polystyrene nanoplastics and nano-TiO2, on key species of Antarctic benthos 

and reveal early functional biomarkers for these stressors. 

Perspectives 

Future studies assessing eco-physiological responses to anthropogenic nanoparticles at the 

genome-wide molecular level, as well as cellular and whole organism levels, will produce valuable 

information on the relevant effects on biota, including Antarctic metazoans, and how individuals cope 

with multiple stressors. The critical aspect is obtaining biomarkers validated through target gene 

expression approaches. If positive molecular markers are found, cellular validation could be achieved 

through the analysis of ROS production and apoptotic cell counts. At the organism level, altered oxygen 

consumption could be the ultimate parameter indicating a critical state of stress. Another important 

point is the limited knowledge of the potential effects of co-exposure to different anthropogenic 

nanoparticles, such as combined nanoplastics and nanometals, which could lead to synergies. This 

point is highly relevant because, in the natural environment, organisms are exposed to mixtures of 

(nano) pollutants, including anthropogenic nanoparticles. The Southern Ocean biota is well 

represented by filter-feeding invertebrates which have the highest diversity and abundance among 

benthic fauna (Griffiths 2010). Among them, the Antarctic soft-shelled clam Laternula elliptica is one 

of the main components of the Antarctic benthos, especially in the shallower zone (Cattaneo-Vietti et 

al. 1999), reaching up to 300 individuals/m2 in regions of King George Island (e.g., Potter Cove; Urban 

and Mercuri 1998). L. Elliptica is also a key species in the benthos-pelagic carbon flux on coastal areas, 

filtering sedimentary particles and planktonic organisms from the sediment–water interface (Ahn 

1993; Momo et al. 2002). For its feeding features and position in the trophic web, L. elliptica has been 

considered a wasp-waist species within the ecosystem (Rice 1995). Previous research on its 

ecophysiology suggests that these filter-feeding molluscs are one of the most sensitive species to 

environmental stress in Antarctica (Peck et al. 2002, 2004, 2007, 2009; Peck 2018). Also, experimental 

evidence (increase in oxidative lipid and protein damage) has highlighted that individuals L. elliptica 

are under exposure to anthropogenic perturbation in some Antarctic areas, such as sites of McMurdo 

Sound (especially near McMurdo Station) (Lister et al. 2015). This species is the largest bivalve in 

Antarctica (> 100 mm shell length), can be easily manipulated for analyzing different organs in response 

to stress, and can survive under experimental conditions (Passos et al 2022) making it a potential model 

species for studying stress factors and biomonitoring in Antarctica. Additionally, general biological 

information has been recorded for this species, such as the detection of microplastic and 

microcellulose (González-Aravena et al. 2024), associated prokaryotic microbiota in different tissues 

and in different stressful conditions (González-Aravena et al. 2023), and experimentation about effects 

of exposures with nanoparticules in gill associated prokaryotic community (Rondon et al. 2024b). 

These insights highlight the need to evaluate the health status in Antarctic marine ecosystems, and 

filter-feeder marine species could be used as valuable bioindicators as in other regions of the world (Li 

et al. 2019). In view of this, we propose to assess the eco-physiological responses through biological 

markers in ecologically relevant Antarctic bioindicators, such as bivalve filter feeders. For example, L. 

elliptica is commonly found along Antarctic coasts and at high abundances, potentially being a good 

sentinel species of nano-pollution. These molluscs are the first macro-metazoans to process MNP and 

anthropogenic nanoparticles in the water column through filtration, accumulating it, and by their 

position in the trophic nest, they are going to transfer it to other metazoans in the Antarctic benthos-

pelagic ecosystem. 
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