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Abstract

We consider Non Autonomous Conformal Iterative Function Systems (NACIFS)
and their limit set. Our main concern is harmonic measure and its dimensions : Haus-
dorff and Packing. We prove that this two dimensions are continuous under perturba-
tions and that they verify Bowen’s and Manning’s type formulas. In order to do so we
prove general results about measures, and more generally about positive functionals,
defined on a symbolic space, developing tools from thermodynamical formalism in a
non-autonomous setting.

1 Introduction and statement of results.

Given a compact set in the plane defined dynamically by iteration of conformal contrac-
tions, this article focuses on the variations of Hausdorff dimension and packing dimension
of the harmonic measure under perturbations of the conformal contractions. In a natu-
ral framework, which is precisely stated below, we demonstrate that these functions are
continuous.

Let K < C be a compact set and w the harmonic measure of @\K evaluated at co. Since
the works of Makarov [Mak85]|, Jones, and Wolff [JWS88|, it is known that the Hausdorff
dimension of w is less than or equal to 1. This result was generalized by Bourgain to R? in
[Bou87|, where he proved the existence of a constant ¢(d) > 0 such that the dimension of
the harmonic measure of any open set in R? is less than d — £(d). According to Makarov,
Jones, and Wolff we know that ¢(2) = 1.

If K has Hausdorff dimension in |1, 2] the previous results tells us that harmonic measure
only "sees" a small part of K of dimension less or equal to 1. Let for instance K be the
Mandelbrot set. This is a compact and connected set, so that C\K, is simply connected
and we know by [Mak85| that the support of harmonic measure is a subset of the boundary
of K of Hausdorff dimension equal to 1. On the other side Shishikura proved in [Shi9§]
that any intersection of this boundary with an open set has Hausdorff dimension 2.
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When the compact set K is fractal and has Hausdorfl dimension less than one it is
still reasonable to believe that in many cases the dimension of harmonic measure remains
stricly less than the Hausdorff dimension of K. This has been proved to be true for several
types of conformal Cantor sets |Car85|, [LV95]|, [UZ00], |[Bat96]. More recently Batakis
and Zdunik proved in [BZ15] that this remains true for a class of non autonomous Cantor
sets generated by similitudes. Note that in our knowledge the question whether this is true
for all Conformal cantor sets is still opened. On the other side the first author exhibits in
[Bat96] examples of Cantor sets for which harmonic measure has full dimension, and very
recently David, Jeznach and Julia in [DJJ23] give an example of a Cantor set in the plane
for which Harmonic measure is equivalent with Hausdorff measure.

In this paper, we develop tools to study entropies, Lyapunov exponents, pressures and
dimensions for non-autonomous Cantor sets. Most results are proved in a symbolic space
and for the set of positive functions defined on cylinders, see section 2, even if this is
interesting on his own, our main focus in this article are Hausdorff and Packing dimension
of the harmonic measure, and their continuity properties, for a class of non-autonomous
conformal repellers in the plane.

In order to state our results precisely, we describe now our settings and we introduce
some notations.

Following [RGU12]|, given a Jordan domain U, a non-autonomous conformal iterated
function system is a sequence ¥ = (¥,,) of finite collections of conformal contractions
U, ={; : U —U; i=1,..,d,} verifying properties (1), (2) and (3) below for some
n > 0 There exists 7 > 0 such that

1. Conformality: There is a fixed neighborhood V' > (1+n)U of U such that ,1); extends
to a conformal diffeomorphism from V to V', for all 1 <i<d, and allne N .

2. Open set condition and annulus condition:

o Vin,V; =@ forall 1 <i+j<d,, where ,V; = a;(V). [OSC]
<

e Moreover, for any n and any 1 < i < d,, we have ,V; c (1 —n)U. [AC|

3. Bounded Contraction: For allne N all 1 <i+ j <d, and all z €,V

n<|ahi(z)] <1-n [BC|

Combining the open set and the bounded contraction conditions we get a uniform
bound on d,,:
there exists N s.t. d,, < N for all n e N. (1)

Notation. e Forany EcV,anyneN and any 1 < i < d, let ,E; = 3;i(F). The
index on the left stands for the generation of the map while the one on the right
stands for the chosen branch of the map.

dn
e Forn e N we denote by Uy, the collection {,Uy,--- ,.Uq,}. Let @, = Z Pl where

=1
i, defined on U;, is the inverse conformal dilatation of .b;, ie. .¢; @ U; — U and
n¢z © nwz = 1dy.

In this way, we have introduced piecewise conformal maps denoted again by ®,, defined
on the union of topological discs: ®,, : U Ui — U by the formula
nUie Mn

D, (2) = .0i(z) for z €, U.



Remark 1.1. Note that the condition of bounded contraction is stronger than the one
of [RGU12] (uniform contraction). This is due to the fact that dealing with harmonic
measure implies estimates on capacity and hence on the size of the sub-components. Also
the conformality condition has been strengthened to ensure existence of conformal annuli
with bounded from below moduli. This is crucial in order to be able to use Harnack’s
principle (cf. [Car85]).

Furthermore, without loss of generality we can suppose that U is the unit disk.

We consider the following non-autonomous limit set

Definition 1.2. Given a non-autonomous iterated conformal functions system ¥, on a
Jordan domain U we define the limit set X < C by

0
= () (@no®p_yo-0By0®y) " (U),
=1

where ®,, is the sequence of piecewise conformal dilatations introduced above.
For any n, the map T;, := &, 0®,,_10---0 <I)2 o @1 is well defined on X and for any

x € X we have T,,(z) € U. Moreover there exists H d; conformal inverse branches of T,

defined on V. Each of this branches sends U onto a conformal disk included in U, each
point in X belongs to one and only one of these conformal disks. Remember that U4, is the
collection of connected components of T,;1(U).

There is an obvious way to code the situation.
+o0

For any integer n, let A, := {1---d,} and set K := kH1 Aj. There is a one-to-one corre-
spondence from K to X. More precisely if a = (a,,) is an element of K, then the sequence of
subsets of V' defined by Uy = U and U,, = ,4)q, (Un—1) is a decreasing sequence of compact
sets with diameters converging to 0, thus converging to a point z, which is obviously an
element of X. Reciprocally, if € X then for any n we have : ®, 0---0®;(z) € U, and

there exists a = (ap) € K such that x € \U,,, ®1() € Usy, - , P00 P1(x) € niiUa,, -
If € X is associated with a € K, then for any n we have x € ), o---0.%, (U), which is
the conformal disk mentioned above. In the sequel we will denote X, (x) := ajy - - - a, the

set Xy, 00,4, (U),and Wl o=y, o---0,0, .

Recall the definition of Hausdorff Dimension and Packing Dimension of a probability
measure [

HD(u) = {Z 'ul(%f) 1}HD(Z) and PD(u) {Z:,ul(an):l}PD(Z)’

the infimum and the supremum being taken over all Borel subsets Z of the support of pu.
Let w be the harmonic measure on (@\X evaluated at 0o0. By the celebrated results of N.
Makarov [Mak85] and P. Jones-T. Wolff [JWS88] the Hausdorff dimension of w is not larger
than one. On the other hand, it is clear that the Hausdorff dimension of w is at most
HD(X).

For any continuous function defined on U let |f| := sup|f|, with | - | : C — R* is

U

the modulus. Let X and X be two non-autonomous limit sets associated to the conformal
iterated systems W and ¥ respectively. We define

d(\IJ,\iJ) = sup max ( i — b

n 1<i<d,

Using general results on the symbolic space Ki, and studied in the second and third
part of this paper, we prove



Theorem 1.3. Le X and (Xy)ken be non-autonomous limit sets associated with the confor-
mal iterated systems ¥ and (Vy)ken respectively. Let w and wy, be the harmonic measures
of their complementaries. Assume that lim d(V, W) = 0, then,

k—+0o0

lim HD(wg) = HD(w) and lim PD(wg) = PD(w)-
k—+00 k—+o0
We also discuss validity of well known formulas to calculate these dimensions. In
particular we show that an adapted form of Manning’s formula applies.

Theorem 1.4. Let w be the harmonic measure of C\X, where X is the limit set of a
non-autonomous conformal iterated systems V.
We have
. . Hwn . H(./Jn
HD(w) =liminf —= and PD(w) = limsup ——,

n Xw,n n Xw,n

1 1
where Hyp = —— . w(X)logw(X) and Xwn =~ Y. w(X)log |T},(X)].
n n
Xeln Xeln
Moreover, w-almost surely

HD(w) = timinf ") 00d PD(w) = lim sup
n xn(2) n Xn(T)

1 1
where for any x € Xo, hyn(x) = —Elogw(Xn(x)) and xn(z) = Elog T ()|

2 Symbolic point of view

This paragraph deals exclusively with symbolic Cantor sets. More precisely, for any integer
+o0

n, let A, be a finite alphabet with d,, symbols. Set K, := H Ap. We are mainly interested

k=n
in K; that we denote K.

Let T : K,, — K,,+1 be the shift map sending a sequence a = (a;);>0 to T'(a) = (a;)i>1-
It should be emphasized that T" goes from K,, to K,,+1. This is a bit ambiguous, since the

same letter designates different maps, but it lightens considerably the notations. We let
n—1

DP = H dj+p be the degree of T™ on K,,.
k=0
Given a sequence of symbols a = (a;)en € K, we set

Xnp(@)i=ag - -apn—1:={b=(b;)eKl|a;=b;, for 0 <i<n-—1}.

The set X, (a) is the cylinder (word), of length (size) n, in which a belongs to. Given a
cylinder X we denote by | X]| its length and, for any n, by C,, the set of all cylinders of length
n = 1, in which, for practical reasons, we add @ with the convention X = X@ = X, and
|2] = 0. Note that C,, is a finite partition of K by D} cylinders.

The set K endowed with the product topology is compact. Let d be any metric on
K that generates this topology and such that diamK = 1. If F < K, we denote by
|E|g :=sup{d(z,y) | (z,y) € E x E} its diameter.

Actually, since the planar Cantor sets that we will consider are conformal repellers,
they are well described using the coding and the symbolic point of view. It will then be
natural to choose a metric which ensures that a cylinder in K, and its “image” in the plane,
have approximately the same diameters.



2.1 Asymptotic Siblings Invariance

Because of the strong intra-scalar-similarity of the Cantor sets we are dealing with, one
expects that natural geometric measures, or natural geometric objects, defined on them
have nice scaling or invariance properties.

Note that in this section we do not need to assume any assumption on the finite numbers
dp.

In order to define precisely the properties we have in mind we need to introduce some
definitions.

For any integer p > 1, let §, be the set of real positive maps defined on the set of

cylinders TP(C) := U TPC,,. For p = 0 we denote by § = §o the set of maps defined on

nz=p
the set of cylinders C := U Cp, with values in ]0, +o0[.
n=0
v(XY)
For v = vy € § and XY a fixed element of C we note vx(Y) := x) Note that vy
v

is an element of §|x|.

A finite measure v on K, that gives positive mass to any open set, is naturally an
element of §,. Reciprocally we say that v € §, is a (finite) measure if it projects as such
on the compact set defined asymptotically by the cylinders, which is if and only if :

1

Vn € N VX € Tp(C) m

> y(XY) =1

Y |=n
Definition 2.1.
e Gien v and V' in §p we naturally define v+ v', A\v for any A € R, and v.v'.

e For any real function ¢ and any v € F), we note ¢(v) the map from TPC to R defined
by o(v)(X) = p(v(X)). Clearly this only makes sense if ¢ is well-defined on v(TPC).

e Giwenv and V' in§p andn =1 let : v,V ), = Z v(X)V(X)-
XGTan+p

e For any v € §p, we define its mass on C,, (withn = p)
my,(v) == v, Ln

Note that v is a measure if m,(vx) =1 for any n and any X € C.

o We say that v and V' in §, are equivalent if there exists C > 1 such that for any X
1 v(X)

we have — <

c S U < C. We then notev ~ V.

In this paper we will mainly consider the following elements v € §), :
o v(X) = pu(X), where u is a measure on K,
o v(X) = [X]a,

Here are some elementary properties that will be used later on.



Properties.
For any s € §, any XY Z € C,, we have

sx(YZ) =sx(Y)sxy(Z) and sxy (Z) = sxy(Z) (2)
For any finite measure v, any cylinder X € C and any integers n and p we have

(vx,log sx)n+p = (vx,log sx)n + Z vx (Y ) {vxy,log sxy )y (3)
YET‘X‘QXHR

The following is an application of Jensen inequality.

Proposition 2.2. Let v and V' be two elements of §p. For any n we have

my (V)
m,, (V)

; (4)

/
(v, log V—>n < my(v)log
v

with equality if and only if there exists k such that v(X) = kv/(X) for any X € TPCyyp.

We introduce now our main assumption we will refer to as : Asymptotic Sibling Invari-
ance. It is a kind of long range Markov property of a functional that asserts that along
cylinders which share a big common part of history, the relative functional does not depend
on its origin.

Definition 2.3. Let v be an element of § and (5,) a positive sequence converging to 0.
We say that v satisfies Asymptotic Siblings Invariance (ASI) with sequence (By), if for any

integers n, k and p we have
v / 2 n n+k VXY(Z)
(X, X eC, VW eT"Chii VZeT" "Cpikyp [log| ——-5 )| < B (5)

vxry (Z)
Note that we sometimes use the following version of the inequation :
Z
vxy(Z2) 1‘ < By
vxry (Z)

Notation. To simplify notations with cylinders, we sometimes are a little bit imprecise
and instead of writing XY with X € C,, and' Y € T"Cyyp, we will write XY with | X| = n
and |Y| = k, the context reminding us that Y is not in Cy but in T"Cpyk.

Definition 2.4. Given two sequences of positif real numbers (v,) and (By), we say that they
are compatible if () is increasing, (B,) converges towards 0 and there exists a sequence of

1

integers, (pn), such that p, < n and < max(*ypn,'ynﬁpn)> converges towards 0. We then
n

denote c(n, Bn) := max(Yp,, YnOp.)-

As an example, one may consider the situation we will have to deal with studying the
harmonic measure. In that case we will have 7, = O (n), it appears that such a sequence
is compatible with any sequence (3,) converging towards 0. As a matter of fact we have

1 n .
- max(Yp,, » YnBp,) = max(osf ), O?Sn) Bp,), and any p, = o (n), for instance p, = [\/n],

fulfilled the desired growth condition.




Proposition 2.5. Let () and (B,) be two compatible sequences.
Assume that s and v are two elements of §, that v is a finite measure and that they both
satisfied (ASI) with (By). Assume moreover that one of this condition is fulfilled :

VXY eC |logsx(Y)| <y (5.1)
or
VXeC VneN s(X)=1 and {vx,log(sx)m < Yn: (5.2)

Then for any § ~ s

— There exists C > 0 such that :

an (v, §) := sup { max (vx,log §x ), — min (vx,log §X>n} < Ce(yn, Bn):
E UX[=k |X|=k

~ For any (X, X') € C? we have

1 1
lim <<1/X/,log Sxiom — —{vx,log §X>n> =0-
n n

n—+00

Proof. The constant C' will change from line to line but will stay independent of integers

or cylinders, only depending on v and s.

For any § ~ s we have, for any XY € C: —2logC < logsx(Y) —logsx(Y) < 2logC.
From where we deduce, because v is a finite measure

—2log C < {vx,log sx)n — (vx,log sx )n < 2log C-

This tells us that conclusions of the theorem are true for § as soon as they are true for s,
and in the sequel we focus on s.
Let

— for any X € C, g, (X) := (vx,log sx)n, wWith g, := g,(9)

i n(X) — min 0a(X) |-

— ap =y, s) = sup{
ko UX|= |X|=k

We first note that (5.1), and the fact that v is a finite measure, imply that for any
X € C we have
|90 (X)| = Kvx, log sx)n| < m, (6)

inequality which is also true with (5.2) and leads to
an < 29 (7)

Note also that given any X € C, any integers n and p, we have from (3) :

Inp(X) = ga(X) + D vx(Y)gp(XY)- (8)
Y|=n

From where we deduce that for any X' e C x| we have

Inp(X) = gnap(X') = gn(X) = gu(X) + D) (vx(Y) = vxo(Y)) gp(XY) + (9)
Y|=n

Z vx(Y) (gp(XY) - gp(X/Y))
[Y]=n



Let B be the subset of T|X|C‘X|+n for which we have vx(Y) —vx/(Y) = 0, and let B~
be its complementary. Then we have

> x () =rx () g(XY) < max g,(2) 3 (x(¥) — v (¥) +

[Y|=n YeB+
i Z Y)—vx/(Y))-
i g )YEZB]_ (vx(Y) = vxi(Y))
Since v is a finite measure, we have Z vx(Y) = Z vx (V) =1
Y|=n Y|=n
This implies that Z (vx(Y)—vx/(Y)) =0.
|Y|=n

So that Z (vx(Y)—vx/(Y)) = — Z (vx(Y) —vx/(Y)), which leads to

YeB+ YeB~

T k() v (1) gp(XY) < Y <VX<Y>—VX/<Y>>( max gy(Z) - _min gp<z>)

Z|=|X Zl=|X
W S 121=IX +n 1Z1=IX[+n
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We thus have

D) (wx (V) = vxi(Y)) gp(XY) < A (10)
Y|=n

From (ASI) we deduce that :
vxy(Z) < (1+ Byy|) vxry (2),

and also :
log sxy(Z) < logsxiv(Z) + By

This implies :
— if (5.1) is fulfilled, that we have |log sxy(Z)| < 7|z so that
(

vxy(Z)logsxy(Z) — vxiy(Z)logsxy(Z)
= (ny(Z) — Vxly(Z)) log SX}/(Z) + I/X/y(Z) log jx/};((Z))
< vxy(Z2) — I/X/y(Z)|’}/|Z| +vxy(Z ’log :;:;((ZZ))’

and since v and s fulfill (ASI) we get

< By wxy (22 +vxy (Z) By
< By (1 +yz)vxy (2).

Summing over all cylinders Z of length p, and using once again the fact that v is a
finite measure, we get

9p(XY) = gp(X'Y) < (14 ) B1y| < CwbBiyy- (11)



— if (5.2) is fulfilled, that we have
vxy(Z)logsxy(Z) —vxy(Z)logsxiy(Z) < By (vxy(Z)logsxy(Z) + Cvxy(Z))
Summing over all cylinders Z of length p, and using (6), we also get (11).
Injecting (11) and (10), into (9) leads to :
9nap(X) = gnap(X') < gn(X) = gn(X') + Cypfn + Ay

From where we get that :

Which might be rewritten, for any p < n, in the following form
an < ap+ Cyppfp + Aon—p < op + CypfBp + Aa—p,  (7n) being increasing.
Using (7) we get
< 27 + CnfBp + Aan—p < Cmax(yp, Ynfp) + An—p:

Let ¢ and r < p be the quotient and the remainder of the euclidean division of n by p.
By induction we get

C max(vp, Ynbp Z M Moy,

( )
C maxévp, '}’nﬂp; + 2)\q’7r
( ):

Q
3
N

C max Tp> 'Ynﬂp
C max(vp, YnfBp

NN N

Since (v;,) and (f3,,) are compatible, one may take p = p, to get

< Cc(Vn, Bn),

which is the first part of the proposition and tells us that for any X and X’ in C, with
| X| = |X'|, we have

an _ (¥, Bn)

< <
n n

—noto 0

1

We show now that we can get rid of the condition | X| = |X’|.
Let X € C, and let a be a cylinder of length 1. Apply (8) with n =1 and p = ¢

9ar1(X) = q1(X) + . vx(0)gg(XD) = go(Xa) + 1 (X) + Y. vx(b)(g4(XD) — go(Xa))-
b]=1 [b]=1

Apply now (8) withn =gandp=1:

gar1(X) = go(X) + D vx(Y)gu(XY).

We thus have :

9g(X) = go(Xa) = g1(X) + Y vx(0)(94(XDb) = gg(Xa)) = D} vx(Y)gu(XY).



By hypothesis on v and s, there exists C' > 0 such that for any cylinder Z € C we have
91(Z) < C . This leads to
194(X) — g¢(Xa)| < C + aq,

and this easily leads, for any Y with |Y| = p, to
199(X) = g¢(XY)| < (C + ag)p < Cagp- (12)
Let X" € (x| and XY € C, we have
|gq(X/) - gq(XY)| < igq(X/) - gq(X)| +19¢(X) — g¢(XY)| < ag + Cpay < C"paq,
and then )
Q@
6 ‘gq(X/) - Qq(XYM < C/p?q'

Which finishes the proof. O

2.2 A continuity result

Let v and v/ be two elements of §, we define
vx(a)
vy (a)

Note that we obviously have D(v,v') = D(V/,v) and D(v,v') = 0 if and only if v = v/
Moreover, it is also clear that we have

Dv,v") < D(v,V/") + D', V")

log

D(v, V') = sup max{
p=0

, Xa € Cpt1 and |a| = 1}-

So that D could be seen as a metric on § if D(v,v') < + for any v and v/, which is not
the case. Nevertheless if D(v, vy) converges to 0, when k — +00, this tells us that (vy) is
“converging” to v.

Let Y =y1--yn, Yo=2 and, forany 1 < k <p, Yy = y1 - yg. Since

v(Y) = 1_[ VY2‘71()/Z‘)7
k=1

we conclude that for any X € C and any Y we have

5 vx(Y)
’1 8 (Y)

This also implies, for any XY € Cp1p, with |Y| = n, that we have

] < YD),

px (V) = e (V)] < v (V) (PO 1))

Let gn(X) := (vx,logsx ), and g;,(X) := (V,log s’y )n. Assume that v and v/ are both
finite measures, and that sx > 1, then we have

n(X) = 6,30 = (1= 22 Y log s + i 108 55,
which leads to
192 (X) — gh(X)] < (e”D(”’”l) - 1) gn(X)4nD(s, s') < (e"DW’mD(y, V) gn(X) + nD(s, s')) ,
so that

= 0a(X) = g(X)] < P, g0 (X) + Dls, ) (13)

10



Theorem 2.6. Let v and s be two elements of §, and let (vy) and (si) be two sequences
of elements in §.

For any n e N, set g, = (vg,log sg)n and gin = (Vkz,108 Sk.on-

Assume that

— v and v, are finite measures.
— all those elements of § verify (ASI), with a same sequence (By),

— there exists a sequence (), compatible with (By), such that for any s’ € {s, $p}nen
and any XY €C
llog s'x (V)| < vy,

- lim D(v,y) = lim D(s,si) =0.
k—+o0 k—+o0

Then we have

. . 9n.k 9n
lim limsup|—— — =—| =0,
And in particular we have
. . . 9nk .. 1 . . In.k . 1
lim liminf =—= = liminf —g, and lim limsup == = limsup —gy-
k—+ow0 n n n n k——+o0 n n n n

Moreover, the conclusion are still valid for any § and (s,) such that § ~ s and 5, ~ sy for
any n.

Proof. By hypothesis we are in position to apply proposition 2.5 with v and s, and v, and
s, and we will use the notation therein.

Let (A;) be a sequence of cylinders, with A,, € C,, for any n, and let p < n, with g e N
such that gp < n < (¢ + 1)p. Using (8) we get

9n(D) = gn = Gpg+r = Ipg + Z v(Y)gr(Y),
[Y=pgq

and also

9pq = Ip(q—1) + Z V(Y>gp(Y)7
[Y|=p(g—1)

so that
q—1
Goa = 2, 2, v(V)gp(Y)-
=0 |Y |=ip
From this we deduce that

0o S ) = 3 S s —g(Aa) - Y (Vg (V).
i 1=0|Y|=ip

i=1 |Y'|=pgq

and thus

11



The same is clearly also true for v and s; so that we have

Gn 9 m 1% Gon 19 1]
el I B A; L — A - Aip) — A;
n n n ni;gp( )| + n ni;gk,p( p)| + " ;(Qp( p) — Gkp(Aip))
—1
W | A Bp) | 1§
< 2P 4 O 4 — Z (9p(Aip) — gk,p(Aip))
" p s

Using (13) and the fact that one may assume that D(v, ) < 1, we get

-1
gn Gk, W | O Bp) | 18 D
;n - Tn < 2;73 + C% + - Z-_le (ep (”’”k)D(V, V) gp(Aip) + D(s, sk)>
< 224 Cc(7p, B) + 7D (v, 1) + D(s, sk)
n
Let € > 0.
Fix p big enough to ensure that CM < g and let ng € N such that 2k < g
p no
Finally let ko such that for any k > ko we have e’v,D(v,v) + D(s, si) < %
Then for any k > ko and any n = ng we have : gn _ Jkn < g, from where the result
n n
follows. O

2.3 Almost sure convergence

In that section we work with a probability measure p. We are interested in almost sure
asymptotic values of sequences of the form : Z,(z) := logs(X,(z)), where s € §, with
s =1, and for any x € K, X,,(x) is the unique element of C,, containing x. We will use the
following strong law of large numbers version, see for instance [HH80] :

Theorem 2.7. Let {Y,,n = 1} be a sequence of random variables in a probability space.
Let {F,,n =1} be an increasing sequence of o-fields with Y, measurable with respect to
Fn, for each n. Assume that (Yy) is uniformly bounded. Then almost-surely

n

1
lim — Yi - ElY|Fi-1] ) =0
i o2 (B ) <0

Theorem 2.8. Let i be a probability measure and let s € §.
Assume that p and s fulfilled (ASI) with sequence (), that there exists a sequence
(n), compatible with (By,) and such that :

VXY eC |logsx(Y)| <y

Then, for any s ~ s, there is a set U < K of full p-measure such that for any a € U we
have :

IS u(Y)logé(Y)—%logé(Xn(a)) 0.

+o \ N
e |Y|=n

1
- (Zn - Z(nfl)p)'

Let also F,, be the o-algebra generated by cylinders in C,. The idea, once again taking

Proof. Given n € N, let Z,, := %log s(Xy) and, for any p e N*| Y, , :=

12




from [Bat06], is to apply theorem 2.7 on (Y5, )n, with respect to (Fpp)n, and to prove that
the conditional expectations are asymptotically, on n and p, independent of x € K.
Fix p > 0 and k > 0 in N. We have :

p Xk (Xk: ) 1
E [Yiet1,p[Fiep) = Z p (Xp ) = ];gp(ka)‘
Py h

Recall that by (8), for any integer k, we have
Ghep(X) = ge(X) + D vx(YV)gp(XY)-
Y |=k

For any fixed cylinders Z and Y in Cj we have : |g,(XY) — ¢,(XZ)| < ap. From where
we deduce that

94p(X) = ge(X) = gp(X2)| = | D, vx (V) (9p(XY) = gp(X2))| < .
Y=k
Applying this with X7 = Xy, := X}, Y(3,_1),, we end up with :
|9kp (Xp) = g(—1)p(Xp) — 9p(Xip)| < .

Summing from 1 to g we get

q
9ap(Xp) Z (Xkp)| < qap:
This finally leads to
1 @
2 E [Yer1p1Fhpl = — gap(Xp)| < == (14)
Pz qp p
Let n > p be two integers, and let ¢ € N be such that : gp <n < (¢ + 1)p. We have
s(Xn)
Zn = Zigs1yp + Zn — Zig1)p =P ), Yet1p +log ————,
n (g+1)p (g+1) kzzl P s(X(gr1)p)
so that
1 _ P 1
—Z Y; — —1 "X
o nq kZl k+1,p og sx,, ( (q-‘rl)p)
Using the hypothesis on s we get
1, pgl ¢ g
ﬁZn - Z Yk-‘rl,p < Cgp (15)
k=1
Let .
1 1
o = Lz Mlyy
n n
k=1
1
@ = - Z Yit1,p = E[Yit1,p|Fipl
1= a

1
® = IE[YkH,p‘]:kp] - @gqp(Xp%

1

@® = E (gqp(Xp) - gn(Xp)) )

13



We obviously have

1 1
—Zp — —gn(Xp) =D+ @®q + XMo@
n n n n

So that, using (14,15), we get

1 1
— 7y — —gn(X
ng( »)

n

07
<0 110, + 22 + |0
n p

Concerning @, we use once again (8) with r =n —pg < p

In(Xp) = gpe(Xp) + Z vx,(Y)gr(XpY):
[Y'|=pq

From where we deduce that

1 g/
@ =~ > vx,(Vgn(XY)| < C-F,

n
|Y'|=pq
so that we have ) .
a Y,
—Zn— —gn(Xp)| < L2+ CL 4|0,
n n D n

Using (12) we get

1 1
‘Zn — —0n
n n

1 « v
< E |gn - gn(Xp)‘ + ?p + C;p + |®Q|

o o
< cfpy 2oy g,
n P n
Note that for any n we have by hypothesis that

S(ka)
$(X(k=1)p)

We may thus apply theorem 2.7 with (Y}, ,)n, to conclude that p being fixed, |@,| p-almost
surely converges towards 0 as ¢ — +00, and we can easily conclude that there exists a set
of full measure, denoted U, such that it occurs for any p.

Let x e 4 and € > 0. Choose p big enough to have %
p

Vil = o = oz x4, (Xi)| < 20

. Remembering that ¢ goes

DN ™

to +00 with n, let ng € N such that for any n > ng we have
« €
cpr o e, < <
n n 2

Then by (16) we have

1 1
—Zn — —Gn
n n

<e,

1 1
and we can conlcude that the sequence (Zn() - — gn> p-almost surely converges towards
n n

0. Which is precisely

14



3 Pressures, Entropies, Lyapunov exponents and dimensions

In this section, using results from the previous one, we show how natural generalizations
of notions coming from Thermodynamical Formalism are possible.

3.1 Lyapunov exponents and Entropies

Given a sequence (u,) of real numbers, we let %, be its limsup and u, its liminf.

For any positive integer n and any probability measure, p, on K we define

1 1
Hyn = - Z wu(X) log pu(X) and Xy 1= - Z w(X)log | X4,

| X|=n | X |=n
where the sum is taken over all cylinders X € C,, with the usual convention 01n(0) = 0.

Let then th = Hyn, hy := Hyp, YM = X),n and ﬁ =Xy

Given any a € K and any positive number n, we define

Yn(@) = —%log|Xn(a)|d and () i= —%mgﬂ(xn(a)).

Let as before note : hy(a) := hyn(a), hy(a) = hyn(a), X(a) == X,(a) and X(a) := X, (a).
Remember that F,, is the o-algebra generated by cylinders of length less or equal to n. We
have

H,, = IE, [Py | Fnl and Xyn = IE[Xn | Frnl -

1
Note also that with s : X +— W we have :
d

1 1 1
H,,= ;@, log ;)n and Xyn = ﬁ@’ log $)p,-
Applying proposition 2.2 to that setting, remembering that D,, = dy---d,_1 is the degre
of T™, we get

Proposition 3.1. For any n
1 1
0<H,n,<-logD, and H,,— X,n<—logmy(|.lq)
n n

Moreover, if X, and Xy in Cy, are such that : VX € C,, we have |Xp|g < | X|a < | X4
then

1 1
——log [Xnrla < Xpn < ——log | Xond
n n
Theorem 3.2. Let y1 be a probability measure that fulfilled (ASI) with sequence (By) and
assume that there exists a sequence (V,), compatible with (B3,), and such that :
VXY eC |logux(Y)| <y
Then there exists a set U of full p-measure such that for any a e U

lim (hun(a) = Hyp) =0

n—-+0oo

and in particular we have p-almost surely

Fa() =T and () = by
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1
Assume moreover that s : X — W fulfilled (ASI) and that there exist 0 < 6 < 1 such
d
that for any XY € C we have

(17)

then there exists a set of full p-measure, V, such that for any a eV

lim (X,(a) — Xpun) =0,

n——+aoo

and in particular we have p-almost surely

X=X()<X()=2X-

Proof. The hypothesis allow us to apply theorem 2.8, with v(X) = u(X) and s(X) =

, to conclude that

n(X) ,
lim (hyn(a) = Hypn) = 0
n—-+aoo
1
Let now s : X — ——.
| X1q
| XY|qg

From the assumption 6"V <

X < 1 we deduce that 1 < sx(Y) < 6 I we easily
d

conclude that for any XY € C, with |Y| = n we have
log sx (V)| < —7vn log d-

We may once again apply theorem 2.8 to conclude O

3.2 Pressure of a measure and dimensions

In that paragraph we assume uniform bounds for the diameters, which is a very natural
hypothesis in our context : there exists ¢ €]0, 1] such that for any n € N, any cylinder XY
with |Y| = n we have

<(1-0)m" (18)

In particular we thus have : 0 < —log(1 —J) < X < X < —logd

Definition 3.3. For any real number t and any integer n let Py, ,(t) :== Hyp — tXun.

We define P,(t) = Py, (t) and P,(t) = P, (t).
Proposition 3.4. Assume that |.|g satisifes condition (18) and that p and |.|g both fulfill
(ASI) with sequence (5,) compatible with (v, = n), then the function t — P,(t) and
t — P,(t) are stricly decreasing and bi-Lipschitz

We have :

1. 0 < Bu(0) = hy < Pu(0) = hyr

2.¥teR  hy —tlog(l —8) < Pu(t) < Pu(t) < hy, —tlogd-

3. Let HD(u) be the Hausdorff dimension of p, and PD(u) its packing-dimension, then

Pu(HD()) = 0 = Pu(PD(n))-
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4. For any a in a set of full p-measure we have :

H n h n . H n . h n
lim inf —*" = lim inf (2) = HD(p) and limsup —" = limsup hun(2) = PD(u)-
Xu,n Xn(a) Xu,n Xn(a)

Proof. From (18) we easily get for any ¢t <t + h and any n € N:
—hlog(l =6) + Pun(t+h) < Pyp(t) < Pyn(t+h) — hlogd-
From where we deduce, with P standing either for & or 737#, that we have
0 < —hlog(l1—140) < P(t)— P(t+ h) < —hlogé-

Which tells us that P, and P, are stricly decreasing and bi-Lipschitz.
Points (1) and (2) are obvious from definitions and hypothesis.
We turn to results about dimensions.

Hypothesis on p and |.|g allow us to apply theorem 2.8 with, for any X € C, v(X) =

X t
pu(X) and s(X) = | (Xd)’ as well as theorem 3.2. In particular, p-almost surely we have
1
(E) kEr—iI-loo hu nk() =h < kEI-Eoo Hyny = h,
(L) Wiy ) == T A =
RENOIF ;
(P) lim I =p < hmk—»—i—oo H,u,nk - tX,u,nk =D

Since P, and E are stricly decreasing, continuous with positive and negative values, there
exists a unique (¢,7) € R?, with 0 <t <€ R such that : P,(t) =0 = P,(%).

We focus on the result with liminf.
Take a point a € K such that (E), (L) and (P) are true.
Let (ny) be a sequence of integers such that

Pun(@) o e @) g

i _
Y @) T kot Xy (a)

Extracting again if necessary one may suppose that

kEI}—lm h,u,nk (a) = h’ and k‘EI‘EOO X,u,,nk (a) =X

By hypothesis on |.|4, we have 0 < x < +00, thus D(a) = % and we have

P(D(a)) < h - D(a)x = 0

From where we deduce that D(a) > t.
Assume now that ny is such that

lim H,p, —tXun, = Pu(t):
k—+o0 —

h
Pick a point a for which we can defined h and x as above. We have — > D(a) and also
X

Pu(t) =h—tx =x (Z —t> = x(D(a) —t)-

17



We deduce that P,(D(a)) = 0 so that D(a) <t

This tells us that p-almost surely D is constant equal to ¢ which, by classical results
on Hausdorff dimension of measure, see for instance [Fall3|, allows us to conclude that
p-almost surely

HD(u) = D() = t

3.3 Continuity of dimension

Theorem 3.5. Let u be a probability measure on K and (ug) be a sequence of probability
measures.

Let d be a metric on K and di, a sequence of metrics. For any X € C we let 5(X) = | X|q
and 5,(X) = | X|q,-

Assume that

— The metrics |-|¢ and |-|q,, k € N, verify condition (18) with a common constant §.
-, s, and for any k, si and py, fulfilled (ASI) with a common sequence (f3y,).

— there ezists a sequence (), compatible with (3,), such that for any XY € C and any

k,
1(X)
p(XY)

pr(X)
<Yy and log 7uk(XY) < Yy

log
- h lim D = lim D = 0.
we have lim D(p,pe) = lim D(s, sp)

— (tg) is a real sequence converging towards t.

Then
lim limsup ((Hun — tXun) — (Huen — tkXuen)) = 0-

k—+o0 n

In particular B B
lim P, (tx) = P,() and lim P, (tg) = Pu(t),

k——+o0 k—+o0
lim HD(ux) = HD(p) and  lim PD(ux) = PD(p)'.
k—+o0 k—-+o0

Proof. For any X € C let

_ X1 s(x)!
pn(X)  p(X)

Let C' = (1 + sup{|t|, |tx|}). For any XY € C, we have
k

_XIE st
pe(X) (X))

p(X)

and for any k pr(X)

logpx (V)| < [t[logsx(Y) +log ux(Y) < Cyyy-

In the same way we check that [log pry (Y)| < Cjy|- Thus one may take v, = Cyy.

"We would like to emphasize on the fact that the metrics changing with k, those dimensions are also
changing, since Hausdorff and packing dimensions rely on the metric used.

18



We also have for any XY Z € C and any X' € C|x

’pXY(Z) _1‘ _ |exv(2) <8XY(Z) .
pxy(Z) pxy(Z) \sxv(Z)
_ <SXY(Z) g xv(d) | pxev(Z)
sxy(Z) pxy(Z) MXY(Z)
Z)\' pxry (2)
< (1+5) <3X’Y Z)) 1) +‘,U«XY(Z) 1’

< 2(1+ Bo) By
< Chy

We may thus take 5/, = Cf,. It is easy to prove that (7)) and (f],) are compatible. We
also have that D(p,px) — 0, so that we can apply theorem 2.6. Using notations therein
we have :

1 1

and theorem 2.6 asserts that

lim limsup (P, (t) — Pun(ty)) = 0-

k—+o0 n

From this we conclude that

Jim Py (6) = () and  lim Py, () = Pa(t)

With t, = .HD(uy), and 6 any limit value of (¢x) we conclude, using proposition 3.4, that

= lim P, (:HD =P
0= lim P, (HD(uk)) =PL,0),
which, by proposition 3.4, tells us that § = HD(u), so that (,HD(uy)) converges towards
HD(p). O

4 Harmonic measure of non-autonomous conformal repellers

We apply in this last section, results of the previous ones to study harmonic measure of
the complementary of non-autonomous conformal repellers.

In the first paragraph we study geometric aspects of a given non-autonomous conformal
iterated function system W, proving that diameter and harmonic measure fulfilled the
desired conditions.

Then we deal with sequence of such iterated function systems proving continuity of
Hausdorff and Packing dimensions of harmonic measures.

Let ¥ = (¥,) = {y : U =D —>U =D; i =1,..,d,} be a non-autonomous
conformal iterated function system satisfying our assumptions with a constant 7 controlling
contraction and modulus of the annulus, and a fixed neighborhood of D, V. We note X its
limit set. In this last section, we adopt the following notations:

e For any symbolic cylinder X = a; - - - a,, we note ¥ x the contraction 1)y, 0--- 0,4,
and ¢x = pq,, O O 1pq, its inverse.
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e If X is a symbolic cylinder, we also denote its geometric realization by X. That is,
X =¢x(D)nX.

o If E c V and X is a cylinder, then Ex := ¥ x(F). In particular, we denote Dy =
Ux (D) and Dyx = ¥x (D), where D, = {|z| < ~}.

e Given a Green domain 2 < C, a point x € 2 and a Borel set F', we will denote
w(zx, F, ) the harmonic measure assigned to the domain Q of F at z.

e In particular we will note w := w(o,-,C\X), and for any k, wy := w(0, -, C\X}),
where X, = T#(X).

4.1 Controlling diameters of cylinders

As one may expect we will use Keebe distortion theorem, and more precisely its quantified
versions, to cope with diameters.

Proposition 4.1. For any 0 < § < 1 fized, there exists C' > 1, such that for any conformal
map, f: D — C, any compact set K < {|z| <1 -0} and any (z,y) e K x K

— iam ]f’(x)\ iam
(1 — Cdiam(K)) < ) < (1 + C diam(K)) (19)
and
(1—Cdmmef@ﬂ<§E§ﬂ§2<U%mKL+CmMMK» (20)

diam K

Proof. First note that relation (19) and (20) are relevant only if diam(K) is small. Other-
wise it is nothing else than the standard Koebe distortion theorem. And we assume from
now on that diam(K) < %
Ty

1—qgx’

Let z and y be two points in K. We apply corollary 1.5 in [Pom92|, with z =

F@) (1412}
|ﬂ@n<(1—m>’

Since K < {|2| < 1 — 6} we have |z| < 3|z — y| < 3 diam K. We also have |z| < 1 and we
can deduce that we have :

we have

7)) B
()] < 1+ Cdiam(K) (21)

By exchanging x and y we also get the opposite inequality.
Let Z =1 — zy. Theorem 1 in [Fan78| asserts that we have

2l |2zl ~le—yl _ i@ —f@)] _ 12| |Z]+]e—y
TP 1Z[+ [~y S [F@lz—yl S 1-12F 2]~ |z —y

Since Z =1 — |z|? — z(y — =) we have
L—fa — o -yl < |Z] < 1= |2f* + |z — y|

Which leads to
|z -y Z| |z -y

1-— < < — .
=2 = 1—[zf? 1—[af?
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But |z] <1-6,800 <1—|z]? <1, and |z — y| < diam K which gives
diam K |Z| diam K
— < <1+

< < 23
) 1—|zf? ) (23)
We have assumed that diam K < g thus
Z]+ |z —yl [z —yl |z —y| 2
= 2 T o1 42—— 7 L1142 <1+ diam K,
2] = |z =y 1Z] = |z -y 1—|z|* = 2]z —y| 6(6 —1)
and we prove the same way that
2 Z|—|x—
1— 2 diamK < Zl =z =yl
6 Z] + |z —y|

Using those two last inequalities and (23) in (22) we end up with
2 2 —
(1—diamK> <’f,<$)—f<y>’< <1+
g /()] =yl

Using (21), with an adjustement of the constant, we may change |f’(x)| with |f’(2)|, for
any z € K, so that for any z,y and z in K we have

2
56 = 1) d1amK> .

1 - CdiamK < M <1+ CdiamK.
1f' ()l —y|

We easily conclude that for any z € K

diam f(K)

— 1 /
(1 - CdiamK) |f'(2)] < Tom K

< (1+ CdiamK) | f/(z)]-

O
We use this result to prove that asserts that relevant functionals verify (ASI).
For any X € C let s(X) := diam(X), where diam is the euclidean diameter of the
geometric cylinder X, and let § := |(¢)x)’(0)].

Corollary 4.2. There exists C > 1 and q €]0,1[such that for any cylinder XY Z € C we
have

1—Cgl"l < §Xy(Z)‘ (v¥y)'(0) ‘ <1+ CqlY!

(¢Yy2)'(0)
and (24)
di Y
1—C’q|Y| < sxy(Z) dizljrrln(i/Z))‘ < 1+C’q|Y|

We have s ~ § and they both verify (ASI) with 3, = Cq™.

Proof. 1f we apply classical Koebe distortion estimates with f = ¢¥x, K = X and z =0
we get

1 _ diam(X) ‘
¢ S Twxyo) <€

Thus s and s are equivalent.

We have
(Yxyz)'(0) (x wYZ zbyz
’ (¥xy)'(0) ‘ l H ‘
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Since ¥y z(0) and vy (0) both lie in Y, by (19) we have

(V¥x) (¢yz(0))

(1—Cdiam(Y)) < ‘ (¥x)'(¥y(0))

’ < (1 + Cdiam(Y)),

from where we deduce, using also the fact that by hypothesis we have diam(Y") < Cq¥l,

that
1— cal (%Z)YZ)'(O)' < ’(T/}XYZ)'(O)‘ < (14 CqgY! ‘(@byz)’(o)‘,
0= COOT 0 | = oy | < o
This can be rewritten
ol < 3 (¥y)'(0) v,
1-C¢" < 5xy(2) ’(WZ),(O) <1+ Cq
The same is also true with X’ instead of X and this leads to
sxy(Z) _ ig
Sx1y(2) 1‘ <

One can apply relation (20) with f =¢x, K=Y Z, and also K=Y, and z € YZ, to get

1 —Cdiam(Y Z2) - diam(XYZ) diam(Y) _ L+ Cdiam(Y 2)
1+ Cdiam(Y) — diam(XY) diam(YZ) = 1—Cdiam(Y) °

We have diam(Y Z) < diam(Y’), and by hypothesis we know that diam(Y) < Cq!Yl. Ad-
justing the constant C', we easily conclude that we have
diam(XYZ) diam(Y)
diam(XY) diam(Y Z2)

1-Cq"l < <1+ 0",

Which is exactly
diam(Y")

— ) < Y1
dam(yz) S 101

1-Cq" < sxy(2)

As a matter of fact this implies that for any other geometric cylinder X’ < X, with
| X'| = |X|, that we have

sxy(Z)
sxry (Z)

— 1‘ < Cq|Y|.

4.2 Controlling diameters under perturbation

We say that two NACIFS U and ¥ are compatible if for any n,
e the degree of ®,, and the degree of ®,, are the same,
e for any i and j, abi(V) A abj(V) # @ if and only if i = j.
For two compatible NACIFS ¥ and ¥ we define

d(V, ) = Stipé%ii%n{””w" — illo},

with | flo = sup [f(2)].

zeD,
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Proposition 4.3. Assume that U and U are two compatible NACIFS and that 0 < n < 1
log(1 —
1s the constant controling their annulus and their contractions. Let o = M. For
log(n(1 —n))

any symbolic cylinder X let s(X) = [ (0)| and 5(X) = [{/(0)|. There exists C > 0 such
that )
D(s,3) < Cd(T, T)™

Proof. Let Ay, = sup|x|—n|thx — ¥x |w. Note that we have A; = d(¥, ).
Let Xa be a cylinder with |X| = n and |a| = 1. For any z € D, we have

Uxa(2) = Uxa(2)| < |ox(Wa(2) = Yx (Ba()| + [tx (Fa(2)) = dx (Ya(2))
(1= )" thu(=) = Pu2)] + An
(1 - n)nAl + Ana

NN N

from where we deduce that 1 ]
A, < Ay = —d(U, ) (25)
n n

Using Cauchy representation theorem, for any cylinder X with | X| = k& we have

Yx(z) — %{(Z)d

5 < Ay
oD

~ ’ 1
z

W (0) = B (0)] = o

Since by assumption n* < , we deduce that

P (0)

1 -
<1 pd(V, 9) (26)

¥ (0)
7%(0)

Inequality which is true for any cylinder X such that | X| < k, and stays true if we exchange
the réle played by v and 1/;

Let now X = Y X}, be any cylinder of length n, with X = @ if n < k, and | Xi| = k
otherwise.

By chain rule we have

Uy x, (0) = ¥y (¥x, (0))¢x, (0)-

So that for any cylinder a of length 1 we have

sx(a)

¥, (0)
U, (0)

Y0
70

From (19) in proposition 4.1 there exists C' > 0 such that

Sx(a)

wg/(kaa(O))‘ &%(&Xk(o))
Uy (U, (0)) 1|94 (4x,.a(0))

wg/ (kaa (0))
by (¥, (0))

And from (26)

04 (9, (0)

< 1+ CdiamXj-
Yy (¥ x,,4(0))

‘ < 1+ CdiamX; and

V', (0)
¥, (0)

Y0
70

A

1 N2
< (1 + Wd(\If,\If)) :
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Using the fact that diam X}, and diamX}, are both smaller than (1 —n)*, and adjusting the
constant C' we end up with

sx(a) | ~ C & -
<1 1-— —d(Y,0) | =1+ — 1-— U, )| - 2
Fx(a) +C(( e+ nkd( ) T ((71( )" + d( )) (27)
: log(d(¥, ¥)) log(d(T, ¥)) .
Let k be the integer part of —————% + 1, then k > ————= and (n(1 — <
5 log(n(1 —mn)) log(n(1 — 7)) (n(1 =)
d(¥, W), so that we have i
$x(a) n
1 U, 0
On the other side we have k < M + 1 so that
log(n(1 —n))

11 log(d(w, ) 1\ 1/ 1 \®iem
og(n(l—n
— < —exp | 28 g — :() :
log(n(L=m)) “n) n\d¥,V)

Which leads, with o = 122071 4

and gives

< Cd(V, )~

os (25)

This being true for any cylinder X we conclude that

D(s,3) < Cd(¥, ¥)°-

4.3 Controlling harmonic measure

In this section we extend well known properties of harmonic measure of usual IFS to
NACIFS. We have tried to give all the ideas without drowning the reader with the total
amount of technicalities.

Let © be a domain in R? and F < 0. For z € Q we denote w(z, F,2) the harmonic
measure of F' in ) evaluated at x. If Q¢ is bounded, we denote w(F, ) the harmonic
measure of F' in € evaluated at infinity.

We will frequently make use of the following (see for instance [Bre69]): If Q < Q' are
two domains, F' < 0 n 02 and z € Q, then

w(x, F,Q) = w(x, F,Q) — J w(z, F,Y)w(x,dz, Q)
2€0QN QY

For a, 3 positive real functions we will write o« ~ 3 if %a < B < ca with ¢ > 0 constant.
Finally, with no loss of generality we will take U = ID the unit disc.

Remember that for any symbolic cylinder X = a; - - - a,, we note Ux = 19)q, 0+ -0,,,,
and that we also denote X the geometric cylinder X n Ux (D).

In the following we will deal with two NACIFS ¥ and ¥ and we will denote X =
X N Ux (D) the geometric cylinder for W.

In order to apply the previous machinery we need to prove the following result
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Theorem 4.4. Let U and U be two NACIFS, X, X the corresponding limit (Cantor) sets
and w, @ the harmonic measures on these sets.
We have :
lim D(w,w) =0 (28)
d(¥, )0
The proof follows the ideas of [Bat06] and heavily relies on a repeated use of the
following well known results.

Proposition 4.5. ([MV86],[Car85]) Let Q be a domain containing 0o and let Ay < By <
Ay c Byc...cC A c By, < Q be conformal discs such that the annuli B;\A; are contained
i Q, for 1 < n. If the modules of the annuli are uniformly bounded away from zero

and if 0 € Q\Bn then, for all pairs of positive harmonic functions u, v vanishing on 0\ A;
and for all x € Q\B,, we have

u(r) ()
v(x)  v(o)

~ 1| < K¢ (29)

where ¢ < 1 and K are two constants that depend only on the lower bound of the modules
of the annuls.

Lemma 4.6. Let U be a NACIFS, X the corresponding limit (Cantor) set and w the
harmonic measures on this sets. There exists ¢ > 0 depending only on v > 1, small enough
so that YD < V', such that w(z,X,D,\X) > ¢ whenever |z| = 1.

Proof. The proof implies standard arguments concerning capacity and harmonic measure
on Cantor type sets: we hence leave some details to the reader (see also [Bat96]).

Let u be the uniform probability measure on X, that is every cylinder of the n'h
generation is charged by 1/(d; - ... d,) mass. For x # y in D the Green function satisfies
In (ﬁ) < G(z,y) <ln (\x%ﬂ , where C'1, Cy are constants depending on 7.

Therefore, for y € X,
0 0
Z K In(C /(1= )b Z k)~ In(Co/n"),

which implies Gu ~ 1 on X. It follows on the maximum principle that Gu ~ wp\x(X) in
D. On the other hand, clearly Gu(z) = ¢ > 0 for z € D and hence the result. O

The following lemma is a first application of this result. It will subsequently be used
several times to obtain "localization" results for harmonic measure.

Lemma 4.7. Let ¥ be a NACIFS and X its limit Cantor set. Assume that v > 1 is small
enough so that D, := {|z| < v} < V. There exists C > 0 depending only on v, so that for
any cylinder X € C, and any x € dDx we have

w(z, X, @\X)

g .
w(z, X, Dyx\X) ¢

Proof. Let T := {|z| =7}, u: & — w(z, X,C\X), @ : 2 — w(z, X,D,x\X) and h = u — 4.
The function h is harmonic on Dyx\X, with ~ = 0 on X and h = u on dD,x so that

h(z) = LD u(z)w(z, dz, Dy x \X)-
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Let z, € dDx be such that for any x € Dy, u(x) < u(x,), and z,, € 0D, x be such that
for any x € 0Dy x we have u(z) < u(zy).

The function z — u(x)—u(x,) is harmonic outside D x UX, non-positive on dDx UX\ X,
it is thus negative on C\Dx and in particular we have u(z,;,) < u(z-).

We deduce the following

U(zy) = u(acy)—J u(2)w(y, dz, Dyx\X) = u(zy) (1 — w(zy, Dy x, Dx\X)) = u(zy)w(2y, X, Dy x\X)-
oD, x
By conformal invariance, with n = | X|, we have

UJ(JJ,Y’ X7 ID)VX\X) = W(q)X(.’]ny% Xnu D’Y\Xn)7

with by definition |®x(z)| = 1. Lemma 4.6 leads to @(z,) = u(xy)c, since X, is the limit
Cantor set associated to an NACIFS with the same constant than X.

We conclude that we have : 1 < lf(x'y <C-
u(zy)

By Harnack inequality on dDx we conclude that 1 <

e

()
()

with a different C, still uniquely depending on ~. O
We also need to establish the following lemma that restrains the number of generations
necessary to establish an estimate on distribution of harmonic measure.

Lemma 4.8. Let ¥ be a NACIFS, X its limit Cantor set and for any £ = 1 let X, = T*(X).
There exist ¢ < 1 and K > 0 depending only on n such that for any XY Z € C with
| X| =k, |Y] =n we have

< C is true for any z € dDx,

s

’1 (w (XY'Z) wi (Y)

w (XY) wy (YZ))' < Kq" (30)

The proof of this lemma follows the lines of the one in [Bat06], therefore we will only
give the highlights and main ideas of proof to facilitate the reading.
Proof. Let u: x — w and v : x — %. Note that u(w0) = v(o0) = 1.
Assume that Y = y; -y, and for any £ € [1,n] let Xg = X, Xy = Xyy---ys, Ay =

Dx, , and By = Dyx, _,.

n—¢
We have Apc By ---c A,_1 < B,_1 (@\X, and each annulus B;\ 4; is conformally
equal to D, \D.

The function v and v are both harmonic in @\X, and they vanished on X\ XY

We are thus in position to apply proposition 4.5 to conclude that for any x ¢ XU, x,,,

and in particular for any x € dDx U dD,x

@ (0 XY2,0%) o) u@) 1| _ o
log - = |log < Cq™ (31)
w (x,XY, C\X) w(XYZ) v(z) u(%0)
Let now @ : x — W and 0 : x — % We have for any x € D, x\X

u(z) = u(z) — LD u(z)w(z,dz,Dyx\X),

and also
o(x) = v(z) — LD v(2)w(z,dz,Dyx\X).
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We thus have

u(z) —o(x) = u(z) —v(x) — J (u(z) — v(2))w(z, dz,Dyx\X).

oD, x

Which may be written :

<

iz) _ 1= ~(x) (u(:z) - 1) —J v(z) <u(z) - 1> w(z,dz,Dyx\X) | .

() () \ \v(z) oD, x V() \v(2)

Since (31) is true for any « € dDx U 0D, x, and by lemma 4.7, we conclude that there exist
C > 0 and ¢ < 1 such that for any z € dDx

ilz) 1‘ <Cq (1 + L U(Z)w(x,dz,ID)WX\X)> - Cq (1 4 o) = 8 ;7("”)) < 20"

D, x v(z)

[SH

From this we conclude that for any z € dDx we have

o (ST vy aiev )| - e (56

By conformal invariance of harmonic measure, we conclude that for any x € 0D

)| <co (32)

‘1 <w (2, Y Z,D\Xp) w(XY)

< Oq"
w (z, Y, Dy\Xp) w(XYZ)) ‘ Cq

Applying (31) with X, and wy, this is possible since the NACIFS giving birth to X} is
comparable to the one giving birth to X, we get for any x € 0D

‘lo (w(:v,YZ,]D),Y\Xk) wr(Y)
w(x,Y,]D),Y\Xk) wk(YZ)

) ‘ < Cg™ (33)

Combining (31,32,33) we end up with

‘1 <W(XYZ) wi(Y)

W(XY) wk(YZ)> ’ <Cq" (34)

O

From this result we easily deduce that harmonic measure verifies the two assumptions

needed to apply main results of the previous section : (ASI) and uniform control on the
measure of cylinders.

Corollary 4.9. Let ¥ be a NACIF, X its limit set and w the harmonic measure on C\X
evaluated at 0. Under our geometric assumptions on the NACIF there exists q €]0, 1] and
C > 0 such that for any geometric cylinders XY Z € C and X'YZ € C, with | X| = | X|
and |[Y] =n

llog (wx (Y))| < Cn (36)

Proof. Relation (34) asserts that for any XY Z € C with |X| =k and |Y| = n:

log <wXY(Z> w“:’z%)‘ <cq",
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from where we get, for any X’ € C with |X'| = | X]|

s (255 | = Jos (or 02555 ) - 1w (v @ 21755 )
< |l (“’XY(Z) c::’ng)))‘ *loe (‘“’X’Y(Z)wﬁgfyz)> ‘
< O¢

From (34) we deduce that there exists C' > 1 such that

1 w(XZ)

<1
C

Assume that Z = zp- - z,—1 and for any 7 € [0,n — 1] let Z; = 2 - - - z; then we have :
we(Z) = wil(z0) | | RS

1
since for any i € [[1,n — 1] relation (34) tells us that : awk“(zi) <

conclude that .
1 = w(X2)
— i(zi)) < ——= < 1.
Ccn ZI [wrritz0) w(X)

i=1

From Lemma 4.6 we can deduce that given a NACIF W there exists a constant a > 0,
depending only the geometric constants that constrain the geometry of the NACIF, such
that for any ¢ > 0 and any a € C; with |a|] = 1, we have wy(a) > «, we conclude that

(g)n - w(XZ)

< <1,
C w(X)

and the result follows.
O

We turn to a comparison of harmonic measures of the limit sets X and X.

Lemma 4.10. Let v > 1 such that D, < V appearing in the definition of the NACIF V.
There exist K > 0 and o > 0 such that for any x € D\X :

w(z, X, D, \X) > 1 — K dist(z, X)“

Proof. Given any x € D\X let n(x) = max{k € N|3X € C,,, z € Dx}. Note that n(z) is
such that, there exists X € C,, with x € Dx and = ¢ Dx, for any cylinder Xa € Cp 1.

Using open set and bounded contraction hypothesis, we deduce from Kcaebe distortion
theorem that there exist three constants K’ > 0 and 0 < 3’ < 8 such that

1 .. _n . '
Y dlSt(IL‘,X)B <e "< K’ d1st(x,X)5 (37)

It is important to note that K’, 3’ and 3 only depend on the constant 1 used to control
the geometry of the NACIF.

Let € Dx, with X = a;---a, and |X| = n(z) := n. Let Xy = X and, for any
1 <k<mn Xy =ar--a; and set uy : y — w(y, X3, Dyx,\Xi). The function wuy, is
harmonic on D, x, \ X%, and equal 1 on X}. Our goal is to prove that

up(z) = w(z, X, D, \X) > 1 — K dist(z, X)*-
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First we note, using Lemma 4.6, conformal invariance and maximum principle that there
exists ¢ > 0 such that for any z € D

ug(z) = c. (38)

For any 1 < k < n we have

up—1(x) — ug(z) = LD up—1(2)w(z, dz, Dy x, \Xj)-

Because of our geometric assumptions on the NACIF and Harnack inequalities, there exists
a constant A > 0 such that for any Y € C, any continuous function A > 0, defined on Dy
and harmonic on Dy \Y, and any y and 3’ in Dy\Y : Mh(y) < h(y).

From this we deduce that

wp—1(2) — up(z) = Mug—1 (2)w(x, 0Dy x, , Dyx, \Xk) = Mug—1(2)(1 — ug(x)).

Let vy = 1 — ug, we drop x to lighten notations.
Using (38) we get : Acvg < Augvg < v — vp—1 and

— v vk 1
)< BT UL J —dt = log(vg) — log(vk—1)-
Uk - t

Summing for 1 < k <n
cAn < log vy, — log vy,

so that

1—ug=vg < e .

1 cA
We use (37) to conclude that : ug(z) = w(z, X,D,\X) > 1 — <K’ dist(a:,X)6> . This is

e
This corollary happens to be crucial in order to prove continuity of dimensions.

1
the desired result with K = Kion and o = cAp. O

Corollary 4.11. Let e > 0, there exists n € N such that for any XY € C with |Y| =n and
any € Dxy
wlx, X,C\X) >1—e¢

Proof. Let ¢ > 0 and 1 > 0 given by Lemma 4.10. Let n big enough so that for any k € N
and any Y € C with |Y| = n we have diamD,y < 7. Let X € C and x € 0Dxy, with
Y| = n. We have

w(z, X,C\X) > w(z, X, D, x\X).

By conformal invariance, with k£ = | X|, we have
w(z, X, Dyx\X) = wr(ex(x), Xg, D \Xp)-

Since x € dDxy we have px(x) € dDy, so that dist(px(z),X;) < diamD,y < 7 and
Lemma 4.10 gives : wi(px (), Xk, D\Xg) > 1 —¢.
We have proved that for any z € 0Dxy we have
w(x’ X, C\X) = w($7 X, ]D’YXY\X) = wk(cpx(x), kaD’Y\Xk) =1—e

This inequality extends to Dxy by maximum principle.
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[
Proof of theorem 4./. Let e >0 and N; € N big enough so that C¢™' in Corollary 4.9 is
strictly less than e.
From Corollary 4.9 we know that : cg™¥' < wi(Z) for any k € N, any Z € T*(C) with
|Z| < Ni. Let ¢/ = c¢™Ve. For any k e N, any Z € T*(C) with |Z| < N; we have

5/

w(X)

<e. (39)

Let N3 be given by Corollary 4.11 with & > 0 so that for any XY € C with |Y| =
and any z € 0Dxy we have : w(z, X,C\X) >1—¢'.

Let now d(¥, ¥) be as small as necessary to ensure that for any k € N, any Y e T* (€)
with |Y| < Nj + Ny we have Y < Dy. Where Y is the geometric cylinder associated to ¥
with coding Y.

Let Xa € C with |a| = 1 and |X| = k. We have

o (1) - (3

If | X| = k > N; we have by Corollary 4.9

o (207) =oe (2] +

We are thus led to prove that log <L8X<a)

wx(a)

S

x(a) Wx(a) )
x (a) w(a) >

&
&

) is small for any cylinder X with | X| < N

X
Actually we are going to prove that log <wk( )

wr(X)
| X| < Ny and any k.

In order to lighten notations, we drop the letter k. Remember that our estimates
about harmonic measure are only depending on the geometric constants in our hypothesis
: Bounded contraction and Annulus condition.

Let |[X| =k <Ny, F = U D,z and © = C\F. Our choices imply that for any

|Z|=N1+No
Z with |Z| = N1 + Ny we have 7Z < Dy so that X < F.

The functions v : 2 — w(z, X, C\X) and v : 2 — w(z, X, C\X) are harmonic on .

Let |Z| = N1 4+ Ny with Z X, then from Corollary 4.11 we deduce, for any = € 0,2,
that u(x) > 1 — ¢ as well as v(x) = 1 — ¢/, which implies that : |u(z) — v(z)| < &’ for any
T e &YZ.

Let now Z = YW, with |Y| = |X|, |Z] = N1 + N2 and Z ¢ X. By Corollary 4.11 we
have w(z,Y,C\X) > 1 — ¢’ and also w(z,Y,C\X) > 1 — ¢’ for any z € oD, 7.

Since

) is small for any cylinder X with

1= Z w(z,V,C\X) = Z w(z, V,C\X),
VI=1X] [VI=|X]|
we deduce that u(z) < 1 —w(z,Y,C\X) < ¢ and v(z) < 1 —w(z,Y,C\X) < &. We thus
have, for any z € dD.z, |u(z) — v(x)| < 2¢'.
The functions v and v are both harmonic on  and for any = € 02 we have |u(x) —
v(z)] < 2¢’. By maximum principle we have |u(z) — v(z)| < 2¢’ for any = € Q and in
particular for = o0, so that |w(X) — @(X)| < 2¢.
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We deduce from (39) that for any cylinder X with |X| < Ny we have :
w(X) ) 1
— — 1| <28 —— < 2
‘w<x> ‘ Tex) ST

From where it is easy to deduce that we have for such cylinders :

o (20 e (242 e (23 <.

With inequality (40) we can conclude that for any cylinder X of any length we have

log <Z§EZ;> < 5e.

Which tells us that D(w,®) < 5e and concludes the proof.

4.4 Back to the complex plane

We are now in position to give a proof of the main results of this paper about harmonic
measure on the plane: Theorems 1.3 and 1.4

Let X be a non-autonomous Cantor set associated with the conformal iterated systems
¥ and let w be the harmonic measures of its complementary in C.

We defined on the symbolic space K the metric d. For any a = (a,,) € K and b = (b,,) €
K let d(a,b) = |z(a) — z(b)|, which is the euclidian distance in C of the points encoded by
a and b. In that way, symbolic cylinders and geometric cylinders have the same diameters.

From the discussions in paragraph 4.1 we easily get :

[(XYla Wy (0)] _ |95 (¥y(0))]

(Xla [ (0)] W, (0)] (W3 (0)] ~ [y (0)]-

Hypothesis Bounded Contraction implies that there exists a constant 1 €]0, 1[ such that :
(1= )Y < W4 (0)] < .

And we can conclude that d satisfies condition (18).

By Corollary 4.2 we also know that s(X) := | X|q satisfies (AST) with sequence (5, =
Cq™) with 0 < ¢ < 1.

Corollary 4.9 expresses the fact that w also fulfills (ASI) with sequence (5, = Cq¢"),
with 0 < ¢ < 1, with an adjustment of the constant ¢, as well as condition (5.1) with
Y ~ Cn.

We are thus in position to apply Theorem 3.4 with u = w to conclude that Theorem
1.4 is true.

Let now (Xk)keN be a sequence of non-autonomous Cantor sets associated with the
conformal iterated systems (U*).cy, and Let (w*)reny be the harmonic measures of their
complementaries. Assume that lilgn d(¥, T*) = 0.

We define for any k a metric dj, such that geometric cylinders for W* and symbolic
cylinders for dj have the same diameter.

We know that dj, and w” fulfill the same properties as d and w, with the same constants,
because of our hypothesis : Annulus Condition and Bounded Contraction, and the fact that
(%) is converging towards .

Let s;(X) = | X|q,. Since lillcfn d(¥, *) = 0, by Proposition 4.3 we know that lilgn D(s, sk)

0, and by Theorem 4.4 that 111?1 D(w,w") = 0 we may thus apply Theorem 3.5 to conclude

for the continuity of the dimensions of harmonic measure.
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