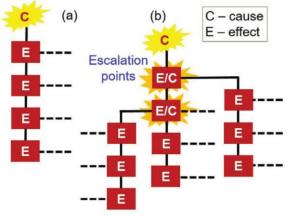
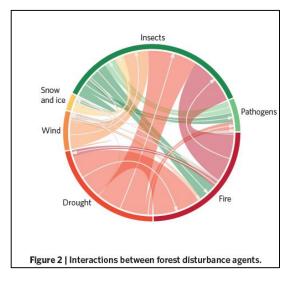
INRAC

How do forest stakeholders perceive and cope with multiple risks?

An exploratory survey in the Gascony forest


Philippe Deuffic (INRAE Bordeaux) Maya Gonzalez, (BSA Bordeaux) Sébastien Delmotte, (MAD-Environnement Toulouse), Maëlis Bourgeais (Inrae Bordeaux) and BSA students

IUFRO World Congress- Small-scale forestry group 3.08 side-event, Stockholm, 24th June 2024


1 – Introduction

What are multiple risks?

- Silo-based approach : a scientific expertise for each forest disturbance agents
- Multiple risk approach : (Seidl et al. 2017; Alexander & Pescaroli, 2019)
- Line of **toppling dominoes**, in which an impact is propagated through a series of different domains
- Risks are differently connected:
 - Coumpound (no direct links R1, R2)
 - Interconnected (R1<->R2)
 - Cascading (R1->R2->R3),
 - Natural-technological (R1N; R2T)
 - complex (R1<->R2, R3, R4->R5->R4)
 - With amplification effects and retroaction

Alexander & Pescaroli, 2019

2 – Objectives, Material & Methods

Research questions

- Does it make sense to introduce socioeconomic and political risks in addition to biotic/abiotic risks?
- Which risk interactions do forest stakeholders perceive?
- What are the vulnerability paths by which risk cascades propagate?
- What strategies do they implement to prevent/stop cascading effects ? Hypothesis :
- Risk is a social construction -> Stakeholders perceive risks differently
- Selection of risk based on whose voice predominates (Douglas 1982)
- Competition for the "right" definition of the problem/risk, "the most important priority" and who/what is really at stake
- Subjective combinations/hierarchies of risks and unequal exposures to multiple risks

Case study area :

 Gascony forest (1 million ha of Pinus pinaster) - 92% privatelyowned

A qualitative survey, semi-directive interviews (n=34) in 2021

• 3 groups : Forest owners, Wood industrialists and scientists

2 – Objectives, Material & Methods

Macro-mapping of risk perception via stakeholders interviews (Desroches & Delmotte, 2015)

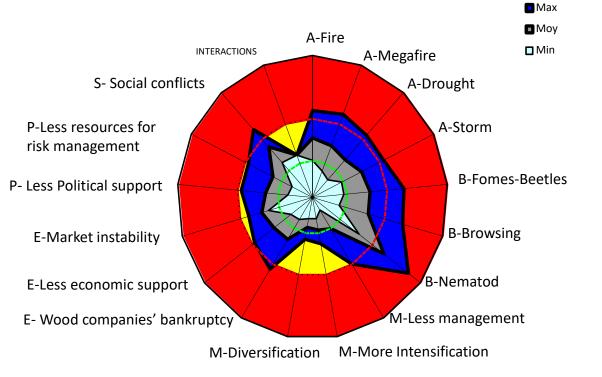
- Risk quantification by 4 criteria Severity, Likelihood, Loss, Effort
- Multi-hazards considered altogether and ranked according to a Likert-scale (1-5)
- Framework of acceptability (for decision support): acceptable, tolerable and unacceptable

	Severity					
		1	2	3	4	5
Likelihood	5	1	2	3	3	3
	4	1	2	2	3	3
	3	1	1	2	2	3
	2	1	1	1	2	2
	1	1	1	1	1	2

		Severity/ Likelyhood/ Loss / Effort							
	Hazards		S	L	Lo	Ε			
_	Fire	Increase in frequency/intensity of forest fire							
		Emergence of Megafire (>5000 ha)							
	Abiotic risk	Increase in intensity and duration of Drought							
		Increase in intensity and frequency of storm							
		Increase in pest outbreaks							
-	Biotic risk	Increase in grazing							
		Emergence of new pests (nematod)							
	Forest management	Less forest management							
		Intensification of forest management models							
		Diversification of forest management models							
		Bankruptcy of wood chain actors							
	Forest Economics	Decrease in public economic supports to wood sector							
		Market instability (wood, energy, labour)							
		Less support to forest public policies							
	Policies	Decrease of resources for risk prevention							
		Increase of social conflicts							

4

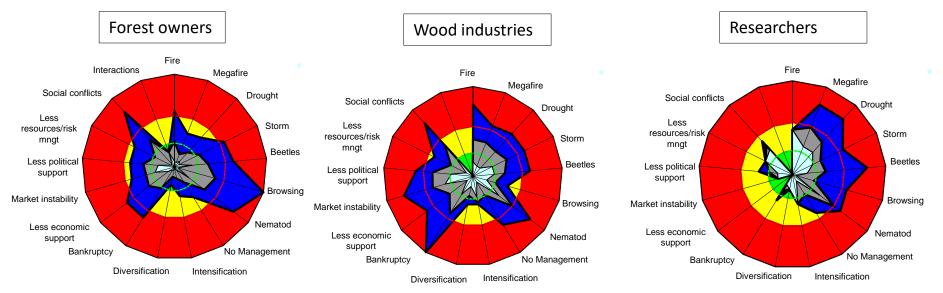
All interviewees


 "classic" biotic/abiotic risk are well identified

New "potential" risks (uncited in 2013)

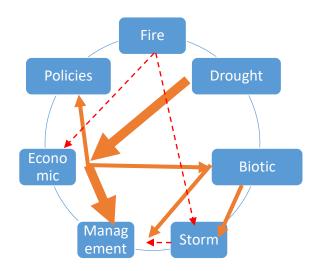
- Nematod
- Megafire

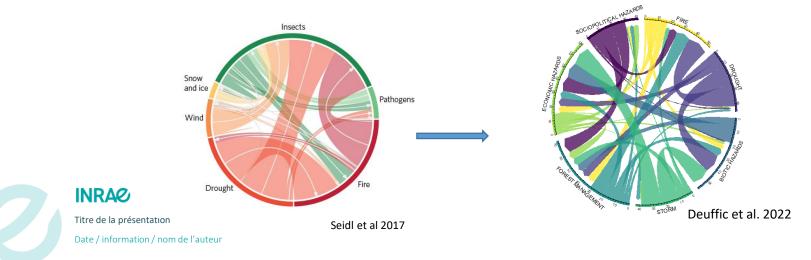
Socio-economic risks

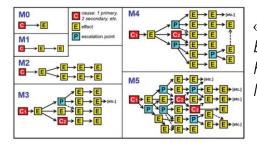

- It makes sense, as important as biotic/abiotic risks
- Social tensions (weak signals)
- Failure/bankruptcy of economic wood chain actors (Sawmills)

Level of perceived risk (light blue : weak risk, grey: mean risk, dark blue : high risk) and level of critcity (red : unacceptable, yellow : green : acceptable)

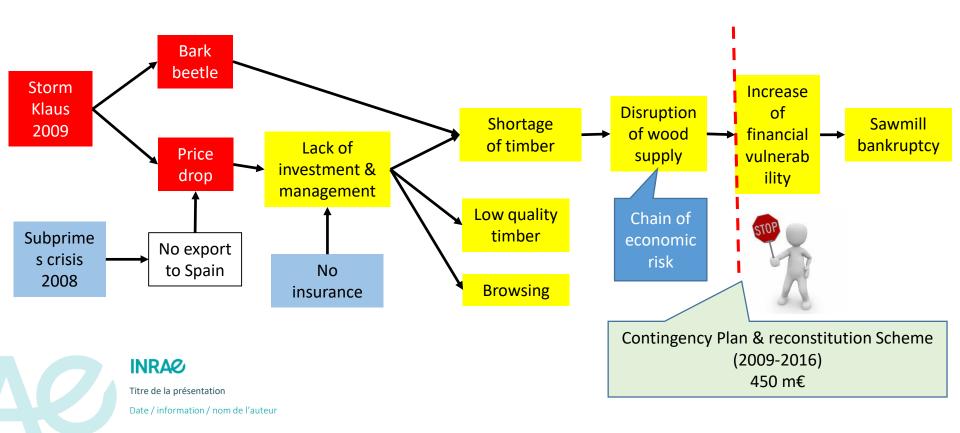
- A differentiated perception of what and who is at risk for each group of interviewees ;
 - Researchers focused on biotic/abiotic risks
 - PFOs and wood sector industrialists also focused on other risks, at different scales, at different moment
 - PFOs: browsing + social conflicts
 - Wood industrialists: fire, nematod, bankruptcy, market instability
 - Storm : catastrophe for PFOs at T0, opportunity for sawmills at T0, and vice versa at T+20 years

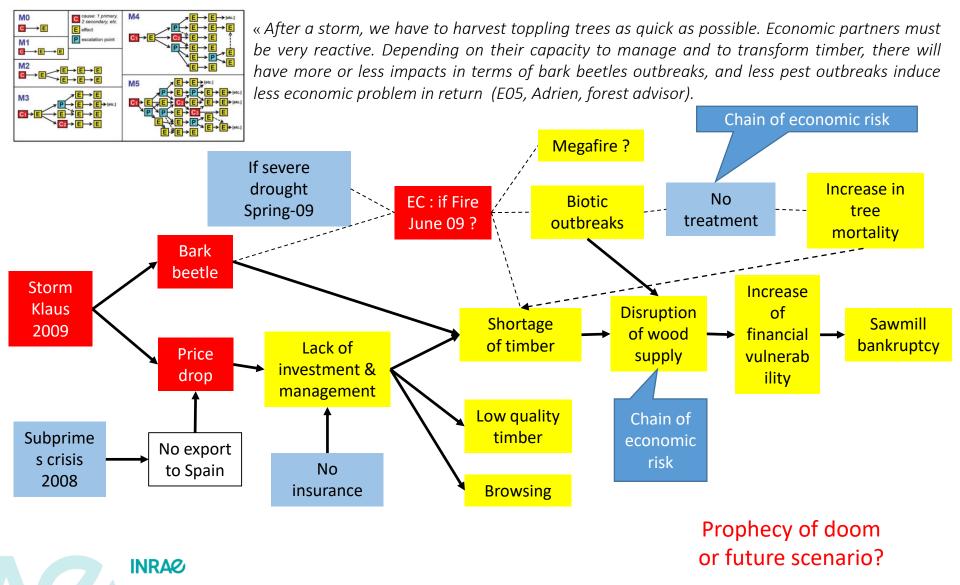


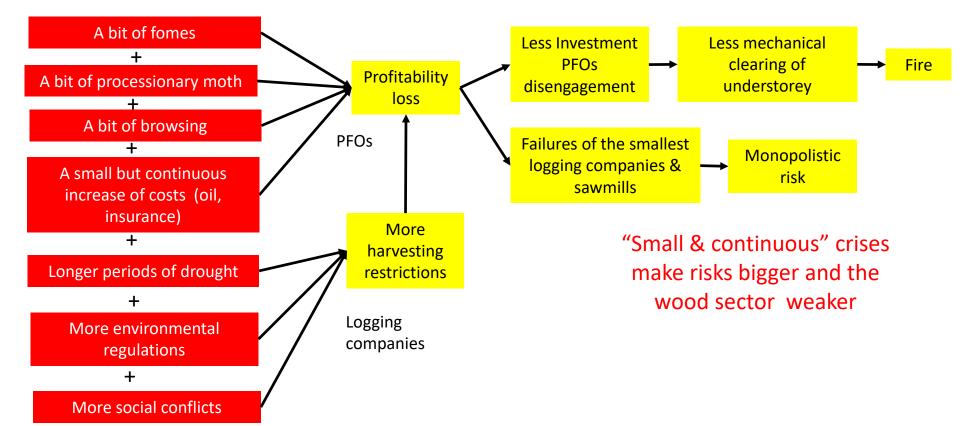

- Some combinations of cascading effects are well identified
 - 1)Drought->fire 2)Drought->beetles 3)Drought->Fire->beetles

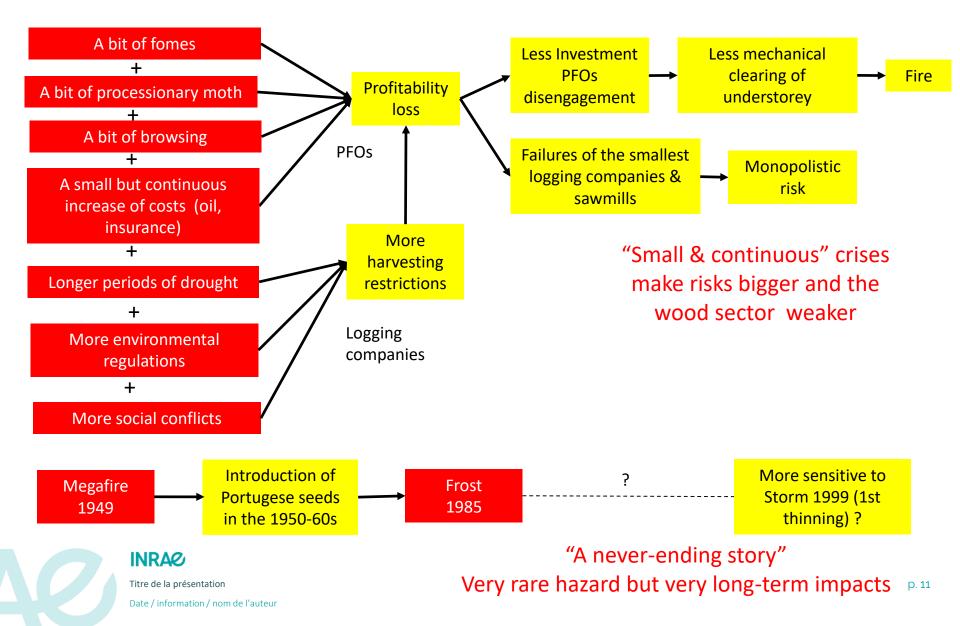

Tab. Number of cited interactions								
	FIRE	DROUGT	BIOTIC	STORM	MNGT	ECONOMI C	SOCIO- POLITICS	
FIRE	0	16	0	3	11	0	6	
DROUGHT	0	0	0	0	2	1	1	
BIOTIC	4	14	0	14	6	2	1	
STORM	0 🚽	0	0	0	3	1	0	
MANAGEMENT	6	6	6	6	0	6	11	
ECONOMICS	5	6	12	15	6	1	11	
SOCIO- POLITICS	2	0	0	1	3	4	0	

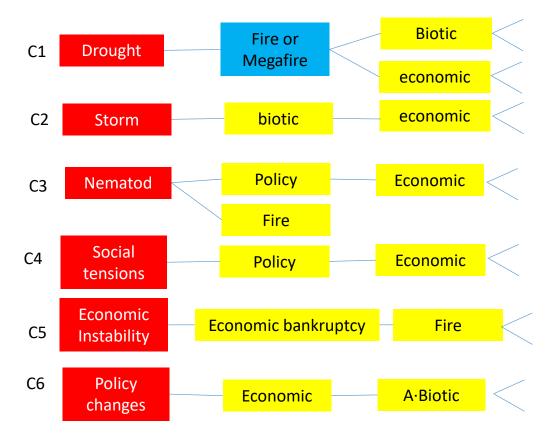
Tab: Number of cited interactions



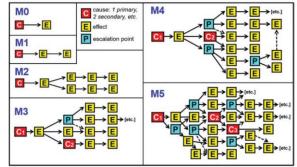

- Make-sense for interviewees to introduce socio-economic agents/factors : Abiotic/biotic interconnected to socio-eco political risks : (Storm->Biotic -> Economics)
- Socio-economic/political factors generate their own interconnected risks


« After a storm, we have to harvest toppling trees as quick as possible. Economic partners must be very reactive. Depending on their capacity to manage and to transform timber, there will have more or less impacts in terms of bark beetles outbreaks, and less pest outbreaks induce less economic problem in return (E05, Adrien, forest advisor).




Titre de la présentation

Date / information / nom de l'auteur



- Likelihood (C3/C4 ?)
- Severity (C2/C3?)
- Additionality (C1+C2+C3+C6?)
- Priority (C1/C3?) and hierarchy of chain (C1>C2 or C3>C2?)
- Socio-political + economic motives may orientate strategies

Several strategies: combination of technical responses+ organisational + financial according to each interaction

Goal:prevention(diminishing likelihood)/protection(diminishing severity)

Field of intervention	Techr	ical	Organisational		Financial		
	Prevention	Remediation	Prevention	Remediation	Prevention	Remediation	
Interaction							
Drought + biotic + fires	Shrubs clearing	Tree species diversificatio n	Fire prevention infrastructu e		Insurance		
Storms + Biotic + Economic	Shortening stand rotation Broadleaves hedges	Scolytidae treatment	Wood storage		Insurance	Public assistance European funding	
Social conflicts + Economic	Nature based practices		New governance	Information Communicat ion			
Nematods + Economic	Mixed species	Genetics	Biocontrol	Dry kiln		Subsidies	

4 – Conclusion

- It makes sense for interviewees to introduce socio-economic hazards in multiple risk analysis
- Added value of Risk audit (MCRA): Hierarchy of risks per categories of actors
- Identification and typology of perceived chains of interconnected risks
- Next step (project Xrisks 2025-2030):
 - to test risk chains with a quantitative survey
 - to introduce new forest users : may have different perceptions/priority of what is at risk (inhabitants, wood industrialists)
 - To identify **the most vulnerable actors** of the forest sector to multiple risks in order to allocate prevention and remediation supports and aids **more fairly**
 - To imagine new governance and coordination modes of prevention/remediation strategies to address multiple risks

