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Abstract

Assessing underwater biodiversity is a labour-intensive and costly procedure
whilst being crucial to measure the extent of local fish stock declines. In most cases,
Underwater Visual Census (UVC) is the method of preference, however this can
be human-costly and is limited by meteorological and logistic factors. Advances
in technology allows the utilisation of more autonomous video recording methods
(i.e. Remote Operated Vehicles (ROV)) which work around the aforementioned
limitations. This study used a transect-wise UVC coupled with diver operated
videos (DOV) simulating an ROV. For the video analysis, a comprehensive fully
automated pipeline was developed to extract frames from DOV and perform color
correction. This pipeline integrates a YOLO-based model for the detection of 20
Mediterranean fish species validating presence or absence of each species within
individual transect. This study was conducted to evaluate the feasibility of utilising
video-based methods for UVC with minimal human-dependence. The automation of
the video analysis showed accordance with the manual video counting enabling an
autonomous and bias-free procedure for video assessment. In conclusion, utilising
a minimal-human-dependent video method disconnects the data acquisition from
limiting factor (i.e. meteorological and logistic) and automation of this video analysis
will significantly reduce the labour and time required by researchers. For future
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fieldwork campaigns, the video data collection protocol needs to be adjusted to better
resemble the traditional UVC and bring forward this acquisition method.

Diver operated video, Automated UVC, Deep learning, Object detection, Marine
biology, Marine protected areas

Highlights

1. Applying YOLOv7 deep learning model on diver-operated video (DOV) transects &
sites.

2. UVC & video methods (manual & automated) were compared identifying pres-
ence/absence.

3. UVC & video data combination shows more complete site evaluation.

4. Total of 85% of the species in situ were correctly identified by automation.

5. Epinephelus marginatus was seen twice as much inside of MPA than outside.

1 Introduction

The marine environment is facing multiple stressors that have a significant impact on
their ecosystems (Gissi et al., 2021). Artificialization of shorelines (Carranza et al., 2019),
overfishing (Demirel et al., 2020), masstourism (Mejjad et al., 2022) and climate change
(Doney et al., 2012; Smale et al., 2019) are impacting the fish communities all over the
world and especially in high touristic areas such as the French Riviera. High demand of
fish meat as protein source led and still leads to fish populations declining up to 99% for
very extreme sites in the past decades (Myers et al., 1997; Vasilakopoulos et al., 2014).
There is a developmental need to survey, monitor and conserve these fragile marine areas
and gather information on the current state in which they are in. For this purpose marine
protected areas (MPA) are established and function as safe havens for fish populations
to recover and proliferate. Inside of an MPA, human activities such as fishing, diving or
anchoring are limited or prohibited to ensure the decompression of the ecosystem. However
the efficient management of these MPA is complicated and underlies a careful and holistic
procedure of data collection to make decisions regarding its policies.

This data collection involves both, abiotic factors (i.e. bathymetric and physical data)
and biotic factors such as biodiversity. Whilst abiotic factors can be measured in real-
time with corresponding probes, the measure of biotic factors are either invasive (i.e.
experimental fishing, catch and release or other methods involving the landing of the fish)
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or less-invasive but very cost- and labour-intensive (i.e. underwater visual census (UVC)
or video-based methods). The second approach of lesser-invasion should be considered
first since the health of the ecosystem should not be compromised to evaluate it.

UVC has been standardised for decades (Kulbicki and Sarramégna, 1999) and has
the advantages to be well established. It forms the best global coverage of biodiversity
assessment (Caldwell et al., 2016) but it suffers from diver bias that can - in high biodiversity
regions - lead up to a 25% over- or under-estimation of abundance and species richness
(Mcclanahan et al., 2007). Alongside this bias, UVC is high-cost, requires a lot of expert
knowledge and is heavily dependent on weather and logistics due to safety reasons for the
divers. To counteract these factors unmanned recording techniques have risen. Most of
the existing video assisted studies use baited remote underwater videos (BRUV) which
are temporary stationary cameras with bait attached in front of it to lure fish in front of
the camera to evaluate the biodiversity or other ecologically relevant information (Mclean
et al., 2005). The methodology of BRUV is less-invasive and give a good insight in terms of
biodiversity but are susceptible to wrong decisions in choosing the right bait and location
which leads to a bias towards bait-preferential fish.

To gain independence of mentioned factors, a traditional UVC was coupled with video
assistance (Grorud-Colvert et al., 2021) to help the diver return visually to the transect
in case of need of confirmation and evaluation of complexity or coverage of the present
transect substrate. The video recordings following the divers point of view are hypothesized
to simulate a remote operated vehicle (ROV) and capture a similar biology as the diver
itself. With this technique, numerous videos were recorded and looking through them was
time intensive. In the era of digitalisation, artificial intelligence and its subdisciplines are
a vastly rising field of research in marine ecology (Malde et al., 2020; Rubbens et al., 2023)
and could give greater insights on the images and videos recorded in many different contexts
(Vabø et al., 2021; Wu et al., 2022). Deep learning (DL) has shown promising results in
the analysis of underwater imagery (i.e. Spampinato et al., 2016; Jalal et al., 2020). For
example achieving excellent results in in-trawl images with mean average precision (mAP)
of 0.845 (Allken et al., 2021a) with a creatively acquired and expanded dataset (Allken
et al., 2021b) is truly inspiring. A study closer related to the proposed study is for example
Xu and Matzner, 2018. This team achieved an mAP of 0.54 on a real life applicable
dataset while Knausgård et al., 2022 achieved an mAP of 0.84 on a temperate fish dataset
which helped a lot to benchmark and elevate this study. However, these studies evaluate
videos derived from stationary cameras and focus on machine learning metrics (F1 score,
recall, precision and mAP), leaving out the biological aspect of it. Whilst the importance
of the machine learning performance metrics is undeniable, in real life applications the
biological or methodological metrics need to be incorporated to create the bigger picture
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of the study and not only focus on one aspect of it. Connolly et al., 2022 used ROV video
data and is automatically detecting two economically important species on the Australian
coast to evaluate moving videos in comparison to stationary cameras. This study achieved
very good results to count fish in frames but showed differences in model performance for
the two different fish species.

In the proposed study the focus was on a video-assisted UVC protocol and how DL
can help hastening the diver observations and assist the presence/absence video transect
analysis. The framework of You Only Look Once (YOLO) is widely used in marine
computer vision (Mohamed et al., 2020; Park and Kang, 2020; Priyankan and Fernando,
2021; Muksit et al., 2022) and the version 7 (C.-Y. Wang et al., 2023) was used in this
study as the DL model for fish detection. The model was evaluated in a first experiment
in its performance capabilities in detecting 20 classes (19 most prominent local fish species
and 1 ’Other’ class). In a second experiment on a different dataset, the same 20 species
were detected, transect-wise concatenated and formatted into a presence/absence table
for each of the species. Manual video counts performed by a marine biology expert and
professional diver-gathered UVC data were compared to the presence/absence table derived
from the detections. This study seeks to compare how manual video data, data generated
by artificial intelligence, and data collected by scuba divers differ in their perceptions of
the diversity of 20 different marine fish species in the Mediterranean Sea. The aim is to
compare these methods and define the degree of differences allowing to make adaption
propositions for future fieldwork campaigns.

2 Materials and methods

2.1 Study area & data collection

The training dataset (DATAT ) was gathered in eight different locations of the French
Riviera in the Mediterranean Sea and followed the same UVC protocol on each site
(Harmelin-Vivien et al., 1985). The depth ranged from 1-37m and was executed during
the whole year in 2022 (cold- and warm season) to have the full range of conditions and
possibilities of fish occurrences.

The experimental dataset (DATAE) is evaluated in terms of methodology and was
recorded in October 2023 in two distinct areas, one no-take zone and one Natura2000
site, which both have elevated biodiversity - ’Cap Roux’ and ’Corniche Varoise’ in the
French Riviera. The specific coordinates & meta data can be found in the supplementary
material (Table S1). A total of 64 videos, each corresponding to a transect, from 14 sites
(8 on seagrass meadows & 6 on rocky substrates) were evaluated and compared. Each site
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consists of 3 to 6 transects depending on the availability of the video recordings and the
UVC data from the divers.

For the recording of the videos, GoPro version 9 cameras were used. They were mounted
on the clipboard (Fig. 1) where the divers note the number of fish per species with
their respective size category (variable category number per species). These videos were
recorded with a framerate of 24 frames per second (FPS) and a full high definition
resolution (1920x1080px). Frames were extracted from these recordings with a FPS of 1
for DATAT and with a FPS of 5 for DATAE. A fish less than 1 second (less than 5 frames)
in the videos of DATAE will not be considered in the methodology evaluation due to the
unlikeliness of it being an actual detection.

Figure 1: Example image of the GoPro 9 montage of a diver on a transect that records
the current divers point of view. The background shows the measuring tape can be seen
to stay on track with the UVC protocol.

2.2 Preprocessing of the images & training

To ensure a good species coverage, 19 different species and an ’Other’ class were labelled
manually in the frames resulting in 13’033 images (131 videos in the training set and 47
independent videos in the test set) in DATAT having a total of 68’573 (train = 40’379, test
= 28’194) individual fish labels (species breakdown in Table S3) and 8’739 miscellaneous
labels such as background and diver. The ’Other’ class includes species (Table S2) that
have insufficient occurrences in the test videos (n < 100).

Since there is wide range of conditions in the videos, a preprocessing was applied to
enhance each image colour range. For this purpose a pretrained UIEC2-Net model (Y.
Wang et al., 2021) was utilised to enhance the images. For the training the YOLOv7
algorithm was used (C.-Y. Wang et al., 2023) and the model was pre-trained on two public
fish datasets - DeepFish (Garcia-D’Urso et al., 2022) and OzFish (AIMS et al., 2019) -
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and then fine tuned on the data described above. As a preprocessing, images have been
rescaled to 960x960px (from the default 640x640px suggested by YOLO). The training was
run on a high performance GPU cluster for 150 epochs to guarantee convergence. The best
performing weights (maximised mAP@0.5:0.95 on the validation set) were automatically
provided by YOLO and chosen as the weights for the DL model.

The whole process from receiving the recordings to the different metric evaluation is
depicted in Figure 2. The pipeline depicts the DL detection for the diver after returning
from fieldwork.

Concatenation of
labels 

& data preparation

placholder

Frame 
extraction

(5 FPS)

Color 
correction

UIEC²Net

Detection by
YOLOv7 
model

Metric evaluation

& graphical 
representation

Original video Videoframes 1920x1080 Videoframes   corrected 
& resolution    modified 960x960

Frames with detections &
txt label files

Traditional presence/absence tableVariable output depending on task

Figure 2: The pipeline of the videos gathered for the method evaluation.

2.3 Metrics of Evaluation

2.3.1 Deep learning model evaluation

To evaluate the first experiment of the detection capability of the YOLO model, the mean
average precision (mAP - Eq. 1) which consists of the area under the curve (AUC) of
the precision-recall curve was used. Precision (Eq. 2) indicates the proportion of correct
detections among all detections made by the model, while recall (Eq. 3) represents the
proportion of actual correct detections that the model successfully identified. These two
metrics are common metrics used in DL to evaluate the models performance on a given
task. The abbreviations FN, FP, TN and TP stand for False Negatives, False Positives,
True Negatives and True Positives respectively.
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meanAveragePrecision = mAP =
1

n

k=n∑
k=1

AP k (1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

2.3.2 Binary evaluation of automated & manual video data

For evaluation of the second experiment with DATAE, the transect-wise presence/absence
study, the following metrics are calculated for the manual video counting compared to the
presence/absence table generated from the detections. The Accuracy (Eq. 4), Sensitivity
(Eq. 5), Specificity (Eq. 6), 1-Specificity (Eq. 7), Cohens Kappa (Eq. 8, Landis and
Koch, 1977) and true skill statistic (TSS, Eq. 9) are used to get a holistic insight on
how the model is performing on this specific task. Cohens Kappa is used to evaluate the
inter-reliability between two or more measuring methods - in this case between the manual
video count and the DL predictions. The TSS disconnects the Cohens Kappa from its
prevalence problem (Allouche et al., 2006).

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

Sensitivity =
TP

TP + FN
(5)

Specificity =
TN

TN + FP
(6)

1− Specificity = 1− TN

TN + FP
=

FP

TN + FP
(7)

CohensKappa =
(TP + FP )(TP + FN) + (FN + TN)(TN + FP )

(TP + FP + TN + FN)2
(8)

TSS = Sensitivity + Specificity−1 (9)
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3 Results

3.1 Deep learning model

For the first experiment, the confusion matrix for the 20 classes is presented. Background
FP refers to incorrect detections of the DL model that identify parts of the background
as objects, while background FN refer to missed detections against the background. The
darker coloration indicates a higher relative classification in this specific true class. This
can suggest either higher overall accuracy (when it is on the diagonal, indicating more
correct predictions) or higher misclassification rates (when it is off the diagonal, indicating
more instances wrongly classified). The confusion matrix (Fig. 3) shows a clear diagonal
line for most of the species covered except for the classes Mullus surmuletus and Other.
Overall a mean average precision (mAP) of 0.56 is achieved. The model has an overall
precision of 0.66 with 18’590 TP and 9’716 FP. Individual species precision (Table S4)
values range from 0.13 (class ’Other’) to 0.91 (class ’Sarpa_salpa). Second worst after the
’Other’ class is ’Seriola’ with a precision of 0.41. Recall values (overall 0.65) range from
0.23 for M. surmuletus to 0.75 for Coris julis.
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Figure 3: The confusion matrix of the presented YOLOv7 model describing the relation
between Predicted and True classes not in relation but in absolute values.

Three different examples of imagery and the corresponding detections of the YOLO
model are presented. Original extracted frames without any preprocessing are presented
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in figure 4-A, whilst 4-B depicts preprocessed images with the corresponding detections.
Two images depict a rocky substrate with a variety of different species seen in the area
(primarily S. salpa & Sciaena umbra) and the third image shows an artificial reef with a
school of Diplodus vulgaris passing. Partial Figures in 4-C are framed as correctly detected
species in green and missed detections in red.

A B C

Figure 4: Example imagery of the dataset (A). Preprocessing and corresponding detections
(B). Column C corresponds to good detections (framed in green) and missed detections
(framed in red).

3.2 Binary presence/absence task evaluation

For the second experiment, the experimental dataset (DATAE) was used from the field
campaign the year after DATAT was recorded. The model detections on the experimental
dataset were formatted into a presence/absence table that showed the existence or non-
existence of each species in a transect and was compared to the manual video counting
method. Figure 5 shows the relation between sensitivity and 1-specificity of the model
in predicting aforementioned presence/absence. This graph shows an area under the
curve (AUC) of 0.93 which is sufficient in capturing the models performance towards the
presented presence/absence task.
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Figure 5: The sensitivity (blue line) is plotted against 1-specificity over 0.5 intervals of
confidence thresholds allowing to extract the AUC indicating the performance of the model
in predicting the species-transect-pairs overall. The AUC number is indicated on the right
bottom corner and the dashed red line corresponds to a random classification.

The species-specific AUC ranges (Fig. 6) from 0.36 (Serranus cabrilla) to 0.99 (Diplodus
vulgaris, Seriola sp., Thalassoma pavo & Apogon imberbis) for the different species. An
AUC of 0.00 (S. umbra & Sparus aurata) meaning that there was no observation of this
species in the transect and are therefore ignored. Not all species curves behave the same
way and some species are easier to detect in the transect when in comparison with harder
to detect M. surmuletus or more elusive S. cabrilla species.
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Figure 6: The sensitivity (blue line) is plotted against 1-specificity over 0.5 intervals of
confidence thresholds allowing to extract the AUC indicating the performance of the model
in predicting the species-transect pairs. Indicating how well the model is able to grasp the
species richness of each transect for each of the species investigated. The AUC number is
indicated on the right bottom corner and the dashed red line corresponds to a random
classification.

The presence/absence per species per transect (referred to as species-transect pair) was
assessed for different binary metrics (accuracy, sensitivity & specificity). These metrics
are presented in relation to the confidence threshold (a value that represents the minimum
level of certainty required for the model to classify an object) in Figure 7, which gives a
better indication how the detection confidence has an impact on the corresponding model
metric. Any detection with a confidence lower than the threshold will be disregarded and
not incorporated into the further evaluation increasing potential FN but also decreasing
FP. This threshold can and should be chosen according to the task presented and what the
project managers requirements are. Purple dashed lines in Figure 7 indicate the different
thresholds chosen for the transect evaluation and look at the impact of choosing these. The
threshold 0.05 was chosen as loose to ensure all individuals are detected, 0.60 was chosen
as balanced meant to balance the proportion of FP and FN (the crossing of sensitivity
and specificity) and 0.80 was chosen as strict to be sure that mostly TP are included and
FP are exluded in the analysis.
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Figure 7: Three different metrics - accuracy (red), sensitivity (green) & specificity (blue)
- are plotted against the confidence thresholds. This allows to evaluate the influence of
choosing different thresholds for the transect evaluation. The purple dashed lines indicate
the thresholds (loose, balanced & strict) chosen for the further study.

Depending on the threshold chosen, the results in Table 1 differ in the metrics mentioned
previously. Accuracy values range from 0.64 to 0.90, sensitivity from 0.99 to 0.72 and
specificity from 0.50 to 0.94 for the different thresholds. Accuracy and specificity are
highest with the strict threshold while sensitivity is highest in the loose threshold. The
stricter the threshold the higher the specificity, while the sensitivity increases with a more
loose threshold. Cohens Kappa is highest for the strict threshold and TSS is highest for the
more balanced dataset with values of 0.69 for Cohens Kappa and 0.68 for TSS respectively.

Table 1: Evaluation metrics per threshold analysis for all the transects. Bold numbers
indicate the highest values for each metric.

Threshold Accuracy Sensitivity Specificity Cohens Kappa TSS
Loose (0.05) 0.64 0.99 0.50 0.34 0.48
Balanced (0.60) 0.86 0.84 0.84 0.64 0.68
Strict (0.80) 0.90 0.72 0.94 0.69 0.67

The three different methods (manual video data, automated video data and diver data)
were evaluated using color codes (Fig. 8) - red indicating a FN, yellow indicating a FP
and orange indicating a TP. Transparent squares are TN. Squares marked with a cross are
species that have been seen by the diver in the transect during the UVC. Transects 1-39
are over seagrass meadows (Posidonia oceanica) while transects 39 to 64 are over rocky
substrates. The average species richness per site for the two DL-independent methods over
rocky substrates are 7.88 (manual video count) and 9.12 (traditional UVC). Over seagrass
meadows the average species richness is less with values of 3.89 and 5.05, respectively.
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Figure 8: Transect evaluation with the different thresholds: A, B and C are loose, balanced
and strict thresholds respectively. Successful detections are indicated in orange, red are
missed species (FN) and in yellow falsely detected species (FP). Cross-marked squares
show presence of the corresponding fish species in the transect as seen by the diver doing
the UVC.

In the threshold analysis, the automatically generated DL-derived presence/absence
table were compared. For the loose threshold (Fig. 8 - A) the transect evaluation includes a
total of 450 FP (yellow colour) while having 5 FN (red colour). In total 348 species-transect
pairs were correctly predicted (TP) and 477 were correctly not predicted (TN). Even
though there is a high number of FP, the species M. surmuletus was missed in 2 out
of the 6 appearing videos while appearing 24 time as an FP and is therefor the worst
performing species. This result is in alignment with the confusion matrix of the model
evaluation (Fig. 3) with 121 detections of M. surmuletus missed. The different substrates
are not distinguishable in the loose threshold case. The predicted average species richness
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over rocky substrates is 15.5 and 10.39 for seagrass meadows. The species richness is
overestimated with 7.62 species for rocky substrates and 6.5 for the seagrass meadows.

The balanced threshold model configuration (Fig. 8 - B) gives 135, 41, 312 and 792,
FP, FN, TP and TN, respectively. Out of 1280 possible predictions, 1104 were predicted
correctly by the DL model. M. surmuletus has been seen by the DL model in 1 of the 6
videos this species is appearing in whilst having 3 FP. Regarding the predicted species
richness over rocky substrates the value is 10.54. The species richness over seagrass meadows
corresponds to 4.68. There is a clear difference observable - qualitatively and quantitatively
- between the two substrate types. Differences in species richness in automation and
manual count are 2.66 for the rocky substrates and 0.79 for the seagrass meadows.

The FP, FN, TP and TN for the strict threshold (Fig. 8 - C) were valued at 45, 79, 274
and 882, respectively. A total of 1156 species-transect-pairs have been correctly predicted.
M. surmuletus has been seen by the DL model in 1 of the 6 appearing videos for the
strict threshold and performing the best in this strict case with 1 FP. For the strict case,
the predicted species richness over rocky substrates and seagrass meadows are 8.04 and
3.06, respectively. The difference in species richness is less visible with this threshold
with species richness differences of -0.83 species over seagrass substrates and 0.16 species
richness difference for rocky substrates. The strict threshold is the only threshold that
differs in less than 1 over both substrates but underestimates the average seagrass richness
when compared to the manual video count.

3.3 Method comparison

The multi-dimensional, quasi-proportional Venn diagrams from the r package nVennR
(Pérez-Silva et al., 2018) display a qualitative insight on how the sites are evaluated with
all the techniques and how large the agreement between them is. Depending on availability
of video recordings and diver data, 3 to 6 transects were concatenated per site meaning
the transects were fused to create the site-specific fish diversity. For the DL part the
strict confidence threshold was chosen since the accuracy (1156 species-transect pairs were
correctly predicted) was high whilst having substantial Cohens Kappa, excellent TSS
values and better species richness prediction.

From the models point of view, a yellow & green-yellow colour indicates FP predictions
since these species were not seen in the video but were detected by the DL model. Distinct
red & red-green color specifies FN since there was a presence in the video but not detected
from the model. The yellow-red & all three color overlap show TP. A distinct green
coloration shows a species that has only been seen by the diver during the UVC and will
not flow into the evaluation of the model but will be used to give an idea on how the
different methods add to a site diversity. A total of 26 FN and 16 FP were predicted while
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94 TP and 144 TN form a total of 280 species-site pairs.

An overall agreement can be observed between the methods for the location Cap Roux
(Fig. 9) concerning the species richness. Most species per site have been counted with
each of the methods evaluated. The FP (yellow & green-yellow) are ranging from 0 to 2
with a median of 2 for the DL model (Fig. 9 - b, d & f-i). The green-yellow could show
human error when evaluating the videos but were double checked to be correctly classified
as FP. Missed species in the video (red) were observed on 6 sites (Fig. 9 - a-c, f & i) while
on 6 sites (Fig. 9 - a-c, g & h) the diver has seen fish species that were not observed in the
video (green). In Figure 9 - d the DL model was agreeing with the manual video count
while the diver missed this species (yellow-red). An overlap between the diver and the
manual video count is presented in 6 sites (Fig. 9 - a, c, d, f, g & h).

The overlapping average species richness for seagrass meadows at all depths is 4.6 while
the species richness of rocky habitats at all depths is 9.5.
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Figure 9: Venn diagrams at the site coordinates (green sites (a-e) are seagrass meadows,
red sites (f-i) are rocky substrates) showing the overlap of methods in different sites at
the location Cap Roux (Image credit Google Maps 2024). Overlapping colors indicate a
common species pool whilst distinct coloration indicates method-specific detection. Yellow
& yellow-green colour are indicating FP and red & red-green colour indicates FN. Green
coloration means the video has not sufficiently covered all species in the transect and was
only seen by the diver.

For the second location in Corniche Varoise (Fig. 10) the video transects do not
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contribute identifying new species that are unseen by the diver. However, on 4 of the 5
(Fig. 10 - b-e) sites species have only been seen by the diver with missed species ranging
from 1 to 5 with a median of 2. There are DL model-derived FP at all sites ranging from 1
to 3 with a median of 1. Compared to Cap Roux an increase in average FP and an overall
decrease in video-contributed species is observable.

Overall the seagrass meadow sites have a species richness of 6.5 and the rocky substrate
sites have a species richness of 9.5.

a

b

c

d

e

Figure 10: Venn diagrams at the site coordinates (green sites (a-c) are seagrass meadows,
red sites (d-e) are rocky substrates) of the site showing the overlap of methods in different
sites at the location Corniche Varoise (Image credit Google Maps 2024). Overlapping
colors indicate a common species pool whilst distinct coloration indicates method-specific
detection. Yellow & yellow-green colour are indicating FP and red & red-green colour
indicates FN. Green coloration means the video has not sufficiently covered all species in
the transect and was only seen by the diver.

4 Discussion

Overall this study shows the successful incorporation of a DL model into the validation
and evaluation process of assessing biodiversity at 2 different ecologically important sites
of the French Riviera. The proposed model is able to detect the majority of the presence
or absence of 19 different fish species in each transect. This makes it a valid addition to an
holistic approach and increases robustness of justification for MPA implementation. The
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automation of the video analysis will decrease labour time and increase the time spent
on interpretation and human-dependent decision-making process increasing the efficiency
of the whole procedure. This highlights the importance of utilising DL tools in applied
scenarios and by simplifying the task of transect-based, diver operated videos (DOV)
evaluation.

The proposed deep learning model provides evidence for a sufficient detection capability
on DOV. With an mAP value of 0.56 this study allows a benchmark for more work on
similar data in other regions which is scarce to this day with the exceptions. For example
Connolly et al., 2022 uses videos from a ROV which replaces the diver and shows good
results in detecting two species on the Australian coast. Reporting species precision values
of 0.28 to 0.96 and species recall values of 0.46 to 0.80 which, in comparison to the proposed
model precision (0.13 to 0.91) and recall (0.23 to 0.75), is in agreement but is differently
challenged with the task of detecting 2 species in comparison to the 20 species proposed in
this study. In comparison to stationary camera studies (Jalal et al., 2020; Knausgård et al.,
2022) both aforementioned studies on non-stationary cameras underperform due to the
difference in data collection and challenge in the movement of the camera. Other studies
have a more constrained environment and achieve very inspiring results in for example
re-identifying individuals (Olsen et al., 2023) that could be very interesting for a future
collaborative step when concerning E. marginatus due to its big size and importance as a
top predator and protected species. Marine biologist rely on fast and efficient information
on all of their data.

With a different task, the proposed pipeline shows insights into the transect data
without prior knowledge and creating therefor a simplified, more holistic approach. Most
of the species reached an AUC value of over 0.80 which seems sufficient in detecting the
presence/absence in a transect. However, limitations are still prevalent since the detection
rates of certain species are insufficient to confidently predict the presence of species in the
transects - for example M. surmuletus with an AUC value 0.72 which is an economically
important species in this region. While M. surmuletus shows insufficient AUC values, i.e.
A. imberbis shows great coverage in the transect analysis with an AUC value of 0.99. This
AUC value makes us believe that the model is predicting the species A. imberbis perfectly
which is not evident. The species A. imberbis only appeared in 2 transects and was
detected in this transect at most confidence thresholds which gives a sensitivity of 1. Lower
thresholds hold some FP and therefor, decrease the specificity but since the sensitivity is
almost perfect in most of the threshold-dependent cases the AUC is close to 1. In our case
more species fall into this low-occurrence category and should not be considered with the
AUC evaluation - Anthias anthias, Epinephelus marginatus, Seriola sp. and S. cabrilla.
Having an imbalance between TP and TN can lead to misinterpretation of a model and

17



other metrics should be consolidated (Lobo et al., 2008). For example the Cohens Kappa
gives a better insight on the overall inter-reliability between two measurement methods and
to what degree they agree with each other but suffers from prevalence. The TSS metric
on the other hand is free of this prevalence and should be considered as well to further
justify metric values of the model. In our case the highest value for the Cohens Kappa
is 0.69 which is considered substantial (Landis and Koch, 1977) and the highest True
Skill Statistic (TSS) value of 0.68 is considered excellent (Komac et al., 2016). These two
metrics show that there is a high degree of agreement between the manual & automated
method which shows evidence that the manual video labour could be replaced with a DL
algorithm.

With prior mentioned information on the confidence thresholds, the method-specific
species evaluation was conducted with the strict threshold. It showed the highest accuracy
(0.90) as well as the best Cohens Kappa (0.69) and second best TSS (0.67). With this
in mind, there will be an increase in FN but also a substantial decrease in FP which is
important to correctly estimate species richness on transects. It is important to evaluate
two cases, firstly only UVC and video transects and secondly how the addition of a DL
model changes the overall species richness. For the first case, at the sites of Corniche
Varoise location (Fig. 10) there are only added species from the traditional UVC which
highlights the importance of expert knowledge (Cappo et al., 2003). However, the manual
video count added species at Cap Roux (red colored) and there is a good overlap with
additions to the species richness from both methods (red-green colored in Fig. 9). This
further shows evidence of the importance of doing a more holistic approach (Colton
and Swearer, 2010) and the need to adapt the video collection protocol to bear more
resemblance to the traditional UVC data collection. Reasons for these differences could be
on one hand that the UVC is more strict in terms of field of view and it limits the diver
on purpose to a given surface area of 125m2 (Grorud-Colvert et al., 2021) explaining the
additions of species by video methods at Cap Roux. While on the other hand, the divers
head is free in its movement and only limited by theoretical area given by the protocol, the
cameras point of view is always limited. This means that a diver can and does eliminate
these spatial limitation of a camera that could explain the addition of species at at the
location of Corniche Varoise. These differences can have a small but significant impact on
a species being sighted in a transect or not - by both methods. This difference is more
prevalent for rarer species since they can be missed easier and not reappear later in the
transect. Therefor, adaptations to these differences should be carried out and could be
for example using multiple cameras, one facing straight ahead and the other one looking
down at the seabed to cover both semi-pelagic and benthic species closely observing what
the diver observes. Another protocol modification could be to increase the area covered of
DOV transects to enable a fair comparison with the UVC. Further research needs to be
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conducted to find the correct protocol parameters for fair comparison.

For the second case we look at the performance of the automation of the video transect
evaluation. While other studies have shown to successfully evaluate stationary or baited
videos (Villon et al., 2018; Jalal et al., 2020; Muksit et al., 2022), the proposed study
utilised transect-derived and depth-variable DOV, which - as mentioned in Villon et al.,
2018 & Connolly et al., 2022 - is another important use-case of artificial intelligence in
marine conservation and should be the subject of increased focus in the future. When
adding a high throughput DL model on transect videos instead of manual labour, a
good level of quality is kept overall while minimising analysis time. A total of 85% of
the species-site pairs have been correctly detected which highlights the feasibility of this
approach and eliminating the divers bias which can correspond to up to 25 % of a local
species diversity. The proposed DL model is able to grasp the reality and is an indication
that in the future, this pipeline helps to gather more bias-free data for MPA managers to
streamline the process of implementing and evaluating MPA, making the decision-making
process faster and more efficient.

Besides the data on biodiversity and its evolution over time, different ecological infor-
mation can be extracted from this simplified task that are interesting for aforementioned
establishments of protected areas or no take zones. While seagrass meadows are known for
nursery and living habitats (Franco et al., 2006; Boudouresque et al., 2021), several studies
have shown that the species richness is higher over rocky substrate rather than P. oceanica
(Cheminée et al., 2021). This difference was also observed in this study with the focalised
species list that the DL model was trained on. The protected species E. marginatus was
seen by the DL model only over rocky substrate and occurred twice as much inside of the
protected area than outside. This gives and indication that an MPA can be an important
safe haven for top predator fishes in their hunting and reproduction grounds which is in
alignment with previous studies (Guidetti et al., 2014). In the case of the two Diplodus
ssp. the analysis showed that these two economically important species are represented
mostly over rocky substrate which further highlights the importance of this habitat and
how artificialisation of the rocky shoreline can damage different species more than others.
These results are preliminary and need to be enjoyed with caution since the data is limited
to two sites and one time frame. However, this pipeline will be applied to more and more
frequent data collections and will generate information on different ecosystems, sites and
time frames creating a standardised procedure for the future.

4.1 Conclusion

This study showed that no method of evaluation (video data nor diver data) is perfect but
a combination of them would achieve the highest robustness over a site. A combinative
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approach is in agreement with non-automated studies which looked at different methods
by hand (Willis and Babcock, 2000; Goetze et al., 2015). In the case of diver limitations
(Cappo et al., 2003), the video recording protocol needs to be adapted to create data that
is comparable between methods and create a strong, robust and reproducible protocol.
Furthermore showed in this study, deep learning models can assist the researcher to
disconnect the video analysis from any expert bias and save time and labour due to the
automation of the procedure. With the decrease in labour time, more frequent data
collection missions can be targeted increasing the temporal and spatial coverage of species
distribution. This proof of concept shows not only a new high-throughput analysis of diver
operated videos (DOV) but also the possibility to evaluate videos recorded by remote
operated vehicles (ROV) which allows data to be collected in scenarios where there is a
meteorological, depth-related or logistical limitation.
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Supplementary Materials

Table S1: List of site specific meta data information in the French Riviera. At each site a
different number of transects were conducted. They were randomly chosen over the correct
substrates to have a random stratified sampling. The abbreviations I & O represent if the
site is inside or outside of an MPA. Deep indicates depths below 15m and shallow indicate
depths above 15m.

Location Substrate Depth Transects I / O Latitude Longitude
Cap Roux posidonia deep 1-6 I 43◦27.753’N 6◦55.728’E
Cap Roux posidonia deep 7-9 O 43◦28.892’N 6◦57.123’E
Cap Roux posidonia deep 10-12 O 43◦25.424’N 6◦53.193’E
Cap Roux posidonia deep 13-18 O 43◦26.743’N 6◦54.950’E
Cap Roux posidonia shallow 19-21 O 43◦25.531’N 6◦53.266’E
Corniche varoise posidonia shallow 22-27 I 43◦15.899’N 6◦42.642’E
Corniche varoise posidonia shallow 28-32 I 43◦12.142’N 6◦40.950’E
Corniche varoise posidonia shallow 33-38 I 43◦10.084’N 6◦39.003’E
Cap Roux rocky deep 39-42 O 43◦28.472’N 6◦55.982’E
Cap Roux rocky shallow 43-47 I 43◦27.409’N 6◦55.423’E
Cap Roux rocky shallow 48-51 O 43◦25.597’N 6◦53.756’E
Cap Roux rocky shallow 52-55 O 43◦26.845’N 6◦54.860’E
Corniche varoise rocky deep 56-58 I 43◦16.025’N 6◦41.844’E
Corniche varoise rocky deep 59-64 I 43◦09.542’N 6◦37.377’E
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Table S2: List of taxonomic categorise included in the ’Other’ class of the model. The
taxonomic level is as high as possible.

Taxonomic Category
Antherina sp.
Blennidae sp.
Conger conger
Dicentrachus labrax
Diplodus anularis
Gobidae sp.
Labrus merula
Labrus mixtus
Labrus viridis
Mugilidae sp.
Muraena helena
Phycis phycis
Scorpoeana scrofa
Sphyraena sphyraena
Spicara maena
Spondyliosoma cantharus
Symphodus mediterraneus
Symphodus melanocercus
Symphodus roissali
Symphodus rostratus
Trachurus sp.
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Table S3: The different classes and their corresponding label counts in the training & test
set.

Class Count Train Count Test
Chromis_chromis 8’925 10’863
Diplodus_vulgaris 2’995 2’479
Coris_julis 3’174 2’473
Symphodus_tinca 2’426 785
Spicara_smaris 1’857 1’073
Diplodus_sargus 1’854 1’385
Seriola 383 162
Boops_boops 1’524 1’739
Thalassoma_pavo 447 235
Oblada_melanura 972 425
Mullus_surmuletus 378 301
Sarpa_salpa 3’934 3’266
Apogon_imberbis 1’280 270
Epinephelus_marginatus 749 212
Serranus_scriba 344 209
Anthias_anthias 4’030 821
Serranus_cabrilla 242 237
Sciaena_umbra 309 414
Sparus_aurata 391 332
Other 4’165 513
Total 40’379 28’194
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Table S4: The different species-specific precision and recall values at 50% confidence
interval. Bold numbers indicate the highest number and italic numbers indicate the lowest
numbers of each precision and recall.

Class Precision Recall
Sarpa_salpa 0.91 0.54
Mullus_surmuletus 0.90 0.23
Sciaena_umbra 0.87 0.63
Serranus_scriba 0.86 0.48
Diplodus_vulgaris 0.81 0.61
Epinephelus_marginatus 0.77 0.70
Coris_julis 0.73 0.75
Chromis_chromis 0.71 0.73
Thalassoma_pavo 0.66 0.41
Boops_boops 0.60 0.61
Apogon_imberbis 0.56 0.41
Sparus_aurata 0.56 0.61
Symphodus_tinca 0.53 0.53
Serranus_cabrilla 0.52 0.40
Diplodus_sargus 0.50 0.63
Spicara_smaris 0.48 0.56
Anthias_anthias 0.46 0.40
Oblada_melanura 0.42 0.43
Seriola 0.41 0.70
Other 0.13 0.26
Total 0.66 0.65
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