
HAL Id: hal-04690494
https://hal.science/hal-04690494v2

Preprint submitted on 17 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Time and Energy-Aware Client Selection
Algorithms for Federated Learning on Heterogeneous

Resources
Alan Lira Nunes, Cristina Boeres, Lúcia Maria de A. Drummond, Laércio

Lima Pilla

To cite this version:
Alan Lira Nunes, Cristina Boeres, Lúcia Maria de A. Drummond, Laércio Lima Pilla. Optimal Time
and Energy-Aware Client Selection Algorithms for Federated Learning on Heterogeneous Resources.
2024. �hal-04690494v2�

https://hal.science/hal-04690494v2
https://hal.archives-ouvertes.fr


Optimal Time and Energy-Aware Client Selection
Algorithms for Federated Learning on

Heterogeneous Resources
Alan L. Nunes1,2 , Cristina Boeres1 , Lúcia M. A. Drummond1 , Laércio L. Pilla2

1Fluminense Federal University, Niterói, Brazil
alan lira@id.uff.br, {boeres, lucia}@ic.uff.br

2University of Bordeaux, CNRS, Bordeaux INP, Inria, LaBRI, Talence, France
alan.lira-nunes@u-bordeaux.fr, laercio.pilla@inria.fr

Abstract—Federated Learning systems allow training machine
learning models distributed across multiple clients, each one
using private local data. Iteratively, the clients send their training
contributions to a server, which performs a merge to produce an
enhanced global model. Due to resource and data heterogeneity,
client selection is crucial to optimize the system efficiency and
improve the global model generalization. Selecting more clients
is likely to increase the overall energy consumption, while a
small number of clients may decline the performance of the
trained model or require longer training time. We propose
two time- and energy-aware client selection algorithms, MEC
and ECMTC, which are proven regarding their optimality and
evaluated against state-of-the-art algorithms on an extensive
series of experiments in both simulation and HPC platform
scenarios. The results indicate the benefits of jointly optimizing
the time and energy consumption metrics using our proposals.

Index Terms—Federated learning, client selection, optimal
schedule, makespan optimization, energy consumption

I. INTRODUCTION

The advent of Federated Learning (FL) systems has pro-
vided opportunities for improved data protection and perfor-
mance for myriad industrial, scientific, and healthcare appli-
cations [9], [30]. FL acts as a distributed machine learning
technique, where a centralized server chooses a subset of
available clients to help with training [16]. Each client trains
the same model with its local data (which is never shared) and
sends the updated model’s weights to the server. The server
combines all updates to the model, tests the new model (locally
or again with the clients), and starts a new communication
round until a stopping condition is achieved, for instance,
expected accuracy or number of rounds.

The client selection for training plays a paramount role
in the effectiveness of FL systems solution quality due to
the heterogeneity of computing capacity and data [1], [3],
[17], [20], [27]–[29], [32]. Selecting more clients is likely to
increase the overall energy consumption. In contrast, a small
number of clients may affect the accuracy of the trained model.
Therefore, careful client selection reduces the training efforts,
improves the model performance, and enhances fairness [9].

Our focus in this work lies in two dimensions of client
selection: time and energy. The time taken by a training round
is determined by the slowest participating device, known as the
straggler [20], [25], [26]. Given the clients’ heterogeneity and
the exponentially-increasing computing demands of machine
learning models [4], this issue may only tend to increase in
importance. Meanwhile, the energy consumption and carbon
footprint of FL are seen as primary concerns due to limited
batteries on devices [13], energy availability [2], and for envi-
ronmental reasons [23]. Nonetheless, limited work concerns
the concurrent optimization of both dimensions, especially
regarding optimal solutions.

In this context, we present optimal client selection al-
gorithms for the joint optimization of time and energy in
Federated Learning. By defining how much data each client
should use for training, we propose two algorithms: Minimal
Makespan and Energy Consumption FL Schedule (MEC) and
Minimal Energy Consumption and Makespan FL Schedule
under Time Constraint (ECMTC). The first minimizes training
time and total energy consumption, in that order, while the
second reverses the priority between the two metrics while also
meeting a deadline. Besides proposing these novel algorithms,
we prove their optimality and provide an extensive experimen-
tal analysis using simulation and a real computing platform
using an open-source FL framework named Flower [6]. Our
results illustrate the benefits of joint time and energy optimiza-
tion against state-of-the-art algorithms [20], [28], [32].

The remainder of this paper is structured as follows. Section
II summarizes state-of-the-art client selection strategies for FL.
Section III specifies the optimization problems addressed in
this work. Section IV introduces MEC and ECMTC and shows
their optimality. Section V performs a series of experiments
comparing the proposed algorithms with strategies from the
literature. Section VI concludes and outlines future work.

II. RELATED WORK

Client selection methods aim to tackle the challenges
present in FL systems regarding system and statistical hetero-

https://orcid.org/0000-0002-9384-862X
https://orcid.org/0000-0002-1679-6643
https://orcid.org/0000-0002-3831-5230
https://orcid.org/0000-0003-0997-586X


geneity. The former is characterized by significant variability
of hardware, network connectivity, and battery capacity, and
the latter is expressed by highly non-identically distributed
data across devices, which adds complexity to problem mod-
eling, theoretical analysis, and empirical evaluations [9], [12].

FedCS [17], the pioneering work in this sense, selects
clients based on their resource conditions, such as wireless
channel states, computational capacities, and the size of rele-
vant data, to avoid inefficient clients that take longer time to
train or to communicate with the server.

Several works aim to reduce the number of communica-
tion rounds needed to reach a desired accuracy. FedPNS
[27] dynamically changes the probability of clients being
selected based on the quality of local updates, preferentially
selecting clients that propel faster model convergence. ECSM
[22] selects clients based on their historical accuracy and
reputation while employing random sampling to ensure model
generalization. AdaFL [11] evaluates clients’ contributions
by combining their performance metrics from current and
historical rounds through a flexible weighted average function.
FedMCCS [1] selects clients by predicting whether they can
successfully train the model in an environment with limited
communication and computation. AUCTION [8] encodes the
client selection policy into an attention-based neural network
using reinforcement learning when considering factors like the
size and quality of data and the resource price. In [19], the con-
tribution threshold and the data batch size are optimized based
on the client’s contribution to the convergence rate. FANS
[14] evaluates clients with a universally standardized dataset
to quantify their efficacy based on contextual information.

Other works optimize energy consumption. ELASTIC [28]
selects clients by dynamically adjusting the trade-off between
maximizing the number of selected clients and minimizing
the total energy consumption. GREED [3] ensures that se-
lected clients have sufficient battery power to upload their
local updates before a deadline. FedAECS [32] optimizes
the trade-off between energy consumption and accuracy to
handle clients with dissimilar amounts of data. ESCS [15]
considers decision criteria such as battery level, training time,
and network quality during client selection. FedAEB [31]
balances overall energy consumption, model performance, and
latency through a dynamic optimization method that uses
entropy-regularized reinforcement learning. EACS-FL [33]
jointly optimizes energy consumption and training time by
employing the combinatorial multi-armed bandit method.

Few works find the optimal selection of clients regard-
ing a given optimization target. OLAR [20] minimizes the
duration of a communication round by greedily controlling
how much data each client uses for training. Wang et al
[26] propose a binary search-based solution for the same
problem with independent and identically distributed (IID)
data and another algorithm for non-IID data. Although not
proved in the paper, the former algorithm seems optimal.
Both works require monotonically increasing execution times
for their algorithms to work. Finally, a solution based on
the multiple-choice minimum-cost maximal knapsack packing

problem ((MC)2MKP) has been proposed to minimize energy
consumption while controlling the workload distribution on
heterogeneous resources [21].

Despite the contributions of the related work, to the best of
our knowledge, this work is the first to propose algorithms
that make optimal selections of clients with heterogeneous
resources by optimizing the execution time and energy con-
sumption jointly while defining how much data each should
use locally. We also go beyond simulations by providing
experimental results in a real platform, which incurs additional
challenges regarding time and energy profiling, and the effects
of scheduling decisions over multiple communication rounds.

III. PROBLEM EXAMPLE AND DEFINITIONS

A. Problem Example

Consider an FL system consisting of one server and three
clients with heterogeneous resources, illustrated in Fig. 1. The
server must choose how to distribute six mini-batches of work
(tasks) during a training round. When the server requests that
client 1 use two mini-batches for training, the client will take
part of its local data (that is never shared) to compose the mini-
batches, train with them, and send its updated model back to
the server.

Server

Client 1 Client 2 Client 3

Train your model
using 2 tasks!

Train your model
using 3 tasks!

Train your model
using 1 task!

1 task
1 task
1 task

1 task
1 task
1 task

Local Data

1 task
1 task
1 task

1 task
1 task
1 task

Local Data

1 task
1 task
1 task

1 task
1 task
1 task

Local Data

Fig. 1. Interaction between the server and the selected clients concerning the
distribution of tasks. Tasks represent slices of local data to be used by clients.

In FL systems, the standard manner for distributing work
(FedAvg [16]) is to split the work evenly among the clients
(i.e., 2 tasks/client). Suppose that the server has an estimation
of the execution time in seconds (Pi) and the energy consump-
tion in joules (Ei) for training each client i with a certain
number of mini-batches (Fig. 2). With these estimations, we
can notice that the resulting schedule would result in a training
time (Cmax) of 10 s, given by the slowest client, and total
energy consumption (ΣE) of 13.32 J, given by the sum of the
energy consumed by all clients. This schedule is illustrated in
the left-hand side of Fig. 3.

0 2.0 4.0 6.0 8.0 10.0 12.0

0 3.0 6.0 9.0 12.0 15.0 18.0

0 5.0 10.0 15.0 20.0 25.0 30.0

0 3.5 6.5 9.5 12.5 15.5 18.5

0 2.8 5.2 7.6 10.0 12.4 14.8

0 0.88 1.62 2.38 3.12 3.88 4.62P3

P2

P1

E3

E2

E1

Number of Tasks
0 1 2 3 4 5 6

Number of Tasks
0 1 2 3 4 5 6

Fig. 2. Performance and energy costs per client for each number of tasks.



10
Execution

Time

5

3 tasks

2 tasks

1 task

Cmax: 6.0 s

10 15
Execution

Time

5

3 tasks

3 tasks

Cmax: 15.0 s

6 9 12
Energy

Consumption

3

3 tasks

2 tasks

1
task

ΣE:
15.58 J

6 9
Energy

Consumption

3

3 tasks

3
tasks

ΣE:
9.98 J

10

3

Execution
Time

5

2

1

R
es

ou
rc

e

2
tasks

2 tasks

2 tasks

Cmax: 10.0 s

6 9
Energy

Consumption

3

2 tasks

2 tasks

2
tasks

ΣE:
13.32 J

3

2

1

R
es

ou
rc

e
Naïve Timeopt

Energyopt
(D: 15.0 s)

Fig. 3. Examples of training times and energy consumption when scheduling
six mini-batches (tasks) among the devices.

Now consider the situation where the server aims to opti-
mize the training time and the energy consumption, in order.
An optimal schedule would distribute three tasks for the first,
two for the second, and one for the third client, leading to
Cmax = 6 s and ΣE = 15.58 J (Fig. 3, center).

Finally, consider the scenario where the server aims to
optimize, in order, the energy consumption and the training
time, while also meeting a given deadline D = 15 seconds.
In this situation, no tasks would be given to the first client,
while the other two would receive three tasks each, leading to
Cmax = 15 s and ΣE = 9.98 J (Fig. 3, right-hand side). Mean-
while, if no deadline were present, a schedule with all tasks
on the third client would lead to better energy consumption
(ΣE = 4.62 J) but worse training time (Cmax = 30 s).

B. Scheduling Problem Definitions

The previous example illustrated the importance of efficient
client selection in FL. Consider the case of n heterogeneous re-
sources organized in a set R = {1, 2, . . . , n}. These resources
are required to train machine learning models with a workload
of total size T ∈ N. This workload contains identical,
independent, and atomic tasks, which represent slices of local
data. Each resource i ∈ R can be assigned Ai ⊂ N tasks to
compute. Two functions, Pi ∶ Ai → R≥0 and Ei ∶ Ai → R≥0,
represent the execution time (or performance) and energy
consumption, respectively, of resource i when computing its
assigned number of tasks. For now, no assumptions are made
regarding the behavior or shape of these functions. Finally, let
X = {x1, . . . , xn} be the schedule that assigns xi ∈ Ai tasks
to each resource i ∈ R. Based on these functions, we define
two distinct optimization targets: the makespan Cmax (Eq. (1))
and the total energy consumption ΣE (Eq. (2)).

Cmax ≔ max
i∈R

Pi(xi) (1) ΣE ≔ ∑
i∈R

Ei(xi) (2)

Table I summarizes the notation used throughout this text.
Let A = {A1, . . . , An}, P = {P1, . . . , Pn}, and E =

{E1, . . . , En} denote the sets of possible assignments, time
functions, and energy functions. Given a problem instance
(R, T,A,P, E), the goal of the Minimal Makespan and En-
ergy Consumption FL Schedule (MEC) problem is to find an
optimal schedule X

∗ that minimizes Cmax and ΣE, in that
order (Eq. (3)). On the other hand, given a problem instance
(R, T,A,P, E , D) with deadline D ∈ R≥0, the goal of the
Minimal Energy Consumption and Makespan FL Schedule
under Time Constraint (ECMTC) problem is to find an optimal
schedule X

∗ that minimizes ΣE and Cmax, in that order, while
meeting the deadline (Eq. (4)).

TABLE I
NOTATION SUMMARY FOR THE OPTIMIZATION PROBLEMS.

Symbol Meaning

n Number of resources.
R Set of resources.
T Size of the workload.
Ai Set of numbers of tasks that can be assigned to resource i.
xi Number of tasks assigned to resource i.
Pi Set of execution times of resource i.
Ei Set of energy consumptions of resource i.
D User-defined deadline (ECMTC only).
X Schedule that assign all tasks to resources.
X

∗ Optimal schedule.
Cmax Makespan (maximum execution time) of a schedule.
ΣE Total energy consumption of a schedule.

lex minX Cmax,ΣE (3a)

subject to ∑
i∈R

xi = T, (3b)

xi ∈ Ai, ∀i ∈ R
(3c)

lex minX ΣE,Cmax (4a)

subject to ∑
i∈R

xi = T, (4b)

Cmax ≤ D, (4c)
xi ∈ Ai, ∀i ∈ R

(4d)

With the lexicographic method (lex), a type of multi-
objective optimization, the objective functions are arranged in
order of importance. Once the order is set, each function is
solved such that each subsequent problem does not degrade
any of the previous solutions [5].

Fig. 4 illustrates the interactions between the different prob-
lems by comparing the makespan (horizontal axis) and total
energy consumption (vertical axis) of varied solutions. The
solution for MEC (red-solid point) finds the minimal makespan
and the minimal energy consumption that goes with it. The
solution for ECMTC with D ≈ ∞ (green-solid point) finds the
minimal energy consumption and the minimal makespan for
it. In between, solutions for ECMTC with specific time limits
(blue-solid points) find the minimal energy consumption in a
given time limit and the minimal makespan for such energy
consumption. All these points represent solutions belonging
to the Pareto frontier — by definition, no solutions can be
improved for one metric without compromising the other.



ECMTC
(D = ∞)

ECMTC
(D = D')

ECMTC
(D = D'')

MEC

D'D''

ΣE

Cmax

Fig. 4. Relation between MEC and ECMTC for a given problem instance.

IV. TIME AND ENERGY-AWARE SCHEDULING
ALGORITHMS

The solutions to the MEC and ECMTC problems are
based on a dynamic programming algorithmic structure (Al-
gorithm 1). It computes partial solutions that optimize the
problem with worst-case complexity of O(T 2

n) and includes
five actions that can be executed differently depending on the
problem being solved: (I) Filtering, (II) Initialization, (III)
Find Solutions for the First Resource, (IV) Test New Solution,
and (V) Organize Final Solution.

Algorithm 1 Dynamic Programming Skeleton
Input: R, T , A, P , and/or E , D (default: +∞).
Output: X

∗, Cmax, and/or ΣE.
1: (I) Filtering
2: for i = 1, . . . , n do ▷ Initialize the minimal costs and partial solutions matrices.
3: for t = 0, . . . , T do
4: I[i][t] ← ∅
5: (II) Initialization
6: for j ∈ A1 do
7: I[1][j] ← j
8: (III) Find Solutions for the First Resource
9: for i = 2, . . . , n do ▷ Find the solutions for other resources.

10: for j ∈ Ai do ▷ Test all assignments to resource i.
11: for t = j, . . . , T do
12: (IV) Test New Solution
13: t ← T
14: for i = n, . . . ,1 do ▷ Extract the optimal schedule X

∗.
15: j ← I[i][t] ; xi ← j ; t ← t − j

16: (V) Organize Final Solution

A. Solving MEC (time first, energy second)

A two-step approach is required to solve MEC (Algo-
rithm 2). Firstly, the minimal makespan is computed (Algo-
rithm 3) and then used as the deadline D when computing
the minimal energy consumption (Algorithm 4). The second
step provides the optimal schedule with minimal makespan
and energy consumption, as proven in Theorem 2.

Algorithm 2 MEC
1: ,Cmax, ← MinMaxTime(R, T,A,P)
2: X

∗
, ,ΣE ← MinSumEnergy(R, T,A,P,E,Cmax)

3: return X
∗, Cmax, ΣE

1) Step 1: Computing the Minimal Makespan.: Consider
ZP

r (τ) as an optimal solution value for a partial problem
with the first r resources that schedule τ tasks. Assume that
ZP

r (τ) ≔ ∞ if no solution exists and that ZP
0 (0) ≔ 0. Thus,

ZP
r (τ) is defined in Eq. (5) and can be recursively computed

following Eq. (6).

ZP
r (τ) ≔ min{ max

i∈[1,r]
Pi(xi)

»»»»»»»»»»

r

∑
i=1

xi = τ} (5)

ZP
r (τ) = min

j∈Ar,j≤τ
max (ZP

r−1(τ − j), Pr(j)) (6)

Algorithm 3 employs the properties of Eqs. (5) and (6).
It computes all possible solutions for ZP

1 in action (III),
then computes optimal solutions for an increasing number
of resources on the main loop (Algorithm 1, line 9). The
best solution for a given resource i and t tasks is defined
considering the previous best solution with i − 1 resources
(based on Eq. (6)). The makespan of this partial solution is
computed and stored in P [i][t] by comparing the maximum
between the previous best solution and the execution time for
a given number of tasks in resource i. The minimal makespan
is found by keeping the minimal solution in action (IV). The
solution for ZP

n (T ) is returned in action (V).

Algorithm 3 MinMaxTime (Minimal Makespan)
1: (I) Filtering: Nothing to do.
2: (II) Initialization: P [i][t] ← ∞
3: (III) Find Solutions for the First Resource: P [1][j] ← P1(j)
4: (IV) Test New Solution:
5: Pnew ← max (P [i − 1][t − j], Pi(j))
6: if Pnew < P [i][t] then
7: P [i][t] ← Pnew ; I[i][t] ← j ▷ Best solution so far.
8: (V) Organize Final Solution: Cmax ← P [n][T ]

The optimality of Algorithm 3 can be demonstrated by
induction, and its proof will be based on Eqs. (5) and (6),
since row r in matrix P represents the optimal solutions found
for ZP

r . Notice that the maximum and minimum operations
are commutative and associative, so the order in which the
resources and number of tasks are considered does not impact
the optimal makespan found.

Lemma 1. Solutions in ZP
1 are optimal.

Proof. The only possible solutions for ZP
1 are ZP

1 (j) = P1(j)
for all j ∈ A1, therefore they are optimal.

Lemma 2. If solutions in ZP
i are optimal, solutions in ZP

i+1

are also optimal.

Proof. The value of ZP
i+1(τ) for τ ∈ [0..T ] is minimum

among all maximums between ZP
i (τ − j) and Ci+1(j) for

j ∈ Ai+1, j ≤ τ (Eq. (6)). To consider that there would be
another schedule with a smaller value is a contradiction, as
it would require having a sub-optimal ZP

i or a value that is
smaller than the minimum of all possible optimal solutions for
ZP

i+1(τ). Hence, ZP
i+1 is optimal.

Theorem 1. ZP
n (T ) yields optimal solution to the Minimal

Makespan Problem.



Proof. Lemmas 1 and 2 prove the optimality of the base case
and the inductive step, so ZP

n (T ) is optimal.

2) Step 2: Computing the Minimal Energy Consumption.:
Consider ZE

r (τ,D) as an optimal solution value for a partial
problem with the first r resources that schedule τ tasks while
meeting the deadline D. Similar to the previous case, assume
that ZE

r (τ, ⋅) ≔ ∞ if no solution exists and that ZE
0 (0, ⋅) ≔

0. Thus, ZE
r (τ,D) is defined in Eq. (7) and can be recursively

computed following Eq. (8).

ZE
r (τ,D) ≔ min

⎧⎪⎪⎪⎨⎪⎪⎪⎩

r

∑
i=1

Ei(xi)
»»»»»»»»»»»»

r

∑
i=1

xi = τ,

Pi(xi) ≤ D, i ∈ [1, r]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(7)

ZE
r (τ,D) = min

j∈Ar,j≤τ,Pr(j)≤D
ZE

r−1(τ − j,D) + Er(j) (8)

Algorithm 4, which is based on (MC)2MKP [21], employs
the properties of Eqs. (7) and (8) and discards in action (I) any
task assignments that could surpass the deadline D. Moreover,
only solutions with minimal energy consumption are kept in
action (IV). Since its difference compared with (MC)2MKP
lies in its filtering, which does not impact the general behavior
of the algorithm nor its optimality, and since (MC)2MKP has
been proven optimal for finding minimal accumulated costs,
we will refrain from proving Algorithm 4’s optimality.

Algorithm 4 MinSumEnergy (Minimal Energy Consumption)
1: (I) Filtering:
2: for i = 1, . . . , n do ▷ Allow only assignments that respect D.
3: Ai ← {j∣j ∈ Ai ∧ Pi(j) ≤ D}
4: (II) Initialization: E[i][t] ← ∞
5: (III) Find Solutions for the First Resource: E[1][j] ← E1(j)
6: (IV) Test New Solution:
7: Enew ← E[i − 1][t − j] +Ei(j)
8: if Enew < E[i][t] then
9: E[i][t] ← Enew ; I[i][t] ← j ▷ Best solution so far.

10: (V) Organize Final Solution: ΣE ← E[n][T ]

Theorem 2. The schedule computed by MEC is optimal.

Proof. MinMaxTime (Algorithm 3) finds a schedule with min-
imal makespan (Theorem 1), which is used to discard any
task assignments that could surpass its value at action (I)
of MinSumEnergy (Algorithm 4). Consequently, no schedule
computed by MinSumEnergy can have a higher (due to
filtering) or lower (due to the optimality of MinMaxTime)
makespan. By definition, MinSumEnergy finds a schedule
with minimal energy consumption [21, Theorem 1]. Thus, the
schedule computed by MEC (Algorithm 2) achieves minimal
makespan and energy consumption and, therefore, it is opti-
mal.

B. Solving ECMTC (energy first, time second)

Unlike MEC, ECMTC can be computed in a single pass.
Consider ZEP

r (τ,D) as an optimal solution pair (ΣE,Cmax)
for a partial problem with the first r resources that schedules τ

tasks while meeting the deadline D. Assume that ZEP
r (τ, ⋅) ≔

(∞,∞) if no solution exists and that ZEP
0 (0, ⋅) ≔ (0, 0).

Thus, ZEP
r (τ,D) is defined in Eq. (9) and can be recursively

computed following Eq. (10).

ZEP
r (τ,D) ≔ lex min{

r

∑
i=1

Ei(xi), max
i∈[1,r]

Pi(xi)

such that
r

∑
i=1

xi = τ ∧ Pi(xi) ≤ D, i ∈ [1, r]}
(9)

ZEP
r (τ,D) = lex min

j∈Ar,j≤τ,Pr(j)≤D
e + Er(j), p + Pr(j)

where (e, p) = ZEP
r−1(τ − j,D)

(10)
Algorithm 5 employs the properties of Eqs. (9) and (10).

It does the same filtering as MinSumEnergy, and it combines
actions (II), (III), and (V) of MinMaxTime and MinSumEn-
ergy. Its main difference lies in action (IV). The best solution
for a given resource i and t tasks is still defined based on
the previous best solution with i − 1 resources. However,
two conditions can lead to a better solution: (i) the energy
consumption of the new solution is smaller than that of
the current solution, or (ii) they both have the same energy
consumption, and the new solution has a shorter execution
time. By comparing the energy consumption and execution
time of the previous best and current solutions and keeping
their lexicographic minimum, ZEP

i (t,D) is computed, and
the minimum energy consumption and makespan pair is found.

Algorithm 5 ECMTC
1: (I) Filtering:
2: for i = 1, . . . , n do ▷ Allow only assignments that respect D.
3: Ai ← {j∣j ∈ Ai ∧ Pi(j) ≤ D}
4: (II) Initialization: E[i][t] ← ∞ ; P [i][t] ← ∞
5: (III) Find Solutions for the First Resource: E[1][j] ← E1(j) ; P [1][j] ← P1(j)
6: (IV) Test New Solution:
7: Enew ← E[i − 1][t − j] +Ei(j)
8: Pnew ← max (P [i − 1][t − j], Pi(j))
9: if (Enew < E[i][t]) or (Enew = E[i][t] and Pnew < P [i][t]) then

10: E[i][t] ← Enew ; P [i][t] ← Pnew ; I[i][t] ← j ▷ Best solution so far.
11: (V) Organize Final Solution: ΣE ← E[n][T ] ; Cmax ← P [n][T ]

The optimality of Algorithm 5 is proved analogously to
MinMaxTime.

Lemma 3. Solutions in ZEP
1 are optimal.

Proof. The only possible solutions for ZEP
1 are ZEP

1 (j,D) =
(E1(j), P1(j)) for all j ∈ A1, P1(j) ≤ D, therefore they are
optimal.

Lemma 4. If solutions in ZEP
i are optimal, solutions in ZEP

i+1

are also optimal.

Proof. By the definition in Eq. (10), the value of ZEP
i+1 (τ,D)

for τ ∈ [0, T ] is the minimum pair (energy consump-
tion, execution time) among all possible combinations of
(e + Ei+1(j), p + Pi+1(j)) for (e, p) = ZEP

i (τ − j,D) and
j ∈ Ai+1, j ≤ τ, Pi+1(j) ≤ D.



Using the notation (e∗, p∗) = ZEP
i (τ,D) for τ ∈ [0, T ],

assume there is another solution (e′, p′) such that e
′
< e

∗

or e
′
= e

∗ and p
′
< p

∗. This situation would require one
of following: (I) having a sub-optimal ZEP

i ; (II) having a
solution with e

′ smaller than the minimum of all possible
combinations of solutions of ZEP

i and Ei+1; or (III) having
a solution with e

′
= e

∗ and p
′ smaller than the minimum of

all possible combinations of solutions of ZEP
i and Pi+1.

All of the above-stated possibilities are contradictions: (I)
ZEP

i is optimal by the definition of Lemma 4; (II) e
′ cannot

be smaller than its minimum possible value; and (III) p′ cannot
be smaller than its minimum possible value (or e′ < e

∗, which
is also a contradiction). Therefore, ZEP

i+1 is optimal.

Theorem 3. ZEP
n (T ) yields an optimal solution to the

ECMTC problem.

Proof. Lemmas 3 and 4 prove the optimality of the base case
and the inductive step, so ZEP

n (T ) is optimal.

V. EXPERIMENTAL EVALUATION

This section presents an extensive evaluation of MEC and
ECMTC algorithms compared to four state-of-the-art client
selection strategies for FL: ELASTIC [28], FedAECS [32],
OLAR [20], and (MC)2MKP [21]. The evaluations were
carried out in both simulation-based and real-world scenarios.
For more information about the data and code required to run
and analyze the experiments, see reproducibility instructions.

A. Simulation-Based Experiments

1) Description: The resource heterogeneity was simulated
by generating arbitrary values for execution time, energy
consumption, and accuracy for each possible task assignment
per resource, using different functions as summarized in
Table II. An incremental seed basis was used to ensure the
reproducibility of the experiments and the randomness of the
generated values.

TABLE II
FUNCTIONS USED TO SIMULATE THE RESOURCE HETEROGENEITY.

Function Behavior

linear

f(x) = α + β ⋅ x,
where x = t, ∀t ∈ [0..T ]

α,β ∈ [1, 10), ∀i ∈ R (time)
α,β ∈ [0.32, 3.2), ∀i ∈ R (energy)
α,β ∈ [0.2, 2), ∀i ∈ R (accuracy)

n ⋅ log(n)

f(x) = α + β ⋅ x ⋅ log(x + 1),
where x = t, ∀t ∈ [0..T ]

α,β ∈ [1, 10), ∀i ∈ R (time)
α,β ∈ [0.32, 3.2), ∀i ∈ R (energy)
α,β ∈ [0.2, 2), ∀i ∈ R (accuracy)

random
f(x) = x,
where x ∈ [0..T )

The generated values for accuracy were normalized through
the min-max scaling procedure to prevent the sum of the
accuracy of the selected clients from exceeding the theoretical

maximum value of 1. Thus, the lowest value was transformed
to 0 and the highest to 1. Three sets of simulation-based
experiments were considered: ES1, ES2, and ES3, which are
described in Table III.

TABLE III
DESCRIPTION OF THE SIMULATION-BASED EXPERIMENTS.

Experiment
Set Description

ES1

Purpose: Evaluation of the makespan, energy consumption,
and accuracy metrics based on the schedule produced by
each algorithm.

Organization
⬩ Number of resources: 10 and 100.
⬩ Number of tasks: from 1,000 to 5,000, with step of 100.
⬩ Resource heterogeneity: linear, n ⋅ log(n), and random functions.

ES2

Purpose: Evaluation of the elapsed time taken by each algorithm
to find a schedule.

Organization
⬩ First group (G1):
⋄ Number of resources: 100.
⋄ Number of tasks: from 200 to 2,000, with a step of 200.

⬩ Second group (G2):
⋄ Number of resources: from 10 to 100, with a step of 15.
⋄ Number of tasks: 2,000.

⬩ Resource heterogeneity: linear function.
⬩ Measurements: 20 samples of five executions per algorithm.

ES3

Purpose: Evaluation of the trade-off between time and
energy consumption with ECMTC.

Organization
⬩ Algorithms: MEC and ECMTC.
⬩ Number of resources: 10 and 100.
⬩ Number of tasks: from 1,000 to 5,000, with a step of 100.
⬩ Resource heterogeneity: linear, n ⋅ log(n), and random functions.
⬩ Reference deadline: optimal makespan of MEC.
⬩ Relaxed deadlines: 25% to 200% percentage increases of
the reference deadline with a step of 25%.

2) ES1 Results: Fig. 5 displays the obtained makespan,
energy consumption, and accuracy when varying the number
of tasks as described in ES1. Table IV outlines the minimum
and maximum values obtained for each metric by the algo-
rithms, for 1,000 (min.) and 5,000 (max.) scheduled tasks,
respectively. Concerning the makespan, the schedules for MEC
and OLAR achieved the leading results, which are optimal
(curves are overlapped in Fig. 5(a)). The makespan associ-
ated with the MEC schedule was 40.08% smaller than the
ELASTIC one, the second-best outcome amongst the literature
algorithms. Regarding energy consumption, the schedules for
ECMTC and (MC)2MKP achieved the leading results, which
are optimal (curves are overlapped in Fig. 5(b)). Compared
to the best results produced by the algorithms from the
literature for 5,000 tasks, the ECMTC schedule consumed
52.14% less energy than OLAR, the second-best result in
energy consumption terms. For accuracy, the schedules for
FedAECS outperformed the others for any number of tasks. In
particular, a single resource processed all tasks differently from
the other algorithms. Nonetheless, this gain in accuracy for
FedAECS when using just one resource significantly impacted
the makespan and energy metrics.

3) ES2 Results: Table V presents the minimum and maxi-
mum execution times required for each algorithm to schedule
2,000 tasks for 100 resources, which was the worst-case
configuration considering the experiments held in this work.
Note that MEC and ECMTC algorithms demanded a longer
time than the others. Particularly compared to (MC)2MKP,
the two proposed strategies took respectively 40.13 (+63.84%)

https://doi.org/10.17605/OSF.IO/T5ZPH


1000 2000 3000 4000 5000
Number of tasks

0

100000

200000

300000

400000

M
ak

es
pa

n 
(s

)

ECMTC
ELASTIC

FedAECS
MC²MKP

MEC
OLAR

(a) Makespan variation

1000 2000 3000 4000 5000
Number of tasks

0

25000

50000

75000

100000

125000

E
ne

rg
y 

co
ns

um
pt

io
n 

(J
)

ECMTC
ELASTIC

FedAECS
MC²MKP

MEC
OLAR

(b) Energy consumption variation

1000 2000 3000 4000 5000
Number of tasks

0.0

0.2

0.4

0.6

W
ei

gh
te

d 
m

ea
n 

ac
cu

ra
cy

ECMTC
ELASTIC

FedAECS
MC²MKP

MEC
OLAR

(c) Accuracy variation

Fig. 5. ES1 results for 100 n ⋅ log(n) resources regarding makespan (a),
energy consumption (b), and accuracy (c) (1,000 to 5,000 tasks scheduled).

TABLE IV
ES1 RESULTS FOR 100 n ⋅ log(n) RESOURCES.

Client Selection
Algorithm

1,000 Scheduled Tasks 5,000 Scheduled Tasks

Makespan (s) Energy
Consumption (J) Accuracy Makespan (s) Energy

Consumption (J) Accuracy

MEC 105.83 3,144.66 0.0002 777.98 24,526.49 0.0018
ECMTC 2,423.59 2,003.96 0.00003 24,178.32 12,787.26 0.00003
OLAR 105.83 3,144.66 0.0002 777.98 24,526.49 0.0018

(MC)2MKP 2,423.59 2,003.96 0.00003 24,178.32 12,787.26 0.00003
ELASTIC 244.34 4,173.18 0.0006 1,941.03 32,878.40 0.0046
FedAECS 67,899.87 21,727.96 0.1502 418,898.89 134,047.64 0.6930

and 130.95 (+208.31%) more seconds to find a schedule for
the same number of tasks. Anyway, one should recall that both

MEC and ECMTC optimize two targets and, in real-world
scenarios, where the performance of resources is usually not
known for all possible task assignments, their overheads can
be drastically reduced to feasible times, as we will see in the
subsequent subsection V-B.

TABLE V
ES2 MINIMUM AND MAXIMUM EXECUTION TIMES IN SECONDS FOR

SCHEDULING 2,000 TASKS TO 100 linear RESOURCES.

Client Selection
Algorithm

First Group (G1) Second Group (G2)
Min. Max. Min. Max.

MEC 86.42 102.99 86.61 90.78
ECMTC 159.52 193.81 159.99 161.8
OLAR 0.012 0.015 0.012 0.013

(MC)2MKP 52.13 62.86 52.03 53.17
ELASTIC 0.005 0.006 0.005 0.007
FedAECS 0.53 0.71 0.53 0.54

4) ES3 Results: Table VI presents the analysis of the trade-
off between the makespan and energy consumption metrics
for 100 linear resources for 5,000 tasks, the most relevant
configuration. The percentage increases (+) or decreases (−)
for ECMTC are relative to the values obtained by MEC. Fig.
6 illustrates the convex curve obtained from these solutions.
The dashed blue vertical line marks the point of maximum
curvature (knee point), which shows the solution for ECMTC
with the most balanced tradeoff. For this particular solution,
by employing a deadline of 150% relative to MEC’s opti-
mal makespan, ECMTC reduced the energy consumption by
37.32% compared to MEC.

TABLE VI
ES3 RESULTS FOR 100 linear RESOURCES.

Client Selection
Algorithm

Relaxed
Deadline Makespan (s) Energy

Consumption (J)

MEC — 196.0 6,188.65

ECMTC

125% → D = 245 244.89 (+24.94%) 4,607.88 (−25.54%)
150% → D = 294 294.0 (+50.0%) 3,878.75 (−37.32%)
175% → D = 343 342.97 (+74.98%) 3,505.1 (−43.36%)
200% → D = 392 391.94 (+99.97%) 3,238.61 (−47.67%)
225% → D = 441 440.81 (+124.9%) 3,064.85 (−50.48%)
250% → D = 490 489.89 (+149.94%) 2,936.56 (−52.55%)
275% → D = 539 538.77 (+174.88%) 2,835.75 (−54.18%)
300% → D = 588 587.87 (+199.93%) 2,756.81 (−55.45%)

B. Real-World Experiments

1) Description of the Emulated Environment: As a proof of
concept, the client selection algorithms were implemented on
Flower [6], currently one of the most prominent open-source
frameworks for managing FL systems. The investigations
considered an FL system formed by a Server and 50 Clients,
each running on an exclusive node that featured an Intel Xeon
Gold 5220 CPU (18 cores), 96 GiB RAM, and no accelerators
(e.g., GPUs). All the nodes belonged to a particular cluster of
Grid’5000 [7], a large-scale and flexible testbed environment
focused on parallel and distributed computing experiment-
driven research. Despite that, the number of CPU cores used by



200 300 400 500 600
Makespan (s)

3000

4000

5000

6000

E
ne

rg
y 

co
ns

um
pt

io
n 

(J
)

MEC

125%

150%

175%
200%

225% 250% 275% 300%

Point of maximum curvature

Fig. 6. ES3 trade-off curve for 100 linear resources.

each client was deliberately restricted, allowing the emulation
of resource heterogeneity. The overall number of clients was
50 heterogeneous clients, where each subset of 5 clients was
associated with i cores, i = 1, 2, 4, 6, 8, 10, 12, 14, 16, 18.

The clients were requested to train the MobileNetV2 [24]
model, a lightweight convolutional neural network, using a
balanced and distinct partition of CIFAR-10 [10], a popular
multi-class dataset of colored images (32 × 32 pixels) arranged
in ten classes, each labeling a different object. The balanced
partitions, generated through the dataset-splitter1 tool, were
accessible exclusively by each client on its local storage,
allowing the emulation of the data privacy aspect of FL
systems. Hence, each client had 1,000 local images available
for training and 200 for testing the model, totaling 50,000 and
10,000 images, respectively.

The experiments comprised 100 communication rounds.
The batch size, i.e., the number of local samples processed
before a local model update, was set to 32, and the number of
epochs, i.e., complete passes through the local training dataset,
to 5. FedAvg [16] was used on the server to fusion the partial
contributions of each round. PowerJoular [18] was employed
on the selected clients to measure their energy consumption
during the training and testing phases.

The client selection algorithms executed during the training
phase were Random, MEC, ECMTC, ECMTC D15, OLAR,
(MC)2MKP, ELASTIC, and FedAECS. During the testing
phase, only Random was employed, as this phase was executed
exclusively to evaluate the quality of the models trained by
the clients selected by each algorithm for the training phase.
Regarding the Random Strategy, 50% and 20% of the available
clients were selected for the training and testing phases,
respectively. In the case of the ECMTC and (MC)2MKP
algorithms, as preliminary experiments had pointed out a fixed
subset of clients was selected in all communication rounds2, a
random sampling of 80% of the available clients was applied
in each round, causing a diversification of the selection client

1dataset-splitter - https://github.com/alan-lira/dataset-splitter
2Both algorithms optimize a single round. Given that there were no changes

in the clients between rounds, the same energy-optimal subset of clients was
always chosen.

process. Opposite to the unlimited deadline used by ECMTC,
the ECMTC D15 assumed a training deadline of 15 seconds.

The overhead of the client selection process can force all
clients to an idle state until its completion, resulting in a waste
of resources. In this sense, from round r onward (r ≥ 2),
the selection of clients for round r + 1 was concomitantly
performed (in the server) with the execution of round r. In
this way, suppose TT and CT are the maximum training
time (makespan) and the maximum communication time of
the selected clients during the round r, respectively. The
communication time can be characterized by the actions
performed before and after a client’s local training, such as the
model parameters (weights) exchange between the server and
him. Let ST be the duration of the client selection process
by an algorithm to select clients for round r + 1. Let IT
be the idle time of clients before the round r + 1 starts.
Therefore, IT can be calculated as follows: if ST > TT+CT ,
IT = ST − (TT + CT ). Otherwise, IT = 0.

Unlike the simulation-based experiments, the scheduling ex-
penses were unknown before the FL execution. Consequently,
the first communication round targeted the performance pro-
filing of all 50 clients by scheduling an equal number of
tasks for each client. From the second round onward, the
client selection algorithms based their scheduling decision on
the achieved performance of the clients in previous rounds,
particularly for the execution time, energy consumption, and
accuracy metrics, when applicable. Nevertheless, since each
round would report the scheduling expense of a specific
number of tasks for each selected client, the performance
for most assignment possibilities per client would still be
uncertain to the algorithms. Therefore, in each round, a
linear interpolation/extrapolation of the past metrics values
was computed, providing varied estimated performances for
each client as input to the algorithms. The linear estimations
assumed the range from zero to the number of available local
images in each client, with a step of 100.

In the first set of experiments, 12,500 training tasks and
2,500 testing tasks were scheduled per round, while in the
second set of experiments, 25,000 and 5,000 were scheduled,
respectively. Each task symbolized a local image used by a
client. In each round, each selected client randomly sliced a
subset of data based on its number of assigned tasks. The data
slice implies that a client selected in multiple rounds could
have used a distinct number of images and eventually used
repeated images throughout the FL execution.

2) Scheduling Overhead: Aiming to evaluate the overhead
of the algorithms regarding all 100 communication rounds,
Table VII presents the mean values, in seconds, for the client
selection duration (ST), the makespan (TT), the maximum
communication time (CT), and the clients idle time (IT).
Concerning the first set of experiments, no client suffered
from idleness. However, for the second set of experiments,
all clients waited 1.9 seconds per round before the MEC algo-
rithm could finish its selection, which represented a 12.31%
overhead. Nonetheless, for models that are more complex than
MobileNetV2 or resources with lower bandwidth capacity,

https://github.com/alan-lira/dataset-splitter


this overhead is likely to be masked due to a longer training
duration or communication.

TABLE VII
MEAN CLIENT SELECTION OVERHEAD IN SECONDS.

Client Selection
Algorithm

First Set of Experiments Second Set of Experiments
ST TT CT IT ST TT CT IT

Random 0.01 15.79 6.06 0 0.01 26.88 7.58 0
MEC 8.55 7.21 6.87 0 17.34 8.73 6.71 1.9

ECMTC 6.08 12.98 6.11 0 17.94 14.6 6.37 0
ECMTC D15 5.28 11.53 5.79 0 16.02 12.45 5.82 0

OLAR 0.86 7.96 6.67 0 1.72 10.19 6.41 0
(MC)2MKP 2.28 13.22 6.0 0 6.12 15.09 6.42 0
ELASTIC 0.82 10.0 6.63 0 1.49 15.8 6.47 0
FedAECS 0.99 10.63 5.93 0 1.54 16.12 7.44 0

3) Results: Having in hand the first and second sets of
experiments, Tables VIII and IX summarize, respectively, the
following metrics considering all of the 100 communication
rounds: i) for the training phase, the mean number of selected
clients, the total time (in seconds), and the total energy
consumption (in joules), and ii) for the testing phase, the final
accuracy for the trained model (last round).

TABLE VIII
SUMMARY OF METRICS FOR THE FIRST SET OF EXPERIMENTS.

Client Selection
Algorithm

Mean Number of
Selected Clients

Total
Time (s)

Total Energy
Consumption (J)

Final
Accuracy

Random 25 1,579.19 1,039,519.74 0.10
MEC 50 721.22 1,486,976.73 0.10

ECMTC 13.58 1,298.15 763,300.76 0.40
ECMTC D15 13.62 1,152.81 767,812.95 0.38

OLAR 50 795.65 1,493,421.76 0.10
(MC)2MKP 13.58 1,322.24 764,808.14 0.40
ELASTIC 50 1,000.28 1,502,038.71 0.10
FedAECS 22.93 1,062.69 953,130.32 0.10

TABLE IX
SUMMARY OF METRICS FOR THE SECOND SET OF EXPERIMENTS.

Client Selection
Algorithm

Mean Number of
Selected Clients

Total
Time (s)

Total Energy
Consumption (J)

Final
Accuracy

Random 25 2,687.71 1,615,671.34 0.45
MEC 50 872.96 2,030,212.43 0.10

ECMTC 25.25 1,460.16 1,522,079.18 0.41
ECMTC D15 25.58 1,244.79 1,532,521.77 0.45

OLAR 50 1,019.37 2,051,372.70 0.10
(MC)2MKP 25.25 1,508.98 1,519,950.96 0.43
ELASTIC 50 1,579.53 2,078,821.69 0.10
FedAECS 25.25 1,611.62 1,541,478.76 0.41

In the first set of experiments (Table VIII), recall that 12,500
training and 2,500 testing tasks were scheduled per communi-
cation round, amounts that equate to 25% of the respective to-
tal data. These reduced amounts influenced the poor quality of
the model obtained by the algorithms that selected more clients
since each one trained its local model with lesser data than
the clients selected by the remaining algorithms. MEC and
OLAR, the best algorithms for optimizing makespan, reduced
the total training time by 54.33% and 49.62%, respectively,
compared with Random. Still, MEC reduced the required
energy for training by 0.43% compared to OLAR. ECMTC
and (MC)2MKP, the best algorithms for optimizing energy

consumption, reduced the total energy consumed during the
training by 26.57% and 26.43%, respectively, compared with
Random. Yet, ECMTC reduced the required time for training
by 1.82% compared to (MC)2MKP.

Concerning the second set of experiments (Table IX), re-
call that 25,000 training tasks and 5,000 testing tasks were
scheduled per communication round, in this case, amounts that
equate to 50% of the total data. Although the data used was
double that of the first set of experiments, the algorithms that
selected all clients still obtained low-quality models. MEC and
OLAR, the best algorithms for optimizing makespan, reduced
the total training time by 67.52% and 62.07%, respectively,
compared with Random. Moreover, MEC reduced the required
energy for training by 1.03% compared to OLAR. ECMTC
and (MC)2MKP, the best algorithms for optimizing energy
consumption, reduced the total energy consumed during the
training by 5.79% and 5.92%, respectively, compared with
Random. Although ECMTC consumed slightly more energy
than (MC)2MKP, it required 3.24% less time for training.

Due to a more representative case, the remaining breakdown
focused on the second set of experiments. The results of
Random selection, the default client selection strategy for
FedAvg, were established as the baseline during the analysis.
Fig. 7 illustrates the makespan, energy consumption, and
accuracy obtained during the training phase of each round for
the second set of experiments, and Fig. 8 shows the accuracy
obtained during their respective testing phase.

Regarding the makespan (Fig. 7(a)), MEC and OLAR
outperformed all other algorithms, Random being the one
that produced the worst results. On average, they required
18.15 and 16.68 fewer seconds than the Random strategy to
finish the training phase, respectively. The observed difference
in the makespan between MEC and OLAR is assumed to
be caused by a performance variation on the client nodes
during the execution of the experiments and requires fur-
ther investigation. Particularly for the ECMTC D15, while
the algorithm produced schedules respecting the 15-second
deadline, likely due to performance variation of the selected
clients and imprecise estimations, the established 15-second
deadline was transgressed in 7 out of 100 rounds.

Regarding the energy consumption (Fig. 7(b)), ECMTC
and (MC)2MKP outperformed all of the other algorithms. On
average, they required 935.92 and 957.20 fewer joules than
Random to finish the training phase, respectively. Although
the difference in energy consumed per round may appear
small compared to Random, both ECMTC and (MC)2MKP
selected, on average, 25.25 clients, in contrast to the fixed
number of 25 clients by Random, particularly demonstrating
the importance of energy-aware algorithms, whose selection
decisions are driven not only by the suitable amount of clients
but also by their actual efficiency.

Regarding the training accuracy (Fig. 7(c)), MEC, OLAR,
and ELASTIC (which selected all of the 50 available clients
in all rounds) slightly outperformed the other algorithms, sug-
gesting that they would require fewer communication rounds
to achieve a particular training accuracy value. Nevertheless,



0 10 20 30 40 50 60 70 80 90 100
Communication round

10

15

20

25

30

M
ak

es
pa

n 
(s

)

ECMTC
ECMTC_D15

ELASTIC
FedAECS

MC2MKP
MEC

OLAR
Random

(a) Makespan variation

0 10 20 30 40 50 60 70 80 90 100
Communication round

15000

16000

17000

18000

19000

20000

21000

E
ne

rg
y 

co
ns

um
pt

io
n 

(J
)

ECMTC
ECMTC_D15

ELASTIC
FedAECS

MC2MKP
MEC

OLAR
Random

(b) Energy consumption variation

0 10 20 30 40 50 60 70 80 90 100
Communication round

0.1

0.2

0.3

0.4

0.5

0.6

W
ei

gh
te

d 
m

ea
n 

ac
cu

ra
cy

ECMTC
ECMTC_D15

ELASTIC
FedAECS

MC2MKP
MEC

OLAR
Random

(c) Accuracy variation

Fig. 7. Results for the second set of experiments regarding makespan
(a), energy (b), and accuracy (c) during the training phase (25,000 tasks
scheduled).

the testing accuracy progression curves (Fig. 8) reveal these
three algorithms likely suffered from overfitting. Recall that
selecting all the available clients forced each chosen client
to train its local model with fewer data samples than the
other algorithms. Moreover, the testing accuracy progression
for the remaining algorithms followed a comparable behavior
among them for most rounds. Considering the fully balanced
data scenario being investigated, excluding MEC, OLAR, and
ELASTIC, these results suggest that the selected clients by
each algorithm did not impact the global model quality.

0 10 20 30 40 50 60 70 80 90 100
Communication round

0.1

0.2

0.3

0.4

0.5

W
ei

gh
te

d 
m

ea
n 

ac
cu

ra
cy

ECMTC
ECMTC_D15

ELASTIC
FedAECS

MC2MKP
MEC

OLAR
Random

Fig. 8. Results for the second set of experiments regarding accuracy during
the testing phase (5,000 tasks scheduled).

4) Discussion: The results demonstrate the importance of
employing algorithms that efficiently select clients regard-
ing one or more metrics of interest. In some cases, multi-
objective optimization can achieve better outcomes than single
optimization algorithms, as revealed by MEC and ECMTC.
Nevertheless, the amount of data used locally by the clients
is crucial for the model quality, in the sense that optimizing
makespan as the primary optimization target is not always
beneficial. Therefore, optimizing metrics related to the model
quality, such as accuracy or loss, should be considered when
dealing with clients with low data or unbalanced distribution.

VI. CONCLUSION AND FUTURE WORK

The client selection procedure has attained great importance
in the efficiency of Federated Learning systems throughout the
model training due to the heterogeneity of resources and data
on the clients. This work introduces two novel algorithms,
MEC and ECMTC, which jointly optimize the execution time
and energy consumption during the selection of clients by
defining how much data each should use locally.

Extensive experiments revealed the usefulness of our pro-
posals compared to state-of-the-art algorithms. Regarding real-
world experiments, compared to FedAvg’s client selection
(Random) for varied amounts of data, MEC reduced the total
training time by up to 67.52%, and ECMTC reduced the total
energy consumed during the training by up to 26.57%. More-
over, leveraging their multi-objective optimization distinctive,
MEC required up to 1.03% less energy than OLAR, while
ECMTC required up to 3.24% less time than (MC)2MKP.

Future directions include investigating the effect of selecting
clients when their local data are partially or fully unbalanced
and proposing a generic optimization framework that supports
varied joint optimization targets, such as having accuracy as
the first target and energy consumption as the second.

ACKNOWLEDGMENT

This work was funded by CAPES-PrInt (no

88887.310261/2018-00), CNPq/AWS 64/2022 BioCloud2
(no 421828/2022-6), and Inria Center at the University of
Bordeaux.



Experiments presented in this work were carried out us-
ing the Grid’5000 testbed, supported by a scientific inter-
est group hosted by Inria and including CNRS, RENATER,
and several Universities as well as other organizations (see
https://www.grid5000.fr).

REFERENCES

[1] Abdulrahman, S., Tout, H., Mourad, A., Talhi, C.: FedMCCS: Multicri-
teria Client Selection Model for Optimal IoT Federated Learning. IEEE
Internet of Things Journal 8(6), 4723–4735 (2021)

[2] Albaseer, A., Seid, A.M., Abdallah, M., Al-Fuqaha, A., Erbad, A.: Novel
Approach for Curbing Unfair Energy Consumption and Biased Model in
Federated Edge Learning. IEEE Transactions on Green Communications
and Networking 8(2), 865–877 (2024)

[3] Albelaihi, R., Yu, L., Craft, W.D., et al.: Green Federated Learning via
Energy-Aware Client Selection. In: GLOBECOM 2022 - 2022 IEEE
Global Communications Conference. pp. 13–18 (2022)

[4] Amodei, D., Hernandez, D.: AI and Compute (2018), https://openai.
com/blog/ai-and-compute/, last accessed: 2024/07/01

[5] Andersson, J.: A survey of multiobjective optimization in engineering
design. Department of Mechanical Engineering, Linktjping University
(2000)

[6] Beutel, D.J., Topal, T., Mathur, A., Qiu, X., Parcollet, T., de Gusmão,
P.P., Lane, N.D.: Flower: A Friendly Federated Learning Research
Framework. arXiv (2020)

[7] Bolze, R., Cappello, F., Caron, E., et al.: Grid’5000: A Large Scale And
Highly Reconfigurable Experimental Grid Testbed. The International
Journal of High Performance Computing Applications 20(4), 481–494
(2006)

[8] Deng, Y., Lyu, F., Ren, J., et al.: AUCTION: Automated and Quality-
Aware Client Selection Framework for Efficient Federated Learning.
IEEE Transactions on Parallel and Distributed Systems 33(8), 1996–
2009 (2022)

[9] Fu, L., Zhang, H., Gao, G., et al.: Client Selection in Federated Learning:
Principles, Challenges, and Opportunities. IEEE Internet of Things
Journal 10(24), 21811–21819 (2023)

[10] Krizhevsky, A.: Learning Multiple Layers of Features from Tiny Images.
Tech. rep., University of Toronto (2009)

[11] Li, Q., Li, X., Zhou, L., Yan, X.: AdaFL: Adaptive Client Selection
and Dynamic Contribution Evaluation for Efficient Federated Learning.
In: IEEE International Conference on Acoustics, Speech and Signal
Processing. pp. 6645–6649 (2024)

[12] Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated Learning:
Challenges, Methods, and Future Directions. IEEE Signal Processing
Magazine 37(3), 50–60 (2020)

[13] Li, Y., Liang, W., Li, J., Cheng, X., Yu, D., Zomaya, A.Y., Guo, S.:
Energy-Aware, Device-to-Device Assisted Federated Learning in Edge
Computing. IEEE Transactions on Parallel and Distributed Systems
34(7), 2138–2154 (2023)

[14] Ma, X., Shi, W., Wen, J.: An Enhanced Combinatorial Contextual
Neural Bandit Approach for Client Selection in Federated Learning.
In: Proceedings of the 2024 European Interdisciplinary Cybersecurity
Conference. pp. 171–178 (2024)

[15] Maciel, F., de Souza, A.M., Bittencourt, L.F., Villas, L.A., Braun, T.:
Federated learning energy saving through client selection. Pervasive and
Mobile Computing 103 (2024)

[16] McMahan, B., Moore, E., Ramage, D., et al.: Communication-Efficient
Learning of Deep Networks from Decentralized Data. In: Proceedings of
the 20th International Conference on Artificial Intelligence and Statistics.
vol. 54, pp. 1273–1282 (2017)

[17] Nishio, T., Yonetani, R.: Client Selection for Federated Learning with
Heterogeneous Resources in Mobile Edge. In: IEEE International Con-
ference on Communications (ICC). pp. 1–7 (2019)

[18] Noureddine, A.: PowerJoular and JoularJX: Multi-Platform Software
Power Monitoring Tools. In: 2022 18th International Conference on
Intelligent Environments (IE). pp. 1–4. IEEE (2022)

[19] Ouyang, J., Liu, Y.: Learning Efficiency Maximization for Wireless
Federated Learning With Heterogeneous Data and Clients. IEEE Trans-
actions on Cognitive Communications and Networking pp. 1–1 (2024)

[20] Pilla, L.L.: Optimal Task Assignment for Heterogeneous Federated
Learning Devices. In: IEEE International Parallel and Distributed Pro-
cessing Symposium. pp. 661–670 (2021)

[21] Pilla, L.L.: Scheduling Algorithms for Federated Learning With Minimal
Energy Consumption. IEEE Transactions on Parallel and Distributed
Systems 34(4), 1215–1226 (2023)

[22] Putra, M.A.P., Sampedro, G.A., Kim, D.S., Lee, J.M.: ECSM: An En-
sembled Client Selection Mechanism for Efficient Federated Learning.
In: IEEE International Conference on Industry 4.0, Artificial Intelli-
gence, and Communications Technology. pp. 13–17 (2023)

[23] Qiu, X., Parcollet, T., Fernandez-Marques, J., Gusmao, P.P.B., Gao, Y.,
Beutel, D.J., Topal, T., Mathur, A., Lane, N.D.: A First Look into the
Carbon Footprint of Federated Learning. Journal of Machine Learning
Research 24(129), 1–23 (2023)

[24] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mo-
bileNetV2: Inverted Residuals and Linear Bottlenecks. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 4510–4520 (2018)

[25] Sprague, M.R., Jalalirad, A., Scavuzzo, M., Capota, C., Neun, M.,
Do, L., Kopp, M.: Asynchronous Federated Learning for Geospatial
Applications. In: ECML PKDD 2018 Workshops. pp. 21–28. Springer
International Publishing (2019)

[26] Wang, C., Yang, Y., Zhou, P.: Towards Efficient Scheduling of Federated
Mobile Devices Under Computational and Statistical Heterogeneity.
IEEE Transactions on Parallel and Distributed Systems 32(2), 394–410
(2021)

[27] Wu, H., Wang, P.: Node Selection Toward Faster Convergence for
Federated Learning on Non-IID Data. IEEE Transactions on Network
Science and Engineering 9(5), 3099–3111 (2022)

[28] Yu, L., Albelaihi, R., Sun, X., et al.: Jointly Optimizing Client Selection
and Resource Management in Wireless Federated Learning for Internet
of Things. IEEE Internet of Things Journal 9(6), 4385–4395 (2021)

[29] Zhang, R., Xu, Z., Yin, H.: Scout: An Efficient Federated Learning
Client Selection Algorithm Driven by Heterogeneous Data and Re-
source. In: IEEE International Conference on Joint Cloud Computing.
pp. 46–49 (2023)

[30] Zhang, T., Gao, L., He, C., et al.: Federated Learning for the Internet
of Things: Applications, Challenges, and Opportunities. IEEE Internet
of Things Magazine 5(1), 24–29 (2022)

[31] Zheng, F., Sun, Y., Ni, B.: FedAEB: Deep Reinforcement Learning
Based Joint Client Selection and Resource Allocation Strategy for
Heterogeneous Federated Learning. IEEE Transactions on Vehicular
Technology 73(6), 8835–8846 (2024)

[32] Zheng, J., Li, K., Tovar, E., Guizani, M.: Federated Learning for Energy-
balanced Client Selection in Mobile Edge Computing. In: Interna-
tional Wireless Communications and Mobile Computing. pp. 1942–1947
(2021)

[33] Zhu, K., Zhang, F., Jiao, L., Xue, B., Zhang, L.: Client selection for
federated learning using combinatorial multi-armed bandit under long-
term energy constraint. Computer Networks 250 (2024)

https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/

	Introduction
	Related Work
	Problem Example and Definitions
	Problem Example
	Scheduling Problem Definitions

	Time and Energy-Aware Scheduling Algorithms
	Solving MEC (time first, energy second)
	Step 1: Computing the Minimal Makespan.
	Step 2: Computing the Minimal Energy Consumption.

	Solving ECMTC (energy first, time second)

	Experimental Evaluation
	Simulation-Based Experiments
	Description
	ES1 Results
	ES2 Results
	ES3 Results

	Real-World Experiments
	Description of the Emulated Environment
	Scheduling Overhead
	Results
	Discussion


	Conclusion and Future Work
	References

