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A B S T R A C T

In nature, superhydrophobicity is almost systematically associated with a multiscale topography. Nevertheless,
multiscale-textured natural surfaces can either produce water-repellent properties such as on the sacred lotus leaf
or high liquid-to-solid adhesion such as on the rose petal. To conceive bio-inspired surfaces with self-cleaning
properties, the proper contributions of each topographical scale to the wetting behavior need to be investigated.
Conditions for the equilibrium of menisci produced at a given topographical scale are derived, yielding a

recursion relation between each topographical scale. We introduce the equilibrium anchorage depth to quantify
the penetration of water at equilibrium. To study the contact angle hysteresis (CAH), we thoroughly describe the
mechanisms driving the advancing and receding motions of the triple line. Both phenomena depend on what we
define as precursor advancing and receding motions. Eventually, the equilibrium, advancing and receding
anchorage depths are related to the CAH.
Topographical heterogeneities at a topographical subscale i are always associated with a reduced equilibrium

anchorage depth and an enhanced robustness at all topographical scales of higher orders of magnitude. Even-
tually, it is demonstrated that advancing and receding anchorage depths are bounded by the equilibrium
anchorage depth, elucidating how rose-petal-like surfaces systematically produce a high CAH.
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1. Introduction

The discovery of natural surfaces displaying outstanding wetting
behaviors has sparked the interest of researchers on how water – among
other liquids – interacts with textured surfaces. Since Barthlott and
Neinhuis shed light on the link between the self-cleaning abilities of the
superhydrophobic lotus leaf and its surface topography [1], theoretical
advances have led to a better understanding of how a hierarchical sur-
face topography could be a major asset for repelling liquids in an effi-
cient and robust manner [2–6]. From the model introduced by Cassie
and Baxter, relative to the composite-wetting of a textured surface and
the entrapment of air bubbles beneath menisci [7], Herminghaus
formally demonstrated how hierarchical surfaces produced high equi-
librium contact angles (ECAs) due to the effect of each topographical
scale on the geometrical equilibrium occurring at the scales of larger
sizes [2]. He consequently introduced a recursion relation for the cosine
of the ECA:

cos(θn+1) = (1 − wn)cosθn − wn (1)

where θn is the ECA at the scale n, that is, the ECA that would be
measured on a surface constituted of all topographical scales from i = 0
to n, and wn is, in Herminghaus’ notation, the apparent fraction of liq-
uid–vapor interface area, essentially due to the suspension of the
meniscus at the scale n. The reader should note that, here and for the rest
of the article as well, a larger n is related to a larger length scale. Eq. (1)
demonstrates how hierarchical surfaces are associated with larger ECAs,
and, therefore, dramatically enhance hydrophobicity. However, hydro-
phobicity does not mean low adhesion, even though large ECAs have
been considered to be an important condition for water-repellency since
they generally lead to low roll-off angles [6,8]. As within Herminghaus’
work, a lot of efforts have been directed towards predicting the
macroscopic ECA from the chemical and topographical characterization
of a given surface.

Nevertheless, the ECA is insufficient to describe the way a surface

interacts with a liquid drop. More particularly, the liquid-substrate
adhesion cannot be measured on real surfaces through the sole value
of the ECA. Indeed, despite the Young-Dupré equation yielding the
solid–liquid work of adhesion from the value of the ECA, Pease claimed,
as early as 1945 [9], that the existence of a certain range of admissible
contact angles (namely, the contact angle hysteresis (CAH)) made it
impossible to determine the mean work of adhesion through the mea-
sure of the ECA. To quote from his work [9]: ‘This line of junction [the
triple line, at the interface between the solid, liquid and vapor phases]
can occupy various possible parallel positions on the plane of the solid
surface, and different positions allow different mean works of adhesion
depending upon the configuration of the different groups exposed on the
solid surface’. Considering the ECA to measure the liquid-substrate
adhesion would come to ignoring the existence of a range of admissi-
ble works of adhesion. Therefore, several authors have attempted to
draw a link between the liquid-substrate adhesion and the contact angle
hysteresis, assuming that the macroscopic adhesion of a drop to a sub-
strate can be indirectly quantified by the measure of the contact angle
hysteresis (CAH) displayed by the system [8,10–11]. The CAH is defined
as the difference between the advancing contact angle – the contact
angle measured at the triple line when the latter starts wetting an
unwetted area – and the receding contact angle – measured when the
triple line starts dewetting a wetted area. As claimed by Pease, ‘the
receding contact angle is related directly to the line of greatest possible
mean work of adhesion’ when ‘the advancing contact angle is dependent
upon the greatest possible amount of work necessary to wet the solid
surface […] [which,] in turn, is inversely related to the least possible
mean work of adhesion’ [9]. According to Furmidge, and as derived in
his work [8], the force of adhesion of the liquid onto the substrate along
the triple line is proportional to the amplitude of the CAH. Therefore, the
measure of the CAH has been used by many authors to give an undirect
image of the liquid-substrate adhesion of a given system [8,10–11].
Other techniques can be employed for this purpose, such as capillary-
deflection techniques [12–13] or force-distance measurements

Nomenclature

Symbol Definition [Unit]

Latin letters
bi =Half-spacing between consecutive asperities constituting

the topographical scale i [m]
Ci = Curvature of a meniscus produced at the topographical

scale i [m− 1]
Cmacro = Macroscopic curvature of the liquid droplet [m− 1]
da,i = Anchorage depth of menisci at the topographical scale i

[m]
d*a,i = Equilibrium anchorage depth of menisci at the

topographical scale i [m]
dAa,i = Advancing anchorage depth of the triple line at the

topographical scale i [m]
dma,i = Anchorage depth at the scale i at the location of maximal

apparent local slope [m]
dRa,i = Receding anchorage depth of the triple line at the

topographical scale i [m]
g = Gravitational acceleration [m⋅ s− 2]
hi =Mean height of asperities constituting the topographical

scale i [m]
wi = Apparent fraction of liquid–vapor interface area at the

topographical scale i
zc,i = Vertical depth between the apex of the meniscus (at the

scale i) and its anchor point [m]

zf ,i = Free height between the apex of the meniscus (at the
scale i) and the valley [m]

Greek letters
γ = Liquid-vapor interfacial tension [N⋅ m− 1]
ΔPi = Pressure gradient above a meniscus (at the scale i) [Pa]
ΔpLaplace = Laplace pressure of a curved liquid–vapor interface [Pa]
ΔPmax,i = Maximal overpressure sustainable by a meniscus at the

scale i before transiting [Pa]
Δz = Height of the top of the liquid droplet [m]
Δθi = Contact angle hysteresis (CAH) at the scale i, equals

θA,i − θR,i [◦]
θA,0 = Intrinsic advancing contact angle [◦]
θA,i = Apparent advancing contact angle at the topographical

scale i [◦]
θR,i = Apparent receding contact angle at the topographical

scale i [◦]
θi = Equilibrium contact angle (ECA) at the topographical

scale i [◦]
λi = Apparent external-triple-line linear density at the

topographical scale i
ρ = Density of the liquid
ωi = Apparent local slope of an asperity sidewall at the

topographical scale i [◦]
ωmax
i =Maximal apparent local slope at the topographical scale i

[◦]
ωsc,i = Threshold value of ωi for which ΔPi = 0 [◦]
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[14–15]. These techniques can help overcoming the difficulties inherent
in goniometry measurements, essentially due to the poor precision of the
images used, which introduce numerous sources of measurement error.
In spite of the latter, goniometry measurements are still widely used to
characterize the wetting properties of a surface.

As a consequence, apart from its potential lack of precision, the CAH
can be used as a measure of the liquid–solid adhesion, whereas the sole
value of the ECA cannot. It is noteworthy that the ECA is not predictive
of the CAH, which makes it even more so unsuitable for the study of the
adhesion of liquid droplets to solid surfaces. As a matter of fact, Slippery
Liquid-Infused Porous Surfaces (SLIPS) exhibit low ECAs while pro-
ducing low roll-off (or sliding) angles due to an extremely low CAH [16].
On the other hand, surfaces displaying a large ECA but a large CAH have
been reported and are often associated with intermediate wetting of
surface protrusions [17] or, in the case of multiscale surfaces, water
significantly penetrating betweenmicrometric protrusions in spite of the
entrapment of air between nanoscale reliefs – a behavior referred to as
the “rose-petal effect” [18–19]. Such surfaces do not have self-cleaning
properties since droplets of water are pinned onto the surface. Indeed,
Furmidge’s law [8] predicts that a large CAH is associated with a droplet

being unable to undock from the surface even when submitted to an
upside-down tilting. As a consequence, the potential of hierarchical
surfaces for water-repellency depends on the wetting state occurring at
each topographical scale, and, more precisely, on the degree of pene-
tration of water between topographical protrusions.

Quantifying the degree of penetration of water comes to measuring
the equilibrium (or effective) anchorage depth of menisci that are sus-
pended between surface asperities, such as depicted in Fig. 1[f]. Un-
fortunately, only limited attention has been devoted to the study of
intermediate wetting and to the prediction of the equilibrium anchorage
depth of menisci between surface asperities. The main reason is that
many authors have chosen to focus their study on ideally cylindrical
asperities, as depicted in Fig. 1[c]. In such a case, either the meniscus is
trapped at the discontinuity between the top and the vertical wall, either
the air-entrapment fails and water fully penetrates between asperities,
which is referred to as a Wenzel state. However, these ideal asperities do
not exist in nature, such as schematically depicted in Fig. 1[f] and shown
in Fig. 2 for the case of the sacred lotus. On real surfaces, an intermediate
wetting can occur: the meniscus can be trapped somewhere along the
sidewall of an asperity. Now, that brings us to a very important question:

Fig. 1. Schematic representation of a drop deposited onto a textured surface and entering into a lateral motion [a], with close-up views on the equilibrium
established beneath the drop in the case of a model surface [c] and a real surface [f], close-up views on the mechanism underlying the receding motion of the drop in
the case of a model surface [b] and a real surface [e], and close-up views on the mechanism underlying the advancing motion of the drop in the case of a model
surface [d] and a real surface [g]. The multiscale topography of a real surface enhances the complexity of the theoretical study and raises new fundamental questions
that must be addressed.
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when one gently (quasi-statically) puts a droplet of water on a textured
surface such as a sacred lotus leaf, where will the triple line stop? Where
will the equilibrium be produced along the sidewall of the asperities?

Once again, this question has not received much attention, despite
the difference of behavior between a lotus leaf and a rose petal being
significantly affected by the degree of penetration of water between
micrometric asperities. Water is suspected to fully penetrate between
micrometric protrusions on the rose petal [18] while air is trapped at the
nanoscale between nanofolds, producing what can be referred to as a
Wenzel-Cassie hierarchical wetting state. On the other hand, we have
predicted in previous works that the micrometric menisci would be
anchored onto cellular papillae of the sacred lotus (Nelumbo nucifera)
leaves at an equilibrium anchorage depth between 120 and 220 nm
[20–21], suspending the bottom of the protruding menisci at a free
height of about 12.5 µm above the valleys. These results suggest two
things. First of all, when studying the sacred lotus leaf, we have shown
that, even on superhydrophobic surfaces, an intermediate wetting state
can occur at the micrometric scale since the equilibrium anchorage
depth of triple lines is not equal to zero and a portion of the top of
micrometric cellular protrusions is actually wet. Second of all, the dif-
ference of behavior between the rose petal and the sacred lotus yields
the conclusion that the degree of penetration of water between micro-
metric protrusions is undoubtedly a critical parameter for the macro-
scopic CAH of a droplet. Therefore, its quantification and its prediction
should be investigated. But these surfaces are not like those usually
studied in the literature: they display a multiscale topography. This
raises a major issue: how can we account for the effect of topographical
subscales on the equilibrium of menisci? What impact does a multiscale
topography have on the equilibrium and its robustness? We have
partially answered to these questions in previous works [20–21], but we
wish here to explore these effects more thoroughly and to formalize the
equations that help us understand them.

However, studying the equilibrium anchorage depth is not enough:
in order to link the penetration of liquid at equilibrium (in other terms,
the equilibrium anchorage depth) to the CAH, other questions arise.
What are the mechanisms that drive the advancing and receding mo-
tions of the triple lines on textured surfaces, in an air-entrapment state?
Where, when and how do the triple lines advance to the next row of
asperities or recede from the last one? Can we define an advancing
anchorage depth and a receding anchorage depth, as depicted in Fig. 1
[e] and 1[g], and relate these values to the value of the CAH? How do the
equilibrium anchorage depth, the slope and other topographical pa-
rameters impact these values? How is the effect of the CAH proper to a
given topographical subscale propagated to the macroscopic picture?
While some theoretical works have addressed these questions on ideally
cylindrical surfaces [22–23], the answers are not applicable to surfaces
displaying asperities that are neither ideally vertical on their sides nor
flat at their tops.

Studying the equilibrium penetration into surface asperities of a
droplet comes to studying the transition between different wetting
states. The transitions between different wetting states have been the
focus of many theoretical works in the past decades [3,5,17,24–31]: but
none has, at the same time, considered a non-ideal geometry, a multi-
scale topography, and the possibility of an intermediate state. Some
authors have, nevertheless, studied the penetration of liquid between
asperities, but unfortunately, it has always been done on ideal geome-
tries [30,32–34]. Jiang et al. derived an analytical modeling of the
impregnation of mono-scale textured surfaces from an energetical
approach and predicted the equilibrium liquid penetration depth on four
types of model topographies [34]. However, applying such an approach
to complex natural surfaces like the lotus leaf is inconceivable, since it
would be difficult to describe their complex nanoscale topography
constituted of randomly-distributed wax crystals of various lengths and
widths (as depicted by secondary electron microscopy images in Fig. 2)
as well as the complex chemical heterogeneity of the surface at the
molecular scale in such an appropriate manner for the energetical

Fig. 2. [from top to bottom] Photography of water droplets resting on a sacred
lotus leaf; SEM images of the adaxial side of a Nelumbo nucifera (sacred lotus)
leaf (x3k and x60k). Leaves were obtained from the botanical garden of Lyon.
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approach to be suitable for a dynamic description of the motion of the
triple lines [21]. Furthermore, no study has, to our knowledge, ever tried
to draw a quantitative link between the amount of penetration of liquid
and the macroscopic CAH.

As emphasized in a previous work, it is possible to model the
impregnation of complex surfaces from a critical pressure approach
[21]: the latter requires to predict the curvature of the meniscus at every
anchorage depth along the sidewalls of a set of two micrometric papillae
to which it is suspended. To do so, and as we have previously described,
one must know the profile of the apparent instantaneous slope at the
micrometric scale as well as the local advancing contact angle formed by
the triple line as the latter is descending along the surface of the
micrometric protrusions. The latter consideration is of prime importance
for the study of transitions [17,22], and previous authors erroneously
did not consider the triple line to be at its advancing geometry when
modeling the impregnation of surface asperities, instead using Young’s
intrinsic contact angles [2,32,34].

To conclude this introduction, it must be emphasized that if a lot of
efforts have been directed towards the modeling of wetting on textured
surfaces, it is, to this day, not yet possible to predict the comprehensive
effect of a complex multiscale-textured surface on wettability and sol-
id–liquid adhesion. As a consequence, it remains impossible to precisely
quantify the proper effect of an additional topographical scale on the
wettability of a surface, and therefore, to predict the benefit of the
production of a hierarchical surface through a more complex
manufacturing process. Eventually, although the lotus and the rose-petal
effects are well-known, they are far from being well understood: to our
knowledge, it is not yet possible to quantitatively link the degree of
penetration of water between surface protrusions to the CAH. We
believe that this knowledge gap takes its source in the fact that the
physical mechanisms driving the motion of the contact line have not
been fully described yet.

Therefore, in this article, we wish to bring answers to these ques-
tions. First of all, we formally demonstrate that, for a surface constituted
of n+1 independent topographical scales, there is a recursion relation
between the advancing contact angle at any scale i ≤ n and the equi-
librium anchorage depth at the scale i + 1, and, more practically, that
the latter only depends on the profiles of spacing between asperities and
instantaneous slope at the scale i+1 and on the advancing contact angle
at the scale i. For the first time, the mechanisms underlying the
advancing and recedingmotions of the triple line on real surfaces (with a
continuous slope profile) are thoroughly described and modeled. The
relevance of a given topographical subscale with regards to its effect on
the macroscopic CAH and the robustness of the composite-wetting state
is discussed to the light of this modeling. Eventually, the link between a
larger equilibrium anchorage depth and a larger adhesion is demon-
strated, clarifying the physical origin of the rose-petal effect. We believe
that these theoretical derivations are a necessary first step towards the
prediction of contact angle hysteresis on complex surfaces, a goal which
is currently out of range of existing theoretical models.

2. Theory and calculation

2.1. Critical pressure criteria for the prediction of equilibrium anchorage
depths on multiscale surfaces

Our first purpose is to derive criteria for the equilibrium of menisci
on a mono-scale textured surface: it comes to initializing the recursion
relation that will be explored thereafter. We therefore consider a droplet
of water deposited on a mono-scale textured surface constituted, for
instance, of lotus-like pillars – or papillae – attributed to the scale n = 1.
The surface of these papillae, i.e., the scale n − 1 = 0, is considered
atomically flat. In a previous work [21], we have introduced equilibrium
criteria based on the continuity of pressure across the meniscus,
enabling the retrieval of the equilibrium anchorage depth, d*a,i, on the

sidewalls of the asperities constituting a given topographical scale i, as
depicted in Fig. 3[a] in the case i = n = 1. For the equilibrium to be
possible, the local curvature of the meniscus, Ci, as illustrated in Fig. 3
[a], must be such that the overpressure between the pressure of the
liquid particles along the liquid–vapor interface and the pressure in the
vapor phase beneath the meniscus (namely, the overpressure given by
Laplace’s law applied to the local curvature of the meniscus,
ΔpLaplace,local) matches the overpressure in the bulk right above the liq-
uid–vapor interface due to the macroscopic curvature of the drop of
water (ΔpLaplace,macro) and to the effect of gravity (ρgΔz, where ρ is the

Fig. 3. Schematical representations of geometrical equilibriums produced on a
multiscale surface with n topographical scales: [a] at the scale i = 1 [b] at the
scale i = n [c] close-up views on the triple lines formed on asperities consti-
tuting the topographical scale i = n (in green) and i = n − 1 (in red). (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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liquid density, g is the acceleration due to gravity and Δz is the depth of
the apex of the meniscus with respect to the top of the drop, as illustrated
in Fig. 1[a])). In other terms, the pressure gradient between the local
liquid–vapor interface and the bulk right above the meniscus, ΔPi –
which is initially negative when the drop is deposited – must vanish. The
latter quantity is defined as ΔPi

(
da,i

)
= ΔpLaplace,local − ΔpLaplace,macro

− ρgΔz. A second condition is that the bottom of the protruding
meniscus shall not enter into contact with the valley. For the latter to be
satisfied, the free height, zf ,i

(
da,i

)
, namely, the height between the bot-

tom of the meniscus and the valley – as illustrated in Fig. 3[a], must be
strictly positive. In mathematical terms, the equilibrium is produced
when the following conditions are verified (with the aim of reasoning
across multiple topographical scales, Eqs. (1) to (4) are generalized for
any topographical scale i; in the case of the above-mentioned example,
one shall consider i = 1):
{

ΔPi
(
da,i

)
= γCi

(
da,i

)
− γCmacro − ρgΔz = 0

zf ,i
(
da,i

)
= hi − da,i − zc,i

(
da,i

)
> 0

(1)

where γ is the liquid–vapor interfacial tension, Cmacro is the macro-
scopic curvature of the liquid drop (which is a trivial function of the
volume of the drop and of the macroscopic equilibrium contact angle), hi
is the mean height of the asperities constituting the topographical scale i
(see Fig. 3[a]),da,i is the anchorage depth at that scale, and zc,i

(
da,i

)
is the

vertical amplitude of the protrusion of the meniscus (also referred to as
the critical height), as depicted in Fig. 3[a]. Simple geometrical con-
siderations demonstrate that both the local curvature, Ci

(
da,i

)
and the

critical height, zc,i
(
da,i

)
, as both depicted in Fig. 3[a], are functions of the

half-spacing between two asperities at the current anchorage depth,
bi
(
da,i

)
(see Fig. 3[a]), the local slope (namely, the angle between the

horizontal and the plane that is locally tangent to the apparent surface at
the scale i), ωi

(
da,i

)
(see Fig. 3[a]), and the local advancing contact angle

formed by the triple lines when the latter are descending along the
sidewalls of the asperities and which corresponds to the advancing
contact angle at the scale i − 1, θA,i− 1 (in our example, θA,0):

Ci
(
da,i

)
=

− sin
(
ωi
(
da,i

)
+ θA,i− 1

)

bi
(
da,i

) (2)

and

zc,i
(
da,i

)
= bi

(
da,i

)
tan

(ωi
(
da,i

)
+ θA,i− 1 − π
2

)

(3)

The equilibrium anchorage depth at the topographical scale i, d*a,i,
can be found from the definition given by Eq. (4):

d*a,i = min
{
da,i

⃒
⃒ΔPi

(
da,i

)
= 0 and zf ,i

(
da,i

)
> 0

}
(4)

Eventually, if d*a,i→0, an ideal Cassie-Baxter state is observed at this
topographical scale. Conversely, as d*a,i→hi or if d*a,i does not exist, the
system tends towards a Wenzel state (again, only at the scale i). The
interval of anchorage depths between those two extrema are referred to
as a mixed-state wetting or an intermediate wetting. We shall specify
that, in spite of the common tendency to represent a Cassie-Baxter state
as menisci perfectly anchored to the very top of solid asperities, a mixed-
state wetting case was actually used to derive the equations introduced
by Cassie and Baxter in their original article published in 1944. To
resolve any ambiguity, we herein distinguish an ideal Cassie-Baxter state
wetting from a mixed-state wetting, as defined hereabove. From a
practical point of view, and to get back to our example (n = 1), if a
mixed-state or a Wenzel wetting is commonly observed, an ideal Cassie-
Baxter state is only theoretical, as the latter would require either θA,0 = π
or a perfect discontinuity at the edge of a flat-top asperity producing a
slope profile such that ω1(0) = 0 and, for all da,1 > 0,
ω1(da,1) > ωsc,1(da,1), where ωsc,1(da,1) is the minimal value of the local
slope for which the sufficient condition on the pressure gradient is

verified, that is, the slope for which ΔP1(0), the pressure gradient above
the meniscus when the latter is anchored to the top edge, vanishes (note
that ωsc,1(da,1) is still a function of the anchorage depth since it is a
function of the local spacing between two anchor points, b1

(
da,1

)
).

Nevertheless, despite photolithography-based manufacturing processes
producing quasi-perfect micrometric pillars, no knownmethod can yield
sharp edges at the atomic scale. As a consequence, the equilibrium
anchorage depth, d*a,i, is never exactly equal to zero.

Now, let a surface be such that it is constituted of the superposition of
the previously described topography, associated with the scale i =
n − 1 = 1, and another lotus-like structure at a scale i = 2 of greater
order of magnitude, very large with respect to the previous one, as
depicted in Fig. 3[b] (for n = 2). At the very moment the drop of water
enters into contact with this surface, triple lines are apparently created at
the top of asperities constituting the scale i = 2. These asperities being
covered with asperities of a smaller size (i = 1), the triple lines are
actually created at the scale i = 1, as an equilibrium locally occurs. The
latter is characterized by the local impregnation of the smallest asper-
ities until the equilibrium anchorage depth d*a,1 is locally reached. As this
local equilibrium is established, the triple line apparently created at the
scale i = 2 forms a local advancing contact angle, θA,1 – whose value
depends on the topographical parameters related to the scale i = 1. The
triple line vertically penetrates the interspace between the asperities
constituting the scale i = 2 until the meniscus formed at this topo-
graphical scale reaches a sufficient curvature. Therefore, the impreg-
nation of the scale i = 2 is driven by an advancing motion of the triple
line at the scale i = 1, as the latter propagates through rows of asperities
– again, forming an advancing contact angle θA,1 – thanks to the
mechanism that will be described later on.

The impregnation of the topographical scale i = 2 is only governed
by the profiles b2

(
da,2

)
and ω2

(
da,2

)
and by the advancing contact angle

produced at the scale i = 1, since Eq. (2) demonstrates, when applied to
i = 2, that these parameters entirely define the curvature of the
meniscus, yielding, by Eqs. (1) to (4), the derivation of the equilibrium
anchorage depth at the topographical scale i = 2, d*a,2. By immediate
recursion, the same considerations are applicable to any topographical
scale constitutive of a multiscale surface formed by n topographical
scales, as depicted in Fig. 3[b] and 3[c] and as further discussed in the
part ‘Discussion’.

2.2. On the mechanism of the advancing motion of triple lines on a
multiscale surface

The knowledge of the equilibrium anchorage depth is a first step
towards predicting the macroscopic CAH. To understand the difference
between the wetting behavior of the lotus leaf and that of the rose petal,
we wish to clarify the mechanisms that drive the advancing and receding
motions of triple lines on multiscale surfaces. Both the apparent
advancing and receding contact angles at a given topographical scale i,
θA,i and θR,i, are functions of the contact line density. It has indeed been
claimed by previous authors [18,22,26] that the contact angle produced
in a composite-wetting state on a textured surface is given by a mixture
distribution of the local advancing or receding contact angle formed at
the solid–liquid interface and of the angle formed at the liquid–vapor
interface (the latter being equal to π), weighted by the external-contact-
line linear density, λi

(
da,i

)
(the quantity expressed by Extrand as λp

[22]). That being said, the local advancing and receding contact angles
formed at the solid–liquid interface are given by different mechanisms
that have been only slightly described in the literature and which shall,
therefore, be investigated in order to determine the parameters that
exert an effect on the values of said angles.

Fig. 4[a] depicts a triple line submitted to an advancing motion on a
multiscale surface constituted of n topographical scales displaying a
composite-wetting state at the scale n. For the sake of the discussion, we
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consider this motion to be caused by an increase of the volume of the
droplet, after that an equilibrium had initially occurred. For the
composite-wetting state to be maintained as the triple line advances
towards the next row of asperities, the motion of the latter can only
result from the contact between an upper location on the liquid–vapor
interface and the neighboring asperity. This assumption was already
defended by Extrand, in 2002, in the case of ideally cylindrical asperities
[22], as reproduced in Fig. 5[a]. According to Extrand, and to quote
from ref. [22]: ‘If liquid is injected into the drop, its leading edge will
bulge forward, contacting a neighboring asperity’. This assumption has
later been experimentally demonstrated by Schellenberger et al. in
confocal laser-scanning microscopy experiments on surfaces constituted
of cylindrical pillars [35], where it can be seen, on the snapshots of their
experiment, reproduced in Fig. 5[c], that the drop does advance by
contacting the neighboring asperity at an upper location along the liq-
uid–vapor interface. Again, to quote from Schellenberger et al.: ‘When
imaging the advancing front in the induction period with the confocal
microscope, we observe that the contact line does not jump from one
pillar to the next. Rather, sections of the liquid–vapor interface descend
onto the top face of the next micropillar’ [35]. We wish to emphasize
that, physically, this is the only mechanism that can cause the triple line
to advance: indeed, it cannot be a “nonequilibrium jump” (i. e. a tran-
sient scan) motion between two asperities (such as defined by Huh and

Mason: see Fig. 3 of ref. [36]) as the latter only happens in aWenzel state
and would be therefore related to a potential local collapse of the
composite-wetting state. As a consequence, we agree with the authors
and wish to generalize these observations to more complex surfaces. For
that contact to be established in a composite-wetting state, the apparent
contact angle (with respect to the horizontal) at the topographical scale
n must increase. Nevertheless, as the local contact angle formed by the
triple line is already the local advancing contact angle θA,n− 1, the only
way it can happen is that the triple line actually undergoes an advancing
motion at the topographical scale n − 1, subsequently increasing the
anchorage depth at the topographical scale n, reaching for a location
associated with a higher instantaneous slope ωn. This motion – that we
define as a precursor advancing motion (that is, a local motion precursor
to the advancing motion at a higher scale, similar to that described by
Huh andMason for surfaces wetted in aWenzel state, as described by the
motion between points A’ and A’’ in Fig. 1 of ref. [36]) – requires the
triple line to progress across the rows of asperities constituting the
topographical scale n − 1. Therefore, this induces a recursion relation
between all topographical scales: indeed, for the macroscopic lateral
motion of the droplet to occur, the triple line has to undergo local mo-
tions from the topographical scale i = 0 to the scale i = n. To illustrate,
Fig. 4[a] schematically depicts the mechanism underlying the advancing
motion of the triple line at the topographical scale n. The latter occurs

Fig. 4. Schematical description of the mechanisms underlying the advancing ([a]) and receding ([b]) motions of the triple lines on real multiscale surfaces: [a] The
advancing motion requires the liquid–vapor interface to enter into contact with the neighboring asperity, which can only occur if precursor advancing motions unfold
at all topographical subscales; [b] The receding motion occurs when the triple line pinches off and ruptures, which requires two phenomena of precursor receding
motions to unfold at all topographical subscales, one at the location of the external triple line and one at the location of the anchorage of the meniscus. As the triple
line pinches off and recedes, a perturbation wave propagates through the liquid–vapor interface (see [b] t7 at scale n).
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between times t7 and t8, but is only possible because a precursor
advancing motion occurs at the topographical scale n between times t3
to t7 (indeed, between times t1 to t3, the local contact angle increases
towards θA,n− 1 but the local apparent instantaneous slope remains con-
stant). That precursor advancing motion is due to a local advancing
motion occurring at the topographical scale n − 1 starting at time t3 after
that a precursor advancing motion had been produced at this scale be-
tween times t1 to t3, itself due to the local advancing motion that started
at the topographical scale n − 2 at time t1, and so on….

Let us now get back to the moment at which the contact occurs be-
tween the liquid–vapor interface and the neighboring asperity at the
topographical scale n. By simple geometrical considerations, it is clear
that the value of the advancing anchorage depth, dAa,i (see Fig. 1[g], Fig. 4
[a] or Fig. 6), at which the triple line is located when the liquid–vapor
interface enters into contact with the neighboring asperity, is always
smaller than the equilibrium anchorage depth, d*a,i. To predict the value
of dAa,i, we shall consider two approximations. First of all, the curvature
of the liquid–vapor interface is very small with regards to the dimension
of the drop and the radius of curvature of the top of an asperity is small.
Therefore, the liquid–vapor interface can be considered flat before the
contact occurs and the location of the contact is assumed to be nearly
coincident with the top of the neighboring asperity. Second of all, let us

consider that, at equilibrium, the meniscus is virtually horizontal.
Indeed, we have shown in a previous work that the equilibrium
anchorage depth was almost equal to the depth at which the local cur-
vature vanishes [21]. Under these approximations, we can derive the
following relation:

dAa,i = d*a,i −
bi
(
dAa,i

)
− bi

(
d*a,i

)

tan
(

θA,i− 1 − π
2

) (5)

The exact prediction of dAa,i remains difficult (Eq. (5) contains two
unknowns in spite of previous approximations) since the latter depends
on the profiles of spacing and instantaneous slope. Nevertheless, Eq. (5)
demonstrates, interestingly, that for values of θA,i− 1 close to π, d*a,i − dAa,i
tends to vanish. Therefore, dAa,i depends on the value of θA,i− 1, and,
consequently, on the value of d*a,i (as said before, dAa,i is always bounded
by d*a,i). In fact, the higher the local advancing contact angle, θA,i− 1, the
lower dAa,i, and, therefore, the higher the apparent advancing contact
angle at the scale i. In addition, the closer the rows of asperities, the
smaller dAa,i and the smaller the apparent advancing contact angle at the
scale i. As a result, to render the advancing motion more superficial and
increase the apparent advancing contact angle, one must increase the
local advancing contact angle and increase the spacing between
asperities.

2.3. On the mechanism of the receding motion of triple lines on a
multiscale surface

Now, let us treat the case of the receding motion of the triple lines,
caused by a continuous reduction of the volume of the drop. Fig. 4[b]
schematically depicts a portion of a triple line submitted to a receding
motion on the same surface as previously considered. In order for the
triple line to undock from one row of asperities, the menisci initially
produced between the last row of asperities and the neighboring row
must detach. Two mechanisms are involved in this step. First, a pre-
cursor receding motion of the triple line happens, which results from
local receding motions at all topographical subscales, allowing the
external triple line to move towards the anchor point of the meniscus
(which corresponds to the motion of the external liquid front, as illus-
trated in Fig. 4[b] at the topographical scale n − 2). Secondly, the
meniscus is actually submitted to a change in its equilibrium curvature
due to a locally decreasing bulk pressure caused by the local curvature of
the droplet being lowered. Indeed, as the macroscopic contact angle is
transiting from its equilibrium value to the macroscopic receding con-
tact angle, the local curvature decreases or even (but not necessarily)
switches from a concave to a convex geometry (which would mean a
local bulk pressure lower than that of the vapor phase around the drop).
The latter phenomenon can be due to evaporation, withdrawal of liquid
or to the upstream–downstream motion of the fluid in the case of a
tilting plate experiment, which in all cases induces a local depressur-
ization. This causes the anchorage depth of the meniscus to be lowered
as another precursor receding motion occurs at the location of the an-
chor point of the meniscus (which corresponds to the motion of the
meniscus interface, as identified in Fig. 4[b] at the topographical scale
n − 2). As the two liquid–vapor interfaces draw closer together, those
two precursor receding motions cause the triple line to locally ‘pinch off
and rupture’ (similarly to how it has been described by Extrand [22], as
reproduced in Fig. 5[b]) at a receding anchorage depth dRa,i, which is,
subsequently, always smaller than the equilibrium anchorage depth, d*a,i.
As a matter of fact, Extrand described, in 2002, a similar mechanism
[22], although it was limited in terms of complexity since the surfaces he
considered displayed ideally cylindrical asperities, as reproduced in
Fig. 5[b]. To quote from ref. [22]: ‘The apparent receding contact angle
decreases as the contact line tries to establish its “true” receding angle on
the side of the asperity. In doing so, the contact line is pinched off and

Fig. 5. [a][b] Schematic representations of the mechanisms which drive the
advancing ([a]) and the receding ([b]) motions of the triple line: reproduced
with permission from ref. [22]; [c][d] Laser-scanning confocal-microscopy
images of the front of a droplet undergoing an advancing motion ([c]) and the
rear of a droplet submitted to a receding motion ([d]): reproduced with
permission from ref. [35]; [e] Laser-scanning confocal-microscopy images of
the external baseline of an evaporating droplet and schematic representation of
the shape of the liquid–vapor interface: reproduced with permission from
ref. [23].
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ruptures. The receding contact line jumps to the next asperity, and the
process starts again’. This phenomenon is demonstrated from the laser-
scanning confocal-microscopy images published by Schellenberger et al.,
as reproduced in Fig. 5[d], for the receding motion of a droplet moving
on the substrate [35], and from those published by Butt et al., as
reproduced in Fig. 5[e], for the receding motion of an evaporating
droplet [23]: it can be seen in both scenarios that the meniscus produced
between the external row of asperities and the neighboring row is sub-
mitted to a change in its curvature due to a lower bulk pressure, allowing
the triple line to pinch off. Again, in both works, the conclusions are
limited due to the study of cylindrical asperities, and therefore, authors
did not describe the two-sided mechanism that we describe herein. To
quote from Schellenberg et al.: ‘The contact line is pinned until a certain
lower contact angle is reached. Then the liquid front jumps to the next
pillar’ [35]. And to quote from Butt et al.: ‘Capillary bridges are formed
between the top faces of the pillars and the drop. […] At the edge, these
bridges form neck-like structures. The total curvature in these liquid
necks is low because the Laplace pressure of the liquid is determined by
the macroscopic radius of the drop. […] For a drop to recede or roll the
capillary bridges at the rear have to be broken. […] The liquid bridge
collapses when the actual microscopic contact angle decreases below the
receding contact angle’ [23].

Interestingly, this receding mechanism could even be suspected to
leave a small amount of water behind (that is, on the row of asperities
that has just been dewetted), as the capillary bridge that is formed be-
tween the last two rows of asperities potentially pinches off at a certain
distance from the anchor point (as represented in Fig. 4[b], at the
topographical scale n − 2 at time t3), which would confirmwhat has been
suggested by Patankar [37], Roura and Fort [38] and Choi et al. [39] (see
fig. S4 of Ref. [39]). Eventually, these qualitative considerations allow
us to draw the conclusion that the receding motion of the triple line at
the topographical scale i is driven by the local receding contact angle at
the scale i − 1, θR,i− 1, by the profile of the instantaneous slope, ωi

(
da,i

)
,

and, interestingly, by the equilibrium anchorage depth (which itself
depends on the local advancing contact angle at the scale i − 1),
d*a,i(θA,i− 1).

2.4. From the description of the advancing and receding motions to the
prediction of the contact angle hysteresis

Before jumping into the prediction of the CAH, it must be said that
both the advancing and receding mechanisms are subsequently intrin-
sically discontinuous. The advancing and receding motions can there-
fore occur in a microscopic stick–slip fashion. If experimental
observations often show these motions as apparently continuous, it is due
to the lack of magnification and resolution inherent to the optical sys-
tems that are commonly used. However, macroscopic stick–slip motions
are sometimes witnessed, such as what has been reported and theoret-
ically analyzed by Shanahan [40]. To understand these macroscopic
stick–slip motions, one need to transpose what Huh and Mason sug-
gested when studying surfaces wetted in a Wenzel state to a composite-
wetting state. Based on their conclusions, we can suggest that while the
inertia of the triple line enables it to advance or recede over macroscopic
distances, macroscopic stick–slip motions could result from the
competition between inertia and viscous dissipation due to the propa-
gation of a perturbation wave along the liquid–vapor interface when the
latter is deformed as the triple line contacts (when advancing) or pinches
off (when receding). The liquid–vapor interface subsequently displays
transient nonequilibrium shapes, such as depicted in Fig. 4[a] and 4[b],
producing said perturbation wave as the liquid–vapor interface tries to
minimize its area accordingly to thermodynamical considerations.
These discontinuous motions are demonstrated by the results introduced
by Schellenberger et al. [35], as reproduced in Fig. 5[c] and 5[d], and by
Butt et al. [23], as reproduced in Fig. 5[e]. As a final note, based on our
previous theoretical considerations, the theoretical results obtained by

Huh and Mason [36] and Shanahan [40] and the experimental obser-
vations of Schellenberger et al. [35] and Butt et al. [23], we can claim
that the advancing and receding motions are discontinuous attempts of
the droplet to return towards a global energy minimum by, respectively,
reducing and increasing the macroscopic contact angle formed by the
latter with the surface in response to an external source of free energy.

Eventually, based on these considerations and on the expressions
relating apparent angles to fractional contributions that were suggested
by Extrand [22], we can introduce the following recursion relations:

θA,i = λi
(
dAa,i

)[
θA,i− 1 +ωi

(
dAa,i

) ]
+
(
1 − λi

(
dAa,i

))
π (6)

θR,i = λi
(
dRa,i

)[
θR,i− 1 − ωi

(
dRa,i

) ]
+
(
1 − λi

(
dRa,i

))
π (7)

where, noticeably:

(1) dAa,i < d*a,i with dAa,i depending on the profile of the instantaneous
slope, on the profile of the spacing between two asperities and on
the equilibrium anchorage depth, d*a,i, which itself depends on the
local advancing contact angle at the topographical scale i − 1,
θA,i− 1;

(2) dRa,i < d*a,i with dRa,i depending on the profile of the instantaneous
slope, on the local receding contact angle at the topographical
scale i − 1, θR,i− 1, and on the equilibrium anchorage depth, d*a,i,
which itself depends on the local advancing contact angle at the
topographical scale i − 1, θA,i− 1;

(3) λi is the profile of external triple-line density (apparent at the
scale i) as a function of the anchorage depth, da,i (and is mono-
tonically increasing with the latter when the asperities are non-
reentrant, that is, such that, for all da,i ≥ 0,ωi(da,i) < π

2).

Therefore, the contact angle hysteresis at the topographical scale i,
Δθi, can be expressed as:

Δθi = λi
(
dAa,i

(
θA,i− 1

) )[
θA,i− 1 +ωi

(
dAa,i

)
− π

]

− λi
(
dRa,i

(
θA,i− 1

) )[
θR,i− 1 − ωi

(
dRa,i

)
− π

] (8)

It is noteworthy that, in Eqs. (6) and (7), the advancing (respectively,
the receding) contact angle, θA,i (resp. θR,i), is calculated from the sum of

θA,i− 1 +ωi

(
dAa,i

)
(resp. θR,i− 1 − ωi

(
dRa,i

)
) and π weighted by the fractional

contributions λi and (1 − λi). We deliberately did not use cosines as in
the Cassie-Baxter model or the modified Cassie-Baxter model introduced
by Choi et al. [39]. Indeed, the Cassie-Baxter model is based on an
energetical approach where the work of adhesion is averaged along the
triple line (in reality, authors study a neighboring area around the triple
line, meaning that they resort to an area approach). Here, we wish to
resort to a geometrical approach (or a triple line approach) where it is
considered that the triple line is the only location where the contact
angle hysteresis is determined, in line with previous works [41–43].
Therefore, we agree with Extrand that the advancing and receding
contact angles ‘manifest themselves as fractional contributions along the
contact line’ (to quote from Ref. [22]). These considerations are sup-
ported by experimental evidence [44–45].

3. Discussion

3.1. A new criterion for contact angle hysteresis

In the case of a surface constituted of n topographical scales, values
of θA,n and θR,n respectively given by Eqs. (6) and (7) might significantly
vary from those measured through the use of an optical goniometer. For
surfaces with a large spacing between protrusions and with superficial
penetration of water between the latter, Eq. (6) yields angles close to π.
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In fact, Schellenberger et al. have shown, through laser-scanning
confocal microscopy experiments realized on a surface constituted of
micrometric pillars, that the advancing contact angle happened to
oscillate between 170◦ and 185◦ when an apparent advancing contact
angle of 165◦ was measured with conventional optical goniometry [35].
We, therefore, agree with Schellenberger et al. on the need to revisit the
criterion on the value of the contact angle hysteresis usually considered
in the definition of a superhydrophobic surface (Δθ = θA − θR < 10◦ ).
Indeed, this criterion depends on the method used to measure the
advancing and receding contact angles. We believe that, when these
angles have values close to or above 150◦ (as typically observed on
textured surfaces submitted to a composite-wetting state), another cri-
terion, based exclusively on the value of the receding contact angle,
should be considered. Schellenberger et al. have suggested defining a
superhydrophobic surface by an apparent receding contact angle equal
to or exceeding 150◦, suggestion with which we agree.

3.2. On the dependence of equilibrium anchorage depths on topographical
subscales

With the aim of deriving a general recursion relation between the
above-mentioned parameters and the equilibrium anchorage depth
displayed at the topographical scale i = n, we shall now consider a hi-
erarchical surface constituted of n topographical scales, as depicted in
Fig. 3[b] (view at scale n) and 3[c] (close-up view at scale n − 1).

In Eq. (4), the solutions to ΔPi
(
da,i

)
= 0 and zf ,i

(
da,i

)
> 0 exclusively

depend on the profile ωi
(
da,i

)
, the profile bi

(
da,i

)
and the local advancing

contact angle θA,i− 1. In other terms, and most interestingly, for all n, the
equilibrium anchorage depth at the topographical scale n can be pre-
dicted if one knows the profiles ωn

(
da,n

)
and bn

(
da,n

)
(which can be

determined experimentally through optical profilometry, tilted obser-
vations under a secondary electron microscope or atomic force micro-
scopy) and the local advancing contact angle θA,n− 1 (which can be
determined experimentally through the reproduction of a surface
constituted of topographical subscales i from 0 to n − 1, such as what has
been done by Bhushan et al. [46] and Koch et al. [47], who performed
recrystallization experiments of extracted epicuticular wax to replicate
the sacred lotus nanotubules on flat substrates, enabling the measure-
ment of θA,n− 1). This seems to be the least complex path towards the
prediction of equilibrium anchorage depths on multiscale surfaces at a
given topographical scale – such as what has been done in previous
works [20–21] – and towards understanding the link between equilib-
rium anchorage depths and the CAH at the topographical scale n (which
can be measured – if the latter is the scale of largest order of magnitude –
bymeasuring the macroscopic CAH). The other alternative is muchmore
complex as it requires to calculate every input parameter relative to the
topography, to know the intrinsic advancing contact angle θA,0 (the
latter being accessible experimentally, as described in previous works
[20–21]) and to calculate all the local advancing contact angles proper
to intermediate topographical scales through Eq. (6). Note that in all
cases, no knowledge of the solid–liquid or solid–vapor interfacial ten-
sions is required, since this information is already contained in the local
advancing contact angle θA,0, and, thus, by the recursion relation
introduced in Eq. (6), in all the local advancing contact angles, θA,i, for
all i from 0 to n, given the knowledge of all topographical parameters.

3.3. On the link between the equilibrium anchorage depth and the contact
angle hysteresis

We wish to emphasize here that the modeling introduced in this
paper allows to better understand the link between the degree of
penetration of water between protrusions and the CAH of a surface.
Indeed, as we have shown, the mechanisms underlying the advancing
and receding motions of the triple line depend on the location of the
meniscus at equilibrium, since both dAa,i and dRa,i are bounded by the

equilibrium anchorage depth, d*a,i. Therefore, minimizing the latter

eventually comes to reducing the values of λi
(
dAa,i

)
and λi

(
dRa,i

)
, and,

therefore, lowering the amplitude of the CAH. As a conclusion, our
theoretical considerations explain the adhesive behavior of surfaces
producing a large equilibrium anchorage depth or even associated with
a rose-petal wetting state: surfaces displaying a large equilibrium
anchorage depth actually display a high advancing contact angle and a
low receding contact angle only because they are characterized by large
values of advancing and receding anchorage depths. Since the two latter
are bounded by the equilibrium anchorage depth, one should target a
low equilibrium anchorage depth at the topographical scale of largest
order of magnitude in order to obtain a reduced adhesion.

3.4. On the effect of a topographical subscale on water-repellency

In the spirit of describing whether or not adding a topographical
scale i via a more sophisticated manufacturing process is worth it
regarding its effect on the macroscopic CAH, one must draw up a
comparison between the case where that topographical scale does exist
and the case where not. In other terms, the relevance of a topographical
scale i lies, for a surface constituted of n topographical scales, in its effect
on the value of Δθn = θA,n − θR,n in comparison with a reference value
predicted without it, Δrefθn = θrefA,n − θrefR,n, that is, with a flat layer

constituting the topographical scale under study (θrefA,i = θA,i− 1 and θrefR,i =

θR,i− 1). In order to clearly illustrate this approach, let us treat the simple
case of a surface constituted of two topographical scales (typically, a
vegetal surface constituted of protuberant micrometric cells covered
with nanoscale epicuticular wax crystals or an industrial surface pro-
duced by femtosecond laser manufacturing where the scale i = 2 is due
to the ablation process and can be a square network of micrometric
pillars and the scale i = 1 corresponds to nanoscale ripples resulting
from the light-matter interactions). The relevancy of adding the topo-
graphical subscale i = 1 is given according to the sign of Δθ2 − Δrefθ2. In
the latter expression, Δθ2 is calculated from Eq. (8) by inputting θA,1 and
θR,1, when Δrefθ2 is similarly calculated by inputting θA,0 and θR,0
instead. It yields an important conclusion regarding the consequence of
an enhanced surface topography through the texturing of the topo-
graphical subscale i = 1. Adding a topographical scale always lead to an
increase of the local advancing contact angle since it comes to enhancing
the mechanical pinning of the triple line at the advancing contact angle
[20–21,35,48]. Thus, let us suppose θA,1 > θA,0. As described in previous
works [20–21], the increase of θA,1 leads to a lower equilibrium
anchorage depth, and, subsequently, to lower external-contact-line
linear density (since λ2

(
da,2

)
monotonically decreases with da,2, and

given the fact that both dAa,2 and dRa,2 are bounded by d*a,2). Therefore,
even in the case where this additional topographical subscale is wet in a
Wenzel state, if the effect of the increase of the local advancing contact
angle θA,1 on the equilibrium anchorage depth is such that the decrease

of λ2
(
dAa,2

)
and λ2

(
dRa,2

)
overcomes a potential decrease of the local

receding contact angle, adding another topographical subscale might be
beneficial (i. e. θA,2 − θR,2 could decrease). Now, the propagation of this
effect is guaranteed, since at constant chemistry, for all i, θA,i+1 > θA,i.
Therefore this potential beneficial effect can be propagated, by imme-
diate recursion, to the case of a surface constituted of n topographical
scales. In other terms, a topographical scale i wetted in a Wenzel state
might still be relevant with regards to the macroscopic CAH due to the
competition between a lower equilibrium anchorage depth at the
topographical scale i+1 and a higher contact angle hysteresis at the
topographical subscale i. In a forthcoming article, we experimentally
illustrate these claims.
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3.5. On the effect of a topographical subscale on the robustness of the
composite-wetting state

In the continuation of the last considerations, the relevance of adding
a given topographical subscale must also be considered as for its effect
on the stability of the composite-wetting state at scales of larger orders
of magnitude. As a matter of fact, as emphasized in a previous paper
within the framework of a practical example [21], the maximal over-
pressure, ΔPmax,i, that can be sustained before a transition between a
composite-wetting state to a Wenzel state at a given topographical scale
i, and the reference maximal overpressure, Δref Pmax,i, obtained for a
topographical subscale i − 1 that would be flat (i.e. θrefA,i− 1 = θA,i− 2) are
given by the expressions:

ΔPmax,i = γ
− sin

(
ωmax
i + θA,i− 1

)

bi
(
dma,i

) − γCmacro − ρgΔz (11)

Δref Pmax,i = γ
− sin

(
ωmax
i + θA,i− 2

)

bi
(
dma,i

) − γCmacro − ρgΔz (12)

In the latter, ωmax
i is the maximal instantaneous slope, reached at an

anchorage depth dma,i. Therefore, the topographical subscale i − 1 is
relevant as for the robustness of the composite-wetting state at the scale i
if and only if ΔPmax,i > Δref Pmax,i, which directly yields θA,i− 1 > θA,i− 2.
Since a non-flat topography will always promote a higher local
advancing contact angle in comparison with a flat local surface
[20–21,48],θA,i− 1 is always higher than θA,i− 2. Thus, these considerations
lead to an important result: adding an additional topographical subscale
always increases the robustness of the composite-wetting state (at con-
stant chemistry). Here, an immediate recursion yields the conclusion
that, for all j from 2 to n, if for all i from 2 to j, θA,i− 1 > θA,i− 2, then,
ΔPmax,j > Δref Pmax,j. Therefore, the positive effect of adding a topo-
graphical subscale i − 1 is propagated to the robustness proper to all
topographical scales of larger orders of magnitude.

This important result is consistent with our recent findings, as pub-
lished elsewhere [21]: we have demonstrated, by using Eq. (11) and
applying it to the chemistry and the topography of the sacred lotus
(Nelumbo nucifera) leaf, that the adaxial side of the latter is constituted of
a two-scale hierarchical surface topography that produces a composite-
wetting state capable of withstanding overpressures up to approximately
10kPa thanks to its nanoscale topography. Without a nanoscale topog-
raphy, this maximal overpressure is lowered. Therefore, adding a
nanoscale topography is a key ingredient in the lotus leaf’s recipe for a
robust Cassie-Baxter state at the micrometric scale. A notable result is
that this order of magnitude of overpressures corresponds to that caused
by the impacts of droplets in a heavy rain, meaning that Nelumbo nuci-
fera has evolved to endure the harshest conditions in its environment
without being over-dimensioned. The additional mechanical pinning
exerted by the nanoscale topography on the advancing sections of the
triple line is paramount to the robustness of its composite-wetting state
since it increases the value of the local advancing contact angle and,
thus, the value of the maximal sustainable overpressure. In the end, its
nanoscale topography enables it to reduce the density of papilla per unit
of area (and, subsequently, to increase its water-repellency and to
decrease the energy cost associated with the formation of new leaves
and their growth) while enhancing its robustness.

3.6. On changing the liquid, the external conditions or adding a curvature

The modeling described herein also allows to discuss the effect of
other parameters on the equilibrium conditions and the CAH, such as the
nature of the liquid, the temperature or the humidity of the environment
surrounding the drop.

Pure water has the highest liquid–vapor interfacial tension among

liquids – leaving aside liquid metals such as mercury. When using other
liquids characterized by a lower surface tension, not only γ decreases,
but so does every contact angle characterizing the solid–liquid system,
including the intrinsic advancing contact angle. This means that, at the
smallest topographical scale, the equilibrium will be found at a deeper
location or will not be found at all if the liquid surface tension is too low.
As a consequence, the advancing contact angle formed at the smallest
topographical scale will be lowered, as deduced from Fig. 6. By recur-
sion relation, every local advancing contact angle at topographical
scales of larger orders of magnitude will be lowered and the system will
tend towards a drop anchored more deeply at the topographical scale of
the highest order of magnitude. Therefore, it will display a higher
macroscopic CAH. This can even cause the drop to be anchored in a
Wenzel state at its highest topographical scale and, therefore, to the
production of a rose-petal effect. When using oils, which are charac-
terized by a very low surface tension, it will be more challenging in
terms of surface morphology to produce an air-entrapment state. Indeed,
oils tend to form intrinsic advancing contact angles that are hydrophilic.
Therefore, it will require a reentrant morphology at the smallest topo-
graphical scale to keep an air-entrapment state leading to a hydrophobic
local advancing contact angle at the smallest topographical scale and
subsequently at larger topographical scales as well. When using rain-
drops or water in which a certain quantity of surfactants is dissolved, it is
known that the surface tension of water is subsequently lowered [49].
Therefore, the same considerations as described above are applied in the
case of impure water or an aqueous solution that includes surfactants.

In a similar manner, when the temperature increases in the envi-
ronment surrounding the drop, the surface tension of the liquid

Fig. 6. Schematical representation of the geometrical conditions at which the
advancing motion is initiated at the topographical scale i: [a] with a low local
advancing contact angle; [b] with a high local advancing contact angle. In
dashed lines, a flat meniscus is represented at the equilibrium anchorage depth
(under the hypothesis where no overpressure is applied on the drop).
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decreases because the cohesion forces within the liquid phase are
weaker [49]. The same evolution is noticed as the humidity in the air
surrounding the drop increases: the steam acts as a surfactant for the
liquid–vapor interface and the liquid–vapor interfacial tension decreases
[50].

When tilting the sample, one could question the effect of the direc-
tion of gravitational forces. As previously demonstrated [21], the effect
of gravity is negligible for the local equilibrium. Therefore, inclined
surfaces will not have an effect on the values of equilibrium, advancing
and receding anchorage depths, and therefore on the value of the CAH.
Nevertheless, if the role of gravity is negligible regarding the local
equilibrium, it obviously plays a key role at the macroscopic scale as it
allows to undock the drop when the surface is water-repellent. It is the
source of the free energy given to the drop as it locally deforms to display
its advancing and receding contact angles.

Eventually, a surface can also display a curvature. In such cases, one
has to question what is the scale of the curvature. If it is much larger that
the size of the droplet, it will not have an effect on the equilibrium and
on the CAH. If it much smaller that the size of the droplet, it will
constitute in itself a topographical scale and will be studied as such as
described in our model. Inbetween, its effect can be included as a
modification to the profile of local slope of the largest topographical
scale.

3.7. On the independence of topographical subscales

As a final note, we shall emphasize that in all the discussions above,
we have considered the effect of the local advancing contact angle
produced at a topographical subscale i on the curvature of the menisci
anchored at the topographical scale i + 1. For these considerations to
remain valid, all topographical scales must be independent from the
others. In other terms, and more practically, for all i, the characteristic
length of the asperities constituting the scale i+1 must be very large
when compared to that associated with the topographical subscale i.

4. Conclusions

In this theoretical study, we intend to shed light on the way real
multiscale surfaces interact with a liquid droplet. At equilibrium, during
the advancing motion or during the receding motion, the behavior of
triple lines and menisci is thoroughly investigated and, for the first time,
recursion relations between each topographical scale that constitutes a
surface are described. We introduce important new definitions that
bridge a paramount conceptual gap for the description of wetting on
multiscale surfaces that display non-model topographies such as in na-
ture. Then, we carry out an analytical modeling of wetting that yields
important conclusions regarding the effect of additional topographical
scales on the stability of the air-entrapment state as well as the link
between the degree of penetration of water and the so-called ‘rose-petal
effect’. These conclusions are summarized as follows:

(1) We formally introduce the concept of equilibrium anchorage depth,
in continuation with our previous works realized on the lotus leaf
[20–21], as the location where menisci are anchored on the side
of surface asperities when the droplet is at equilibrium in an air-
entrapment state. This value is proper to each topographical
scale. We prove that the equilibrium anchorage depth at the
topographical scale i only depends on the topographical signature
proper to the scale i (more practically, the profiles of the local
slope and of the spacing between two anchor points) and on the
local advancing contact angle at the scale i − 1, which supposes
that all topographical scales are recursively linked together;

(2) Based on a series of conceptual and experimental works pub-
lished in the past decades, such as the pioneer works of Extrand
[22], Schellenberger et al. [35] and Butt et al. [23], we adapt the
study to the case of a non-model multiscale surface and we

thoroughly describe the mechanisms which drive the attach-
ment/detachment of the menisci during the advancing or the
receding motion of the external triple lines of a droplet. The
advancing motion occurs as the liquid–vapor interface contacts
the next row of asperities and is therefore intrinsically discon-
tinuous. The receding motion occurs as the result of two motions
of the liquid–vapor interface, one that is external, the other that
comes from the rise of the meniscus due to a local transient
pressure depletion, subsequently causing the liquid–vapor inter-
face to pinch off and rupture, leaving a small quantity of liquid
behind, which resolves some questions raised by previous authors
[37–39];

(3) We define, for the first time, the notions of precursor advancing
motion and precursor receding motion, which precede an advancing
or a receding motion at a given topographical scale: they consist
in a local motion, over a small distance with regards to the
considered scale, due to an advancing or a receding motion
occurring at a smaller topographical scale, which induces a
recursion relation between all topographical scales. In other
terms, the advancing or the receding motions are propagated
along all topographical scales before they can occur macroscop-
ically. We hereby bridge an important conceptual gap for the
study of composite-wetting state occurring on multiscale sur-
faces, in continuation of the pioneer work of Huh and Mason for
mono-scale surfaces wetted in a Wenzel state [36];

(4) We introduce new parameters, namely the advancing anchorage
depth and the receding anchorage depth, which locates the pinning
points of the menisci at the very moment when the latter contacts
the next row of asperities and detaches from the last row of as-
perities, respectively. We derive how the CAH at a given topo-
graphical scale is related to those two parameters, opening the
way for the prediction of its value on complex surfaces. The more
the spacing, the less the CAH. The more the local advancing
contact angle, the less the CAH. The more the local slope, the less
the CAH;

(5) We demonstrate how the monitoring of the equilibrium
anchorage depth can be sufficient to lower the CAH: the equi-
librium anchorage depth is always an upper bound for the values
of the advancing and receding anchorage depths. As a conse-
quence, the less the equilibrium anchorage depth, the less the
CAH. Therefore, we shed light on how the penetration of liquid
between asperities is associated to the ‘rose-petal effect’,
contributing to filling the lack of physical insights about this
phenomenon that has been at the center of a lot of focus in the
past decades [18–19,51];

(6) Eventually, we formally demonstrate that an additional topo-
graphical subscale always increases the robustness of the air-
entrapment state as it contributes to the stability of the
anchorage of the menisci submitted to an external overpressure.
In line with this conclusion, we reaffirm the need for designing
efficient multiscale manufacturing processes to achieve water-
repellent surfaces offering reliable behaviors over a wide range
of external overpressures and that are, therefore, suitable within
a broad spectrum of technological applications, in line with our
previous study [21].
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