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Abstract

These lecture notes have been prepared for the ETICS 2024 research school. They consist of
two 3-hours lectures, dedicated to the following topics:

• Introduction & motivation for uncertainty quantification on machine learning predictions

• Conformal prediction theory & methodology

• Extensions & concurrent methods

All figures and examples from these notes can be reproduced with the R code available here:
CP tutorial material. Accompanying notebooks in R and Python can also be found there. Any
remark or suggestion concerning this tutorial can be sent to sebastien.da-veiga@ensai.fr .

I took inspiration from great lecture notes and tutorials available online, and I strongly en-
courage you to read them if you want to go further: see for example Angelopoulos and Bates
(2021), Tibshirani (2024) and Barber (2024).

https://uq.math.cnrs.fr/etics
https://sites.google.com/view/sebastien-da-veiga/etics-2024-tutorial-on-conformal-prediction-related-methods
mailto:sebastien.da-veiga@ensai.fr
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Lecture 1: Introduction to conformal prediction
Day 1

• Motivation

• Preliminaries
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– Elementary results on ranks and order statistics

• Conformal prediction theory

– Split conformal prediction

– Resampling strategies: jackknife, jackknife+, CV+

– Full conformal prediction

• Summary and introduction to lecture 2
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Chapter 1

Uncertainty quantification on machine
learning predictions

1.1 Problem setting
In supervised statistical / machine learning, we are given a sample Dn = (Xi, Yi)i=1,...,n of size
n from an unknown joint distribution PXY defined on a product space X × Y . Here we will
focus on the specific regression setting where X =

(
X(1), . . . , X(d)

)
∈ X ⊂ Rd is the vector

of the explanatory variables or inputs or features and Y ∈ Y ⊂ R is the target variable, or
output. We make this choice since it is the most common in computer experiments, but almost
all the material discussed in this course can be readily extended to other frameworks, and in
particular the classification setting where Y = {C1, . . . , CM} with Cj, j = 1, . . . ,M being M
distinct categories.

In this setting, the traditional goal is to build a map µ̂Dn : Rd 7→ R, called a predictor
or prediction function or prediction rule, from the observations in the sample Dn and which
predicts the value of the target variable ŷ = µ̂Dn(x) of any other individual with features x.
Note that we explicitly write the dependence between the predictor µ̂Dn and the sample Dn
used to build it, since this notation will be useful later on. You certainly know a substantial
number of different methods to build such a predictor, among which

• linear or polynomial regression

• nearest-neighbor and kernel smoothing methods, or more generally local-averaging tech-
niques

• smoothing splines and RKHS techniques, or Bayesian variants such as Gaussian process
regression

• ensemble methods such as random forests or boosting

• (deep) neural networks

4



Lecture 1: Introduction to conformal prediction

• {insert your favorite method}

Let us first display some of them on a simple one-dimensional regression example, that will
serve as an illustration all along this course.

Example. We consider the analytical one-dimensional test case defined as

Y = X3 + 2 exp(−6(X − 0.3)2) + ε

where X ∼ U [−1, 1] and ε ∼ N (0, 0.2|X|) taken from https://www.tidymodels.org/l
earn/models/conformal-regression/. Note that due to the definition of ε, this is an
heteroskedastic model. We generate a training dataset Dn = (Xi, Yi)i=1,...,n of size n = 500,
and train five regression models: a polynomial regression, a Gaussian process, a multi-layer
perceptron, a random forest and a smoothing spline. Predictions for each of these models
on a grid of 1000 equally spaced test points are displayed below (training data as black
points and predictions in blue).

MLP Smoothing Splines

Polynomial Regression Gaussian Process Random Forest

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

−1.0 −0.5 0.0 0.5 1.0

−1

0

1

2

−1

0

1

2

Except for the random forest model, observe that all models provide very similar pre-
dictions on the test set (keep this in mind for what follows!).

CHAPTER 1. UQ ON ML PREDICTIONS 5
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Lecture 1: Introduction to conformal prediction

Now, in practice, just providing model predictions is no longer sufficient in this
era where machine learning is extensively used in industrial and high-stake fields: we also
need to build prediction intervals around the predictions, which should contain the true but
unobserved value of the target with a certain level of confidence. Without being exhaustive,
here are a few benefits we can expect by producing prediction intervals:

• building trust with the end-users of the machine learning model, since they will be able
to see how confident it is when making a prediction

• opening the path for sequential or adaptive design of experiments, by requesting new
labeled data in the feature regions where the model is not confident (a.k.a. active learning)

• detecting potential out-of-distribution data, if the intervals are unexpectedly wide

The strong interest in providing such prediction intervals is not at all new, and it is actually
quite easy to generate some kind of intervals for some models, with different underlying ideas:

• explicit central limit theorems that are available for some models (polynomial regression,
local-averaging methods, ...)

• quantile regression, where the model is trained to specifically learn quantiles of the target
conditional distribution instead of the mean

• the Bayesian paradigm (Gaussian processes being a major representer of this class of
methods in the computer experiment community, but we can also cite Bayesian neural
networks more recently)

• resampling methods (bootstrap, cross-validation, leave-one-out, jackknife, ...)

• heuristic approaches, with a lot of popularity in the neural network community (multi-
start optimization of the model loss function - e.g. deep ensembles, randomization inside
the model - e.g. drop-out, ...)

We illustrate some of them on the previous example.

Example. We consider the same analytical one-dimensional test case from before, and in
addition to the model predictions, we also build prediction intervals with some of the ideas
listed above:

• for the polynomial regression model, we use the textbook central limit theorem for
predictions

• for Gaussian processes, we use the posterior distribution

• for random forests, we use the jackknife + out-of-bag resampling method

• for the multi-layer perceptron, we use deep ensembles and drop-out

CHAPTER 1. UQ ON ML PREDICTIONS 6



Lecture 1: Introduction to conformal prediction

• for smoothing splines, they are now built to estimate quantiles

For each method we compute 90% intervals around the predictions, they are represented
with orange lines below (the predictions are still in blue).

MLP Deep Ensemble MLP Drop−Out Smoothing Splines Quantile

Polynomial Regression Gaussian Process Random Forest Jackknife
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Contrary to the previous prediction-only case, now the intervals produced by each
method largely differ, except for the first two ones.

From this illustration, a few facts are particularly clear. First, even if model predictions can
be very close, the intervals may heavily vary depending on the underlying assumptions used
to build them. Second, even for a fixed model (e.g. multi-layer perceptron in the example),
depending on the uncertainty quantification methodology the intervals can also change. This
is highly problematic for our quest for trustworthiness mentioned before. The main question
actually is: what went wrong in what we did? A partial answer lies in the fact that:

• for parametric approaches such as polynomial regression, our model may be wrong (true
relationship being polynomial and homoskedastic Gaussian noise), or guarantees on the
validity of intervals are only asymptotic (central limit theorem)

• for nonparametric approaches like splines, smoothness assumptions may be violated

• for Bayesian approaches, the influence of the prior is not negligible (e.g. a stationary
kernel in Gaussian processes)

• for resampling approaches, we may lack theoretical guarantees that they provide valid
intervals

• for heuristic approaches, the theoretical guarantees may be even more lacking

CHAPTER 1. UQ ON ML PREDICTIONS 7



Lecture 1: Introduction to conformal prediction

Mathematically, we actually aim at building a prediction interval defined as follows.

Definition 1 (Prediction interval/band). A prediction interval ĈDn with error level α ∈
(0, 1) is a function

ĈDn : X → {subsets of Y}

built from an i.i.d. sample Dn = (Xi, Yi)i=1,...,n from PXY such that, for a new i.i.d. pair
(Xn+1, Yn+1) ∼ PXY , we have

P
(
Yn+1 ∈ ĈDn(Xn+1)

)
≥ 1− α, (1.1)

where the probability is over all data (X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1).

From this definition, notice that we target two specific properties for a prediction interval:

1. It must be distribution-free, i.e. the coverage guarantee (1.1) must hold without as-
sumptions on the data generating process PXY

2. It must be valid in a non-asymptotic framework, i.e. for any number n of samples used
to build it

This is exactly what conformal prediction does, as we will see in what follows. However,
without spoiling too much, we will also discuss variants that may have more practical interest
for us (from a theoretical and computational viewpoint), but will come at the cost of (slightly)
relaxing the above properties.

Remark. Observe that in the definition above:

• since the probability is over all data, this means that the coverage is guaranteed in
average over all random draws of training data (used to build the prediction interval)
and random draws of testing data (where we predict)

• the testing data is supposed here to follow the same distribution as the training
data, meaning that we will have to make adjustments to handle important practical
situations (e.g. timeseries, active learning, ...)

We will comment on these facts later in this course.

But before diving into the details of conformal prediction, we will first need some notations
and reminder of results on quantiles and exchangeability that will be useful later on.

1.2 Preliminaries
We start with the definition of quantile which we will use hereafter.

CHAPTER 1. UQ ON ML PREDICTIONS 8



Lecture 1: Introduction to conformal prediction

Definition 2 (Sample quantile). For a quantile level τ ∈ [0, 1] and a list of samples z1, . . . , zn ∈
R of size n, the τ -quantile is

Quantileτ (z1, . . . , zn) = Quantileτ

(
1

n

n∑
i=1

δzi

)
:= z(dnτe)

where z(i) is the ith order statistic of z1, . . . , zn. In words, the τ -quantile is the dnτeth
smallest value of z1, . . . , zn. This is also equivalent to

Quantileτ (z1, . . . , zn) = inf

{
t ∈ R :

1

n

n∑
i=1

1zi≤t ≥ τ

}

for τ ≥ 1/n, the empirical counterpart of the population quantile

Quantileτ (Z) = inf {t ∈ R : P(Z ≤ t) ≥ τ}

where P(Z ≤ t) = FZ(t) is the cumulative distribution function of Z.

Remark (Convention). Observe that we use here the convention for quantiles corresponding
to the inverse of the empirical distribution function. See https://en.wikipedia.org/wik
i/Quantile#Estimating_quantiles_from_a_sample for a quite exhaustive list of other
possible choices.

Remark (Notation). We introduced above two alternate notations, and in particular the
second one

Quantileτ

(
1

n

n∑
i=1

δzi

)
where the empirical distribution function appears explicitly. It will be useful later when
considering weighted samples, in which case we will write

Quantileτ

(
n∑
i=1

wiδzi

)

for positive weights w1, . . . , wn summing to 1, the τ -quantile still being defined as the
inverse of the (weighted) empirical distribution function.

CHAPTER 1. UQ ON ML PREDICTIONS 9
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Lecture 1: Introduction to conformal prediction

Another central ingredient for conformal prediction is the concept of exchangeable random
variables.

Definition 3 (Exchangeability). Random variables Z1, . . . , Zn are exchangeable if

(Z1, . . . , Zn)
d
=
(
Zσ(1), . . . , Zσ(n)

)
for every finite permutation σ of the indices 1, . . . , n.

Four important practical cases for us lead to exchangeable sequences.

Proposition 1 (Particular cases of exchangeable sequence). The random variables Z1, . . . , Zn
are exchangeable in the following cases:

(i) Z1, . . . , Zn are i.i.d. from some distribution P

(ii) Z1, . . . , Zn|θ are i.i.d. from some distribution P (·|θ) indexed by some random vector
θ ∼ Pθ (conditional i.i.d)

(iii) Z1, . . . , Zn are sampled uniformly without replacement from a finite set

(iv) Z1 = f(W1), . . . , Zn = f(Wn) with W1, . . . ,Wn exchangeable and f any function

Proposition 2 (A simple but useful result on quantiles). For any z1, . . . , zn, t ∈ R and quantile
level τ ∈ [0, 1], we have

t ≤ Quantileτ (z1, . . . , zn, t)⇔ t ≤ Quantileτ n+1
n

(z1, . . . , zn)

Proof. We will prove the equivalence between the complementary of these events. t >
Quantileτ (z1, . . . , zn, t) is equivalent to t > d(n + 1)τeth smallest value of z1, . . . , zn, t by
definition of the τ -quantile of the samples z1, . . . , zn, t. Since t cannot been larger than itself,
this is also equivalent to t > d(n+1)τeth smallest value of z1, . . . , zn, that is t > dnτ n+1

n
eth

smallest value of z1, . . . , zn and the latter is by definition the τ n+1
n

-quantile of the samples
z1, . . . , zn.

Proposition 3 (A central result for exchangeable sequences). If Z1, . . . , Zn are exchangeable,
then ∀i = 1, . . . , n

P (Zi ≤ Quantileτ (Z1, . . . , Zn)) ≥ τ

for any quantile level τ ∈ [0, 1].

Proof. By exchangeability, the rank of Zi is uniformly distributed over 1, . . . , n, and the
result follows.

CHAPTER 1. UQ ON ML PREDICTIONS 10



Lecture 1: Introduction to conformal prediction

1.3 A simple but illustrative example
Let us start with an extremely simplified situation, where we do not have features at all and
only observe an i.i.d. sample Dn = (Y1, . . . , Yn) ∼ P , from which we want to build a prediction
interval for a new sample Yn+1 ∼ P . Focusing on a one-sided interval ĈDn = (−∞, q̂n), we thus
seek q̂n such that

P (Yn+1 ≤ q̂n) ≥ 1− α.
Remembering Definition 2 gives a strong hint that q̂n should be chosen as a (1−α)-quantile of
some sort, but which one? There are two naive ways to tackle this problem:

1. We could make a distributional assumption on P , for example that it is a Gaussian with
unknown mean and variance. As an illustration, denoting Ȳn = 1

n

∑n
i=1 Yi the empirical

mean and s2n = 1
n−1

∑n
i=1

(
Yi − Ȳn

)2 the empirical variance, in this case we know that

Yn+1 − Ȳn
sn
√

1 + 1/n
∼ T n−1,

a Student’s t-distribution with n− 1 degrees of freedom, meaning that the choice

q̂n = Ȳn + sn
√

1 + 1/nQuantile1−α
(
T n−1

)
satisfies the targeted coverage (with an equality) for any finite n. Unfortunately this
does not lead to a distribution-free interval, since it is only valid under the Gaussian
assumption we did.

2. On the opposite, we could adopt a non-parametric approach by simply using

q̂n = Quantile1−α (Y1, . . . , Yn)

the empirical quantile of the observations. Unfortunately this would only give an approx-
imate coverage

P (Yn+1 ≤ q̂n) ≈ 1− α,
since the exact one would be obtained with the population quantile of P , and the empirical
quantile above only converges towards this grail when n→∞ under classical assumptions.
In other words, this time we have a distribution-free interval, but which is only valid when
n→∞.

None of these approaches thus solve our problem, but now come into play the results on quantiles
and exchangeable variables recapped before! Indeed, Proposition 3 almost corresponds to what
we want: Y1, . . . , Yn, Yn+1 are exchangeable since they are i.i.d. (Proposition 1 (i)), so we have

P
(
Yn+1 ≤ Quantile1−α (Y1, . . . , Yn, Yn+1)

)
≥ 1− α (1.2)

by applying the proposition for i = n + 1 and τ = 1 − α. We cannot conclude yet because
taking

q̂n = Quantile1−α (Y1, . . . , Yn, Yn+1)

CHAPTER 1. UQ ON ML PREDICTIONS 11



Lecture 1: Introduction to conformal prediction

is not possible since it depends on the unknown value Yn+1. Fortunately, a miracle appears
thanks to Proposition 2, which states that the following events are equivalent:

Yn+1 ≤ Quantileτ (Y1, . . . , Yn, Yn+1)⇔ Yn+1 ≤ Quantileτ n+1
n

(Y1, . . . , Yn) .

This means that we can rewrite Equation (1.2) as

P
(
Yn+1 ≤ Quantile(1−α)n+1

n
(Y1, . . . , Yn)

)
≥ 1− α,

and we can finally choose
q̂n = Quantile(1−α)n+1

n
(Y1, . . . , Yn)

which now only depends on the observed samples Y1, . . . , Yn and directly provides the coverage
guarantee for any n and with no distribution assumption on P . This can be thought of as
a finite-sample correction of the empirical quantile, where the level is adjusted so that the
coverage guarantee holds for any n.

Remark. If we assume that there is almost surely no ties between Y1, . . . , Yn (e.g. if we
assume that P is absolutely continuous), we actually have a stronger statement with an
upper bound:

1− α +
1

n+ 1
≥ P

(
Yn+1 ≤ Quantile(1−α)n+1

n
(Y1, . . . , Yn)

)
≥ 1− α,

see Tibshirani (2024) for example.

1.4 Conformal prediction for supervised learning
After this simplified example, let us now see if we can directly apply the same ideas in the
supervised setting, where we observe an i.i.d. sample Dn = (Xi, Yi)i=1,...,n from PXY , and want
to build a prediction interval for Yn+1 as a function of Xn+1, for an i.i.d. pair (Xn+1, Yn+1) ∼
PXY .

As mentioned at the beginning, we typically want a prediction interval centered around
a point prediction given by µ̂Dn , a predictor which has been trained on Dn, which means
that we seek a prediction interval of the form µ̂Dn(Xn+1) ± . . ., that is for example ĈDn(x) =
[µ̂Dn(x)− q̂n, µ̂Dn(x) + q̂n] or ĈDn(x) = {y ∈ R : |y − µ̂Dn(x)| ≤ q̂n}. Using the last equality,
the targeted coverage is thus

P
(
Yn+1 ∈ ĈDn(Xn+1)

)
= P (|Yn+1 − µ̂Dn(Xn+1)| ≤ q̂n) = P (Rn+1 ≤ q̂n) ≥ 1− α (1.3)

where we denote Ri = |Yi−µ̂Dn(Xi)| the absolute residuals for i = 1, . . . , n+1. Introducing here
the residuals is deliberate, because the last part in Equation (1.3) is identical to the previous

CHAPTER 1. UQ ON ML PREDICTIONS 12



Lecture 1: Introduction to conformal prediction

simple problem, with Y1, . . . , Yn, Yn+1 replaced by the residuals R1, . . . , Rn, Rn+1. As before, we
can then take

q̂n = Quantile(1−α)n+1
n

(R1, . . . , Rn)

and the course is finished.

Obviously it is not, because using this quantile in the prediction interval will not lead to the
expected coverage! It would be valid if R1, . . . , Rn, Rn+1 were exchangeable, but unfortunately
they are not. Indeed, R1, . . . , Rn are the residuals of the prediction model on the training set
(µ̂Dn was trained on Dn by definition), whereas Rn+1 corresponds to the error of the prediction
model on an unseen testing point: the latter will thus be generally much larger than the
former. This is similar to the classical phenomenon in supervised learning where the empirical
risk computed on the training set is not representative of the prediction error computed on a
test set.

We will see in this section three different ways to address this.

1.4.1 Split conformal prediction

Keeping in mind the similarity with the empirical risk in supervised learning just mentioned,
you may easily think about a trick to solve the exchangeability problem in Equation (1.3).
Indeed the problem comes from the fact that the quantile is computed on the training set Dn
while Rn+1 is a residual on the test set, resulting on residuals that do not compare with each
other. A straightforward fix thus consists in computing the quantile on data that were not used
for training the predictor. To achieve this, as is done in supervised learning, we can split the
training set Dn = Dptrain

n ∪ Dcal
n in two disjoint sets:

• Dptrain
n is the proper training set used to build the predictor µ̂Dptrain

n
only (in conformal

prediction it may sometimes be referred to as the pretraining set)

• Dcal
n is the hold-out calibration set on which the residuals are computed, which has the

same role as the validation set in supervised learning

This time, by computing the quantile of the residuals on Dcal
n , we can now achieve the required

coverage. To see this, let us consider the absolute residuals Ri = |Yi − µ̂Dptrain
n

(Xi)| for i ∈ Dcal
n

on the calibration set and Rn+1 the test residual. Of course these residuals are not independent
since they all depend on µ̂Dptrain

n
and thus on Dptrain

n . However, when we condition on Dptrain
n ,

they obviously become i.i.d., meaning that they are exchangeable by Proposition 1 (ii). This
leads directly to the following result:

P
(
Rn+1 ≤ Quantile

(1−α)ncal+1

ncal

(
Ri, i ∈ Dcal

n

)
|Dptrain

n

)
≥ 1− α (1.4)

or
P
(
Yn+1 ∈ Ĉsplit

Dn
(Xn+1)|Dptrain

n

)
≥ 1− α

CHAPTER 1. UQ ON ML PREDICTIONS 13



Lecture 1: Introduction to conformal prediction

for a prediction interval of the form

Ĉsplit
Dn

(x) = µ̂Dptrain
n

(x)± q̂Dcal
n

where q̂Dcal
n

= Quantile
(1−α)ncal+1

ncal

(
Ri, i ∈ Dcal

n

)
and ncal is the size of the calibration set. Such

a procedure is called split conformal prediction, split obviously referring to the fact that
we separated the training set in a proper training set and a calibration set. For later reference,
we formalize this result in a theorem.

Theorem 1 (Coverage for split conformal - Vovk et al. (2005)). If (X1, Y1), . . . , (Xn, Yn),
(Xn+1, Yn+1) are exchangeable, the split conformal interval satisfies

P
(
Yn+1 ∈ Ĉsplit

Dn
(Xn+1)|Dptrain

n

)
≥ 1− α.

Observe finally that here the coverage guarantee is conditional on the proper training set
Dptrain
n , meaning that the probability is over data {(Xi, Yi)}i∈Dcal

n
, (Xn+1, Yn+1), which differs

from the coverage from Equation (1.1). We discuss this point in the following remark.

Remark (Marginal vs training conditional coverage). It is straightforward to see that, by
marginalizing over the proper training set, Equation (1.4) becomes

P
(
Yn+1 ∈ Ĉsplit

Dn
(Xn+1)

)
= E

{
P
(
Yn+1 ∈ Ĉsplit

Dn
(Xn+1)|Dptrain

n

)}
≥ 1− α

where now the probability is over all data (X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1) as in Equa-
tion (1.1). This type of guarantee is called marginal coverage, in the sense that the
probability has been marginalized over all the randomness. Split conformal prediction thus
satisfies also a marginal coverage guarantee.

At the opposite, we may look at the coverage where we only marginalize over the test
set, i.e.

P
(
Yn+1 ∈ Ĉsplit

Dn
(Xn+1)|Dn

)
,

which is called the training conditional coverage and split conformal prediction also
comes with this kind of guarantee! Indeed, we can show that for split conformal

P
(
Yn+1 ∈ Ĉsplit

Dn
(Xn+1)|Dn

)
∼ Beta(l, ncal + 1− l)

where l = d(1 + ncal)(1 − α)e by classical results on the distribution of order statistics
(under the assumption that there are no ties in the residuals), see Angelopoulos and Bates
(2021) or Tibshirani (2024) for illustrations.
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We thus deduce that the moments of the training conditional coverage satisfy

E
{
P
(
Yn+1 ∈ Ĉsplit

Dn
(Xn+1)|Dn

)}
= d(1+ncal)(1−α)e

1+ncal)
∈
[
1− α, 1− α +

1

ncal + 1

]
Var

{
P
(
Yn+1 ∈ Ĉsplit

Dn
(Xn+1)|Dn

)}
= l(ncal+1−l)

(ncal+1)2(ncal+2)
≈ α(1− α)

ncal + 2

where the last approximation is valid when ncal is sufficiently large. This means that ncal,
the number of calibration samples, plays a major role on how close the training conditional
coverage is to its mean, which itself is close to 1− α. More precisely, a more quantitative
result states that (Vovk, 2012)

P

P
(
Yn+1 ∈ Ĉsplit

Dn
(Xn+1)|Dn

)
≥ 1− α−

√
log(1/δ)

2ncal

 ≥ 1− δ.

All in one, ncal should be chosen as large as possible in order to have a training conditional
coverage close to 1−α (but remember that marginal coverage will hold for any value of ncal).
However, this means that nptrain the size of the proper training set will then be smaller,
thus leading to a degraded prediction function µ̂Dptrain

n
, and ultimately to larger and thus

less informative prediction intervals in general. Split conformal prediction fundamentally
comes with such a trade-off, and we will see later other variants which overcomes this
limitation (at the cost of additional assumptions, or other types of limitations).

We can finally show split conformal prediction in action on our running example.

Example. For our previous one-dimension test case, we take a small training dataset Dn =
(Xi, Yi)i=1,...,n of size n = 100 for better illustration. To perform split conformal prediction,
we consider three scenarios, where we take successively nptrain = 15, 50, 85 corresponding
to ncal = 85, 50, 15. Since almost all models provided similar predictions before, we focus
on just two of them, polynomial regression and random forests. For each scenario and each
model we give below the predictions in blue and split conformal intervals for α = 0.1 in
orange. We also represent proper training samples from Dptrain

n in blue, and calibration
samples from Dcal

n in orange.
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Random Forest, nptrain =  15 Random Forest, nptrain =  50 Random Forest, nptrain =  85

Polynomial Regression, nptrain =  15 Polynomial Regression, nptrain =  50 Polynomial Regression, nptrain =  85
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As expected, we can observe that the width of the intervals tend to shrink when nptrain

increases.

We can also check on an independent test set if the target coverage is attained (we are
actually computing the training conditional coverage, since here the training data is fixed
and we only average over test data):

Poly. Regr. Poly. Regr. Poly. Regr. RF RF RF
nptrain = 15 nptrain = 50 nptrain = 85 nptrain = 15 nptrain = 50 nptrain = 85

0.933 0.918 0.931 0.869 0.943 0.955

which is in line with the theoretical coverage up to statistical fluctuations (from the size of
the test set and the calibration set, if you remember the discussion above).

The trade-off implied by splitting the training set Dn that we discussed previously is not
at all specific to split conformal prediction, since it is central in supervised learning. But you
know that there are prominent workarounds to retaining an hold-out set, based on resampling
schemes such as the jackknife and cross-validation. Similarly, conformal prediction can also use
such ideas: this is what we discuss in the next section.

1.4.2 Cross-validation+ and jackknife+ conformal prediction

Foreword We use here the term jackknife, but if you have never heard it, you may be more
familiar with the terminology leave-one-out cross-validation, both mean the same.

We start by introducing notations following Barber et al. (2021b):

CHAPTER 1. UQ ON ML PREDICTIONS 16
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Definition 4 (Shortcut for quantiles). For a quantile level α ∈ [0, 1] and a list of samples
z1, . . . , zn ∈ R of size n we denote

• q̂+n,α{zi} = zd(1−α)(n+1)e the sample (1− α)n+1
n

-quantile of z1, . . . , zn

• q̂−n,α{zi} = zbα(n+1)c, the sample αn+1
n

-quantile of z1, . . . , zn up to a different rounding

with sample quantiles defined in Definition 2.

We will also need two trivial properties:

Proposition 4. With the notations above, we have

(i) q̂−n,α{zi} = −q̂+n,α{−zi}

(ii) ∀a ∈ R, q̂+n,α{a+ zi} = a+ q̂+n,α{zi} and q̂−n,α{a+ zi} = a+ q̂−n,α{zi}

We discussed before that the naive prediction interval

Ĉnaive
Dn

(x) = µ̂Dn(x)± q̂+n,α{|Yi − µ̂Dn(Xi)|, i = 1, . . . , n}
does not have coverage guarantee since the residuals on the training set involved in the quantile
are not comparable to the residuals we expect on a test point. Borrowing ideas from the tradi-
tional jackknife in supervised learning, we may then think about using leave-one-out residuals
in the quantile computation instead, since they are representative of the errors on a test point:

Ĉ jack
Dn

(x) = µ̂Dn(x)± q̂+n,α{|Yi − µ̂−i(Xi)|, i = 1, . . . , n} (1.5)

where µ̂−i denotes the predictor trained on the data Dn \ i. Unfortunately, this straightforward
jackknife interval does not have theoretical coverage guarantee without additional assumptions
(and thus counterexamples exist, but see the remark below), even if in practice it appears to
be the case (Barber et al., 2021b). However, rewriting such an interval differently gives a hint
on the modifications we could make to solve this problem:

Ĉ jack
Dn

(x) =
[
µ̂Dn(x)− q̂+n,α{|Yi − µ̂−i(Xi)|, i = 1, . . . , n},
µ̂Dn(x) + q̂+n,α{|Yi − µ̂−i(Xi)|, i = 1, . . . , n}

]
=

[
µ̂Dn(x)− q̂+n,α{RLOO

i }, µ̂Dn(x) + q̂+n,α{RLOO
i }

]
=

[
µ̂Dn(x) + q̂−n,α{−RLOO

i }, µ̂Dn(x) + q̂+n,α{RLOO
i }

]
Proposition 4, (i)

=
[
q̂−n,α{µ̂Dn(x)−RLOO

i }, q̂+n,α{µ̂Dn(x) +RLOO
i }

]
Proposition 4, (ii)

where RLOO
i = |Yi − µ̂−i(Xi)|, i = 1, . . . , n denote the leave-one-out residuals.

With this expression, it is thus natural to think about replacing the common centering
µ̂Dn(x) in the quantiles by, again, the leave-one-out predictor µ̂−i(x). This leads to the so-
called jackknife+ conformal interval:

Ĉ jack+
Dn

(x) =
[
q̂−n,α{µ̂−i(x)−RLOO

i }, q̂+n,α{µ̂−i(x) +RLOO
i }

]
,

with the following coverage guarantee.
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Theorem 2 (Coverage for jackknife+ conformal - Barber et al. (2021b)). If (X1, Y1), . . . , (Xn, Yn),
(Xn+1, Yn+1) are exchangeable and the prediction algorithm is symmetric, the jackknife+
interval satisfies

P
(
Yn+1 ∈ Ĉ jack+

Dn
(Xn+1)

)
≥ 1− 2α.

Remark. We should comment on two points appearing in the previous theorem:

• This is the first time we mention the concept of a symmetric prediction algorithm.
This simply means that it treats the training data symmetrically, i.e. the prediction
function µ̂ it outputs is stable under any permutation of the training data

• With jackknife+, the attained coverage is 1 − 2α instead of the target 1 − α, but it
is observed in practice to be close to the target (Barber et al., 2021b)

Concerning the last point, with additional assumptions related to algorithmic stability
(which we will discuss during the second lecture), it is possible to get jackknife+ coverage
closer to 1−α. Interestingly, under such assumptions, the straightforward jackknife interval
in (1.5) now also has similar coverage guarantees.

Finally, notice that in general the computational cost of leave-one-out may be quite large
(except for specific prediction algorithms such as linear regression or kernel ridge regression for
example), and thus a variant based on cross-validation with K folds may be preferred. This is
totally doable by following the exact same principle of the jackknife+, leading to theCV+ con-
formal interval. DefineK folds

⋃K
k=1Dk = Dn and denoteRCV = {|Yi − µ̂−Dk

(Xi)|, i ∈ Dk}Kk=1

and µ̂CV(x) = {µ̂−Dk
(x), i ∈ Dk}Kk=1 the collection of all K-fold absolute residuals and predic-

tions, the CV+ conformal interval is given by

ĈCV+
Dn

(x) =
[
q̂−n,α{µ̂CV

i (x)−RCV
i }, q̂+n,α{µ̂CV

i (x) +RCV
i }

]
.

It satisfies the following coverage guarantee.

Theorem 3 (Coverage for CV+ conformal - Barber et al. (2021b)). If (X1, Y1), . . . , (Xn, Yn),
(Xn+1, Yn+1) are exchangeable and the prediction algorithm is symmetric, the K-fold CV+
interval satisfies

P
(
Yn+1 ∈ ĈCV+

Dn
(Xn+1)

)
≥ 1− 2α−min

{
2(1− 1/K)

n/K + 1
,
1−K/n
K + 1

}
.

Remark. When K = n we recover the jackknife+ result, and get a coverage close to 1−2α
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when K � n is small. For any value of K, we actually have

P
(
Yn+1 ∈ ĈCV+

Dn
(Xn+1)

)
≥ 1− 2α−

√
2/n.

Recently it has been shown that CV+ intervals also come with training conditional coverage
which depends on the number of samples in each fold:

Theorem 4 (Training conditional coverage for CV+ - Bian and Barber (2023)). If (X1, Y1), . . .,
(Xn, Yn), (Xn+1, Yn+1) are exchangeable, the K-fold CV+ interval with each fold of size m
such that n = Km satisfies

P

{
P
(
Yn+1 ∈ ĈCV+

Dn
(Xn+1)|Dn

)
≥ 1− 2α−

√
2 log(K/δ)

m

}
≥ 1− δ.

Remark. First note that, contrary to the marginal coverage of CV+ previously, assuming
that the prediction algorithm is symmetric is no longer needed.

In addition, this theorem states that in essence if the number of samples in each fold
m is large, we get training conditional coverage close to 1− 2α. m here actually plays the
same role as ncal in the training conditional guarantee of split conformal.

Finally, observe that jackknife+ corresponds tom = 1, meaning that without additional
assumptions obtaining a training conditional guarantee in this case seems illusory. In fact
Bian and Barber (2023) show that it is not possible, both for the jackknife+ and full
conformal prediction.

Remark (jackknife+ and CV+ are no longer centered). We will discuss this in the second
lecture also, but let us point out that the prediction intervals from jackknife+ and CV+
are no longer centered on a fixed predictor function µ̂, as opposed to split conformal and
naive jackknife.

Remark (Computational considerations). This is obvious but should be stated explicitly: you
need access to the prediction algorithm and must be able to perform re-training yourself
to compute jackknife+ and CV+ intervals, as opposed to split conformal where you just
need to be able to run predictions on a calibration set (and not train anything) if someone
already gave you a predictor trained on a proper training set.

Example. Still for our one-dimension test case, we take a training datasetDn = (Xi, Yi)i=1,...,n

of increasing size n = 15, 50, 200, 500. We only illustrate jackknife+ with polynomial re-
gression, since this is one of the most well-known predictors for which we have very fast
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leave-one-out formulas (see the accompanying R code). Training samples from Dn are rep-
resented in blue and jackknife+ conformal intervals for α = 0.1 in orange in the figure
below.

Polynomial Regression, ntrain =  200 Polynomial Regression, ntrain =  500

Polynomial Regression, ntrain =  15 Polynomial Regression, ntrain =  50
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Once again, we see that the width of the intervals tend to shrink when n increases.

1.4.3 Full conformal prediction

We finish our first overview of traditional conformal prediction methods by the full conformal
prediction approach, which is sometimes referred to as conformal prediction, without any
qualifier at all.

The principle behind full conformal prediction is rather different to what we saw before. One
way to introduce it is to first discuss an idealized situation, which cannot happen in practice,
where we already know the value of Yn+1 (so that we do not need to compute a prediction
interval of course). In such a case, we could train a prediction function µ̂Dn+1 on all data
(X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1), and we know that the event

Rn+1 ≤ Quantile(1−α)n+1
n

(R1, . . . , Rn) (1.6)

has probability ≥ 1− α, where Ri = |Yi − µ̂Dn+1(Xi)| are the absolute residuals, by exchange-
ability and if the prediction algorithm is symmetric. Be careful that this is not the same
flawed setting as in Equation (1.3) at the beginning of this section, where Rn+1 was a residual
on a test point which was not used in training, now all data are used for training and for
computing residuals. Let us then re-write this statement, by clearly separating the effects of
(X1, Y1), . . . , (Xn, Yn) and (Xn+1, Yn+1):

|Yn+1 − µ̂Dn∪(Xn+1,Yn+1)(Xn+1)| ≤ Quantile(1−α)n+1
n

(
|Yi − µ̂Dn∪(Xn+1,Yn+1)(Xi)|, i = 1, . . . , n

)
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has probability ≥ 1 − α. Now of course we do not know the value of Yn+1 (but we know
everything else), and building a prediction interval for it just amounts to finding a set of
test values y ∈ Y which may correspond to Yn+1 with a certain confidence. Having a look
at the previous event, we know that when we use the value Yn+1 inside the inequality, it has
probability ≥ 1 − α to be true. Quite naturally, we could then think about testing all values
y ∈ Y and only retain those for which the inequality is verified. This translates into testing

Is |y − µ̂Dn∪(Xn+1,y)(Xn+1)| ≤ Quantile(1−α)n+1
n

(
|Yi − µ̂Dn∪(Xn+1,y)(Xi)|, i = 1, . . . , n

)
?

for all y ∈ Y . The full conformal interval is finally given by

Ĉ full
Dn

(Xn+1) =
{
y ∈ R : |y − µ̂Dn∪(Xn+1,y)(Xn+1)| ≤ Quantile(1−α)n+1

n

(
|Yi − µ̂Dn∪(Xn+1,y)(Xi)|

)}
=

{
y ∈ R : Ry

n+1 ≤ Quantile(1−α)n+1
n

(Ry
i , i = 1, . . . , n)

}
where Ry

i = |Yi − µ̂Dn∪(Xn+1,y)(Xi)| for i = 1, . . . , n and Ry
n+1 = |y − µ̂Dn∪(Xn+1,y)(Xn+1)|.

We insist that µ̂Dn∪(Xn+1,y) corresponds to the prediction function learnt on the augmented
dataset (X1, Y1), . . . , (Xn, Yn), (Xn+1, y), as if y was the true target value observed at Xn+1.
The proof of the following coverage guarantee is then trivial, due to the probability of the event
in Equation (1.6) discussed before.

Theorem 5 (Coverage for full conformal - Vovk et al. (2005)). If (X1, Y1), . . . , (Xn, Yn),
(Xn+1, Yn+1) are exchangeable and the prediction algorithm is symmetric, the full confor-
mal interval satisfies

P
(
Yn+1 ∈ Ĉ full

Dn
(Xn+1)

)
≥ 1− α.

Proof. The event Yn+1 ∈ Ĉ full
Dn

(Xn+1) is equivalent to

R
Yn+1

n+1 ≤ Quantile(1−α)n+1
n

(
R
Yn+1

i , i = 1, . . . , n
)
,

which is exactly the event in Equation (1.6).

Remark (Computational considerations). Assembling the full conformal interval is quite
tricky because the prediction function must be re-trained:

1. for each test point Xn+1

2. and for every possible target value y ∈ Y , with Y = R in our case here

Let us comment first the second point because it necessitates special care due to the infinite
cardinality of the set of test values. A first useful result states that we can truncate the
search to the empirical range of target values in the training data (Chen et al., 2016), and
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build (’t’ is for trimmed):

Ĉ full-t
Dn

(Xn+1) =
{
y ∈ [minYi, maxYi] : Ry

n+1 ≤ Quantile(1−α)n+1
n

(Ry
i , i = 1, . . . , n)

}
with coverage

P
(
Yn+1 ∈ Ĉ full-t

Dn
(Xn+1)

)
≥ 1− α− 2

n+ 1
.

The search space is of course reduced when compared to Y , but it is still infinite and so
cannot be implemented in practice. The usual trick is then to use a finite grid of y values
and test each of them, but there is no general theory with guaranteed coverage in this case
(although this is what is done in many practical implementations).

We can now come back to the first point, because with the discretization trick for y,
we will still need to re-train the prediction function for each point (Xn+1, y), but now a
finite number of times. This will generally be prohibitive, except for specific instances
of algorithms called linear smoothers. Such supervised learning methods correspond to
prediction functions which are linear functions of the training target values Y1, . . . , Yn,
which implies that the fitted values Ŷ1, . . . , Ŷn form a vector writing as Ŷ = SY for a n×n
matrix S which depends only onX1, . . . ,Xn. This encompasses linear and ridge regression,
nearest neighbors, kernel smoothing, smoothing splines and kernel ridge regression for
example (but not random forests nor neural networks).

One last comment: similarly to jackknife+ and CV+, for full conformal you also evi-
dently require the capability to re-train the prediction function.

Example. We now only consider a training dataset Dn = (Xi, Yi)i=1,...,n of size n = 15 and
polynomial regression. For full conformal, we use a grid of target values in the range of Y
values in the training set (slightly augmented) and use fast formulas using the fact that
polynomial regression is a linear smoother (see accompanying R code).

We first show, for several values of Xn+1, the different predictors obtained when we
augment the training data with (Xn+1, y) for a grid of y values: the colors below correspond
to one value of y (displayed with a colored diamond) and the training samples from Dn are
represented in blue as usual.
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Polynomial Regression, Xtest =  0 Polynomial Regression, Xtest =  0.5

Polynomial Regression, Xtest =  −0.9 Polynomial Regression, Xtest =  −0.75
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Finally, we compute the full conformal intervals with α = 0.1 in orange in the figure
below for all values of Xn+1, by identifying the minimum and maximum value of y in the
grid that satisfies the full conformal check inequality.
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2

−1.0 −0.5 0.0 0.5 1.0

Observe first that the discretization grid is particularly obvious in the plot, as expected.
Also, for certain values of Xn+1 the intervals tend to explode: this corresponds to regions
where adding a new training data (Xn+1, y) can greatly impact some residuals elsewhere.
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Interestingly, the full conformal intervals are highly different from the ones obtained with
jackknife+ previously: they are thinner and vary a little more with Xn+1.

Remark (Split conformal is a (very) special case of full conformal). Let us denote A the
prediction algorithm with outputs the pretrain predictor µ̂Dptrain

n
when it is given the data

Dptrain
n , and define a new prediction algorithm Ã which, when it is given any dataset, will

always output µ̂Dptrain
n

(we say that Ã is a non-data-dependent algorithm, and obviously it
is symmetric).

Now assuming that µ̂A
Dptrain

n
is fixed (we make the dependence to the prediction algorithm

explicit now), we can build the full conformal interval with the prediction algorithm Ã on
the calibration set Dcal

n . In this setting it is given by

Ĉ full
Dcal

n
(Xn+1) =

{
y ∈ R : |y − µ̂ÃDcal

n ∪(Xn+1,y)
(Xn+1)|

≤ Quantile(1−α)n+1
n

(
|Yi − µ̂ÃDcal

n ∪(Xn+1,y)
(Xi)|, i ∈ Dcal

n

)}
=

{
y ∈ R : |y − µ̂ADptrain

n
(Xn+1)|

≤ Quantile(1−α)n+1
n

(
|Yi − µ̂ADptrain

n
(Xi)|, i ∈ Dcal

n

)}
(definition of Ã )

= µ̂ADptrain
n

(Xn+1)±Quantile(1−α)n+1
n

(
|Yi − µ̂ADptrain

n
(Xi)|, i ∈ Dcal

n

)
that is the definition of the split conformal interval. The training conditional guarantee for
split conformal thus directly derives from the marginal coverage guarantee of Ĉ full

Dcal
n

(Xn+1)

given Dptrain
n (recall that we assumed that µ̂A

Dptrain
n

was fixed above).

1.5 Summary and discussion
In this first lecture, we discussed the basic principles behind conformal prediction - finite sample
correction of quantiles and exchangeability - and detailed several variants: split conformal,
jackknife+ / CV+ conformal and full conformal. In addition, all these methods come with nice
theoretical guarantees on the coverage of the intervals they produce.

To go further, let us point out a few facts related to their practical applicability on computer
experiment topics:

(i) Training conditional coverage is almost surely a must-have in industry: marginal coverage
will not guarantee anything about intervals produced with a fixed training sample (the
one that you have at hand in your application) but only on average over all training
data you could have randomly generated. Unfortunately only split conformal and CV+
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enjoy this property without additional assumptions. Algorithmic stability is a key concept
which will make it possible to get training conditional coverage for other approaches and
will be discussed in the second lecture.

(ii) In illustrations you may have noticed that almost all methods produced intervals with
constant width (except full conformal). Intuitively we would have expected something
different, with larger width when the predictor does not perform well (for example input
regions with few training data) and when there is more noise (remember that our running
example has heteroskedastic noise). Adaptivity of prediction intervals (in the sense that
they vary with x) is thus a desirable property, which can be achieved with several methods:
this will be investigated in the second lecture as well, with the related concept of test
conditional coverage.

(iii) Finally, the exchangeability assumption prevents basic conformal prediction from being
used in important practical cases, such as time series or active learning (the latter be-
ing crucial in computer experiments). We will also present extensions to handle such
situations in the next lecture.

Note that along such extensions of conformal prediction, related approaches with the same
type of guarantees but different assumptions will also be mentioned.
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Lecture 2: Extensions of conformal prediction & related methods
Day 2

• Achieving training conditional coverage

• Distribution shift

• The quest for adaptivity

– Changing the score function

– Learning the score function

– Test conditional coverage

• Concluding remarks
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Chapter 2

Extensions of conformal prediction &
related methods

Now that we have detailed the most prominent conformal prediction methods with basic ex-
changeability assumptions, in this second lecture we now discuss several extensions which should
be of greater interest from a practical point of view in computer experiments (but not only).

2.1 Achieving training conditional coverage
As elaborated in the first lecture, training conditional guarantee is kind of a must-have in
practice. Unfortunately not all conformal methods satisfy this property, and you should be
aware of this fact when using conformal prediction on your application.

For illustration purposes, we take inspiration from a numerical experiment in Bian and
Barber (2023). We repeat 200 times the following experiment for a fixed training sample size
n = 100 and a fixed test sample size ntest: for a feature dimension d = n/10, n/2, n − 2, we
generate data from a homoskedastic linear model Y |X ∼ N (Xβ, 1) with X ∼ N (0, Id) and a
vector of coefficients β generated at random according to a uniform distribution between −

√
10

and
√

10. For each trial we first compute the jackknife+ prediction intervals for a simple linear
regression, and then estimate the conditional coverage by counting the number of test samples
that fall in this interval, with α = 0.1. We report in Figure 2.1 below the histograms of the
training conditional coverage obtained over all repetitions, for each feature dimension d.
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Figure 2.1: Histogram of jackknife+ conditional coverage for linear regression with n = 100
and d = n/10, n/2, n− 2. The target coverage 1− α is given as a black vertical line.

Observe first that all histograms are centered around 0.9: this is expected since the marginal
coverage, being equal to the mean of the training conditional one, is guaranteed to be around
1 − 2α but close in practice to 1 − α for the jackknife+. However, a huge difference between
the histograms appears when d varies: for d� n the fluctuations around 1− α are small, but
when d ≈ n the behavior is quite erratic. For many trials the coverage is much smaller than
1− α, which is highly problematic, and also for approximately half the repetitions we observe
a coverage equal to 1, which occurs because the range of the intervals explode.

In practice we absolutely want to avoid this last situation, because we will be blind: when
building intervals with a method with no training conditional guarantee, we may be in a case
where our training data give let’s say 20% coverage, or in a case where they provide a non-
informative interval with 100% coverage.

Fortunately, it is possible to obtain training conditional guarantee for resampling-based
conformal methods when the prediction algorithm satisfies a stability assumption, that is
when the predictions when removing or replacing an observation from the training data are
close to each other.

Definition 5 (Algorithmic stability - Barber et al. (2021b); Amann et al. (2023); Liang and Bar-
ber (2023)). A prediction algorithm A is (εn, νn)-stable if the predictor it outputs satisfies
∀i = 1, . . . , n

P {|µ̂Dn(Xn+1)− µ̂−i(Xn+1)| ≤ εn} ≥ 1− νn. (SA1)
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A prediction algorithm A is βn-stable if the predictor it outputs satisfies ∀i = 1, . . . , n

E {|µ̂Dn(Xn+1)− µ̂−i(Xn+1)|} ≤ βn. (SA2)

In both cases the probability is taken over all data (X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1).

Remark ((SA1) and (SA2) are essentially the same in practice). See Liang and Barber
(2023).

In addition to algorithmic stability, many results also involve additional distributional
assumptions, which help control the conditional distribution PY |X=x. We will come back later
in the conclusion and perspectives on how such assumptions may be restrictive for computer
experiments.

Assumption 1 (Absolute continuity - (AC)). For almost every x, the conditional dis-
tribution PY |X=x has Lebesgue density fY |X=x with finite supremum norm ‖fY |X‖∞ =
supy∈R fY |X(y) <∞. We also consider assumptions:

• (ACb) where we further assume that ‖fY |X‖∞ is bounded by a constant fsup or

• (ACe) where we further assume that E‖fY |X‖∞ is bounded by a constant c

Remark (Related stability concepts). In Steinberger and Leeb (2023), the authors define the
K-stability coefficient η as

ηn =
1

K

K∑
k=1

E
{
‖fYn+1|Xn+1‖∞ |µ̂Dn(Xn+1)− µ̂−Dk

(Xn+1)|
}
.

for a K-fold CV procedure with Assumption (AC). Applied to leave-one-out CV this leads
to a stability coefficient equal to

ηn =
1

n

n∑
i=1

E
{
‖fYn+1|Xn+1‖∞ |µ̂Dn(Xn+1)− µ̂−i(Xn+1)|

}
≤ fsupβn

where βn comes from (SA2) and we further assume (ACb). This proves the close links
between such stability concepts.

Another related but highly different stability criterion in practice is the in-sample sta-
bility, as opposed to the out-sample stability which is another terminology for the one we
defined before. The "in-sample" qualifier refers to the fact that the stability is measured
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in average for data used to train both predictors, i.e. the in-sample version of (SA1) writes

P {|µ̂Dn(Xi)− µ̂−i(Xi)| ≤ εn} ≥ 1− νn. (SAin
1 )

This is a much stronger assumption than (SA1). Barber et al. (2021b) give the example
of the k-nearest neighbor predictor, which satisfies (SA1) with εn = 0, νn = k/n but not
(SAin

1 ).

Defining the useful concept of stability is great, but knowing which prediction algorithms
satisfy such properties is crucial in practice. Here are a few results and references for some of
them:

• Linear regression is (SA) and (SAin) stable unless d ≈ n when it is neither. This explains
the results we obtained at the very beginning of this section

• Ridge regression (linear or kernel) is (SA) and (SAin) stable (Bousquet and Elisseeff,
2002), the higher the regularization the more stable

• Lasso regression is (SA) but not (SAin) stable (Xu et al., 2011)

• Bagging of any base predictor is (SA) (Soloff et al., 2024)

• Random forests are (SA) (Wang et al., 2023)

Now equipped with stability assumptions and control of target conditional distributions, we
can first revisit a previous result on marginal coverage before addressing training conditional
coverage. These assumptions make it possible to get close to the 1−α target, instead of 1−2α
previously.

Theorem 6 (Marginal coverage 1 − α for jackknife and jackknife+ - Barber et al. (2021b)).
If (X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1) are exchangeable, under Assumptions (ACe), (SA1)
and for a symmetric prediction algorithm, then the jackknife interval satisfies

P
(
Yn+1 ∈ Ĉ jack

Dn
(Xn+1)

)
≥ 1− α− 2

√
νn − 2εnc

and the jackknife+ interval satisfies

P
(
Yn+1 ∈ Ĉ jack+

Dn
(Xn+1)

)
≥ 1− α− 4

√
νn − 4εnc.

Remark. A similar results holds when Assumption (ACe) is dropped, at the cost of inflating
lightly the prediction intervals by a factor of εn.

On an interesting side-note, with an additional in-sample stability assumption (SAin
1 ),
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even the naive prediction interval

Ĉnaive
Dn

(x) = µ̂Dn(x)± q̂+n,α{|Yi − µ̂Dn(Xi)|, i = 1, . . . , n}

discussed in the previous lecture satisfies a similar coverage (Barber et al., 2021b)!

We already mentioned that for jackknife and variants, the computational cost may be a
limitation. For the specific case of random forests, a recent interesting result shows that intervals
built from out-of-bag samples, which do not necessitate re-training, actually achieve marginal
coverage guarantees with the same type of assumptions.

Theorem 7 (Marginal coverage for jackknife-OOB on random forests - Wang et al. (2023)). If
(X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1) are i.i.d. and for a random forest satisfying a stability
condition (SA1), then

P
(
Yn+1 ∈ Ĉ jack-oob,εn

Dn
(Xn+1)

)
≥ 1− α−O(

√
νn)

where Ĉ jack-oob,εn
Dn

(x) = µ̂RF
Dn

(x) ± q̂+n,α{|Yi − µ̂RF
oob,−i(Xi)| + εn, i = 1, . . . , n} with µ̂RF

Dn
the

random forest predictor and µ̂RF
oob,−i the out-of-bag predictor for observation i.

Now, the main results for this section concern training conditional guarantees for the jack-
knife and the jackknife+, to complete the picture (full conformal is discussed in the remark
below). Note that we provide here asymptotic guarantees. Although finite-sample results
exist, they are not very useful in practice because they involve unknown constants (in general),
similarly to the marginal coverages we just detailed. As such, you should remember that in the
majority of cases, training conditional coverage will unfortunately not have the desirable finite-
sample property, and neither the distribution-free one since we usually require some (AC)-like
assumption: this is a reason why I tend to say that conformal prediction is not magical and
is not as useful as advertised in a distribution-free and finite-sample setting (this is only my
personal opinion). On the contrary, stability assumptions hold for many predictors you would
use in practice.

Theorem 8 (Asymptotic training conditional coverage for jackknife+ - Liang and Barber
(2023)). If (X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1) are exchangeable, under Assumptions (ACe),
(SA2) and for a symmetric prediction algorithm, if βn → 0 then the jackknife+ interval
satisfies

lim
n→∞

P
{
P
(
Yn+1 ∈ Ĉ jack+

Dn
(Xn+1)|Dn

)
≥ 1− α− δn

}
→ 1

for some sequence δn → 0.

Theorem 9 (Asymptotic training conditional coverage for jackknife - Steinberger and Leeb
(2023); Amann et al. (2023)). If (X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1) are i.i.d., under As-
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sumptions (ACb), (SA2) and a boundedness assumption on the prediction error, if ηn → 0
then the jackknife interval satisfies

lim
n→∞

E
{∣∣∣P(Yn+1 ∈ Ĉ jack

Dn
(Xn+1)|Dn

)
− (1− α)

∣∣∣}→ 0.

Remark. Both results are highly similar, and only differ in their assumptions: exchange-
ability and algorithm symmetry for the former (with a small overshooting δn of the coverage
level), and bounded prediction error and i.i.d. samples for the latter.

Note that Liang and Barber (2023) also show training conditional coverage for the full
conformal intervals with an in-sample stability assumption (SAin

2 ), the in-sample version
of Assumption (SA2).

Finally, Steinberger and Leeb (2023) prove the statement for K-fold CV and the jack-
knife result is just a particular case.

2.2 Distribution shift
Distribution shift refers to situations where either the training data (X1, Y1), . . . , (Xn, Yn) and
the test data (Xn+1, Yn+1) do not have the same underlying generating probability distribution,
or more generally if all (Xi, Yi) do not have the same distribution. Obviously this means that
data are not i.i.d., but also that there is no hope to have exchangeability either, thus rendering
all previous results useless in this setting.

Addressing this problem in all generality is a hard task, this is why we focus here on
one specific instance that is of particular interest in practice: the covariate shift setting. In
this case we assume that the marginal distribution of the features (or covariates) X differs
in training and test data, but the conditional distribution of Y |X is the same. In other
words, we have P train

XY = P train
X × PY |X and P test

XY = P test
X × PY |X . Interestingly, in this case,

it is possible to perform weighted conformal prediction by using quantiles on a weighted
empirical distribution of the data and still guarantee marginal coverage. This is formalized in
the following theorem.

Theorem 10 (Marginal coverage for weighted full conformal intervals - Tibshirani et al.
(2019)). Assume we are in the covariate shift setting above with (X1, Y1), . . . , (Xn, Yn)
i.i.d. from P train

XY and (Xn+1, Yn+1) from P test
XY independently. Define

q̂wn,α{vi ∪ {+∞}} = Quantile1−α

(
1∑

j w(Xj)

n∑
i=1

w(Xi)δvi +
w(Xn+1)∑
j w(Xj)

δ+∞

)
.
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Then the full conformal interval

Ĉ full
Dn

(Xn+1) =
{
y ∈ R : Ry

n+1 ≤ q̂wn,α{(R
y
i )i=1,...,n ∪ {+∞}}

}
satisfies

P
(
Yn+1 ∈ Ĉ full

Dn
(Xn+1)

)
≥ 1− α

for the weight function w = dP test
X /dP train

X where we further assume that P test
X is absolutely

continuous with respect to dP train
X .

Remark. Observe first that if there is no covariate shift, the weight function is the identity
and the weighted quantile becomes

q̂wn,α{vi ∪ {+∞}} = Quantile1−α

(
1

n+ 1

n∑
i=1

δvi +
1

n+ 1
δ+∞

)
= Quantile(1−α)n+1

n
(vi)

for α ≥ 1/(n+ 1) and we recover the usual full conformal interval.

Another important point is that the weight function, which is a likelihood ratio, must be
known in advance. However for the particular case where the probability density functions
in the training and test set are known only up to a constant, the result still applies because
the constants cancel out in the weighted empirical distribution function.

Finally, recall that in the first lecture we showed that split conformal can be seen as a
particular case of full conformal. This implies that weighted split conformal intervals also
have such coverage guarantees (more precisely the training conditional one, as usual with
split conformal), i.e. the interval

Ĉsplit
Dn

(x) = µ̂Dptrain
n

(x)± q̂wn,α{(Ri)i∈Dcal
n
∪ {+∞}}

satisfies the training conditional guarantee

P
(
Yn+1 ∈ Ĉsplit

Dn
(Xn+1)|Dptrain

n

)
≥ 1− α

for the same weight functions as in the previous theorem, see supplementary material of
Tibshirani et al. (2019).

Example. Let us illustrate weighted split conformal intervals on a slight variation of our
running example:

Y = X3 + 2 exp(−6(X − 0.3)2) + ε

where ε ∼ N (0, 0.2|X|) and X ∼ P train
X = U [0, 1] for the training set (of size n = 2000) and
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we consider two covariate shift settings where X ∼ P test,1
X = N (0.3, 0.1) and X ∼ P test,2

X =
N (0.8, 0.1) for the test set. We run split conformal prediction with ncal = 1000 and α = 0.1
with the original unweighted quantile, and the weighted quantiles for P test,1

X and P test,2
X . We

show below the prediction (blue line), the prediction intervals (orange line) and calibration
data (orange dots) for each method in the top row. The bottom row displays, for each
method, the calibration data residuals (orange dots), the quantile value (red line) and the
distribution of the shifted covariate if any (black line).

Split conformal Weighted split conformal 1 Weighted split conformal 2

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
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Split conformal Weighted split conformal 1 Weighted split conformal 2

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.0

0.1

0.2

0.3

0.4

0.5

The impact of the weighted quantiles is particularly clear:

• P test,1
X concentrates on regions where the original split conformal has overcoverage,

so that the weighted quantile is smaller, resulting in narrower prediction intervals in
the end

• At the opposite, P test,2
X corresponds to regions where we have undercoverage for un-

weighted split conformal, the weighted quantile is thus larger and the weighted pre-
diction intervals are larger

We can quantitatively assess these findings by computing the training conditional cov-
erage of each method with respect to both P test,1

X and P test,2
X , see the results in the table

below.

Split conformal Weighted Weighted
split conformal 1 split conformal 2

Coverage P test,1
X 1 0.91 1

Coverage P test,2
X 0.735 0.247 0.863
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Remark (Weighted split intervals are typically constant). We have seen that by design, split
conformal produces prediction intervals with constant width. Looking closely at the defi-
nition of the weighted quantiles, we can see that this time they depend on the value of the
test point Xn+1, meaning that theoretically they are not constant. However, when ncal is
sufficiently large, the impact of Xn+1 is negligible in the computation, thus yielding also
constant intervals: this can be observed in the example above. The same comment applies
to weighted full conformal prediction of course.

For weighted conformal prediction, we emphasized that the shifted distribution of the co-
variates P test

X must be known in advance. Although this is the case in some examples, a more
representative setting of practical applications would be that, if we consider P test

X as a region of
interest where we want to guarantee coverage, such a region will most often come from insights
gained from the trained predictor itself. This could be feature regions where the target is pre-
dicted to be close to a threshold (for reliability studies) or where it is small (for minimization
problems), among others. In this setting, this means that P test

X is not given beforehand, but is
deduced from the training data (through the predictor), and we can formally write

P train
XY = P train

X × PY |X , P test
XY = P test

X;Dn
× PY |X

where we made this dependence explicit. Theoretically such assumptions no longer fall in the
weighted conformal prediction framework, but recently it has been shown that actually we can
still have coverage in this generalized setting, as formalized in the following theorem.

Theorem 11 (Training conditional coverage for weighted split conformal intervals based on
training data - Fannjiang et al. (2022)). Assume we are in the covariate shift setting above
with (X1, Y1), . . . , (Xn, Yn) i.i.d. from P train

XY which is split in Dptrain
n ∪ Dcal

n and denote
PX;Dptrain

n
= PX;µ̂

Dptrain
n

a shifted covariate distribution which depends on µ̂Dptrain
n

, a predictor
trained on Dptrain

n . For the residuals on the calibration data Ri = |Yi−µ̂Dptrain
n

(Xi)|, i ∈ Dcal
n

we consider the weighted split prediction interval

Ĉsplit
Dn

(Xn+1) = µ̂Dptrain
n
± q̂wn,α{(Ri)i∈Dcal

n
∪ {+∞}}

with the weight function given by w = dPX;µ̂
Dptrain
n

/dP train
X . Then, if dPX;µ̂

Dptrain
n

is abso-
lutely continuous with respect to dP train

X , we have

P
(
Yn+1 ∈ Ĉsplit

Dn
(Xn+1)|Dptrain

n

)
≥ 1− α

for (Xn+1, Yn+1) from P test
XY = PX;µ̂

Dptrain
n

× PY |X independently. Marginal coverage is
obtained if PX;Dptrain

n
is absolutely continuous with respect to dP train

X for all pretraining
datasets Dptrain

n .
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Remark. In Fannjiang et al. (2022) the main result actually concerns full conformal predic-
tion, but the notations are more complicated (since the weights depend on re-training steps
of the predictor on virtual points). This explains why we only state the split conformal
version which is found in Appendix A1.3 of Fannjiang et al. (2022).

Such a result is very useful and remarkable for computer experiments, since it opens the path
for coverage guarantees for active learning methods. For optimization specifically, recent ideas
close to this principle have been proposed for conformalized Bayesian optimization (Stanton
et al., 2023; Deshpande et al., 2024).

Example. For our modified running example above, imagine that we want to have coverage
guarantees when the target is close to a value of t = 1.8, which could be seen as some kind
of critical region for our application. We thus consider a shifted distribution given by

PX;µ̂
Dptrain
n

(x) ∝ exp
(
−λ|µ̂Dptrain

n
(x)− t|

)
where λ > 0 allows to focus more on less on the region where we are close of the threshold
t. We run the exact same experiment as before with this new distribution, with λ = 5
below.

Split conformal Weighted split conformal

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
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0.3

0.4

0.5

Notice how the shifted distribution automatically concentrates in the two regions where
the predictor is close to the threshold.

Appart from this specific case of covariate shift, the more general problem of distribution
drift where the distribution of training data also evolves (with time for example for timeseries)
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is more tricky, even if recent attempts were made towards general coverage guarantees, see for
example Barber et al. (2023); Zaffran et al. (2022).

2.3 The quest for adaptivity
Another key aspect of the conformal methods discussed so far is that in general they will tend
to produce intervals with constant width (i.e. which does not depend on x):

• Ĉsplit
Dn

(x) = µ̂Dptrain
n

(x) ± q̂+n,α
{
Ri, i ∈ Dcal

n

}
from split conformal has constant width by

definition

• The same is true for Ĉ jack
Dn

(x) = µ̂Dn(x)± q̂+n,α{Ri, i = 1, . . . , n} from jackknife

• This is approximately true for Ĉ jack+
Dn

(x) =
[
q̂−n,α{µ̂−i(x)−RLOO

i }, q̂+n,α{µ̂−i(x) +RLOO
i }

]
,

since for predictors with algorithmic stability we know that µ̂−i(x) will be close to µ̂Dn(x),
and most of the predictors you use in practice are stable (recall the list in the previous
section)

• However this may not be the case for full conformal (as we observed during the first
lecture)

This feature is not desirable in applications, since we expect by intuition that the intervals
should be wider in regions where we have less training data, or when the noise is higher if we
are in an heteroskedastic situation. In other words, we look for intervals with the property of
adaptivity, sometimes referred to as local adaptivity. We will see in this section how we can
address this limitation through the concept of score function. At this point let us mention
that we did not formalize what adaptivity means from a theoretical point of view, this will be
touched upon at the end of the section with the notion of test conditional coverage.

2.3.1 Score function

Up until now, the design of prediction intervals relied on the absolute residuals |Y − µ̂(X)|
as a measure of the uncertainty of µ̂ for predicting the target, the lower the better. This is
thus a score attributed to the predictor. Interestingly, since we mainly used exchangeability
arguments before to prove the theorems, it happens that we are not restricted to such residuals.

Changing the score function Mathematically, a score function S : (X×Y)× (X×Y)n →
R maps a data point from (X × Y) and a data set of size n from (X × Y)n to a real number
indicating if the data point is typical from the data set. For example, we can set

S((X, Y ),Dn) = |Y − µ̂Dn(X)|

where µ̂Dn is a predictor trained on Dn, and S is the absolute residual considered before, with
a large value indicating that the predictor does not predict well the point (X, Y ), and thus
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that it may be atypical of the joint distribution observed in the training set. By a slight abuse
of notation, we will also sometimes consider a score function written as S((X, Y ), µ̂Dn) where
the dependence on the data is only through a trained predictor µ̂Dn .

Focusing now on the theoretical results we discussed before, we actually can choose any
score function:

• For split conformal, instead of the residuals Ri = |Yi − µ̂Dptrain
n

(Xi)|, i ∈ Dcal
n for a

predictor trained on Dptrain
n , define Si = S

(
(Xi, Yi), µ̂Dptrain

n

)
for any score function S.

Conditionally on Dptrain
n , (Si)i∈Dcal

n
, Sn+1 are exchangeable by Proposition 1 (iv), and thus

a prediction interval of the form

Ĉsplit
Dn

(x) =
{
y ∈ R : S

(
(x, y), µ̂Dptrain

n

)
≤ q̂+n,α

{
Si, i ∈ Dcal

n

}}
satisfies the training conditional guarantee

P
(
Yn+1 ∈ Ĉsplit

Dn
(Xn+1)|Dptrain

n

)
≥ 1− α

because

Yn+1 ∈ Ĉsplit
Dn

(Xn+1) ⇔ S
(

(Xn+1, Yn+1), µ̂Dptrain
n

)
≤ q̂+n,α

{
Si, i ∈ Dcal

n

}
⇔ Sn+1 ≤ q̂+n,α

{
Si, i ∈ Dcal

n

}
and the result follows from exchangeability.

• Similarly, we do not detail the proof here, but for full conformal, any score function
S((X, Y ),Dn) which is symmetric with respect to the data points in Dn will work (since
we need to suppose the algorithm is symmetric for this method). This means we will
consider, instead of Ry

i before:

Syi = S
(
(Xi, Yi), µ̂Dn∪(Xn+1,y)

)
i = 1, . . . , n

Syn+1 = S
(
(Xn+1, y), µ̂Dn∪(Xn+1,y)

)
• For jackknife+ and CV+ conformal, I am not aware of results for general score functions,

but only for some specific forms, one of them being discussed below. But before CV+
was introduced, a related method called cross-conformal prediction was proposed with
any symmetric score, with an interval given by

Ĉcross
Dn

(Xn+1) =

{
y ∈ R :

K∑
k=1

∑
i∈Dk

1S((Xn+1,y),µ̂−Dk)≤S((Xi,Yi),µ̂−Dk) ≥ α(n+ 1)

}
,

see Vovk et al. (2018), with coverage equal to the CV+ case (Barber et al., 2021b).
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Now, since we are not restricted by the choice of a score function, which form should we
choose to achieve local adaptivity? The most popular type is a simple rescaled version of the
absolute residuals:

S((X, Y ),Dn) =
|Y − µ̂Dn(X)|

σ̂Dn(X)
(2.1)

where σ̂Dn is trained on Dn, as an estimator of the conditional standard deviation the same way
µ̂Dn is trained to estimate the conditional mean in general, see for example Lei et al. (2018).
In practice, σ̂Dn can be any such estimator obtained from µ̂Dn : if you recall our very first
example in the first lecture, you may think about asymptotic results, bayesian approaches or
heuristics based on ensembles, among others. But it can also be a much simpler approach, such
as computing a new predictor on the dataset (Xi, |Yi − µ̂Dn(Xi)|)i=1,...,n after having trained
µ̂Dn (Lei et al., 2018). Interestingly, for this specific form of score function, the obtained split
conformal intervals are explicit:

Ĉsplit
Dn

(x) =
{
y ∈ R : S

(
(x, y), µ̂Dptrain

n

)
≤ q̂+n,α

{
Si, i ∈ Dcal

n

}}
= µ̂Dptrain

n
(x)± σ̂Dptrain

n
(x)q̂+n,α

{
Si, i ∈ Dcal

n

}
.

Moreover, this form also makes it possible to generalize jackknife+ and CV+ intervals in this
specific instance, by considering

Ĉ jack+
Dn

(x) =
[
q̂−n,α{µ̂−i(x)− σ̂−i(x)SLOO

i }, q̂+n,α{µ̂−i(x) + σ̂−i(x)SLOO
i }

]
where SLOO

i = |Yi − µ̂−i(Xi)|/σ̂−i(Xi), see for example a proof in Jaber et al. (2024).

Example. On our running example, we illustrate split conformal prediction with the rescaled
score in Equation (2.1) obtained with two methods:

• A GP predictor for µ̂ and its associated posterior variance for σ̂

• A smoothing spline for µ̂, and for σ̂ a second smoothing spline trained on the absolute
residuals of the first one

We take a training set Dn of size n = 1000, a calibration set of size ncal = 500 and α = 0.1.
In the figure below, pretraining data are represented with blue dots, calibration data with
orange dots, the predictor with a blue line and prediction intervals with orange lines.
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Gaussian Process Smoothing Splines
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Remarkably, the prediction intervals obtained with rescaled scores are now much more
adaptive, in particular in the middle where there is much less noise.

For adaptivity, another line of work initiated by Romano et al. (2019) kind of changes the
paradigm of conformal prediction which often focuses on residuals (weighted or not), and comes
back to the obvious: the oracle prediction interval would be obtained by the quantiles of the
true conditional distribution function of the target given the features. Consequently, instead of
considering a predictor trained to estimate the conditional mean (and the conditional variance
for rescaled scores) and somehow work around the corresponding residuals to obtain valid
intervals, why not focus directly in estimating the conditional quantiles and then post-process
them to get valid intervals?

This is exactly the principle behind conformalized quantile regression (Romano et al.,
2019), which is similar to split conformal prediction but starts by building two predictors on the
pretraining set, µ̂α/2

Dptrain
n

and µ̂
1−α/2
Dptrain

n
, which are estimators of the conditional quantiles of level

α/2 and 1 − α/2. Such predictors are obtained with quantile regression supervised learning
methods, hence the name. From them we can build scores defined as

S
(
(X, Y ),Dptrain

n

)
= max

(
µ̂
α/2

Dptrain
n

(X)− Y, Y − µ̂1−α/2
Dptrain

n
(X)

)
which are then computed on the calibration set to finally produce prediction intervals writing

ĈCQR
Dn

(x) =
[
µ̂
α/2

Dptrain
n

(x)− q̂+n,α
{
Si, i ∈ Dcal

n

}
, µ̂

1−α/2
Dptrain

n
(x) + q̂+n,α

{
Si, i ∈ Dcal

n

}]
with guaranteed 1− α coverage.

Related ideas based on estimation of the conditional distribution function (Izbicki et al.,
2019; Chernozhukov et al., 2021) or the conditional density function (Izbicki et al., 2019) have
also been introduced recently.
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Remark. When focusing on conditional quantile estimation instead of the traditional con-
ditional mean, it is worthy to note that:

• The prediction intervals will obviously not be centered around a traditional predictor
of the conditional mean

• You need to have access to implementations allowing quantile regression (theoretically
we could say that it is as simple as just changing a squared loss with a pinball loss,
but in practice this is more complicated than just that)

• It is expected to yield more adaptive intervals if the noise is not symmetric when
compared to rescaled residuals

Example. In the exact same setting as before, we also compute the CQR prediction inter-
vals where quantile regression is performed with smoothing splines, see the figure below.
Except at the right endpoint, both approaches here are highly similar.

Smoothing Splines Residuals Smoothing Splines CQR
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Learning the score function We just saw that local adaptivity can be greatly improved if
we change the score function, and make it depend on estimates of features of the conditional
distribution (standard deviation or quantiles). But intrinsically, such features are learnt in
some kind of black-box and unsupervised way, in the sense that they are functions trained on
the data without accounting for the main target, that is coverage. In a complementary line
of work, some recent proposals suggested to instead learn directly functions involved in the
prediction intervals, with a constraint on the coverage during training (Liang, 2022; Fan et al.,
2023).
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For illustration, let us focus on a symmetric prediction interval centered on a predictor
µ̂Dptrain

n
trained on a proper training set Dptrain

n and we have an independent set Dopt
n . The idea

is to use these data to learn a function f̂Dopt
n

such that the prediction interval

Ĉ100%

Dptrain
n ∪Dopt

n
(x) = µ̂Dptrain

n
(x)±

√
f̂Dopt

n
(x) + δ

has 100% coverage on the optimization set Dopt
n , for δ > 0 a small constant decreasing to 0

with n. In words, f̂Dopt
n

will serve in this setting as an estimator of the conditional variance,
but trained with coverage constraints and potential regularization. In a last step, another
independent data set Dcal

n is used to adjust this preliminary interval to the target level 1 − α
just as in split conformal, and build the final prediction interval

Ĉuniv
Dn

(x) = µ̂Dptrain
n

(x)±
√
λ̂αDcal

n
(f̂Dopt

n
(x) + δ)

by identifying a suitable factor λ̂αDcal
n

("univ" here stands for universal following the claims by
Liang (2022); Fan et al. (2023)). Remark that now we denote Dn = Dptrain

n ∪ Dopt
n ∪ Dcal

n .

The interesting point is how we can build the preliminary interval Ĉ100%

Dptrain
n ∪Dopt

n
(x) and

write a supervised learning problem with standard tools to do so. The unknown is an infinite
dimensional function f̂ : we know that we will have to impose constraints to guarantee 100%
coverage, but we may also want to impose regularity or some other features. We also need to
specify F , a space of candidate functions (hypothesis set). All in one, we may write f̂ as the
solution of a general optimization problem given by

min
f∈F

L
(
f, (Xi, Yi)i∈Dopt

n

)
(2.2)

s.t. f(Xi) ≥
(
Yi − µ̂Dptrain

n
(Xi)

)2
, ∀i ∈ Dopt

n .

Note that in this problem:

• F can be chosen as anyone wishes, the complexity of the corresponding class of functions
will however appear in the theoretical results

• L denotes a general loss function which encompasses any property or regularization
penalty we may want to impose on f , we will give examples below

• The constraints aim at guaranteeing that the coverage attains 100% with respect to Dopt
n ,

but since here they are only discretized, it will be sometimes necessary to increase slightly
the interval with a small constant δ > 0 to get a guarantee in probability

Let us now discuss some interesting choices for the first two points.

The easiest approach to apprehend is discussed in Fan et al. (2023), where they first propose
to consider a loss function consisting of the average width of the prediction interval, which is
an increasing function of the simple loss L

(
f, (Xi, Yi)i∈Dopt

n

)
= 1

nopt

∑
i∈Dopt

n
f(Xi). Intuitively
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this makes sense, since we would like to have the narrower intervals such that the coverage is
guaranteed. They also consider a specific case where F is finite, and consists of non-negative
linear combinations of pretrained estimators f̂ j

Dptrain
n

, j = 1, . . . , J on the proper training set
Dptrain
n , such as quantile regression of squared residuals at different levels with different methods

(splines, random forests, xgboost, neural networks, ...). The optimization then writes

min
γ1,...,γJ≥0

1

Dopt
n

∑
i∈Dopt

n

J∑
j=1

γj f̂
j

Dptrain
n

(Xi)

s.t.
J∑
j=1

γj f̂
j

Dptrain
n

(Xi) ≥
(
Yi − µ̂Dptrain

n
(Xi)

)2
, ∀i ∈ Dopt

n

which is a constrained linear programming problem which can be solved efficiently, the non-
negativity constraints guaranteeing that the optimal function will be non-negative (recall that
it is supposed to estimate the conditional variance).

Another prominent class of functions F , discussed in both Liang (2022) and Fan et al. (2023),
consists of functions in a reproducing kernel Hilbert space (RKHS), but with a subtlety since
f must be non-negative. Interestingly, groundbreaking recent work on kernel-based models for
non-negative functions was developed by Marteau-Ferey et al. (2020), inspired by older results
on so-called sum-of-squares. More precisely, suppose F is an RKHS of functions with kernel
k, feature map φ(x) = k(x, ·) and scalar product 〈·, ·〉. Marteau-Ferey et al. (2020) propose to
consider functions f written as the quadratic form

f(x) = 〈φ(x), A[φ](x)〉

for a bounded Hermitian linear operator A : F → F and, if we assume it is semi-definite
positive, the resulting function f is non-negative. This setting is particularly useful for the
following facts (among others):

• The regularity of f can be controlled by standard operator norms on A: for example
the squared Frobenius norm ‖A‖2F is the equivalent of the ridge penalty, and the nuclear
norm ‖A‖? favors low-rank solutions similarly to the lasso

• When writing an optimization problem over this space of functions, if the objective func-
tion consists of the sum of a continuous loss function and a regularizer built with the
two aforementioned norms, the solution admits an explicit and finite representation via
a representer theorem

This powerful representer theorem states that the optimal operator A∗ can be expressed as
A∗ =

∑n
i=1

∑n
j=1Bijφ(Xi)⊗φ(Xj) for some semi-definite positive matrix B � 0 and data points

X1, . . . ,Xn, yielding an optimal function f∗ given by f∗(x) =
∑n

i=1

∑n
j=1Bijk(x,Xi)k(x,Xj).

Equipped with this results, we can efficiently re-write all our quantities of interest:

• f(Xi) appearing in the constraints is equal to f(Xi) = 〈Ki, BKi〉
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•
∑

i f(Xi) = tr(KBK)

• ‖A‖2F = tr(KBKB)

• ‖A‖? = tr(KB)

where K is the gram matrix with entries Kij = k(Xi,Xj). This means that our initial opti-
mization problem (2.2) restricted to this class of functions may be written as

min
B�0

ν1tr(KBK) + ν2tr(KBKB) + ν3tr(KB) (2.3)

s.t. 〈Ki, BKi〉 ≥
(
Yi − µ̂Dptrain

n
(Xi)

)2
, ∀i ∈ Dopt

n

if we restrict ourselves to an objective function mixing interval width and regularity for some
constants ν1, ν2, ν3 ≥ 0. This is a semi-definite program for which we have efficient solvers,
but a specific one for large n was also proposed in Marteau-Ferey et al. (2020). Liang (2022)
considers ν1 = ν2 = 0 and ν3 = 1, while Fan et al. (2023) considers ν1 = 1, ν2 = 0 and the
nuclear norm with a threshold constraint r, which is equivalent to some ν3 > 0. We can now
state a coverage guarantee for such a procedure.

Theorem 12 (100% conditional coverage guarantee with kernels - Fan et al. (2023)). Suppose
that supx k(x,x) ≤ b, then for any δ > 0 the prediction interval

Ĉ100%
Dpt-opt

n
(x) = µ̂Dptrain

n
(x)±

√
f̂Dopt

n
(x) + δ

where f̂Dopt
n

is the solution of (2.3) with ν1 = 1, ν2 = ν3 = 0 and a constraint tr(KB) ≤ r
satisfies

P

{
P
(
Yn+1 ∈ Ĉ100%

Dpt-opt
n

(Xn+1)|Dpt-opt
n

)
≥ 1− 32r

√
b

δ
√
n

√
E[k(X,X)]−

√
2t

n

}
≥ 1− e−t

where Dpt-opt
n = Dptrain

n ∪ Dopt
n .

Remark. To elaborate further on this result:

• This is a distribution-free and finite-sample conditional statement, but with some
constants: in previous theorems you may recall constants related to algorithm stabil-
ity, here they are related to the complexity of the class of functions considered. For
example, notice that the lower the rank r, the closer we get to 1. Also note that for
typical stationary kernels we have b = E[k(X,X)] = 1

• With additional weak distributional assumptions, Liang (2022) obtains very similar
guarantees
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• As a side note, they do not use exchangeability in the proof: their results may be
more easily generalizable to other settings than conformal prediction

For the full procedure, we still need to discuss two points:

• The final choice of λ̂αDcal
n

is made on an independent dataset Dcal
n to achieve the target

coverage 1−α by computing a quantile, very similarly to what is done with split conformal.
Training conditional validity of the final intervals is proved in Liang (2022) and Fan et al.
(2023), but at the cost of additional weak distributional assumptions (e.g. control of the
tails of the conditional distribution, or absolute continuity). We do not report the results
here since the notations may be heavy, but let us mention one more time that they are
not based on exchangeability

• I decided here to present the approach which considers three independent datasets to
build the final interval, but actually Liang (2022); Fan et al. (2023) prove results when
both µ̂ and f̂ are trained jointly in a unique optimization problem, such that in the end
we only need Dptrain

n and Dcal
n , just like for split conformal

To conclude on these methods, they are still novel and have not been as thoroughly inves-
tigated as conformal prediction, but they appear promising in the way they recast the goal as
a training optimization procedure.

2.3.2 Test conditional coverage

Coming back to our initial discussion on local adaptivity, it is finally the time to define math-
ematically what it precisely entails. It should be intuitive now that the cause for non-adaptive
intervals lies in the fact that their coverage is guaranteed when averaged over all test points,
while we would like guarantees that are valid when the test point changes. This means that we
actually seek prediction intervals ĈDn verifying the following conditional guarantee:

P
(
Yn+1 ∈ ĈDn(Xn+1)|Xn+1 = x

)
≥ 1− α (2.4)

for almost all x ∈ X under PX , where the probability is over Dn and Yn+1. This is called test
conditional coverage, or X-conditional coverage, or object conditional coverage.

In the case of distribution-free inference, we want (2.4) to hold for all possible distributions
PXY . Unfortunately conformal prediction cannot achieve this, as well as any other method,
due to a famous negative theorem.
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Theorem 13 (Impossibility of test conditional coverage - Vovk (2012); Barber et al. (2021a)).
Suppose that ĈDn satisfies (2.4) for almost all x ∈ X under PX and all distributions PXY .
Then, for all distributions PXY ,

E
[
λ
(
ĈDn(x)

)]
=∞

at almost all points x aside from the atoms of PX and where λ is the Lebesgue measure.

Remark. Looking closely at this theorem, remark that:

1. This means that the prediction interval has infinite expected length, hence the so-
called impossibility

2. For the case where PX is purely atomic, i.e. if X is discrete, we can get test conditional
coverage very easily since we avoid the negative result. This is as simple as running
conformal prediction separately for each discrete value x

Starting from this bad news, it is obvious that some of the requirements must be lessened
in order to get test conditional coverage in practice (but in an approximate sense). There are
several recent point of views, that we only discuss briefly below.

Relaxing the conditioning. Instead of asking (2.4) to hold for almost all x ∈ X under PX ,
the first attempt towards approximate test conditional coverage simply and naturally relies on
binning. Consider a fixed partition X = X1∪ . . .∪XK of X into K disjoint sets, then by running
standard conformal prediction on each Xk separately gives the guarantee

P
(
Yn+1 ∈ ĈDn(Xn+1)|Xn+1 ∈ Xk

)
≥ 1− α

for all k = 1, . . . , K, see Vovk (2012). A more recent proposal by Barber et al. (2021a) focuses
on conditioning locally around a point x, i.e. they propose a guarantee given by

P
(
Yn+1 ∈ ĈDn(Xn+1)|Xn+1 ∈ B(x, r)

)
≥ 1− α

for all x ∈ X such that P (X ∈ B(x, r)) ≥ δ where B(x, r) is the `2 ball of radius r centered
at x.

The drawback of this type of approaches is that they require a large number of calibration
samples to be robust (such that after conditioning there are still enough samples to compute
quantiles). In addition, binning is strongly impacted by the curse of dimensionality.

Relaxing the distribution-free requirement. Another obvious path for approximate test
conditional coverage consists in allowing (2.4) to depend on PXY instead of being valid for
any distribution. A very recent result by Deutschmann et al. (2024) show that if ĈDn(x) =
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{
y ∈ R : S(X, y) ≤ q̂+n,α

{
Si, i ∈ Dcal

n

}}
is built from a score function S with split conformal,

then

P
(
Yn+1 ∈ ĈDn(Xn+1)|Xn+1 ∈ B

)
≥ 1− α−

√
1− exp(−I(X, S(X, Y )))

δ

for any set B ∈ X such that P (X ∈ B) ≥ δ and where I(·, ·) denotes the mutual information.
Observe first that, as expected, the smaller δ, the harder it is to get the target coverage (see
also Barber et al. (2021a)). But interestingly, it is possible to counterbalance this effect by
reducing as much as possible the numerator of the last term. Indeed, this numerator has a
lower bound equal to 0, which is attained when the mutual information is 0, i.e. when X and
S(X, Y ) are independent. This paves the way for learning a score function specifically designed
for the distribution at hand, similarly to what we discussed in the previous section, but with a
criterion based on mutual information.

Let us also mention another recent work by Plassier et al. (2024), where they propose
a prediction interval based on an estimate of the conditional distribution which leads to test
conditional coverage with a penalty involving the total variation distance between this estimate
and the true conditional distribution. Although their result is based on different ideas, there
may be subtle links given that mutual information and total variation distance are similar.

Relaxing the probability. Finally, a completely original line of work was initiated by Gibbs
et al. (2023), where the authors remark that requiring (2.4) with an equality for almost all x ∈ X
under PX is theoretically equivalent to

E
[
f(Xn+1)

(
1Yn+1∈ĈDn (Xn+1)

− (1− α)
)]

= 0

for all measurable functions f . Their idea is then to relax the last part, by requiring this
guarantee to hold only for all functions f ∈ F for a specific function class F . The simple choice
of constant functions leads to marginal coverage, while the set of all measurable functions
leads to the test conditional one, but is unachievable. Other choices of function classes with
intermediate complexity between these two lead to approximate test conditional coverage, with
an explicit construction of the corresponding prediction intervals. Gibbs et al. (2023) discuss
for example linear functions, but also Lipschitz functions and functions in a RKHS. Striking is
the fact that choosing F amounts to solving a supervised learning optimization problem over
F , in the same vein as what we discussed previously for Liang (2022); Fan et al. (2023): there
may be links between these two ideas although they originated from highly different starting
points.

2.4 Concluding remarks
During this course, we have introduced conformal prediction and related methods to provide
prediction intervals with the goal of assessing uncertainty in machine learning predictions with
theoretical guarantees on their coverage (see a summary in the next page). This is a highly
active research area, with many new contributions each year, and we just mentioned a very
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small portion of the abundant bibliography (and keep in mind that we did not even address
classification problems).

Before ending this lecture, I would like to mention a few typical specificities of computer
experiments, that should make you think a little before diving blindly in conformal prediction:

• The absence of noise on the target: you are all aware of this fact, but data collected on
physical simulators are not noisy (except for stochastic simulator of course), so you should
take a step back to interpret the coverage guarantees. In such a case for example, if you
want to aim for both training and test conditional coverage, what randomness remains?
Even without going as far as that, recall that we have seen several times an absolute
continuity assumption on the target conditional probability, which is obviously violated
in such a case

• The data very often come from an optimized design of experiments, with a spatial struc-
ture which violates both i.i.d. and exchangeability assumptions. So in practice, even if
from a numerical point of view you may observe your target coverage, at this time it is
impossible to get any theoretical guarantee

But do not despair: this only means there is a lot of stimulating research work to do in
order to be able to use the full potential of such techniques in computer experiments!
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Method Marginal Training cond. Centered Requires Varying Comments
coverage coverage re-training width

Full conformal 1− α → 1− α no yes yes Very high computational cost
(SAin

1 )

Split conformal 1− α 1− α yes no no Loss of efficiency due to splitting

Jackknife ≈ 1− α → 1− α yes yes no High computational cost
(ACe), (SA1) (ACb), (SA2)

Jackknife+ 1− 2α → 1− α no yes ≈ no High computational cost
(ACe), (SA2)

≈ 1− α
(ACe), (SA1)

CV+ ≈ 1− 2α ≈ 1− 2α no yes ≈ no Moderate computational cost
large m, n = Km

CQR 1− α 1− α no no yes Loss of efficiency due to splitting
Requires QR software

RKHS → 1− α → 1− α yes no yes Loss of efficiency due to splitting
(AC)-like (AC)-like Requires SDP software

C
H
A
P
T
E
R

2.
E
X
T
E
N
SIO

N
S
O
F
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P
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