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Abstract

This paper introduces a novel stochastic algorithm for the ParaTuck De-
composition (PTD), addressing the challenge of local minima encountered
in the traditional alternating least squares (ALS) approach. The proposed
method integrates stochastic steps into the ALS framework to avoid the com-
mon swamp problems, where numerical difficulties prevent accurate decom-
positions. Our simulations indicate good convergence properties for PTD,
suggesting a potential increase in the efficiency and reliability of this tensor
decomposition across various applications.
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1. Introduction

Tensor decomposition and multilinear algebra have emerged as essential
tools in various fields, particularly signal processing. They provide powerful
means to represent complex data structures and have found wide applica-
tions in solving diverse problems. In recent years, with machine learning and
the growing importance of data science, tensor decomposition techniques
have gained even greater prominence. These techniques enable us to effi-
ciently analyze and extract meaningful information from high-dimensional
data, making them invaluable for feature extraction, dimensionality reduc-
tion, and pattern recognition tasks.

Several tensor models exist for various applications. Among the most
classical and widely used in the literature are the Canonical Polyadic De-
composition (CPD) [1, 2], Tucker Decomposition (TD) [3], and Tensor Train
Decomposition (TTD) [4]. The CPD is a compact representation that de-
composes a tensor into a sum of rank-1 tensors and is highly valued for its
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uniqueness properties. This decomposition is very useful for parameter esti-
mation, with the Alternating Least Squares (ALS) [5, 6] algorithm being the
workhorse for computing the CPD. A more general model than the CPD is
the Tucker Decomposition. This decomposition represents a tensor with a
core tensor of the same order as the original tensor and factor matrices. A
particular case of this decomposition is the High-Order Singular Value De-
composition (HOSVD) [7], corresponding to a Tucker model with orthonor-
mal factor matrices. The TD model is extensively used in subspace-based
signal processing applications, such as data compression and data denoising
[8]. Recently, the tensor train decomposition has gained attention. Its com-
pact representation scales linearly with the tensor order, making it suitable
for high-order tensor data [9]. Initially used in super-compression applica-
tions, TTD has recently become useful for parameter identification due to its
equivalence with CPD [10]. Among the algorithms facilitating this decompo-
sition are TT-SVD [4] and its hierarchical version, referred to as TT-HSVD
[11].

This paper focuses on a specific tensor decomposition known as the
ParaTuck decomposition (PTD) [1]. Several names have appeared in
the literature for this decomposition, such as ParaTuck2 in [1, 5] and
ParaTuck−(N1, N) in [12]. For simplicity, we use the name ParaTuck
throughout this paper, as used in [1]. Initially proposed in the psychometric
literature in 1994, PTD has garnered limited attention since its inception.
One of the primary reasons for its under-utilization in practical applica-
tions has been the absence of a reliable algorithm for its computation. The
name “ParaTuck” derives from its resemblance to two tensor decomposition
techniques: PARAFAC, also referred to as the CPD and the Tucker decom-
position. PTD can be seen as a unique blend of these methods, offering a
two-level generalization of CPD, as elucidated in [13]. The PTD is a gener-
alization of the CPD in the sense that PTD reduces to a CPD if one of the
PTD factors is diagonal; at the same time, CPD can be seen as a special
Tucker decomposition with a diagonal core tensor, the PTD can also be seen
as a special Tucker-2 decomposition with a structured core tensor as will be
shown later.

Even if PTD has not found multiple fields of application up to now, one
notable area of exploitation is wireless communications [14]. In [15], the PTD
structure has been exploited to design coding structures combining spreading
and multiplexing across space and time. A generalization of this model to
multi-input multi-output (MIMO) communication systems based on multi-
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carrier transmission was later proposed in [16]. Furthermore, [17, 18] uses
the PTD to model MIMO multi-hop relaying systems, proposing a receiver
under a supervised scenario. Additionally, the authors of [19] have proposed
semi-blind receivers for MIMO relaying multi-hop communication systems
and demonstrated that the signals received at the destination follow a PTD
model. In these applications, a priori knowledge of the coding structure
provides valuable insights into certain factors of the PTD. When one or sev-
eral factors of the PTD are known, the decomposition problem is easier than
the general case, and generally, we have no difficulty finding the remaining
factors of the decomposition. Furthermore, recent developments in [13] have
shown that the PTD aligns well with two-layer neural networks with flexi-
ble activation functions. This discovery opens new horizons for leveraging
this model in neural network learning. However, the authors could not pro-
pose a decomposition based on the PTD model directly; instead, they used
second-order information from the neural networks, which aligns with a CPD
model, to retrieve some factors. A part from that, the broader utility of PTD
has remained limited due to the algorithmic challenges associated with its
computation.

The uniqueness and identifiability of the Paratuck decomposition have
not received extensive investigation, but experimental findings in [20] sug-
gest its uniqueness in specific scenarios. Uniqueness means a tensor can be
expressed in a single PTD-based format up to scaling and permutation inde-
terminacies. This uniqueness is important, particularly in source separation
problems, where the rank-1 terms can be easily associated with interpretable
data components. We recall in the sequel these PTD uniqueness conditions
and how the scaling and permutation ambiguities are expressed.

Just like for the CPD, Rasmus Bro proposed an alternating least squares
(ALS)-type algorithm for computing the PTD [21]. Bro’s approach involves
fixing all factors except one and optimizing a loss function for that partic-
ular factor. While this strategy has proven effective for CPD, it encounters
significant challenges when applied to PTD. Unfortunately, despite extensive
computations and iterations, this ALS-based approach for PTD often falls
prey to numerical difficulties, primarily attributed to local minima. These
numerical issues result in what is commonly referred to as “swamp” prob-
lems, making it exceedingly challenging to obtain accurate decompositions
of tensors using the traditional ALS method. Since this initial attempt, no
alternative algorithmic solution has been proposed for efficiently and reliably
computing the PTD. Recently, another attempt was made in [22], where the
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author proposed an algebraic solution. However, this solution is limited to
where PTD ranks equal 2. The absence of an efficient algorithm for the PTD,
other than the plain vanilla ALS, has limited its exploitation to cases where
a priori information about the decomposition is known. However, decom-
posing a tensor in the general case remains a significant challenge, where no
prior knowledge of the PTD is available. The probability of success for the
ALS algorithm to converge is very low, except in rare instances where we
have “lucky” initializations.

Finding the global optimum of the objective function can be a daunting
challenge for tensor decompositions. Numerical results often reveal that tra-
ditional deterministic optimization algorithms, such as the ALS, may struggle
to discover solutions in complex scenarios like the PTD. One plausible expla-
nation for this difficulty is the presence of multiple local optima within the
objective function. To address this issue, stochastic optimization algorithms
offer a promising alternative approach. Stochastic optimization refers to a
collection of methods for optimizing an objective function when randomness
is present, and they replace the classical methods when optimization becomes
too complex for different reasons. These methods embrace randomness as an
integral part of the search procedure, allowing for less good local decisions
during optimization. Several examples of stochastic optimization methods
have emerged in the context of tensor decompositions, such as [23, 24, 25].
However, it is worth noting that, aside from the limited attempts we men-
tioned earlier, there remains a scarcity of such techniques tailored specifically
for the PTD problem.

In light of the absence of a reliable algorithm for PTD, this paper presents
a novel randomized/stochastic ALS-type algorithm as a solution to this long-
standing challenge. Our proposed stochastic algorithm draws inspiration
from Bro’s original ALS method and incorporates ideas from stochastic op-
timization strategies. The fundamental concept behind our algorithm is to
augment the conventional ALS with stochastic steps to mitigate the issues
related to local minima. In essence, we minimize the same cost function
as the original ALS but introduce a random solution test in each iteration.
This stochastic element injects a degree of randomness into the optimization
process, steering our algorithm away from the pitfalls of local minima in-
herent in the standard ALS approach. Simulation results demonstrate that
our stochastic algorithm significantly enhances the convergence prospects for
PTD. In simulations, the stochastic algorithm shows promise in improving
the convergence likelihood of PTD compared to traditional ALS, which of-
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ten faces convergence challenges despite the use of various initializations.
This result underscores the potential of this algorithm to address new chal-
lenges associated with PTD and pave the way for more efficient and reliable
applications of this tensor decomposition method in various domains. The
contributions of this paper can be summarized as follows:

• We propose a stochastic algorithm for the PTD. This algorithm adds a
controlled degree of randomness to the factor matrices’ updating steps
to avoid swamps.

• We discuss the complexity of the proposed stochastic PTD algorithm
and its convergence, demonstrating that it has the same convergence
guarantees as the classic ALS for the CPD model.

• We evaluate the proposed algorithm regarding convergence rate and
robustness, considering noiseless and noisy contexts.

2. Background on the ParaTuck decomposition

2.1. Notations

The notations used throughout the rest of this paper are now defined.
The symbol (·)† denotes the pseudo-inverse. The Hadamard, Kronecker,
outer product, and Khatri-Rao products are denoted by ⊡, ⊗, ◦, and ⊙,
respectively. We write the q-mode product as ×q [8]. Tensors are represented
by bold calligraphic capital letters, e.g., X . The 3rd-order identity tensor is
written as I3,R, where R is the size of its dimensions. unfoldqX refers to the
unfolding of tensor X over its q-th mode [8]. The operator vec(·) forms a
vector by stacking the columns of its matrix argument. The operator diag(·)
forms a diagonal matrix from its vector argument. A Hadamard product
between a matrix A of size I × J and a tensor B of size I × J × K, along
their common dimensions, is defined as C = A ⊡{I,J} B, with C of size
I × J ×K, and whose entries are expressed as Ci,j,k = Ai,j ·Bi,j,k.

2.2. Paratuck decomposition

Definition 2.1. A 3rd-order ParaTuck decomposition of a I×J ×K tensor
X is defined by its mode-3 slices as

X :,:,k = A ·Dk
A ·H ·Dk

B ·BT , (1)
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where X :,:,k is an I ×J matrix, A and B are loading matrices of size respec-
tively I×R and J×S. The diagonal matrices Dk

A and Dk
B are respectively of

dimensions R and S. A matrix CA of size K ×R can be constructed, whose
k-th row equals the diagonal of Dk

A. Similarly, we can define a K×S matrix
CB with respect to Dk

B. Finally, matrix H is of size R× S and contains the
weights of the interactions. For a given set of indices (i, j, k), the entry X i,j,k

is defined as [12]:

X i,j,k =
R∑

r=1

S∑
s=1

Hr,s ·Ai,r ·Bj,s · (CA)k,r · (CB)k,s. (2)

Another way to express the ParaTuck model can be found in [12], and it is
expressed as X = G ×1 A ×2 B, with the core tensor G of size R × S ×K,
expressed using a Hadamard product as G = H ⊡{R,S} F , where F , of size
R × S × K, follows a CPD such that F = I3,K ×1 C

T
A ×2 C

T
B. It should

also be noted that one can rewrite (1) using the Khatri-Rao and Kronecker
products as (eq. (33) in [5]):

unfold3X =
(
CT

B ⊙CT
A

)T · diag(vecH) ·
(
B⊗A

)T
. (3)

Using (3), we can reformulate X as a structured CPD, expressed as:

X = I3,(R·S) ×1 (A · ϕ1)︸ ︷︷ ︸
I×(R·S)

×2 (B · ϕ2)︸ ︷︷ ︸
J×(R·S)

×3

((
CT

B ⊙CT
A

)T · diag(vecH)
)

︸ ︷︷ ︸
K×(R·S)

, (4)

with ϕ1 = 1T
S ⊗ IR and ϕ2 = IS ⊗1T

R. An equivalent compact notation for
the PTD that will be used in the sequel is X = [[A,Dk

A,H,Dk
B,B]].

2.3. Uniqueness and ambiguities

The uniqueness of the model has not been much studied. The results
of [20], in the case where R = S, stated that the ParaTuck decomposition
can be unique in the same sense as the CPD (i.e., up to trivial scaling
and permutation ambiguities), under some mild conditions. In essence, the
authors stated that the ParaTuck model will be mostly unique if the loading
matrices are of full rank, matrix H has no zero elements, and the dimensions
of the array are not too small [21]. For example, in the case of R = S = 2, we
should have K ≥ 9, and K ≥ 5 if CA = CB. In [20], the authors also showed
that ambiguities between two equivalent decompositions [[A,Dk

A,H,Dk
B,B]]
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and [[Ã, D̃k
A, H̃, D̃k

B, B̃]] are given by A = Ã · (ΠA ·ΛA), B = B̃ · (ΠB ·ΛB),
H = (Λ̄A ·Λ−1

A ·ΠT
A) ·H̃ ·(ΠB ·Λ−1

B ·Λ̄B), D
k
A = (zk ·ΠT

A) ·D̃k
A ·(ΠA ·Λ̄−1

A ) and
Dk

B = (z−1
k ·ΠT

B) · D̃k
B · (ΠB · Λ̄−1

B ), where ΛA, ΛB, Λ̄A and Λ̄B are diagonal
matrices, ΠA and ΠB are permutation matrices, and zk are nonzero scalars.

2.4. ALS algorithm

In the context of Paratuck decomposition, the optimization problem is
formulated with a loss function defined for a 3rd-order tensor as follows:

argmin
A,Dk

A,H,Dk
B,B

K∑
k=1

||X :,:,k −A ·Dk
A ·H ·Dk

B ·BT ||2F . (5)

In [21], an ALS-type algorithm tailored for Paratuck decomposition was
introduced. The ALS algorithm is a fundamental optimization technique
used to solve tensor decompositions. It follows a step-by-step iterative ap-
proach. All factors except one are initially fixed, and the loss function (5) is
minimized for the non-fixed factor. This process is repeated for all factors in
a cyclic manner until convergence is achieved. The essence of ALS lies in its
alternating optimization strategy, where each iteration aims to improve the
approximation of the input tensor X by gradually refining the factor matri-
ces. While ALS has been effective in various tensor decomposition problems,
it may suffer from issues such as local minima when applied to Paratuck de-
composition, motivating the exploration of stochastic approaches to mitigate
these challenges. The comprehensive description of the entire Paratuck-ALS
algorithm [21] is given in Alg. 1. If interested in the details of the ALS
iterations’ derivation, we refer the reader to Section 4.5 of [21].

3. Proposed algorithm

3.1. Problem statement

One of the primary motivations for our proposed algorithm stems from
empirical observations and simulations that highlight the challenges associ-
ated with the ALS method in Paratuck decomposition. ALS usually struggles
to converge efficiently and tends to get trapped in what is commonly called
”swamp” problems. These swamp problems can be attributed to local min-
ima in the optimization landscape. As a result, the practical utility of PTD
has been limited, particularly when none of the factors are known beforehand.
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Algorithm 1 ALS for PTD [21]
Require: Input tensor X, ranks R and S
Ensure: A,Dk

A,H,Dk
B and B (for 1 ≤ k ≤ K)

1: Initialize Dk
A,H,Dk

B and B (for 1 ≤ k ≤ K)

2: while a convergence criterion is not met do

3: A = unfold1X · F†
A, with FA =

[
F

(1)
A · · ·F(K)

A

]
, and F

(k)
A = Dk

A ·H ·Dk
B ·BT

4: for k = 1, · · · ,K do

5: Dk
A = diag

(
(Fk

Ã
⊙A)† · vec(X :,:,k)

)
, with Fk

Ã
= B ·Dk

B ·HT

6: end for

7: vecH = F†
H · vecX, with FH =

[
(BD1

B ⊗AD1
A); · · · ; (BDK

B ⊗ADK
A)

]
8: for k = 1, · · · ,K do

9: Dk
B = diag

(
(Fk

B̃
⊙B)† · vec(X T

:,:,k)
)
, with Fk

B̃
= A ·Dk

A ·H
10: end for

11: B = unfold2X ·F†
B, with FB =

[
F

(1)
B · · ·F(K)

B

]
, and F

(k)
B = Dk

B ·HT ·Dk
A ·AT

12: end while

To address these challenges, we propose the introduction of randomness
into the optimization process. The underlying idea is to leverage stochastic
optimization techniques to escape local minima and enhance the convergence
prospects for PTD. Introducing randomness into optimization can take var-
ious forms, and our proposed approach aligns with the “Ruin & Recreate”
strategy [26]. Stochastic optimization encompasses a wide range of tech-
niques, including stochastic gradient descent [27], genetic algorithms [28],
and evolution strategies [29], among others [30, 26]. We aim to apply a
stochastic approach to the PTD problem, specifically tailored to mitigate
the challenges posed by local minima, thus enhancing the algorithm’s relia-
bility and convergence.

3.2. Stochastic ALS

Stochastic algorithms have already been used in the context of tensor
decompositions. We can cite, for example, the work in [31], where the au-
thors have proposed a stochastic ALS algorithm for the CPD based on the
collaborative evolution of a population. They put two candidates randomly
picked from a population of solutions in competition. The best candidate is
kept, a new candidate is created around this one, and the worst is deleted.
In [32], the authors proposed another version of the stochastic ALS, also for
the CPD case, where instead of updating the factors with the least squares
solution, they update the factors as a weighted average of both the current
solution and the least-square solution. To the best of our knowledge, this
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is the first time that a stochastic algorithm is proposed for the ParaTuck
decomposition, and the randomness is introduced in a “Ruin & Recreate”
manner [26].

In the proposed stochastic solution, we aim to address the challenge of
escaping bad local minima by introducing randomness through a strategic
approach. While various strategies exist for introducing randomness, the
conventional local search approach often results in small moves that do not
effectively mitigate the problem in our context. Our novel approach involves
making ‘large moves” when our algorithm becomes trapped in a bad local
minimum. In such instances, we initiate a non-local change on a macro-
scopic scale. The key strategy involves launching our algorithm, and as soon
as it struggles to converge, we implement a process in which a portion of
the achieved solution is deliberately destroyed. We then introduce a random
factor to replace the destroyed part of the solution and pose two critical ques-
tions to the algorithm: firstly, which part of the solution is best to destroy,
and secondly, whether the move with the new factor should be accepted.
This approach introduces controlled randomness into the optimization pro-
cess and forms a fundamental part of our proposed algorithm. Categorically,
our solution can be classified as a “Ruin and Recreate” (R&R) algorithm
[26], as it employs deliberate perturbations and the replacement of solution
components with random counterparts to effectively navigate the optimiza-
tion landscape and break free from local minima. The complete algorithm is
summarized in Alg. 2.

In this paragraph, we explore the Stochastic alternating least squares
(SALS) algorithm, delineating its principles and procedures step by step.
SALS shares a common factor update strategy with the standard ALS al-
gorithm, denoted as ALS(.) herein. When using ALS with two arguments,
these represent the original tensor undergoing decomposition and the pre-
scribed PTD ranks. In the case of ALS, called with three arguments, the
third argument serves as the initialization from which ALS starts its itera-
tions. An essential initial step in SALS involves starting an ALS procedure
from a random initialization. Subsequently, we randomly select P factors
from the five factors composing the PTD. For each chosen factor, we system-
atically ruin/remove the part of the solution corresponding to that factor,
replacing it with a newly generated random factor akin to performing sig-
nificant moves within the optimization landscape. This process runs parallel
for P factors, with only one factor removed in each case. Following this re-
moval, we subject the P resulting configurations to competition and retain
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Algorithm 2 Stochastic ALS for PTD
Require: Input tensor X, ranks R and S, parameter P
Ensure: A,Dk

A,H,Dk
B and B (for 1 ≤ k ≤ K)

1: [A0,D
k
A0

,H0,D
k
B0

,B0] = ALS(X , [R,S])
2: while stopping criteria not met do

3: parfor p = 1, · · · , P do ▷ This is a parallel ‘‘for’’ loop

4: select Fp randomly from {A,Dk
A,H,Dk

B,B}
5: if Fp = A then

6: replace Fp with a random factor

7: [Ap,D
k
Ap

,Hp,D
k
Bp

,Bp] = ALS
(
X , [R,S], [[Fp,D

k
A0

,H0,D
k
B0

,B0]]
)

8: else if Fp = Dk
A then

9: replace Fp with a random factor

10: [Ap,D
k
Ap

,Hp,D
k
Bp

,Bp] = ALS
(
X , [R,S], [[A0,Fp,H0,D

k
B0

,B0]]
)

11: else if Fp = H then

12: replace Fp with a random factor

13: [Ap,D
k
Ap

,Hp,D
k
Bp

,Bp] = ALS
(
X , [R,S], [[A0,D

k
A0

,Fp,D
k
B0

,B0]]
)

14: else if Fp = Dk
B then

15: replace Fp with a random factor

16: [Ap,D
k
Ap

,Hp,D
k
Bp

,Bp] = ALS
(
X , [R,S], [[A0,D

k
A0

,H0,Fp,B0]]
)

17: else if Fp = B then

18: replace Fp with a random factor

19: [Ap,D
k
Ap

,Hp,D
k
Bp

,Bp] = ALS
(
X , [R,S], [[A0,D

k
A0

,H0,D
k
B0

,Fp]]
)

20: end if

21: end parfor

22: [A0,D
k
A0

,H0,D
k
B0

,B0] = argmin
{Ap,Dk

Ap
,Hp,Dk

Bp
,Bp}Pp=0

||X − [[Ap,D
k
Ap

,Hp,D
k
Bp

,Bp]]||2F

▷ p starts from 0 and not 1
23: end while

24: return A0,D
k
A0

,H0,D
k
B0

and B0
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the configuration that yields the lowest error. In cases where none of the
configurations outperforms the previous iteration’s error, we maintain the
solution from the last iteration, signifying the start of a new round of R&R.
The aforementioned detailed steps are integrated into Algorithm 2.

3.3. Convergence

In our case and for the ParaTuck decomposition, it should be noted that
for the plain vanilla ALS, the solution is fully determined by the initial condi-
tions (the starting factors for the algorithm) and the parameter values (e.g.,
the maximum number of iterations). However, the solution will also result
from inherent randomness in the proposed stochastic ALS. This means that
the same set of parameters and initializations will lead to different results.
This makes the theoretical analysis of the stochastic algorithm inherently
more complex than deterministic algorithm analysis, as is the case for al-
most all stochastic algorithms. We can cite the works in [31, 32], where the
authors have demonstrated their algorithms’ efficiency through numerical
experiments. However, we can base ourselves on the ALS process, how our
randomness is introduced, and the algorithm’s design to state some guaran-
tees for the convergence of the SALS.

In analyzing the convergence properties of Algorithm 2, it is essential
to recognize that the update steps mirror those of Algorithm 1. Specifi-
cally, we address the optimization problem by iteratively fixing all factors
but one and solving a linear least squares problem. This iterative process
is replicated across all factors and for multiple iterations. Substituting the
multilinear least squares problem with a linear counterpart inherently assures
a non-increasing trend [33] in the objective function delineated in equation
(5). Before the randomized step, this property ensures that the algorithm
exhibits convergence characteristics akin to traditional ALS, where there is
no guarantee of reaching a global minimum. Yet, the objective function is
bound to decrease or, in the worst case, remain constant with successive it-
erations. The randomization step is essential to the algorithm’s stochastic
nature, particularly highlighted in step 22 of Algorithm 2. Here, the replace-
ment of random factors is executed under the stringent condition that any
potential update to the solution must not elevate the objective function. In
practice, this implies that the updated solution is, at the very least, on par
with its predecessor, ensuring that the objective function is subject to either
a reduction or stabilization at its current value.
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Considering these elements collectively, we postulate that Algorithm 2
is predisposed to a convergence trajectory that leads to a solution where
the objective function plateaus, ceasing to decrease further. This tentative
conclusion suggests that the stochastic algorithm possesses an intrinsic mech-
anism that favors convergence, albeit without a formal guarantee of finding
the global optimum. However, it is worth noting that the randomness in-
troduced may help in avoiding the entrapment in local minima, a common
pitfall of deterministic algorithms.

One should note that even if we can not state guarantees for convergence
to a global optimum solution, our results remain important. They show that
the SALS will not diverge over the iterations. It should also be noted that
this result resembles the convergence guarantee offered by the workhorse ALS
algorithm in the CPD case.

3.4. Computational complexity

Regarding the computational complexity inherent to Stochastic ALS com-
pared to Alg. 1, it is imperative to acknowledge that both algorithms sub-
stantially mitigate the complexity of the multilinear least squares problem in
(5) by converting it into a linear least squares problem. This relaxation
is achieved by holding all factors fixed except one, thereby necessitating
the invocation of the pseudo-inverse at various stages within the algorith-
mic flow. As elucidated by Alg. 1, for a single iteration, the computation
involves pseudo-inversing matrices of dimensions (R × JK), (IJK × SR),
(S × IK), in addition to K-times pseudo-inverse of matrices sized (IJ ×R)
and (S × IK). Considering the computational equivalence of the pseudo-
inverse to the Singular Value Decomposition (SVD), and bearing in mind
that the complexity of SVD scales as O(mn2) [34] for a matrix of size (m×n)
where m ≥ n, the predominant computational cost of an iteration is thereby
O ((SR)2IJK) if we consider that IJK ≥ SR. If we fix M as the maximum
number of iterations for the ALS and N as the maximum number of R&R
rounds, we can state that the overall complexity of the SALS is bounded by
O ((NP + 1)M(SR)2IJK) if the P ALS runs are not executed in parallel,
and O ((N + 1)M(SR)2IJK) otherwise. However, apart from the random-
ness introduction, the difference between the methods lies in the methodol-
ogy for distributing the computational budget, i.e., allocating iterations to
each step to achieve a good tradeoff between convergence and computational
cost, ensuring efficient use of resources while maintaining accuracy.. This
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methodology of complexity budget allocation is further investigated in the
next section.

4. Simulations

In this section, we conduct extensive simulations to evaluate the per-
formance of the Stochastic ALS against the conventional ALS method. To
ensure a comprehensive comparison, we generate a dataset of N = 200 PTDs
with randomly generated factors, following a standard normal distribution.
Uniquely, the factorH entries are generated from a uniform distribution rang-
ing from 0.1 to 1.1. This specific range is selected to respect the essential
uniqueness conditions for PTD. Ensuring non-zero and varied entries in H is
crucial, as it impacts the decomposition results’ structure and interpretabil-
ity. A critical aspect of our simulation involves ensuring that the generated
matrices are well-conditioned. A well-conditioned matrix is defined as one
whose conditioning number is below 10. This condition is significant for the
uniqueness and stability of the PTD. The condition number of a matrix is
defined as the ratio between its maximal and minimal singular values. A
well-conditioned matrix has a condition number close to 1, indicating that
the matrix is far from being rank-deficient. Conversely, an ill-conditioned
matrix has a condition number tending toward infinity, suggesting that the
matrix is rank deficient or is close to rank deficiency. Since the rank of a
matrix is linked to its nonzero singular values, the condition number is a
meaningful measure to determine if a matrix is near or far from rank defi-
ciency. This measure is crucial for ensuring the uniqueness of the PTD, as
well-conditioned full-rank factor matrices contribute to the identifiability of
the decomposition.

For the plain vanilla ALS, we use 200 different initializations for each
ALS run, with the maximum number of iterations set to 2000 for each run.
In contrast, the Stochastic ALS algorithm operates under different param-
eter settings. Initially, we fix P = 4 and limit the first ALS run to 500
iterations. Subsequently, we introduce a total of 2000 R&R rounds, with
each round allowed a maximum of 50 iterations. This configuration ensures
that both algorithms undergo a similar potential maximum number of iter-
ations, approximately 400, 000 iterations for each PTD, enabling a fair and
meaningful comparison of their convergence capabilities. One should note
that, compared to the ALS in the case of CPD, the chosen numbers for ini-
tializations and iterations may seem high. Generally, in a non-noisy case of
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the CPD model, a few iterations are sufficient for convergence. However,
in our context, this is not the case for the PTD model. We have observed
that more iterations and R&R rounds are generally needed to achieve con-
vergence, depending on the initialization. This suggests that the choice of
these parameters can cause more computational difficulties in the case of
large tensors.

In addition to the maximum number of iterations, we have incorporated
two critical convergence criteria into our simulations. The first criterion in-
volves tracking the total normalized mean squared error (NMSE) between

the original PTD and its estimation, defined as
||X−X̂ ||2F
||X ||2F

. If the NMSE falls

below the machine precision threshold, we terminate the iterations, signify-
ing convergence in overall reconstruction quality. The second convergence
criterion is based on the difference between two successive NMSE values,

calculated as |NMSE(t)−NMSE(t−1)|
NMSE(t−1) . Suppose this relative change in NMSE be-

tween consecutive iterations is smaller than the machine precision. In that
case, it indicates that the optimization process has reached a point where
further improvement is negligible, prompting the algorithm to stop.

Table 1 illustrates the comparison between the ALS and the proposed
stochastic ALS algorithms over 200 random PTD experiments. The Stochas-
tic ALS significantly outperforms ALS in terms of convergence across various
tensor dimensions and rank configurations, as evidenced by its higher number
of converging experiments in all listed scenarios.

Parameters ALS [21] Stochastic ALS
(I, J,K) = (4, 4, 10)

(R, S) = (2, 2)
58 187

(I, J,K) = (10, 10, 40)
(R, S) = (3, 2)

49 166

(I, J,K) = (15, 15, 40)
(R, S) = (2, 3)

67 180

(I, J,K) = (15, 15, 40)
(R, S) = (3, 3)

53 170

Table 1: Number of converging experiments over 200 random PTDs.

To evaluate the performance of both algorithms in all cases, including
non-converging experiments, we plot, in Figs. 1 and 2, the empirical cumu-
lative distribution function (CDF). Fig. 1 shows the CFD of the NMSE. For
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each NMSE value, the CDF illustrates the probability that each algorithm
would be at or below that given level. The x-axis is on a logarithmic scale,
showing the NMSE ranging from the machine’s precision to 1. The Stochas-
tic ALS curve is almost a step function, reaching a CDF close to 1 very
quickly, indicating that this latter consistently achieves a low NMSE. On the
other hand, the ALS curve is more gradual, suggesting more variance in the
NMSE achieved by this algorithm. The graph suggests that the Stochastic
ALS algorithm outperforms the ALS in achieving a lower NMSE for the 200
PTDs in the same conditions as in Table 1. In Fig. 2, we present an evalua-

Figure 1: CDF for Stochastic ALS and ALS regarding 200 PTDs, with (I, J,K) =
(4, 4, 10), (R,S) = (2, 2) and P = 5.

tion of the influence of parameter P on the CDF. It is worth noting that we
fixed the same configuration for all experiments, and we only vary P . No-
tably, the algorithm rapidly reaches 90% in most cases. Interestingly, cases
where P ≥ 3 exhibit better performance, suggesting a potential advantage
compared to cases where P ≤ 2. This result suggests that a comprehensive
evaluation of all P = 5 configurations of the factors may not be imperative.
Instead, our results indicate that in the case of randomly generated PTD
tensors, assessing only 3 configurations, for example, is often sufficient to get
the same result, which opens avenues for optimizing resource allocation in
future studies.

In Fig. 3, we adhere to a fixed computational complexity budget while
varying the distribution between the outer loop (Ruin & Recreate rounds)
and the inner loop (ALS iterations). Interestingly, none of the configurations
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Figure 2: CDFs for different values of P .

significantly outperforms the others. However, the curve corresponding to an
equal distribution of iterations closely follows the best-performing configura-
tions, indicating a balanced approach can also be effective within the given
computational budget.

Figure 3: CDFs for different configurations of the iterations.

In Fig. 4, we investigate the efficacy of allowing restarts in the stochas-
tic ALS algorithm for cases where convergence is not initially achieved. For
this simulation, we permitted up to two restarts for non-converging experi-
ments, delving into the convergence behavior in a noiseless environment and
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attempting to reach 100% convergence. The results depicted in the figure are
compelling; in the first algorithm run, convergence was attained in 183 out
of 200 PTD experiments. Introducing a first restart led to convergence in
an additional 15 cases, and a second restart resolved the remaining 2 cases,
culminating in complete convergence across all experiments. This outcome
demonstrates the powerful capability of restarts in overcoming local minima
or poor initializations that might hinder convergence, ensuring that every
PTD reaches a solution when given additional opportunities to escape sub-
optimal points in the solution space.

Figure 4: CDFs for Stochastic ALS with restarts.

In Fig. 5, the relationship between the signal-to-noise ratio (SNR) and the
NMSE is depicted for the Stochastic ALS compared to the plain vanilla ALS.
In this figure, we plot the median value of the NMSE over 200 Monte-Carlo
runs to avoid the effect of ill-converging experiments. In this experiment,
similar to the first experiments, the plain vanilla ALS algorithm was not run
only once, but rather 200 times, each with a different initialization and with
a maximum of 1000 iterations each time. The best result over these runs
is considered. One should note that in this noisy context, both algorithms
exhibit the same robustness. This result is not surprising, given that if we
neglect the effect of pathological cases where we do not have convergence,
both algorithms minimize the cost function with the same update formulas.
The NMSE decreases consistently as the SNR increases, which indicates that
the Stochastic ALS is robust to noise, maintaining a high-quality tensor de-
composition across a wide range of SNR levels. Particularly noteworthy is
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the algorithm’s performance at low SNR levels, where despite the high noise
presence, the NMSE remains within an acceptable range, showcasing the
algorithm’s effectiveness in noisy environments. This experiment substanti-
ates the potential applicability of the Stochastic ALS algorithm in real-world
scenarios where noise is an inevitable factor.

Figure 5: Median NMSE for 200 Monte-Carlo runs, with (I, J,K) = (4, 4, 10), (R,S) =
(2, 2) and P = 3.

5. Conclusion and perspectives

This paper proposed a novel method to address the performance limi-
tations of ParaTuck decomposition algorithms by implementing a stochas-
tic ALS scheme. The effectiveness of the proposed algorithm was validated
through extensive numerical simulations. Our results demonstrate that our
scheme consistently reduces, or at the very least maintains, the approxima-
tion error at every ALS iteration. Future work includes a detailed study of
the algorithm’s convergence properties, adaptation to constrained decompo-
sitions, and applications to real-world signal processing and communications
problems, where the ParaTuck models have been extensively used. The first
possible application for which PTD holds promising is parametric channel es-
timation for intelligent reflecting surface (IRS) assisted MIMO systems [35].
The second application is in blind source separation, where the second-order
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statistics can be linked to the PTD in certain scenarios [36]. Finally, we can
cite neural network learning with flexible activation functions [13] as another
promising application. From a methodological point of view, tackling tensor
completion in the context of ParaTuck decomposition is also an interesting
perspective for future work.
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