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Optimal investment and consumption under forward utilities with

relative performance concerns®

Guillaume Broux-Quemerais' Anis Matoussi Chao Zhou!

September 4, 2024

Abstract

We study a n-player and mean-field portfolio optimization problem under relative per-
formance concerns with non-zero volatility, for wealth and consumption. The consis-
tency assumption defining forward relative performance processes leads to a sufficient
characterization of such processes with mean of a HJB-SPDE which highlights the link
between wealth and consumption utility, and also characterizes the optimal strategies.
In particular, forward relative performance processes with a wealth utility of CRRA
type and separable time and space dependence necessarily have a consumption util-
ity of the same form, with the same risk aversion parameter. This characterization
gives a better understanding of the drift condition ensuring time consistency. In this
setting, we establish closed form of the Nash equilibrium for both the n-player and

mean field problems. We also provide some numerical examples.
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Introduction

We study a n-player and mean-field investment-consumption optimization problem under relative per-
formance concern. More precisely, we focus on an asset specialization setting with common noise under
the forward performance process framework. The concept of asset specialization in finance refers to
a situation where investment managers focus on specific assets. This can be motivated by a variety
of reasons like familiarity with a certain sector, trading costs and constraints, liquidity costs ([30])
and ambiguity aversion (|26]). Each agent wishes to choose her portfolio-consumption strategy while
having concerns towards the average wealth and consumption of other investors. This optimization
problem has been studied through the classical expected utility maximization in [22], [21] and through
forward relative performance process with zero volatility in [1], [6] and [7].

The study of optimization problems within a large population naturally leads to the situation
of an infinite number of players, formalized through the mean field game theory introduced in [16],
[23]. The idea is to model the asymptotic behavior of a large number of agents interacting with
each other and subject to financial or energetic constraints. The mean-field formulation consists in
considering a control problem for one representative agent faced with a continuum of competitors. In
the pioneer works [23], the randomness of the population dynamics is assumed to be independent for
each individual. The case of correlated randomness have been later developed in [3], [2].

In a competitive setting i.e. in a market in which multiple investors act, utility functions include a
relative performance metric, to evaluate the impact of a strategy relatively to others. The first work
in this direction [11] studies an optimal investment problem, through a classical expected utility max-
imization with a relative performance metric compatible with exponential utility. The authors prove
the existence of a Nash equilibrium when there is no investment constraint, and when there is invest-
ment constraint for exponential utility in the Black and Scholes model. Later, relative performance in
competition have been studied in [22], where the authors study an asset specialization problem through
a classical expected relative performance maximization for CARA and CRRA risk preferences. The
Nash equilibrium is determined in the n-player and mean-field game with HJB arguments. This work
has been generalized to an optimal investment-consumption problem in [21|. The authors in [15] ex-
tended the study of investment consumption problems to more general Ité-diffusion environment. A
one-to-one correspondence between the Nash equilibrium for the mean field asset specialization prob-
lem with random parameter under classical maximization of the expected relative power utility and
some mean filed FBSDE with quadratic growth is given in [12]. Studying this equation, the authors
prove the uniqueness of the equilibrium and then solve the FBSDE for a small competition parameter
6. Optimal investment consumption problems with relative concerns have recently been studied in [5],
under the framework of recursive utilities of type Epstein-Zin.

Consistent forward utility have been introduced and developed in [27] to overcome some limits of
the classical expected utility. The latest is a deterministic function depending on its value at the hori-
zon time T. The value function being constructed backward in time with the dynamic programming
principle, the classical utility theory is not adapted to the updating of risk preferences or the time
horizon. Forward utilities enable the dynamic adjustment of the decision criteria, starting from pref-
erences which are known at an initial time, rather than imposing a potentially distant and arbitrary

time horizon. The preferences of an agent are thus described by a (random) dynamic utility (U(,-)).



The decision criterion maintains time consistency within the given investment or decision-making con-
text, in the sens that if X' is the observable process X[ (typically the wealth) a resulting from the
admissible decision/strategy m, then the preference process U(t, X[) is a supermartingale, and there
exists an optimal strategy such that the preference process is a martingale.

Since their introduction, there has been numerous theoretical developments in the field. In a general
setting, [29] established a sufficient condition for time-consistency when the dynamic utility is an Ito
random field. The consistent dynamic utility verifies a nonlinear SPDE of HJB type. This work has
been extended to consistent utility of investment and consumption in [9], where dynamics of wealth
and consumption utilities are linked by the consistency SPDE. Consistent dynamic utilities have found
diverse applications over recent years, including but not limited to option valuation, insurance, mean
field games ([22], [6]), long term interest rate modeling (|10]), risk measures [4] or more recently pension
design ([14],[28]).

The analogue of forward utilities in a competitive setting are forward relative performance pro-
cesses. One of the first work on forward performance processes in a competitive environment is [1].
The authors focus on optimal investment problems in general Itd-diffusion markets, for two investors
with homothetic locally riskless forward utilities. The study of the asset diversification problem under
more general monotone forward preferences has been extended to the mean-field and n-player settings
in [32|. Similar investment-consumption optimization problems under forward relative criteria in a
many player and mean field settings have also been considered in [6] and [7]. The authors consider
separable forward utilities in power form defined for all agents i = 1,...,n as Ui(t,z) = fi(t)ul®)(z)
and Vi(t,z) = gi(t)ul®)(z), for deterministic functions f* and ¢*, and u(®)(z) = l%aixl*ai is the
standard power utility function, with risk aversion coefficient a; < 1. In [7], a constant Nash equilib-
rium is determined under the assumption that for every agent, gi(t) = f*(t)!=*, where x € R is the
market-risk relative preference parameter is common to all the agent. However, for a best response

strategy, this personal preference parameter may be distinct for all agent.

Our objective is to study the n-player and mean-field investment-consumption optimization problem
in competition under forward relative performance processes with non-zero volatility. We will be

interested in relative performance process Qi of the form
t N
Q'(ta) =U'(t,a) + [ V(s cla)ds, (0.1)
0

where U? and V? are forward utilities from wealth and consumption. Assuming the wealth utility to be
an Itd random field, with characteristics (f3,), [to-Ventzel formula allows to get the dynamics of the
compound random field @) along the wealth process, as to exploit the consistency condition. Following
the initial work [9], this allows us to point out a condition on the drift 3, which translates as an SPDE
that is sufficient for U’ to solve to ensure time consistency of Q. Wealth and consumption utilities are
linked by the consistency SPDE characterizing forward performance processes. This condition takes a

convenient form for separable utilities of CRRA type
U@t z) = Zu@)(z), VE@(t ) =) (c), i=1,..,n (0.2)

where (Z})i>0 and (¢});>0 are continuous stochastic processes with log-normal dynamics. We investi-

gate the existence of a Nash equilibrium for both the n-player and mean field settings.



We define the notion of Nash equilibrium in the framework of forward relative performance pro-
cesses. A forward Nash equilibrium consists in n-triples (Q?, 7%*, ¢**) so that U’ and V* are forward
utilities and for all agent ¢ = 1,...,n using optimal strategy ﬂ‘i’* from their individual optimization
problem, Q! satisfies the time consistency property. This definition is coherent with the classical no-
tion of Nagh equilibrium in the sense that time consistency implies that no manager can increase her
expected utility by being the only one changing her strategy. The case of separable utilities of CRRA
type is tractable, and we exhibit the Nash equilibrium in this framework. However, optimal strategies
in this context present complex dependencies due to relative concerns, which motivates the study of
the mean-field situation.

The mean-field game formulation relies on a random type vector representation introduced in [22].
We generalize the example of CRRA separable utilities to the mean field setting. Consider U and
V two dynamic utilities of wealth and consumption of the form (0.2) with risk aversion «, whose
time variations are driven by log-normal processes Z and ¢, with local characteristics (b%, 55‘/, 5%) and
(b2, (53/, 52). In order to allow different preferences across the population, additionally to competition
and risk aversion concerns, as well as parameters relative to stock prices as presented in Section ?7?,

the random vector also includes local characteristics of processes Z and ¢, namely
C = (6%/’ 5%7 b(z)? 53]7 5%7 57 a? 07 m7 V7 U) *

In this setting, the forward performance criterion @ of type (0.1) built with U and V| is evaluated

along relative wealth and consumption processes

N X
Xp=—%, &=
(Xt)

Ct

(C)"

where X; and C; are geometric average wealth and consumption process of the continuum of agents.
The strategy for solving the mean-field optimization problem given by the martingale optimality con-
dition on Q(t, X;) is the following. First fix a probability measure (X;)s>0 representing the geometric
average wealth process of the population, and solve the optimization problem given by the consistency
condition on the metric relative to X;. Then, note that conditionally on the common noise B, all
agents face i.i.d copies of the same optimization problem. Given this optimal control, determine the
law of X} conditionally on the common noise B. Since X; models the geometric average wealth of
the continuum of agents, the desired law is the one of exp (E[log X} \}“tB]) Finally, find a fix point
satisfying

X, = exp (E[log X;|F/]). (0.3)

This equation reflects that the optimal strategy conditionally on the common noise must be typical of
the population. The conditioning on B appears because the effect of independent noises W¢ on the
empirical measure of X; averages out as n goes to infinity, whereas the effect of the common noise does
not. Relying on this mean-field characterization, which also stands for the equilibrium consumption, we
exploit the time consistency of Q(%, t) using Ito-Ventzel’s formula and the martingale optimality
condition. The case of separable utilities of CRRA type is tractable, and we give explicit forms of

optimal strategies in this context.



Our characterization of forward relative performance process is coherent with [9] in the non-
competitive setting. The optimal investment strategy also coincides with the one from [6], with addi-
tional terms related to the wealth utility non-zero volatility. The consumption equilibrium differs from
[7] because of our use of Ito-Ventzel’s formula to study the consistency property of forward relative
performance processes. More precisely, the optimal consumption rate is stochastic, characterized by
the relative importance the agents gives to wealth utility compared to consumption utility, represented
by the ratio % We discuss the behavior of the MF equilibrium strategies in some examples, namely

when this ratio is constant or a power of Z;.

The paper is organized as follows. In Section 1, we introduce forward relative performance process
and establish the SPDE which gives a sufficient condition on U’ so that the performance process Q'
is congistent. We give the optimal strategy for agent ¢ using the martingale optimality condition. We
specify the consistency condition for separable utilities of CRRA type. In Section 2, we define and
investigate the existence of a Nash equilibrium in the n-player situation. The mean-field optimization
problem against a continuum of agent is studied in Section 3. We also introduce two examples of
study of the mean-field consumption equilibrium strategy. Finally, we illustrate our results with some
numerical examples in Section 4. Regular random field space for the study of differentiability of It6
random fields are recalled in Annex A.

Notations:

All stochastic processes in the sequel are defined on a standard probability space (2, F, F, P) supporting
n+ 1 independent Brownian motions B, W1, ..., W™, where (Ft)e=0 is the natural augmented filtration
they generate. For z,y € R?, we denote by x ' the transpose of vector =, z.y = zy ' the scalar product
between x and y, and ||.|| the usual norm ||z|| = Tr(a:a:T)%. We also define the space for p € N* and I
a subset of R?

EP

loc

T
(I) = {<p[ — valued prog. measurable process s.t. for all T > 0, / loslPds < oo}.
0



1 Forward relative utility in a many player setting

In this paper, we study portfolio management problem in an asset specialization setting. More precisely,
we consider a finite population of agents, each one investing only in one idiosyncratic asset. The price
randomness is modeled through an individual noise and a noise common to the entire population.
The agents preferences are represented with forward utilities on relative wealth and consumption
metrics, to reflect their will to compete against each other. We investigate the characterization of
forward performance processes with relative concerns, and the associated optimal policies. We start by
defining the relative performance metric and the associated dynamics for the relative wealth process.
The martingale property ensuring time consistency allows to derive the consistency SPDE and the
associated optimal strategies. The It6-Ventzel’s formula and regular random field spaces for the study

of the differentiability of It6 random fields are recalled in Annex A.

1.1 Asset specialization and relative performance

Consider a market consisting in one riskless asset with interest rate r > 0 and n risky securities, in

which the price (S}) of stock i traded exclusively by the i'" agent solves

dsi
S

= mydt + v;dW} 4 0;dB;, S} = sb >0, (1.1)

with constant real parameters m; € R, o; > 0 et v; > 0. B is called the common noise since it induces

a correlation between the stocks while the W} are idiosyncratic noises, specific to each agent i.

Agent’s wealth - For i = 1,....n, the i*" agent uses a self-financing strategy (m})+>0 representing
the proportion of wealth invested in the i*" stock. Denote (ch)¢>0 the rate of consumption per unit of

wealth. The it" agent’s wealth dynamics writes as
dX; = rXjdt + 7} X} (widt + v;dW} + 0;dBy) — ¢; X{dt, with pu; = m; — . (1.2)

An investment-consumption strategy is admissible if (7%, ¢?) is a progressively measurable R x (0, co)
process such that E[fg(hif + ‘céﬁds} < oo for any ¢t > 0. We denote A; the set of admissible

strategies for agent i.

Remark 1.1. Our work focus on the asset specialization model defined above (see [22], [21], [7]).
However, we are also interested in forward relative performance processes in a more general incomplete
It6 market model as in [9]. The incompleteness can be expressed by restrictions on admissible portfolios
7}, required to live in a progressive vector space Ri, see [19]. Denote 3; = (v; 0;) the volatility vector
and I/I_/t’ the two-dimensional Brownian motion (W} B;). Introducing the market price of risk vector
N = EZ-T (EiEiT)_lui, the wealth process (1.2) takes the form

dXi = X! [(r — )dt + TS (AW + mdt) . (1.3)

The existence of a risk premium is a weak form of absence of arbitrage opportunity, in the sense that
EZ-EZT is non-degenerate. Note that the risk premium impact on wealth dynamics occurs through the

scalar product m3;.m;. If the incompleteness is modeled by restrictions on the portfolio rescaled by



the volatility, of type 7!%; € Ri, the market price of risk action is limited to its projection over the
constraint set. In other words, m%;.m; = 77,521-.77?é where nzag denotes the projection of n; on the space

R} and is referred to as the minimal risk premium.

Agent’s interaction and relative performance - Fach agent measures the performance of her
own strategy taking into account the policies of others. One can thus define the relative wealth process

and the relative consumption metric as

1

— X ~e0 (e T
Xi = ———— where X = |]]Xx" , (1.4)
()N((_Z)> kit
1
R i » n n—1
d = — % here c( v Hck ; (1.5)

RNE
<g(‘l)> kot

where 6; € [0, 1] is the relative concern parameter. The closer 6; is to one the more agent i is concerned
with the geometric average wealth and consumption of his competitors. An application of [td’s formula

leads to the dynamics of the geometric average of other agents

~ (=i

AXe (o _ (5200 ()t ] 20N o)
B e <7“ + oY — B <E7rt - (mrt ) 1 (vme) —C dt
t

1 — i
p—] g vk dWF + o "VdB,, (1.6)

+

where we denote quantities relative to sum over all agents except @

n

1 _; 1
(vm) 2( K HZ(%E{C)Q, oY) = -

" = .
(—i) 1 & 1 «
s 2= k (=i k
s - n—lzzk(ﬁt)2a &' Z):ﬁzct’ ), = of + v}
k#i k#i

We then get the relative wealth process dynamics

dX A j 1
gt — (c§ - eia<—z))dt+ vmldWi — 60— Zukwdet
Xt n= k;éz
+ <O’Z‘7T§ — 9@0’771}(71')>d3t, (17)
where

(i 2 , — (i
& =r(1=0) + iy — 0" + %Em?( = 95((07&(_”)2 +— L : (wm)? )>

— 910'171';077[}(71) (18)



1.2 Forward performance process with utilities taken as It6 random fields

Each manager ¢ = 1,...,n measures the output of her relative performance metric using a forward
relative performance process, modeled as an JF; progressively measurable random field Q' : Q2 x (0, 00) x
[0,00) — R. This process captures respectively the utility from wealth and consumption with adapted
continuous random fields U(¢, z) and V (¢,¢) on (R*)?2, such that P-almost surely, for any ¢ > 0, the
maps x — U(t,z) and x — V(t,z) are standard utility functions. Those processes will be called

dynamic utilities.
Assumption 1.1. Assume that U’ and V' are adapted continuous random fields, such that:

1. For any t > 0, the maps U' and V' are non-negative, strictly increasing and strictly concave in

x.

2. The partial derivatives UL(t,x), UL, (t,x) and Vi(t,x), V., (t,x) exist for allt > 0,2 > 0,P —a.s.

T xx

Definition 1.1. Consider an agent ¢ € {1,...,n} and assume that each manager j # i follow an

admissible strategy (77, ¢/). For (7, ¢’) an admissible strategy, define:

Q'(t,x) =U'(t, z) +/0 V(s,ctz)ds, (1.9)

where U? and V* are progressively measurable random fields satisfying Assumption 1.1. @’ is a forward

relative performance process for manager ¢ if, for all ¢ > 0:

- Time consistency - For any admissible (¢, c%), Q*(¢, X}) is a (local) supermartingale, and there

—

exists an admissible strategy (m*, ¢i*) such that Q'(t, X;"*) is a (local) martingale.

Assuming [t6 dynamics for utilities from wealth and consumption, the consistency property induces
a condition on the drift of Q. Under enough regularity conditions, this leads to an SPDE characterizing
the forward performance process. To study the drift variations, we need to introduce the notion of

Fenchel-Legendre transform, which is well defined under the regularity Assumption 1.1 on V.

Definition 1.2. Let V : © x (0,00) x [0,00) — R be a random field, strictly concave in z. The
Fenchel-Legendre transform of V', denoted V' is the random field such that:

V(t,2') =sup{V(t,z) — 2z}, 2/ >0,t>0. (1.10)
>0
Let’s assume that the forward utility U? is an It6 random field with local characteristics (ﬁi, (7%,[,, yfg)),
whose dynamic is given by

dU(t,x) = B'(t, 2)dt + vy (t, 2)dW} + v5(t, x)dBy, P.a.s (1.11)

We also define the quantity

i ; i ——(—1 2 . 1 —(— .
ot2) = Uit,0)o (r(1 =) — om0+ 952"+ (@m0P 4 L ™) 4 0 )

—

2 .
@<mm”+@mﬁwﬁ~@@ﬂmm5%.@m

n—1

1 )
+ isz(t7 x)(m)Q (



Applying Ito-Ventzel’s formula to the forward performance process Q° along the relative wealth
process Xt’ allows to study the martingale condition of optimality from the Definition 1.1. This leads
to a sufficient condition on the drift of the wealth utility U as well as the characterization of the optimal

strategy in this context.

Proposition 1.1. Consider an agent i € {1,...,n} and assume that each manager j # i follow an
admissible strateqy (m7,c7) € A;. Under the assumption that U’ solves the SPDE

. 1 . S \2 ~. ~ (=i L
e, = (=olt) + UL 0202 + 02 (x07) = Ve G0 D) Jar

+ Vi (t, 2)dW} + v5(t, 2)dBy,  (1.13)

then Q' defined by (1.9) is a forward relative performance process for manager i in the sens of Definition

*

1.1. The related optimal policy (7%, c"*) is given by

1 (i 1 i i (4 Y
7TZ* = m (Uieigﬂ't( Z) — ﬁ (’YWw(thtZ)VZ + ’lex(thZ)Ul

(e — Gioiom UL X)) (1.14)

b = — . (1.15)
Xy

Taking a competition parameter §° = 0, we retrieve the same SPDE characterization of forward
performance processes as well as the same optimal strategies as in [9]. Also note that taking a null
volatility v (¢, z) = (0,0), we recover the same optimal portfolio as well as the same expression for the
optimal consumption process (1.15) as in [7]. However, we characterize the utility from consumption
V? as a function of the utility from wealth U? through the SPDE (1.13), whereas [7] relies on a PDE
with random coefficient. This is due to the use of It6-Ventzel’s formula instead of It6’s to exhibit the

dynamics of Q(t, X}), involving the drift 3¢ of the forward utility U* instead of its time derivative.

Proof. The proof of this result is in three steps. First, we apply [t0-Ventzel’s formula to get the
dynamics of in(t,)/(\ti). Then, exploiting the martingale condition of Definition 1.1, we derive the
optimal strategy processes using the first order condition on the drift of in(t,)/(\f). We conclude on
the optimality and injecting the constraint on the drift in the 1t6 form of U leads to the above SPDE.
Time Consistency - Applying Ito-Ventzel’s formula to get the dynamics of dQ'(t, )/(\;)

AQ'( X{) = (Bt X]) + VIt ciXD) )dt + iy (1, X{)dW] + (¢, X{)dBy
+UL(t, X))dX] + SUL(t, XZ)d<X;, Xz> + <’y£vz (t, X)) AW} + . (t,Xt’)dBt>,ng

_ (ﬁi(t, X))+ Vit dX) + Ul(t, XI) X! (52 (e - 0ia(‘i))>>dt b (t, X7)dB,

it XD AWE + ULXG | (2, X0 (amg - eifmt“z))dBt + | vemidwi = 0,——=">" virfawt
Ey
Loi o v w2 i\2 07 ——5(-i) i —(—i))2
45U (6 XKD (i) + -2 Gom P+ (ot — 7m0 )

iy, (&, X} i Xt + v, (¢, X7) (it — 07w ) Xidt

9



In particular, the drift of the above random field takes the form

drift Q(t, Xj) = Bt X]) + Vi(t.ciX]) + 7, (8, X]) (Uﬂfi - 9i077w(_i))X§ + Uy (t, X}) (r(1 = 0) + pim;
. 0; ——(—i 92 ) 1 i . ) . .
—0; " + 527%2( ' 5 <(U7Tt(_z))2 + H(Vﬂt)Q( )> —Yioimiom Y — (d - Qict(_z)>
T N 2 07 5(=1) i —(—i)\2 iV, i
+§Um(taX§)(XtZ) (vim)” + m(l/”t) + (oimy — Oiom ™) ) + iy, (8 X )VﬂftXZ

Optimal strategies - We find the optimal strategy exploiting the first order condition on the drift
of Qi(t,)/(\g). In other words, the drift of this compound random field should be non positive for any
admissible strategy and vanish at the optimum. In other words, drift Q(t, )/(\tl) reaches its maximum at
the optimal strategy, and its derivatives with respect to variables 7 and ¢ vanish. The optimal portfolio
process is close to the one in [7] with an additional term involving ~%, and the optimal consumption

process is the same, namely

i 1 (- 1 i i ¥ =\ (¢, X
m" o= W(oieiam ) (i (8 XD s, (8 X + (i — Grri07 ))Uw(t’Xt)>>
It o] Ui, (t, X)X
(e EE )@
Ci’* =

t
There only remains to check that the process Q' effectively satisfies the time consistency property

of Definition 1.1. Using the function ¢ introduced in (1.12) to shorten the notation, the drift of Q°

rewrites as

e i Y ity i T 2 Viee (2N I 1 L1 (e iR i
drift Q'(t, X{) = B, X{) +(t, X{) + V(. ()" Up(t: X)) + S Upo (t, X)(XH? (7 + 07) (m))?
—291'0'1'07%(_2).7@% + 2(,u - 910'10'77&(_2)”@%%
Uso (8, X)X

1 — —

+ﬁ(2’}/w ( t, X} )Vzﬂ-t +2’YB ( t, X} )O’Zﬂ't))
Ui (t, X})X]

WV AXT) — UL XD X — Vig, (6
i S iy (2D
= ﬁ (tht) + @(ta Xt) +V (tv (Ct

R GO N N L T N i i i
-V (t7 (Ct )erx<t7Xt)) + iUxx(t7Xt)(Xt)2(Vi2 +Uz2) ((ﬂ—t)2 _27rt'7Tt )

)'iUL(t, X7))
VRUL(E X)) + Vit X) — iU X)X

Necessary condition on 8 so that () is consistent - From the first order condition, the above

drift is minimal for the optimal portfolio Fz’*, and this minimum equals

drift Q' (t, X{*) = BU(t, X[™) + @(t, X, ) + V(t, ()" UL(L X)) + V(t, ¢ X})

~(=)\9

it XN XD 7 R — Lt (o (e i) ?
— U X)X Vi G D) - LU XDEDA0E +07) (7). (16)

Moreover, by definition of the Fenchel-Legendre transform V¢ and using (1.15), one can note that

ppNEY)

Vit, (¢ UL, X)) = Vit e* XT) — UL (8 XD XL (1.17)

10



Imposing that the quantity (1.16) equals zero ensures time consistency of the forward relative perfor-
mance process Q°. From the concavity of U?, we get that the drift of Q'(t, )/(\Z) is non positive for any
admissible portfolio and vanishes for the optimal strategy (ﬂi’*, Ci*) This last condition in particular
implies a constraint on the drift 5¢ of the forward utility U?, which takes the form

(1)

~

§i(t,2) = —pl(t,2) + JUL (L )07 + o) (i)~ vite, & )wie, X)) (1.18)

Injecting this relation in the It6 decomposition of U? leads to the SPDE

(=9)

. 1 . . 2 ~. ~ . -
dU*(t,z) = (—g@(t,x) + UL (b 2)a® (0} + o) (") =Vt (@ )"iU;(t,Xg))>dt

+ Vi (t, 2)dW] + i (t, 2)dBy.  (1.19)

O

1.3 CRRA forward relative performance process

In the following, we focus on forward relative performance processes of CRRA type, with separable
time and space dependence. The drift constraint (1.18) can be specified when the space dependence
of wealth utility is of power type.

Consider an agent i with utility from wealth U@ (¢, 2) = Zju(®)(z), whose dynamics are driven by
those of some Ité process Z! and where u(®)(z) = 5‘11_% denotes the standard power utility function
with risk aversion parameter o; € [0,1]. Moreover, we assume the process Z; to have log-normal

dynamics that we denote

dZ! = 7! (bZi (t)dt + SWZ (£)dw; + 587 (t)dBt>, Zi=1. (1.20)

The local characteristics of the forward utility U(®?) seen as an It6 random field of type (1.11) are then
given by

B (t, z) = b2 (U@ (t,2) and @) (t,z) = <5W’Zi(t) 5B’Zi(t))U(o‘i)(t,az). (1.21)

The deterministic power utility function u(®?) satisfies the following useful properties:

xugjai)(x) =zl7% = (1— ai)u(o“')(w)

2?ul) (1) = —zul®) (2) = —a(1 — ap)ul®) ().

Let V¥ be a forward utility from consumption. The time consistency of the relative performance process
Q' defined by (1.9), generated by U(®) and V* implies that V? is also a forward utility of CRRA type
with the same risk aversion parameter «; and separable time and space dependence, see [9]. We will

thus consider a utility from consumption of the form V() (¢, ¢) = ¢iu(®)(c), where (¢})i>0 follows
g = ¢ (W' (t)dt + 872 (£)dW; + 65 (t)dBt>, @ = 1. (1.22)

For ease of notation, we introduce for i =1,...;n

. . i —=(—i 2 1 —(—;
i) = r(1—6;) — ) + %zwg( ) +% 71(1/77,5)2( )> (1.23)

((cnrt(‘“)2 +
62

gt = —mP "+ (0w (1.24)
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Proposition 1.2. Consider a couple of CRRA wutility random fields with separable time and space
dependence U (t, ) = Ziu'®)(z) and V@) (t,c) = ¢iul®)(c), and let the conditions of Proposition
1.1 hold. Then the drift constraint (1.18) takes the form

b7 () = (1 — a0 (D6 — (1 — a) (1) + Jaull — i) (g°(0) — (7 + oP)mi")

oL
. Q; L o
- (1 - ai)eicit(iz) + 0;(1—ay) (?) : (1'25)
(G0 e N

Proof. Characterization of the utility from consumption - Wealth and consumption utilities are
related through the SPDE (1.13), which requires

(=)

§i(t,2) = —plt, ) + LUkt 2)? 07 + o) (wi) = Vit (@)Ul ),

2 rxr

where

o= e N P —iny o Yo iy 2 i i Yigee(—i) i
Pt Xj) = Ua(t, X)X{ (£ (1) + 05 ™7) + SUL (6 X (X)) (8) — v, (8, X)) 0o~ X,
and f and g' are defined as (1.23) and (1.24) respectively. Replacing (1.21) and using the identities

of the power form utility, we obtain
VU () = —(1— a) U (t,2)(F1() + O ) + %ai(l — a)) U (t,2)g'(t)
1 . i o~ (=D o
— Sl = aU @) (t,2) (02 + 02) (" = Ve, (U (1, 0)) (1.26)
+674 ()05 D (1 — ;) U@ (¢, 2).

This constraint implies

Vit @) Ued (4 a) = (v — (1 - a)fia ) U1, ), (1.27)
where v} = — {bzi(t) ~-(1- ai)(sg"(t)eiafrt(—i)} + (1= o) fi(t) — soa(l — aq)(g'(t) — (V2 + a)my™).
Denote E@ = vz — (1 — a;)0;5 9. Differentiating (1.27) with respect to the space variable leads

~ _ (ai) i
le <(Ct( ))QlUéaz)(tvx)) — w% N(i(ij)vl' (t; I’) - N(;(:;t .
(e U (ta) (@ )
Since V,(t, —&y(t,y)) =y, we obtain
~(—1) wt (=) ' (Et(_i))e"ozi
(e Noeuled(t,z) =V, (¢, —m |, ie (@ VWiui | ¢, x| = Vy(t,z). (1.28)
(0 )ioy wi
So integrating leads to
: w} (&) wi\" (=)
Vilt,z) = U@ [ 2L g ) = [ L] (¢ )OIyt ). (1.29)
(673 w% (673

Thus, utility from consumption V? is necessarily of power type, proportional to the utility from wealth
Ul

12



Condition on b7’ (t) - Equation (1.26) gives a condition on the drift of the wealth utility U(). In
other words, it allows to characterize the drift parameter bZi, as well as the quantity ;. In fact,
comparing the general form of the utility from consumption Vi(t,c) = ¢iu®i(t,c) with (1.29) leads:

: ; E— 1—q 9167(71) o (i 0i(1—a;)
#=m<t( = ) (a)™

a;

so that:

oL
- i o v\ i
vi= (-l + —— (?) - (1.30)

(Et(_l)) @i t

Finally, the drift condition (1.18) can be rewritten as the following condition on b%'
i i ; ; 1 ; ;
b7 (1) = (1 — 0)0F (08w — (1= ) (1) + sl — ) (g(8) — (o + o))

2
B o N
(-t + ———5 5 ) -
—1 )7 Zt

Remark 1.2. The link between U(®) and V? pointed out in (1.29) only stands here for CRRA utilities,
since it relies on the possibility to express the first and second derivatives of U(®) as functions of itself.

In the general case

. | - 2 ~. ~(=1)p.
Bi(t2) = —p(t,2) + ULt 2)a* (2 + o2) (xf7) = Vit (& )i ),

so that
(Ct ) Uxx(tﬂ .%')Vx(t, (Ct ) Ux(t7x)) - _6:(:(t7$) - (piﬁ(tv x)
1 CN\2, .
50+ D) () (Ul (t,2)a? + 22U, (1, 2)).
Denote H the random field
—1 i L on(inx\2 /. 277 i
H(t,l‘) = ~(—1) _Ba:(x>t) - me(xat) + 5(”@ +0; ) (Ft’ ) (ZC Ux:ca:(x>t) + 2an:a:(:U>t))

(e ")iUL,(t )
Then, using the identity Vx(—‘;m(t, x),t) = x:

~(=1)

Gt = v;(—‘?;'(t,<a(‘“>9iv;‘<t,:c>>)

= Vi(H(z,t)).

xT

Consequently, if H admits an inverse function H ! with respect to the space variable, we obtain a

characterization of the marginal utility from consumption
Vilt,r) = (@ )Ui T 0,1,

13



2 The n-agent forward optimization problem

Having characterized forward relative performance processes and the associated optimal strategies, we
now investigate the existence of a Nash equilibrium in the many-player asset specialization problem
under common noise. Informally, a Nash equilibrium is defined by a set of n strategies such that
no agent can improve their performance being the only one deviating from the equilibrium. In other

words, these policies are optimal for every player in the market.

2.1 Nash equilibrium for the n-player case under forward relative performance

concerns

Let us now introduce the notion of Nash equilibrium in the framework of relative performance pro-
cesses. In the classical expected utility theory, a Nash equilibrium is characterized as n strategies
(772’*, ci’*),-:17,,,7n chosen so that no manager can increase the expected utility of her performance met-
ric by unilateral decision. We can formulate this property using the consistency condition for forward

relative performance process, as proposed in [7].

Definition 2.1. Let for any i € {1,...,n}, (7%*,c"*) € A; be the optimal strategy for investor i from

Proposition 1.1. Let Q' be the progressively measurable random field
Q'(t,x) = U'(t,x) +/ V(s,ctz)ds,
0

where U’ and V? are progressively measurable random fields satisfying Assumption 1.1. A forward

Nash equilibrium consists in n-triples (Q°, 7*, ¢**) with ¢ = 1,...,n such that:

- Time consistency - Let managers j # i act according (7/**, ¢/*) and manager ¢ with an admissible
strategy (7,¢'). Then Q(t, X}) is a (local) supermartingale. Let all managers j = 1,...,n act

along their optimal strategy (7/*,¢”*). Then Q'(t, XZ*) is a (local) martingale.

This definition is coherent with the classical notion of Nash equilibrium. In fact, for any i €
{1,...,n}, assuming that every actor j # i use its optimal strategy 7rt"*, we get from the martingale

and supermartingale properties of the above definition that

E[Qi(t,Xf’*)} = Qi(0,X]) > E[Qi(t,xg)}, for all ¢ > 0.
Hence no manager can increase her expected utility by being the only one changing her strategy from
the Nash equilibrium.

Note that the Nash equilibrium consists in n-triples (Q°, 7*, ¢**), which means that the equilibrium
strategies depend on the forward performance process Q' and thus on the chosen forward utility U*.
The investors may also have different type of forward performance process. One may wonder if we can
determine an optimal relative performance Q*, or more precisely a n-tuple (Qi’*)ie{17...7n} in order to

maximize expected utility over all other admissible utilities for each agent i =1,...,n

. . t . ~
Q" (w,t) = U (¢, x) +/ Vo* (s, cia)ds, (2.1)
0
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and where U»* denotes the optimal forward utility U? in the sense that

—

Ub*(t,z) = argsup E[Qi(t, XZ’*)\FS} = argsup Qi(s,Xé’*), for all s <.
UieK2nCs UieK2nCs3

Remark 2.1. Assuming that the utilities U; solve the SPDEs (1.13), determining the Nash equilibrium

portfolio consists in solving the system for i =1,...,n
o = 5——|obi| 1+ —= a7 — — <'YIl/Vz (t, X})vi + v, (1, Xt’)ai> + u; Uy
vi +o; Ui X Ui, X!
The computation in the general case above would result in an expression involving first and second

derivatives of every utility U?, for i = 1,...,n. However, it is tractable for CRRA utilities.

2.2 Nash equilibrium for power form forward utilities: the CRRA case

In this section, we investigate the Nash equilibrium in the n-player case for forward utilities of CRRA
type with separable time and space dependence. The resolution strongly relies on Section 1.3 and the
drift constraint (1.25). Consider a family of CRRA forward utilities from wealth and consumption

with separable time and space dependence as defined in Section 1.3, that is for i =1,...,n

U@ (t,z) = Ziu®)(x), and V@) (t ) = ¢iul®)(c), a; € (0,1). (2.2)

To state the following results, we need to define the quantities

I O, TRt 1 2 (007 (W + 657 (Do + )
Yn=—7> Dy A bn=—> T
n k=1 2 2 F o 2 2 kU ay
vip +oi( 1 vi top| 1+ — =

Z Okl = o) . (2.4)

(n—1Dag — (1 — ay)b

Moreover, the optimal consumption process in the framework of relative forward performance process

relies on the following process

1 0;(1—c;)
,—1 —1
¢i ai(n—l';z—ﬁi(l—ai) n k ak(n—l)n—ﬁk(l—ak,) Entl aj(n—1)=0;(1-c;)
) t t
Aff = | = H = ) (2~5)
7 _ k
Zt k=1 Zt

where Zf is an Ito diffusion with dynamics

dZi = 7! (bZ (t)dt + §WZ (AW + 587 (t)dBt), Zi =1, (2.6)
with drift parameter b7 given by
> . . 1 . i
b7 () = (1= 0i)dF ()0 ™ — (1= ai) f() + jai(1 — ) (g’(t) — (7 + o)y ) (2.7)

One can show the process A! has log-normal dynamics, that we denote
dAl = Al (bf“' (t)dt + 64 (t).dm’/g), (2.8)

where Wti denotes the two-dimensional Brownian motion (W}, Bt).
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Theorem 2.1. Let the conditions of Proposition 1.1 hold for all agentsi € {1,...,n}. Assume moreover
that agents have power form forward utility U (t,2) = Ziu(®) (x). If 4, # 1, then there exists a
unique optimal candidate strategy (m;”",c;™) given by

i 1 o Lyn oy Lt wzi . sB.Z 4

R = ey [0 - Do 2 (Y n 0 )| 29)
vitop{ 1+ —=*

de* = cf;’*((b“‘i(t)+ci’*)dt+6‘4i(t).dl/l_/§). (2.10)

Proof. The equilibrium portfolio is simply determined with a fix point calculation from (1.14). The
characterization of the optimal consumption process is achieved in the same manner but require addi-

tional arguments because of consumption dependent terms in the drift condition (1.25).

Equilibrium portfolio - For power form forward utilities of the form U (¢, z) = Ziu(®)(z), the

optimal portfolio strategy (1.14) rewrites as

. 1 1 n 1 i i
= o [t = —) o — (Y O+ AP (o ) | (211)
) ) 0:(1—L) a;’n—1 a;
vit+oi| 1+ L

n—1
Multiplying by o; and averaging over i € {1,...,n}, we get

0Tt = 0T + Gn,

where
RN & 2 (W (s + P2 0o+ )
¢n - n—1 Z Gk(l—i) and (bn = 5 Z Qk(l—i) (212)
k=1 V13+013<1+nf'“> k=1 ”13+013<1+nfk>
Hence, for ¥, # 1
. Pn
omy = . 2.13
Ol (2.13)

Plugging this expression in (2.11) leads to the Nash equilibrium portfolio strategy. If 1, = 1, there

exists no Nash equilibrium.

Equilibrium consumption process - Let’s recall that the optimal consumption process is given by

o ik~ (=) g\~ (1) g,
(V) 1<t’Ui(taXt ) (et ))91>(Ct yo

=1,k
Xt

C

(2.14)

From (1.29) and the power form dynamics considered for U(®?) we get

Ve (t,z) = Zf(gt(_i))gi(liai) (alm> 7

so that

(Vi) (ta) = (Z)

xT



Then the optimal consumption process writes as

, (CNH))&' L wh (i) gm0 (L AN
i = L GO (g )
X i
v (1— )Y
= o .

Replacing v¢ with (1.30) leads

) ) _0;(1—ay) ¢Z O%
i = (c}(—l)) o (th> , (2.15)
t

where we recall that & (=" denotes the geometric average of consumption processes of every agent

different from ¢, defined in (1.5). Let’s modify this last equation to express cf;’* as a function of
1

5 _ kY 7w

G = (HZ:1 Ct)

—1

. n

. _ nb;(1—oy) ¢Z a;(n—1)—0;(1—«a;)

1,% ~ o) —0. (1—a.) t

Ct = (Ct) 1( 1) 97,(1 z) <Z2> . (2.16)
t

Averaging the previous line over i = 1,...,n, we obtain

n—1
kN aL(n—1)—0,(1—ayz) n 0, (1—ay,)
k k k _ k k
<t> (5t) N k=1 ap(n-1D)—0(1—ay)

Then, defining the quantity

n

Ok(1 — o)
& = , 2.17
"= L = Dag — (1 —an)ls (217)
the geometric average of consumption processes then takes the form
n k — E& 1Jrl
_ (Z) ap(n—1)—0,(1—ay) n
- (H (Ztk . (2.18)
k=1 N7t
Injecting this expression in the optimal consumption (2.16) leads
. n—1
; —_ n0il=ey) @l \ ep(n=D=0;(1-)
i ~ : g i
et = (¢ a;(n=1)—0;(1—cy;) [ L . 219
= (@) (%) (2.19)

Nash equilibrium - We complete the proof by using the optimal policy (2.19) in response to the
others players choices and the drift condition (1.25). With 5%* given by (2.7), we rewrite the latter as

b2 (1) = b7 (1) — (1 — aa)0se D™ — ™ (2.20)

In fact, in order to have an equilibrium, we must solve the coupled system for ¢ = 1,...,n composed of
(2.19) and the SDE characterizing the diffusion Z?, namely

. n—1
P — T N
C; — (Ct) a;j(n—1)—0;(1—«y;) <Zz>
izi = 7 <bZi(t)dt+5W’Zi(t)de+6B’Zi(t)dBt), Zi=1. (2.21)
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We introduce the process Z with dynamics
dZi = Zi (BZ" (t)dt + W2 (AW} + 587 (t)dBt). (2.22)

This allows to disentangle Z; with consumption dependent terms in bZi, writing

t _ A —~N\p. [t
n 1(1—%)@-/ Guds — (n=Hai = O‘Z)el/ cg*ds) (2.23)
0 0

n — n—1

Zi = Z exp <—

Injecting (2.23) in the optimal consumption (2.10) leads

n—1
) t no; (1—oy) ¢275 ailnm =gz n(l _ a,)e, t
7, % i e 1 )Y _
e, exp| — | ciids | = (&) «it-D-00-a | = eXp( / 9 ds) 2.24
o (- f ) =@ > il 1)~ 6,01~ Jy )20

Taking the geometric mean of the above over ¢ =1, ..., n, we get

n k
Gt exp <— /Ot c}ds) = (0})_5” exp <§n /Ot c}ds) 3

k=1 Zf

n—1 1
n  ap(n—1)—0,(1—ay)

Thus, taking the inverse

(&) texp (/Otcsds> —

Plugging the last expression in (2.24) leads
n—1
ak(n71)79k(17&k)

) t i n k
ey exp (—/ c?*ds) = % H o (2.26)
0

i = 3
Z k=1 \Z;

—1
En+1

n—1 1
k n ap(n—1)—0(1—ay)

::
P

b
I
—
N

(2.25)

—1 0;,(1—a;)
En+1l a;(n—1)—0;(1—cy)

n—1

aj(n—1)—0;(1—oy)

Let’s denote A% the process on the right-hand side of (2.26), with log-normal dynamics
dAl = Al (bA" (t)dt + 5A".th) .

Integrating with respect to time, one can show that equation (2.26) admits a unique solution among

continuous [t6 processes. Some It6 calculus show that the process c:;’* given by
e = ci’*((bAi (t) + ¢*)dt + 64 (t).dm?ti). (2.27)

satisfies (2.26), which concludes the proof. O

2.3 Discussion on admissibility

The candidate equilibrium consumption dynamics (2.10) admits a local solution given by

exp ( St (s) - Hé"‘i(s)Hz)ds + 5Ai(s).de>

N 1-— fg exp (fou(bAi(s) — H(;Ai(S)HQ)dS + 5Ai(s).dﬂ_/§) du’

7%

c (2.28)
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defined up to the explosion time S defined as the first hitting time of 1 of the integrated diffusion

process

Ii = /Ot exp (/Ou(b/“(s) - HaA"(s)Hz)ds + 5A"(s).dW;:)du.

Integrated diffusion processes appear in models with various applications, as for example the simulation
of the dynamics of the membrane potential of a neuron or derivatives pricing in finance and risk theory
[25], [24]. It has been shown in [8] that the integral of the exponential of Brownian motion with
negative drift is distributed as the inverse of a gamma variable, thus supported on [0,00). This has
been generalized in [31] for a general geometric Brownian motion. In the framework of FPP Nash
equilibrium, one wants to ensure the law of I, to be valued only in [0,1). Those results thus ensure
that the probability of finite time explosion of (2.28) is strictly positive for constant coefficients b4 and
54,

In general, the question of admissibility of the candidate optimal consumption process (2.28) re-

mains open. In Section 3.3, we present two examples with admissible optimal consumption.

3 Mean field forward optimization

Consider (By);>0 and (Wy)i>0 be two independent Brownian motions, living in a filtered probability
space (Q, F,F = (Ft)>0 P). In order to model the continuum of agent of the mean field optimization
problem, we introduce Ehe random type vector ¢ independent of B and W, whose distribution describes
the proportion of the population following the corresponding preferences. We will focus on the mean
field optimization problem in the framework of relative forward performance process, constructed with

separable utilities whose time variation are driven by log normal processes Z and ¢ solving

dZ; = Zy (b2 (t)dt + 65, (t)dW; + 65(1)dBy), Zo =1,
dey = b (bd)(t)dt + 68 (8)dW; + 57;@)@13,5), éo = 1.

To allow different preferences across the population, we include the parameters 5%/, 5]%, be, 53/ and 6%

in the random type vector
¢ = (66 05.0%, 07y, 05,6 0, 0,m, 1,0
with values on the type space
loc

Z = (£, (RT))” x L.(R) x (£2,.(RT*))% x (0,00)? x [0,1] x (0,50)2 x [0,50)>.

Denote (FMF);~q the smallest filtration for which ¢ is F37¥ measurable and B and W are adapted, and
(FP )t>0 the natural filtration generated by B. For general study of mean-field games under common

noise, we refer the reader to [3], [2].

3.1 Mean field Nash equilibrium under forward relative performance concerns

Under the self-financing condition, the generic agent’s wealth process is:

dX; = rXi + mXi(pdt + vdWy + 0dBy) — o Xydt, p=m—r, Xog=E¢, (3.1)
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where m; stands for the fraction of wealth invested in the risky asset and ¢; is the rate of consumption

per unit of wealth. The set of admissible strategies is defined as:

AME — {(m, ct) F ME _ progressively measurable process valued in R x RT*,
t
such that Vt > 0, E[/ (|ms|® + |cs|2)ds} < oo} (3.2)
0

Definition 3.1 (MF CRRA equilibrium). Let (X;):>0 and (Cy)i>0 be FZ adapted square integrable
stochastic processes representing the geometric average wealth and the geometric average consumption

of the continuum of agents. Let (7, ¢;) be an admissible strategy and X™¢ be the wealth process (3.1)

IMF

following this investment-consumption strategy. Consider a progressively measurable random

field @ with dynamics
t
Qt,x) =U(t,x) +/ V (s, ésx)ds, (3.3)
0

where ¢; = and U, V are progressively measurable random fields satisfying Assumption 1.1. @

Ct
(€
is a MF forward relative performance process if

X7
1. Time consistency - For any admissible strategy (7, ct), @ (t, L ) is a (local) supermartingale

+)?
Xﬂ'*,c*

and there exists an admissible strategy (7}, ¢f), such that Q| ¢, (L > is a (local) martingale.

X,)"

R

2. Compatibility - (77, c}) € AMF is a MF Nash equilibrium if

{ X; =exp (E[log XZ‘\}?B])

_ 4
C; =exp (E[log ;| FP]) (34)

We call strong Nash equilibrium a MF Nash equilibrium strategy (77, ¢; ) measurable with respect
to ]:é” F,

Note that E[log(.)] is the continuous analogue of geometric mean. The last condition above can be
understood as a compatibility condition between the generic agent and the continuum. Conditionally
on the common noise B, all agents face i.i.d copies of the same optimization problem. Exploiting the
consistency condition among processes X; satisfying (3.4) and using a fix point calculation, we can
determine the MF equilibrium portfolio for the CRRA example. Then, expressing the consumption
utility V' as a function of U as in Proposition 1.2, we can establish the MF equilibrium consumption

strategy.

For tractability, we will consider the CRRA utilities example. To state the associated mean field
equilibrium theorem, we will need the following assumption, stating the power form of the utility U
considered to be an It6 random field with respect to the 2-dimensional Brownian motion (W} By)¢>o.
We will also make an assumption on the drift of this utility, analogue to Proposition 1.1, sufficient for
a random field @ of type (3.3) to be consistent and thus a FPP.

Assumption 3.1 (MF CRRA). Consider a random field Q with dynamics
t
Qt.0) = U (t0)+ [ VO (s,
0

20



where U and V(®) are CRRA forward utilities of the form

UL, z) = ZuwD(z), and VO(t c) = ¢ul(c), (3.5)

where u(® (z) = ”il:; is the standard deterministic power utility function with risk aversion o € (0,1),

and processes (Zi)e>0, (¢t)e>0 follow log-normal dynamics

dZ; = Zy(b? (t)dt + 64, (t)dWy + 65(1)dBy), Zo= 1. (3.6)
déy = ¢y (b¢(t)dt + 60 (1) dW; + 5g(t)dBt), do = 1.

The utility random field U'® has local characteristics
B(t.x) = b2 (U (t2) and y(t.x) = (i (t) 55(1)) U (¢, 2),

and is assumed to satisfy the SPDE 1.18 from Proposition 1.1 which is equivalent to

~

Bt 2) = —p(t,2) + U2 + 0*)(m)? ~ VIO 1, (C)UL), (37)

where

P2 ,
W(t,z) = U (¢, 2)z <—9,u7rt + gzwg + S Hct> + %Ux(fjj) (t,2)22(0o77)% — B, (t, 2) 007 ") 2.

2
(3.8)
Proposition 3.1. Under Assumption 3.1, condition (3.7) takes the form
z Z (057 SN
b (t) = (1 — CV)(SB(t)HUTFt — (1 — Oé) —G,U/ﬂ't + 527’(} + ?Uﬂ't
1 A
- . _ a o
+ 504(1 —a)((057)* — (V* + o) (77)?) — (1 — a)fc; — = (Zi> (3.9)

(G) =
Proof. Following the same calculation as in the previous section, one can characterize the utility from
consumption for the CRRA case, from the drift condition (3.7)
ZHyU@ () S e S S @) A0
b (t)U (ta y) = _(1 - O[)U <t7y) _eluﬂ-t + izﬂ—t + Eaﬂ't + ect -V ((Ct) Ux(tvy)
1 1
+50(1 - U (t,y)(07)? — ol - U () (% + 02)(77)?
+04()07(1 — @)U (¢, z).
The latter implies V(O‘)((@)GUQEQ) (t,y)) = (v; — (1 — a)0c)U(t,y), where
2

0= 0

1 X
—ia(l — a)((0o7m)* — (V* + o) (77)?) | . (3.10)
Using the same computation as before, we get

Ve, = (T ey, (3.11)
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Similarly as in Section 1, comparing (3.11) with V(® (¢, ¢) = ¢,u(®)(t,c), one can express the quantity

V¢ as
d) 1
a «
v = (1a)90t+M<Zt) - (3.12)
(C) =

Finally, combining equation (3.10) with (3.12), we get the following constraint on the drift parameter
Z Z( 057 05 0> __,
b2 (t) = (1 —a)op(t)bom — (1 — a) | —bpum; + 527@ + 5O

1 — * — a ¢t é
+ 504(1 — a)((ﬁmrt)Q — W+ 02)(7rt )2) — (1 —a)fe — ﬁm (Zf)

Cy

3.2 General MF Nash equilibrium

In this section, we investigate the existence of a general Nash equilibrium to the mean field optimization
problem associated with a forward relative performance process @ given by (3.3). We prove the
existence of an optimal strategy (7}, c}) € FM¥. We work under Assumption 3.1, so that both utilities
are of separable form, respectively driven by two Itd6 random fields ¢; and Z;. For the following, let’s

introduce the quantities

. 1, o o (6% () + §5()o + p) o
0 _E[G(l—) ] ©° _E[ g } Ka,g_—HE[W.( 13)

a’vi+4o2]’
Similarly as in the n-player case, the equilibrium consumption process relies on an analogue log-normal

process (A¢);q defined in the following, with local characteristics
1 ~ ~
O (b¢(t) — () + - H&f’ H + 1 HaZ H (t).éZ(t)>
a

o | (bd’(t) V(1) + %(H(s%)f - HWHQN ¥ %Ki,eE L0 - 0P @) 2

+%E B(mw(t) - 5”@))] (69 () — 67 (1)) (3.14)
W) = 20V (0) - 5V () + Kok L0 (1) - 65V (1), (3.15)
§ABy = $<5¢’B(t) 575 (1)), (3.16)

Theorem 3.2. Under Assumptions 3.1, if ¥° # 1, there exists o MF Nash equilibrium strategy

(75, c;) € FME with optimal portfolio process:

1 1. ¢
= —— [ fo(1—
7Tt V2+O'2< O—( )1_wo—

and optimal consumption equilibrium process (¢} )i>o following

g

+ 1((SW( )1/+5§(t)0+u)>, (3.17)

de; = ¢ (bH(t) + ¢f)dt + 64V (1)dWy + 64P (t)dBy). (3.18)
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Note that both candidate optimal processes 7f and c; are stochastic, measurable with respect to

the general filtration FE.

Proof. First, from the compatibility condition (3.4), we give the It6 decomposition of X;. Then, apply-

ing Ito-Ventzel’s formula to the process Q(t, (XXT%C)Q), we investigate the martingale optimality condition

from the second point of Definition 3.1. Then similarly as in Section 1, using Proposition 3.1 and the

linear dynamics of utilities leads to an explicit form of the MF Nash equilibrium.

Average wealth process - Condition (3.4) of Definition 3.1 allows to restrict ourselves to processes
(X1)1>0 satisfying X; = exp E[log X['|FP]. Consider an admissible strategy (m¢,c;) € FME. Applying
Itd’s formula
X, = expE[logXA]—“f]

t

t 1 ,
= expE [logf —|—/ (ums — iﬂg(ﬂ +02))ds —|—/ v dWy +/
0 0 0

t

¢ t
mrsst—/ csds|]:tB] (3.19)
0

t 1 t t
= exp <logf +/ (oms — §E7T§)d8 +/ omsdBs — / csds> (3.20)
0 0 0

t t t
= &+ / nX.ds + / o X.dBs — / e X ds, (3.21)
0 0 0

where
1= __5 z — B — B
N = ns — 5(2775 —o7ms ), &=expE[logg], ums= E[wrs|]:s ], Cs = E[cs|]:5 ]

In fact, since (7, ¢;) is admissible, it is progressively measurable with respect to the general filtration
FME = 5(¢, (Bs)o<s<t, Ws)o<s<t). The admissible strategy at time ¢ thus writes as a function of ¢
and the trajectories of the two Brownian motions up to time ¢. On the other hand, the filtration F/
generated by the common noise B at time ¢ is the sigma algebra generated by FZ and the Brownian
increments after time ¢, namely (B, — Bs)s<u<t. Consequently, for 0 < s < ¢, the admissible strategy
(ms,¢s) is a function of ¢, (By)o<u<s and (Wy)o<u<s is thus independent of (B, — Bg)s<u<t, which

justifies the equality between (3.19) and (3.20).

XTe _
For any admissible strategy (m,c), define Y™¢ = oy From (3.21), the dynamics of X are
given by
ax; -
% =&+ (n— G)dt + TmsdBy,
t

and an application of It6’s formula leads
e o+ L 2+9—2*2—9 o7 | dt
th,c = | U7t e 9 Un 207Tt OTOTg
+ Vﬂtth + (O'T('t - Gﬁ)dBt - (Ct - Ga)dt, (322)
£
(£)°

Forward performance process - Applying It6-Ventzel’s formula, we obtain the dynamics of the

with Y¢ =
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forward performance process along the relative wealth process Q(t,Y;" ).

dQ(t,Y™) = (B(t,Y"°) + V(&Y ))dt + yw (t,Y;")dW; + vp(t, Y, )dB;
,C T,C 1 ,C TT,C T,C T,C TT,C
AU (Y)Y + SUe (6, Y, 70)d(Y) + (s (6, Y77)dWs + i, (8, Y,77)dBy), Y™
= (B, Y,") + V(&Y% 0)dt +yw (t, Y, )dWy + yp(t, Y, )d B
0—s 62
+U, (¢, Y, )Y, <,u7rt — Opm + §Ew§ + 5073 — Oomoms — (¢ — Gct)>> dt
1 ,C TT,C —
+§Um(t,Yt Y )2((1/7rt)2 + (om — 90'7Tt)2)dt
+Uz(t, Y;ﬂ’c)}/;mc(l/ﬂtdwt + (O’T(‘t — GW)dBt)
+(yw, (8, Y YW Y[ 4y, (8, Y ) (om — 0o7m) )dt.

Best response strategy - Using the martingale condition on Q(, Y;") at the optimum, we study
the first order condition
1
0=U,(t,Y,") (1 — Ooo7m) Y, + §Um(t’ Y, (271'1/2 + 2710 — 200077&) (Y;76)?

4 "}/Wx (t, nﬂ,C)V}/tﬂ',C + +’}’Bw (t, }/;W,C)O_}/tﬂ',c

& 7V + o) U (t, Y) = 00T Uss (t, Y7) — Up(t, Y) (1 — OoT77)

=, (6 Y)Y =8, (1Y )0

* 1 - 1 m,c T,c N T,c
o 7 = o (00T~ e (W X 2, (6 7)0) + (BT 0¥ ). (3:2)

The first order condition on the consumption process leads

Yﬂ',C
0= —U,(t, Y)Y+ L—V,(t, &Y)
t t (Ct)g t
Vo (8, Un(8,Y7)(C)?) (Cr)?
<:>Cz<: x ( ( twc)( t) )( t) ) (324)
}/i )
Denoting
— 972 02—2 — 1 PRy — —
Y(tyy) = Ux(t,y)y| —Opm + §E7rt + 5 O +0c | + iUm(t,y)y (0o7)° — 7B, (t, 2)0571Y,
the drift of Q(t,Y;" ) takes the form
. ,C ,C ,C 1 ,C T,C *
drift Q(#, ;™) = Bt Y) + (6, ;™) + U (6 V) V)2 + 0%) () = 2memy)

~

+V (2, (C) UL (£, Y) + V (£, aY) — Y Us(t,Y") — V (¢, (C)) P Us (£, Y7°))

The drift condition then writes as

~

Bltsy) = ~(t:9) + 5Una(by)? (2 + 0*)(m)* = V(, (C) Ualt,1),

which is coherent with (3.7) from Assumption 3.1.
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Optimality of the strategy - The optimal portfolio (3.23) for forward performance processes of

power type writes as:

Z A [y y—
71-;‘ — 212(9007ﬁt+ 5W(t)V T 5B(t)0 n o’ (90071})
ve+o 0% 1% a
1 __ 1, 1, p

Multiplying both sides by ¢ and taking the conditional expectation with respect to F leads

1 2 6% (t S4(t
om = 6(1—)20207rt+0 Wty & 05t T p
1%

a a v2 4 o2
= ITm +¢°,
where
1, o2 o 64, (v + 64(t)o +
T=E|01-=)5—— d " =E|-F b
4 [ ( Oé)l/2+0'2:|’ e @ a v?+o2

In fact, every variable above is measurable with respect to ]_—(1)\4 F and thus independent of ]-}B. Hence,
if 7 # 1, there exists a MF portfolio equilibrium 7} given by (3.23) with o7} = %.
Consumption equilibrium - According to the first order condition (3.24) and Proposition 3.1,

the optimal consumption process takes the form
1 1 b\ @
* — — t\“
(Co) =

The mean field equilibrium is defined with reference to the continuum of agents processes X;, Cy, with
a fixed point identity. The last step to obtain the explicit formula of the optimal consumption process
in the mean-field framework is to use the compatibility condition (3.4) in order to express the geometric

average consumption of the continuum of agents Cy. Replacing ¢ with (3.25) leads

ot (6))])

Since the process Cy is FP-adapted, we get

i (o (3)97]) ey

so that

_ Py |
Cy = exp (E [1 log (gf)t) ]FtB}) 1+E{ a ] :
(0% Zt

Replacing this expression in (3.25), we get an expression of the candidate optimal consumption process

for the mean field problem

—0(1l—a)

1 elf=al 1
c; = exp <E [a log <Z>I‘EB}> [ S } <2§> . (3.26)
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Nash equilibrium - Following the steps of the proof of Theorem 2.1, we exhibit the equilibrium
consumption strategy. Denote

- 2

V2 (t) = (1 — )85 (t)bom — (1 - ) (—9m+ 2273 + 0207rtz> + %a(l — ) ((07m)? — (v* + 02)(w})?),

and Z, the associated It diffusion with drift b~Z(t)
A7, = 7, (z{Z(t)dt + W aw, + 5B’ZdBt). (3.27)

Then the linear dynamics of Z from Assumption 3.1 ensures that

¢ ¢
Zy = Zyexp (—(1 — a)@/ Csds — a/ cids).
0 0

Replacing the above in the optimal candidate consumption in terms of the average consumption process

(3.26) leads
t (11— é — t
¢} exp <—/0 c:ds> = (Cy)~ “a )<§i> exp <W/0 C_sd3>- (3.28)

Taking the logarithm, the conditional expectation with respect to 2 and the exponent of the above

expression, we get

Cy exp (— /Ot csd5> — exp <E [; log (Z) |]-"tBD (ét)—E[W] exp (E [“;O‘)H} /Ot csds>.

Taking the inverse

t
-1 _ -1 1 ¢t> B]
c ds ) = . ElZleg (2 )1EB] ],
(Ch) eXP</OC S> exp 1+E[9(1*a)} [a 0g<Zt |

«

which replaced in (3.28) leads

c; exp (— /t c*ds) = (gf)t) - exp _9(1;0‘)E[1 log <¢t) ]]—"B} (3.29)
! o Zy 1+ E[M] « Z)" ) .

«

0(1—a)

Denote A; the right-hand side of the above equation and K, g = — . The dynamics of this

a
6(1—a)
14+E[ 20—0)

process are more convenient to write in the mean-field framework. In fact, using Ité’s formula

dlog (?) - <b¢(t) () + ;(H&ZW - H5¢H2>)dt F(69(8) — 62(8)).T, (3.30)

t

The Brownian motion B being independent from W and the type vector ¢, we get
PN 2Bl gl Lo Z Ldiszol? = lseoll? L sow 7w
dE |log Z |F; | =E a(b (t)—10 (t))+2( ()| —||6%()|] )|dt+E a<5 (t) — 02" (t))|dW,.
t

On the other hand

d@i)‘l‘ - (Z) [(i(b‘f’(t) )+ %(é —pe)| + %(é rus] - 25¢(t).52(t)>dt

J%((;qﬁ(t) - 6Z(t)).th] . (3.31)
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Finally, It6’s formula leads

dA; = Ay (b (t)dt + 68 (1) awy + 648 (1)dBy), (3.32)
where
VA = = (0t) —bE () + S (& — H5¢ H 4—1 HaZ (‘ 5¢() 0
o 2 «
. 1 2 2
H@ﬁ[(%@—ﬂ( ?WZH'WW HOY%KZq(W’Q—Mwwﬂ
K,
FEESE [0V (1) - 6P (1) | 67 () - 64 1)
1 > 1 >
P = 20V (1) - 5V (0) + Kook L0V (1) - 65V (1),
AB _ l &.B(y\ _ sZ,B
§AB (1) _a(5 (t)— o @0.
Similarly as in the proof of Theorem 2.1, there exists a unique continuous solution (¢f)¢>o to (3.29)
satisfying
de; = ¢ ((bt) + cf)dt + 64(t).dWr). (3.33)
O

3.3 Examples of MF Nash equilibrium

In this section, we study the equilibrium consumption strategy (3.18) under two simplifying assump-
tions. First, assuming a proportional relationship between wealth and consumption utility, the optimal

strategy is FMF

— measurable. This provides a tractable example of a mean-field Nash equilibrium. If
the random time-dependent components of wealth and consumption utilities are non-linearly related

through a power function, we recover an equilibrium consumption with logistic-like dynamics.

Proportional market-risk preference - Condition (3.9) ensuring time consistency of the consid-
ered forward performance process is characterized by the ratio of consumption over wealth utility 7 ¢t
It is natural to assume this fraction to be known for all times in order to decouple (3.9), with the

following assumption.
Assumption 3.2. ¢; = k(t)Z;, for some continuous function k : Rt — RT*,

We add the random variable k representing the distribution of this proportional factor over the

population to the type vector ¢, requiring that E[log(k(t))] < +oo for all £ > 0.

Theorem 3.3. Under Assumptions 3.1 and 3.2, if Y% # 1, there exists a strong MF Nash equilibrium
strategy (7}, c;) € FME. The optimal portfolio is given by

s_ 1 Lo ¥ 1 .7 z
T e 2 (00( a)l " + a(éw(t)u +5(t)o + M)), (3.34)
and the optimal consumption is given by
—0(1l—«
¢t = exp ra g[8k 1) ot (3.35)
1+E [9(1—04)] «



Note that under Assumption 3.2, the drift condition (3.9) is independent of Z. The existence of a
solution to the SDE (3.6) and thus of a forward utility of separable power type is straightforward.

Proof. The proof is the same as the one of Theorem 3.2, where the conditional expectation with respect
to the common noise are replaced with expectations. Under Assumption 3.2, the ratio % = k(t) €

]-"éWF, so that the optimal strategy only depends on the type vector (. O

The forward relative performance process with non-zero volatility framework thus leads to a strong
Nash equilibrium with an optimal portfolio whose time dependence relies on the volatility parameters
6P and 6, and an optimal consumption which depends on time through the market-risk proportional
preference parameter ki In contrast, in the zero volatility forward utility framework, |7] and [21] exhibit
a strong equilibrium strategy with constant portfolio and time dependent consumption process, also
function of the ratio % This justifies Assumption 3.2 when investigating the existence of a strong

mean-field Nash equilibrium.

Remark 3.1. The mean field equilibrium strategy (7*,c¢*) is in fact the limit as n goes to infinity of

the n player equilibrium strategies (2.9) and (2.10), presented in the first section.

Relative market-consumption preference - One can also consider a non-linear dependence of

power type between wealth and consumption utility.
Assumption 3.3. ¢; = Ztl_“, where k € R s called the risk relative consumption preference parameter.

Injecting this condition in the proof of Theorem 3.2, one can show that (3.28) rewrites as:

3 _ —0(1—a) R _ t
c; exp <—H,/ cids) = (C’t)ﬁX « E[n](Zt)T exp (M/ c}ds). (3.36)
0 0

(0}

Thus, the decoupling of the above equation is possible assuming that x = E[k]. This restrictive as-
sumption also appear in |7] for technical reasons and imposes that every agent in the population share
the same preference regarding relative importance of wealth and consumption utility. The risk relative
consumption preference parameter x allows to control the quadratic growth of the Nash equilibrium

consumption process.

Theorem 3.4. Suppose that Assumptions 3.1 and 8.8 hold with market risk relative preference param-

eter k common to all agents. If Y° # 1, there exists a unique candidate MF Nash equilibrium strategy
(7}, ). The optimal portfolio is given by

1 1, ¢°

f=——00(l — —)————

e I/2+O'2(U( a)l—wg

and the optimal candidate consumption process (c;)i>0 satisfies

+ é(évzv(t)u + 63 (t)o + u)) , (3.37)

def = c; (6A(t) + wel)dt + 64(t).dVF ). (3.38)

Proof. Following the proof of Theorem 3.2 with x deterministic in (3.36), we obtain

t e Kk0(1—a)
c; exp (—Fc/ cids) =7, “exp . E
0 14 E[ 2]
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Applying I[t6’s formula, we compute

AT 1k Z|I° _F _kez
A2, > )=2, KZa( +1)H5 H bt>dt "5 th},
and,
- = 1 a2 -
dE {log(Zt)U-"tB} - E[th - iH‘SfZH ]dt + E[af’B]dBt.
Finally, the process A; has log-normal dynamics where

o= 5 (S )| - o7 s L] [p7 - 357

2a
1 1N\ Crozm)2 | K V| ZB-[:ZB
+2<5KQ,QE[QD E[&t } +aKa,gE[a]5t E[&t } (3.40)

and
A,B K .ZB 1 7B
5P = =24 —HKME[&]E[@ ] (3.41)
L —gaf’w. (3.42)

Then, the process ¢; with dynamics
de; = ¢ (04(t) + rep)dt + 62(t).dWr),

is solution to equation (3.39). O

4 Discussion of the equilibrium

In the next section, we discuss the equilibrium obtained in the mean field optimization problem in the
framework of relative performance processes. We investigate the dependence of the optimal strategy

(7}, ¢f) given in (3.26) on the different parameters of the model.

4.1 Investment strategy

The optimal investment strategy in the mean field optimization problem in the CRRA relative perfor-
mance process framework depends on time only through the volatility parameters of wealth’s utility
U, namely (51%,, 5,%. In fact, the optimal investment 7} writes as a sum of 7rtl ™ and 7rt2 ™ where:
1 1 ff 6% (t S4(t
T p—— Y d and 7% = w(v + 0500 +,u. (4.1)
V2 + o2 1—9° a(v? + o?)
In comparison, in the determinist CRRA utility framework of [22], [21] and the forward CRRA utility

with null volatility model of 7], the authors provide a time-independent optimal investment strategy.

The effect of competition on the optimal strategy is captured by the negative quantity 7Ttl *. Note
that, as in [22], the optimal portfolio given by (3.17) is a decreasing function of the competition

parameter 6. This implies that the more an agent cares about relative performance rather than
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absolute, the smaller her optimal portfolio allocation will be. As € goes to zero, the optimal portfolio

converges to a limit process 77,52 ™ which is the optimal strategy in the non-competitive framework [9].

As a € [0,1] decreases to 0, the time dependent quantity 77,52 ™ increases. Thus, the portfolio
allocation tends to be more variable in time for risk seeking agent. Moreover, 7Ttl " is also decreasing
as « goes to 0, so that a risk seeking agent will see her optimal investment strategy more influenced

by competition.

One major feature of this result is that the equilibrium portfolio for the MF Nash equilibrium does
not depend on the relative importance the agents give to utility from wealth compared to consumption.
Conversely, we will see in Section 4.2 that the optimal consumption rate heavily depend on this
preference, characterized by the ratio %
Single stock - Assume that (v, 0, 1) are deterministic with v = 0. This corresponds to the situation
of a single stock in which all agents trade. The optimal portfolio (3.17) can be rewritten as a function
of K¢ defined in (3.13), as
L1 (E [(%(OU +p

Tr =
t g2 o

‘Sg(t)g"'“) (4.2)

:|Ko¢,0 +
[0

4
The term 7, 2 = B0 4o e optimal investment when there is no competition, coherent with [9].

zZ
(5}3(15)704—#] Kg. The magnitude

«
of correction is defined by the coefficient K, g which we represent in Figure 1. Observe that for a fixed

o2

This strategy is corrected in presence of competition, with 7r;"2 = %E[

risk aversion, the magnitude of the correction K, g grows linearly in 6.

K, g
Tl
o = N W s U O N ®
— .

FIGURE 1. K, ¢ function of risk aversion o and FiGURE 2. Optimal investment for u = 0.3,
competition parameter ¢ oc=1,65=E[6p] =05,E[1] =2 and
E[0] = 0.7.

We plot the equilibrium portfolio strategy as a function of « and 6 in Figure 2. For « close to
1, the optimal investment is almost constant with respect to 6. The optimal strategy of a risk averse
agent does not vary much around m; ’2, when having relative performance concerns. For « close to 0,
the optimal portfolio allocation 7} is decreasing in 6. Risk seeking agents tend to invest more when

with low interest in relative performance, and decrease their investment when competing.
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4.2 Consumption strategy

Let us now turn our attention to the optimal consumption process c; given by (3.26). This equilibrium

strategy is random, driven by the process %tt, which represents the weight the representative agent

gives to her utility from consumption, relatively to her wealth utility.

Proportional market-risk preference equilibrium - Let’s assume that every agent have a utility
from consumption proportional to their utility from wealth, that is ¢; = K Z;, for some positive real
random variable K such that E[log(K)] < 400, that we add in the type vector ¢. This assumption
allows to decouple the drift constraints, giving a constant value to the ratio % The optimal consump-
tion process c; is then time independent, function of K, the competition parameter # and the risk

aversion «. The optimal consumption rate takes the form

0(1—a)

log(K log( K —_—
¢ = exp log(K) | o g[8\ i k= (4.3)
o ’ o ’ 1+E[M}

[0}

The value of the MF Nash equilibrium consumption thus depends on the difference between the loga-
rithm of the proportional market consumption preference parameter and its geometric average among
the population, with specific coefficient representing the risk aversion and the competition between

agents. The MF Nash equilibrium when 6 = 0 is given by
log(K
CI’NC = exp <Og(i)>. (4.4)

In other words, the optimal consumption rate (4.3) is the optimal rate of consumption c; ’NC, corrected
in the presence of competition by a term relative to the investment preference of the population
E [%} The magnitude of the correction is determined by the quantity K, g, represented in Figure
1.

The situation where E[log(K)] = 0, meaning that on average, the continuum of agents prefers
neither consumption nor wealth utility coincides with the case with no consumption. Then, if the

representative agent prefers consumption to wealth utility that is log(K) > 0,

* NC

- ¢ *)0 +o00, meaning that risk seeking agents tends to consume more in this setting,
a—

- CI’NC %1 K, so the optimal consumption rate goes to the proportional market consumption
a—r

preference parameter K as the rigk aversion parameter goes to 1.

Conversely, if the representative agent prefers wealth to consumption, meaning that log(K) < 0, then

c NC —>0 0 the optimal consumption of risk seeking agents goes to 0. This reflects that risk seeking
a—

agents in this situation prefer to invest more in their portfolio strategy rather than in consumption.

The limit behavior with « of the optimal consumption is the same as before for risk averse agents.

- If E[log(K)] < 0, on average agents in the population prefer wealth utility to consumption, then

K, 4E [%} > 0 and ¢j > C:’NC. In other words, the optimal consumption rate is an increasing

function of the competition parameter 6.
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-
e

- If E[log(K)] > 0, in geometric average, the continuum of agents prefers consumption to wealth
log(K) * NC

utility, then K, ¢E {T} < 0and ¢f <¢" 7. The optimal consumption rate is then a decreas-

ing function of the competition parameter 6.

Hog(K) <0 EHoglk) >0
— a=0.2 — a=0.2
50 J — a=0.4 57 — a=0.4
— a=0.6 — a=0.6
—— a=0.8 —— a=0.8
a=1.0

a=1.0

40

30 4

20 1

10 A

| ~—

0.‘0 0.‘2 O:4 O:ﬁ 0.‘8 l.‘O O:O O:Z 0.‘4 0.‘6 O:E 1.‘0
8 e
FiGUrE 3. Optimal consumption for FIiGURE 4. Optimal consumption for
Elog(K) = —0.5, E[f] = 0.7, E[£] =2 and Elog(K) = 0.5, E[f] = 0.7, E[1] =2 and
K=14. K=14.
Elog(K) <0 Elog(K) >0
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0.0 0.0

1.0
06 o 0908 0.7

0.6 0.5 0.8 0.6 0.5

a 0.4 a 0.4
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0.9 0.6 g
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0847

FIGURE 5. Optimal consumption for K = 1.4 and |Elog(K)| = 0.5
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Flog(K) =0

Elog(K) <0

0.7
16 0.6
1.4
12 0.5
10 & 0.4 5
0.8 0.3
0.6 0.2
0.4 0.1
0.2

0.0

0.0

1.0
0.6 o 0908 0.7
0.6 05 0.8 0.6 0.5
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0.3 0.2 1.0 0.3 0.2 1.0

1.0 0.9

0.8
0.8

0.7

FIGURE 6. Optimal consumption for K = 0.7 and |Elog(K)| = 0.5

Relative market-consumption preference parameter - Taking x < 0 leads to the logistic SDE

with global solution, for which results on asymptotic behavior exist (see [18], [13]). In the following,

we assume for simplicity that the local characteristics b4, 48 and 64" are time independent and

1 b4
denote q = 5 — W

Proposition 4.1. Fquation (3.38) admits a strong global solution ¢} given by

kil

exp ((bA — )t + (5‘4.th)

(4.5)

o TR

t
1- /i/ exp <(bA - )s + 6A.dWs> ds
0

If ¢ <0, ¢t converges in law towards a Gamma distribution with shape parameter —2q and scale

[l
2|k

- If ¢ > 0, the diffusion goes to O almost surely.
2
[[34]

With the characteristics given by (3.40), (3.41) and (3.42), ¢ < 0 if and only if 0 < b4 — 111,
which using K, ¢ defined in (3.13) is equivalent to

- 112 ~ 112
1|,z H‘SZH 1 Z H&ZH
0<—|b — — K, egE|—|E[bV7 — ——|. 4.6
< 5 | T e [OJ 5 (4.6)

The asymptotic behavior of the equilibrium consumption rate thus depends on the difference between
the drift of the logarithm of wealth utility when there is no consumption and its average among the
population, with specific coefficients reflecting risk aversion and competition. Moreover, in the situation

where the optimal consumption rate converges in law towards a Gamma distribution with parameters
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All2
(—2q, ”;J" ), the asymptotic consumption rate is given by

- 112 ~ 112
2 Z Z
SN (L SO Y PP I DA S PP .
> 2|k k| | @ 2 Y a 2
Parameters: by = 0.1, 64=0.5
2.01 1.2 4
1.8 1.0 4
0.8 1
1.6 1
& &
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1.4
0.4 1
1.2 1
=== ElC) 0.2 1
1.0 Parameters: by =2, 6a= 0.1
0 1 2 3 a 5 0 1 2 3 a 5
Time t Time t

FiGure 7. Simulated paths of the equilibrium consumption rate process.

Note the similarity between (4.6) and the strong MF equilibrium consumption, where this time
0

~112
5 Z
the sign of the quantity R = b% — u and its expectation reflects the agent and the population’s

preference regarding consumption or wealth utility. In fact,

- if R > 0 implies that log(Z) has positive drift so that Z tends to increase in time. Since Z; starts
from 1 at time t = 0 and x < 0, for ¢ large enough, we will have ¢; = ZNtlfﬁ > Z, almost surely.

In this setting, the agent asymptotically prefers consumption to wealth utility.

- Conversely, if R < 0, the process Z; tends to decrease over time so that for ¢ large enough,

¢¢ < Z; almost surely. In this case, the agent thus prefers wealth to consumption.
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A Regular random field spaces

There are several difficulties in the definition of semimartingales F'(¢,z) depending on a parameter and

their local characteristics (53,7).

1. The first one is relative to the existence of a continuous modification of the random field F.
According to the works of Kunita |20], such a modification exists when the local characteristics

(8,7) are locally d-Holder, for some § > 0 by Kolmogorov’s criterion.

2. The second one is relative to differential properties: even if the random field F' and its local
characteristics (f3,v) are differentiable, it is not enough to ensure that the local characteristics

of the derivative random field F, are (8, 7Vz)-

In this section, we introduce Sobolev-type seminorms and associated spaces to control, locally or

globally, the growth of a random field and its derivatives.

Definition of seminorms - Let  be a R¥-valued forward random field of class C"%(]0, +-0c), with
m a nonnegative integer and § a number in (0,1], i.e B is m times differentiable in = and its m'™
derivative is §-Holder, for any ¢, almost surely.

We need to control the asymptotic behavior in 0 and oo of 3, and the regularity of its Hélder
derivatives when they exist. We then introduce the following seminorms: for any K C|0,4o0[, we

define the family of random Holder K-seminorms:

t,r,w .
1Bl (tw) = supl2E2@l S~ 838, 2,0 (A1)
zeK T 1Sj§mxeK
orp(t, x,w) — OTB(t,y,w
Bl () = Bl tso) + sup 12 OE2) = OB, 0)| (4.2)
zyeK |z — y|

These random seminorms allow to keep a control on the function, its partial derivatives and its Holder

regularity, with mainly two purposes:

e the control on the partial derivatives of 8 up to m together with the Brownian integrals approx-
imation presented in [17], will allow to differentiate, pass to the limit and commute limit and

integral for random fields.

e Holder regularity is also required so that we can apply Kolmogorov’s theorem, in order to work

with a continuous modification of 3.

Associated function spaces - The previous norms are related to the space parameter. We add
the temporal dimension by requiring these seminorms (or their square) to be integrable in time with

respect to Lebesgue measure on [0,7]. We then define the following sets:

loc

1. K (resp. K.) denotes the set of C-random fields £ such that g and 9kB for k < m are £!
(resp. £%)-locally bounded, that is for any compact K C]0, +oc[ and any 7,

T T
/’WMKWM<w,(mp/‘wmﬂwm<w)
0 0
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2. K™° (resp. ?{Zf) denotes the set of C™?-random fields such that for any compact K C]0, +00]

loc

and any T,

T T
2
| 1Bl sctt) < o, (p / HBHm,a,K(t,w)<OO~)

3. When these norms are defined on the whole space |0, +o00[, the derivatives up to a certain order
are bounded in the spatial parameter, with an integrable (resp. square integrable) random bound,

so that we use the notation K}", K, or Kg’m, F}T’é.

It6-Ventzel’s formula - The study of the martingale optimality condition of Definition 1.1 in
the framework of forward performance process requires the use of [t6-Ventzel’s formula. This is an

extension of 1t6’s formula, allowing to compute the dynamics of compounds of random fields.

Theorem A.1. Consider a Klzoc semimartingale G with local characteristics (¢,1). For any continuous
Ito semimartingale X, the compound G(., X) is a continuous Ité6 semimartingale satisfying

dG(t, X,) = ¢(t, X,)dt + (t, X;).dW; + Go(t, X,)dX; + %Gm(t, XAX,) + (dGo(t, ), dX) |ox,.  (A.3)

The decomposition of G(t, X;) appears to be the sum of three terms. The first one is the time
differential of G, the second one is the usual 1t6’s formula without differentiation in time and the third
one is the infinitesimal covariation between the martingale parts of G, and the one of X. Note that
when G has finite variation, that is ¢(¢t,z) = 0 and ¢(t,x) = G(t,z), we recover the classical Ito’s

formula.

Differentiability of It6 random fields The following result characterizes the regularity of an Ito

semimartingale random field:

F(t,z) = F(0,x) —i—/o B(s,m)ds—i—/ﬂ v(s, z)dWs,

with the regularity of its local characteristics (3,7).

Theorem A.2. (Differential rules) Let F' be an Ité semimartingale random field with local character-

istics (B,7y) i.e:
F(x,t) = F(z,0) —l—/o B(x,s)ds —1—/0 v(z, s)dWs. (A.4)

1. If Fisa K;Zc"s—semimartmgale for some m > 0, 6 € (0,1], its local characteristics (a,b) are of

m’
class K,

X K for any e < 6.

2. Conwversely, if the local characteristics (B,7) are of class K;ZC’(S X ?}Zf, then F is a K, -

semimartingale, for any § < e.

3. In any case, for m > 1, § € (0, 1], the deriwative random field F, is an It6 random field with local

characteristics (Bz,Vz)-

4. Moreover, if F is a Kllo’fﬂCQ—semimartmgale, then for any Ito process X, F(X,.) is a continuous

It6 semimartingale satisfying the Ito- Venizel formula.
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B Some formulas of the n-agent problem

For the sake of completeness, we provide explicit formulas for the following quantities:

. 1 & ——(—i) 1 &
) = LSt SR LS by
k#i ki
—(—4 7 ol 1
o) = — Zakﬂf (vm)? = —1 Z(ymf)2-
k#i ki

For 7z, multiplying the optimal strategy (2.9) with u; and averaging over ¢ = 1,...,n, one can write:

g
[T = Yo + ¢l = Ty g (B.1)
1 -7
where:
k k
1< purorfr(1 — 2-) 1L B (51%/ (t)vk + 6% (t)ow + Hk)
Yn = . E and gh= - i . (B2)
n—1 =1 2 9 01@(1*@) n prt 9 9 91@(1*@)
=ty +op | 1+ —=% = vi + o\ 1+ —=*
Then, we can write (%) = ST — ﬁumg. For the two other quantities:
2

o k k
) it T + ;—i(évzv (t)vr, + 0% (t)oy + uk)

(-

k 7(1
k=1 V,%—Foi(l-i-in_l’“ )
so that (wrt)?(_i) = 2 (vm)? — L (vm))?. Then for $77 = (vm)? + (om)? and as before:
2

o ) k k
o201 — 1)t 15 + 2 (6 (0w + 05 (Dow + e

O (1—-1
VI%+O-I%(1+ nfllC )

— i (0 + o) ().
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