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Abstract

We study a n-player and mean-�eld portfolio optimization problem under relative per-

formance concerns with non-zero volatility, for wealth and consumption. The consis-

tency assumption de�ning forward relative performance processes leads to a su�cient

characterization of such processes with mean of a HJB-SPDE which highlights the link

between wealth and consumption utility, and also characterizes the optimal strategies.

In particular, forward relative performance processes with a wealth utility of CRRA

type and separable time and space dependence necessarily have a consumption util-

ity of the same form, with the same risk aversion parameter. This characterization

gives a better understanding of the drift condition ensuring time consistency. In this

setting, we establish closed form of the Nash equilibrium for both the n-player and

mean �eld problems. We also provide some numerical examples.
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Introduction

We study a n-player and mean-�eld investment-consumption optimization problem under relative per-

formance concern. More precisely, we focus on an asset specialization setting with common noise under

the forward performance process framework. The concept of asset specialization in �nance refers to

a situation where investment managers focus on speci�c assets. This can be motivated by a variety

of reasons like familiarity with a certain sector, trading costs and constraints, liquidity costs ([30])

and ambiguity aversion ([26]). Each agent wishes to choose her portfolio-consumption strategy while

having concerns towards the average wealth and consumption of other investors. This optimization

problem has been studied through the classical expected utility maximization in [22], [21] and through

forward relative performance process with zero volatility in [1], [6] and [7].

The study of optimization problems within a large population naturally leads to the situation

of an in�nite number of players, formalized through the mean �eld game theory introduced in [16],

[23]. The idea is to model the asymptotic behavior of a large number of agents interacting with

each other and subject to �nancial or energetic constraints. The mean-�eld formulation consists in

considering a control problem for one representative agent faced with a continuum of competitors. In

the pioneer works [23], the randomness of the population dynamics is assumed to be independent for

each individual. The case of correlated randomness have been later developed in [3], [2].

In a competitive setting i.e. in a market in which multiple investors act, utility functions include a

relative performance metric, to evaluate the impact of a strategy relatively to others. The �rst work

in this direction [11] studies an optimal investment problem, through a classical expected utility max-

imization with a relative performance metric compatible with exponential utility. The authors prove

the existence of a Nash equilibrium when there is no investment constraint, and when there is invest-

ment constraint for exponential utility in the Black and Scholes model. Later, relative performance in

competition have been studied in [22], where the authors study an asset specialization problem through

a classical expected relative performance maximization for CARA and CRRA risk preferences. The

Nash equilibrium is determined in the n-player and mean-�eld game with HJB arguments. This work

has been generalized to an optimal investment-consumption problem in [21]. The authors in [15] ex-

tended the study of investment consumption problems to more general Itô-di�usion environment. A

one-to-one correspondence between the Nash equilibrium for the mean �eld asset specialization prob-

lem with random parameter under classical maximization of the expected relative power utility and

some mean �led FBSDE with quadratic growth is given in [12]. Studying this equation, the authors

prove the uniqueness of the equilibrium and then solve the FBSDE for a small competition parameter

θ. Optimal investment consumption problems with relative concerns have recently been studied in [5],

under the framework of recursive utilities of type Epstein-Zin.

Consistent forward utility have been introduced and developed in [27] to overcome some limits of

the classical expected utility. The latest is a deterministic function depending on its value at the hori-

zon time T. The value function being constructed backward in time with the dynamic programming

principle, the classical utility theory is not adapted to the updating of risk preferences or the time

horizon. Forward utilities enable the dynamic adjustment of the decision criteria, starting from pref-

erences which are known at an initial time, rather than imposing a potentially distant and arbitrary

time horizon. The preferences of an agent are thus described by a (random) dynamic utility (U(t, ·)).
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The decision criterion maintains time consistency within the given investment or decision-making con-

text, in the sens that if Xπ
t is the observable process Xπ

t (typically the wealth) a resulting from the

admissible decision/strategy π, then the preference process U(t,Xπ
t ) is a supermartingale, and there

exists an optimal strategy such that the preference process is a martingale.

Since their introduction, there has been numerous theoretical developments in the �eld. In a general

setting, [29] established a su�cient condition for time-consistency when the dynamic utility is an Itô

random �eld. The consistent dynamic utility veri�es a nonlinear SPDE of HJB type. This work has

been extended to consistent utility of investment and consumption in [9], where dynamics of wealth

and consumption utilities are linked by the consistency SPDE. Consistent dynamic utilities have found

diverse applications over recent years, including but not limited to option valuation, insurance, mean

�eld games ([22], [6]), long term interest rate modeling ([10]), risk measures [4] or more recently pension

design ([14],[28]).

The analogue of forward utilities in a competitive setting are forward relative performance pro-

cesses. One of the �rst work on forward performance processes in a competitive environment is [1].

The authors focus on optimal investment problems in general Itô-di�usion markets, for two investors

with homothetic locally riskless forward utilities. The study of the asset diversi�cation problem under

more general monotone forward preferences has been extended to the mean-�eld and n-player settings

in [32]. Similar investment-consumption optimization problems under forward relative criteria in a

many player and mean �eld settings have also been considered in [6] and [7]. The authors consider

separable forward utilities in power form de�ned for all agents i = 1, ..., n as U i(t, x) = f i(t)u(α
i)(x)

and V i(t, x) = gi(t)u(α
i)(x), for deterministic functions f i and gi, and u(αi)(x) = 1

1−αi
x1−αi is the

standard power utility function, with risk aversion coe�cient αi < 1. In [7], a constant Nash equilib-

rium is determined under the assumption that for every agent, gi(t) = f i(t)1−κ, where κ ∈ R is the

market-risk relative preference parameter is common to all the agent. However, for a best response

strategy, this personal preference parameter may be distinct for all agent.

Our objective is to study the n-player and mean-�eld investment-consumption optimization problem

in competition under forward relative performance processes with non-zero volatility. We will be

interested in relative performance process Qi of the form

Qi(t, x) = U i(t, x) +

∫ t

0
V i(s, ĉisx)ds, (0.1)

where U i and V i are forward utilities from wealth and consumption. Assuming the wealth utility to be

an Itô random �eld, with characteristics (β, γ), Itô-Ventzel formula allows to get the dynamics of the

compound random �eld Q along the wealth process, as to exploit the consistency condition. Following

the initial work [9], this allows us to point out a condition on the drift β, which translates as an SPDE

that is su�cient for U i to solve to ensure time consistency of Qi. Wealth and consumption utilities are

linked by the consistency SPDE characterizing forward performance processes. This condition takes a

convenient form for separable utilities of CRRA type

U (αi)(t, x) = Zitu
(αi)(x), V (αi)(t, c) = ϕitu

(αi)(c), i = 1, ..., n (0.2)

where (Zit)t≥0 and (ϕit)t≥0 are continuous stochastic processes with log-normal dynamics. We investi-

gate the existence of a Nash equilibrium for both the n-player and mean �eld settings.
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We de�ne the notion of Nash equilibrium in the framework of forward relative performance pro-

cesses. A forward Nash equilibrium consists in n-triples (Qi, πi,∗, ci,∗) so that U i and V i are forward

utilities and for all agent i = 1, ..., n using optimal strategy πi,∗t from their individual optimization

problem, Qi satis�es the time consistency property. This de�nition is coherent with the classical no-

tion of Nash equilibrium in the sense that time consistency implies that no manager can increase her

expected utility by being the only one changing her strategy. The case of separable utilities of CRRA

type is tractable, and we exhibit the Nash equilibrium in this framework. However, optimal strategies

in this context present complex dependencies due to relative concerns, which motivates the study of

the mean-�eld situation.

The mean-�eld game formulation relies on a random type vector representation introduced in [22].

We generalize the example of CRRA separable utilities to the mean �eld setting. Consider U and

V two dynamic utilities of wealth and consumption of the form (0.2) with risk aversion α, whose

time variations are driven by log-normal processes Z and ϕ, with local characteristics (bZ , δZW , δ
Z
B) and

(bϕ, δϕW , δ
ϕ
B). In order to allow di�erent preferences across the population, additionally to competition

and risk aversion concerns, as well as parameters relative to stock prices as presented in Section ??,

the random vector also includes local characteristics of processes Z and ϕ, namely

ζ =
(
δZW , δ

Z
B, b

ϕ, δϕW , δ
ϕ
B, ξ, α, θ,m, ν, σ

)
.

In this setting, the forward performance criterion Q of type (0.1) built with U and V , is evaluated

along relative wealth and consumption processes

X̂t =
Xt(
X̄t

)θ , ĉt =
ct(
C̄t
)θ ,

where X̄t and C̄t are geometric average wealth and consumption process of the continuum of agents.

The strategy for solving the mean-�eld optimization problem given by the martingale optimality con-

dition on Q(t, X̂t) is the following. First �x a probability measure (X̄t)t≥0 representing the geometric

average wealth process of the population, and solve the optimization problem given by the consistency

condition on the metric relative to X̄t. Then, note that conditionally on the common noise B, all

agents face i.i.d copies of the same optimization problem. Given this optimal control, determine the

law of X̄∗
t conditionally on the common noise B. Since X̄t models the geometric average wealth of

the continuum of agents, the desired law is the one of exp
(
E
[
logX∗

t |FB
t

])
. Finally, �nd a �x point

satisfying

X̄t = exp
(
E
[
logX∗

t |FB
t

])
. (0.3)

This equation re�ects that the optimal strategy conditionally on the common noise must be typical of

the population. The conditioning on B appears because the e�ect of independent noises W i on the

empirical measure of X̄t averages out as n goes to in�nity, whereas the e�ect of the common noise does

not. Relying on this mean-�eld characterization, which also stands for the equilibrium consumption, we

exploit the time consistency of Q( Xπ,c

(Xπ,c)θ
, t) using Itô-Ventzel's formula and the martingale optimality

condition. The case of separable utilities of CRRA type is tractable, and we give explicit forms of

optimal strategies in this context.
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Our characterization of forward relative performance process is coherent with [9] in the non-

competitive setting. The optimal investment strategy also coincides with the one from [6], with addi-

tional terms related to the wealth utility non-zero volatility. The consumption equilibrium di�ers from

[7] because of our use of Itô-Ventzel's formula to study the consistency property of forward relative

performance processes. More precisely, the optimal consumption rate is stochastic, characterized by

the relative importance the agents gives to wealth utility compared to consumption utility, represented

by the ratio ϕt
Zt
. We discuss the behavior of the MF equilibrium strategies in some examples, namely

when this ratio is constant or a power of Zt.

The paper is organized as follows. In Section 1, we introduce forward relative performance process

and establish the SPDE which gives a su�cient condition on U i so that the performance process Qi

is consistent. We give the optimal strategy for agent i using the martingale optimality condition. We

specify the consistency condition for separable utilities of CRRA type. In Section 2, we de�ne and

investigate the existence of a Nash equilibrium in the n-player situation. The mean-�eld optimization

problem against a continuum of agent is studied in Section 3. We also introduce two examples of

study of the mean-�eld consumption equilibrium strategy. Finally, we illustrate our results with some

numerical examples in Section 4. Regular random �eld space for the study of di�erentiability of Itô

random �elds are recalled in Annex A.

Notations:

All stochastic processes in the sequel are de�ned on a standard probability space (Ω,F,F ,P) supporting
n+1 independent Brownian motions B, W 1, ...,Wn, where (Ft)t≥0 is the natural augmented �ltration

they generate. For x, y ∈ Rd, we denote by x⊤ the transpose of vector x, x.y = xy⊤ the scalar product

between x and y, and ∥.∥ the usual norm ∥x∥ = Tr(xx⊤)
1
2 . We also de�ne the space for p ∈ N∗ and I

a subset of Rd

Lploc(I) =
{
φ I − valued prog. measurable process s.t. for all T > 0,

∫ T

0
∥φs∥pds <∞

}
.
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1 Forward relative utility in a many player setting

In this paper, we study portfolio management problem in an asset specialization setting. More precisely,

we consider a �nite population of agents, each one investing only in one idiosyncratic asset. The price

randomness is modeled through an individual noise and a noise common to the entire population.

The agents preferences are represented with forward utilities on relative wealth and consumption

metrics, to re�ect their will to compete against each other. We investigate the characterization of

forward performance processes with relative concerns, and the associated optimal policies. We start by

de�ning the relative performance metric and the associated dynamics for the relative wealth process.

The martingale property ensuring time consistency allows to derive the consistency SPDE and the

associated optimal strategies. The Itô-Ventzel's formula and regular random �eld spaces for the study

of the di�erentiability of Itô random �elds are recalled in Annex A.

1.1 Asset specialization and relative performance

Consider a market consisting in one riskless asset with interest rate r > 0 and n risky securities, in

which the price (Sit) of stock i traded exclusively by the ith agent solves

dSit
Sit

= midt+ νidW
i
t + σidBt, Si0 = si0 > 0, (1.1)

with constant real parameters mi ∈ R, σi > 0 et νi > 0. B is called the common noise since it induces

a correlation between the stocks while the W i
t are idiosyncratic noises, speci�c to each agent i.

Agent's wealth - For i = 1, ..., n, the ith agent uses a self-�nancing strategy (πit)t≥0 representing

the proportion of wealth invested in the ith stock. Denote (cit)t≥0 the rate of consumption per unit of

wealth. The ith agent's wealth dynamics writes as

dXi
t = rXi

tdt+ πitX
i
t

(
µidt+ νidW

i
t + σidBt

)
− citX

i
tdt, withµi = mi − r. (1.2)

An investment-consumption strategy is admissible if (πi, ci) is a progressively measurable R × (0,∞)

process such that E
[∫ t

0 (
∣∣πis∣∣2 + ∣∣cis∣∣2)ds] < ∞ for any t > 0. We denote Ai the set of admissible

strategies for agent i.

Remark 1.1. Our work focus on the asset specialization model de�ned above (see [22], [21], [7]).

However, we are also interested in forward relative performance processes in a more general incomplete

Itô market model as in [9]. The incompleteness can be expressed by restrictions on admissible portfolios

πit, required to live in a progressive vector space Ri
t, see [19]. Denote Σi = (νi σi) the volatility vector

and W̄ i
t the two-dimensional Brownian motion (W i

t Bt). Introducing the market price of risk vector

ηi = Σ⊤
i

(
ΣiΣ

⊤
i

)−1
µi, the wealth process (1.2) takes the form

dXi
t = Xi

t

[
(r − cit)dt+ πitΣi.(dW̄

i
t + ηidt)

]
. (1.3)

The existence of a risk premium is a weak form of absence of arbitrage opportunity, in the sense that

ΣiΣ
⊤
i is non-degenerate. Note that the risk premium impact on wealth dynamics occurs through the

scalar product πtΣi.ηi. If the incompleteness is modeled by restrictions on the portfolio rescaled by
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the volatility, of type πitΣi ∈ Ri
t, the market price of risk action is limited to its projection over the

constraint set. In other words, πtΣi.ηi = πtΣi.η
Ri

t
i where η

Ri
t

i denotes the projection of ηi on the space

Ri
t and is referred to as the minimal risk premium.

Agent's interaction and relative performance - Each agent measures the performance of her

own strategy taking into account the policies of others. One can thus de�ne the relative wealth process

and the relative consumption metric as

X̂i =
Xi(

∼
X

(−i))θi , where
∼
X

(−i)
=

 n∏
k ̸=i

Xk

 1
n−1

, (1.4)

ĉi =
ci(

∼
c
(−i)
)θi , where

∼
c
(−i)

=

 n∏
k ̸=i

ck

 1
n−1

, (1.5)

where θi ∈ [0, 1] is the relative concern parameter. The closer θi is to one the more agent i is concerned

with the geometric average wealth and consumption of his competitors. An application of Itô's formula

leads to the dynamics of the geometric average of other agents

d
∼
Xt

(−i)

∼
Xt

(−i) =

(
r + µπt

(−i) − 1

2

(
Σπ2t

(−i)
−
(
σπt

(−i)
)2

− 1

n− 1
(νπt)

2
(−i)
)
− ct

(−i)
)
dt

+
1

n− 1

n∑
k ̸=i

νkπ
k
t dW

k
t + σπt

(−i)dBt, (1.6)

where we denote quantities relative to sum over all agents except i

µπt
(−i) =

1

n− 1

n∑
k ̸=i

µkπ
k
t , (νπt)2

(−i)
=

1

n− 1

n∑
k ̸=i

(νkπ
k
t )

2, σπt
(−i) =

1

n− 1

n∑
k ̸=i

σkπ
k
t ,

Σπ2t
(−i)

=
1

n− 1

n∑
k ̸=i

Σk(π
k
t )

2, ct
(−i) =

1

n− 1

n∑
k ̸=i

ckt , Σk = σ2k + ν2k .

We then get the relative wealth process dynamics

dX̂t
i

X̂t
i
= ξidt−

(
cit − θict

(−i)
)
dt+

νiπitdW i
t − θi

1

n− 1

n∑
k ̸=i

νkπ
k
t dW

k
t


+
(
σiπ

i
t − θiσπt

(−i)
)
dBt, (1.7)

where

ξi = r(1− θ) + µiπ
i
t − θiµπt

(−i) +
θi
2
Σπ2t

(−i)
− θ2i

2

(
(σπt

(−i))2 +
1

n− 1
(νπt)2

(−i)
)

− θiσiπ
i
tσπt

(−i). (1.8)
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1.2 Forward performance process with utilities taken as Itô random �elds

Each manager i = 1, ..., n measures the output of her relative performance metric using a forward

relative performance process, modeled as an Ft progressively measurable random �eld Qi : Ω×(0,∞)×
[0,∞) → R. This process captures respectively the utility from wealth and consumption with adapted

continuous random �elds U(t, x) and V (t, c) on (R+)2, such that P-almost surely, for any t ≥ 0, the

maps x 7→ U(t, x) and x 7→ V (t, x) are standard utility functions. Those processes will be called

dynamic utilities.

Assumption 1.1. Assume that U i and V i are adapted continuous random �elds, such that:

1. For any t ≥ 0, the maps U i and V i are non-negative, strictly increasing and strictly concave in

x.

2. The partial derivatives U ix(t, x), U
i
xx(t, x) and V

i
x(t, x), V

i
xx(t, x) exist for all t ≥ 0, x > 0,P− a.s.

De�nition 1.1. Consider an agent i ∈ {1, ..., n} and assume that each manager j ̸= i follow an

admissible strategy (πj , cj). For (πi, ci) an admissible strategy, de�ne:

Qi(t, x) = U i(t, x) +

∫ t

0
V i(s, ĉisx)ds, (1.9)

where U i and V i are progressively measurable random �elds satisfying Assumption 1.1. Qi is a forward

relative performance process for manager i if, for all t ≥ 0:

- Time consistency - For any admissible (πi, ci), Qi(t, X̂i
t) is a (local) supermartingale, and there

exists an admissible strategy (πi,∗, ci,∗) such that Qi(t, X̂i,∗
t ) is a (local) martingale.

Assuming Itô dynamics for utilities from wealth and consumption, the consistency property induces

a condition on the drift of Qi. Under enough regularity conditions, this leads to an SPDE characterizing

the forward performance process. To study the drift variations, we need to introduce the notion of

Fenchel-Legendre transform, which is well de�ned under the regularity Assumption 1.1 on V i.

De�nition 1.2. Let V : Ω × (0,∞) × [0,∞) → R be a random �eld, strictly concave in x. The

Fenchel-Legendre transform of V , denoted
∼
V is the random �eld such that:

∼
V (t, x′) = sup

x>0

{
V (t, x)− x′x

}
, x′ > 0, t ≥ 0. (1.10)

Let's assume that the forward utility U i is an Itô random �eld with local characteristics
(
βi, (γiW , γ

i
B)
)
,

whose dynamic is given by

dU i(t, x) = βi(t, x)dt+ γiW (t, x)dW i
t + γiB(t, x)dBt, P.a.s (1.11)

We also de�ne the quantity

φ(t, x) = U ix(t, x)x

(
r(1− θ)− θiµπt

(−i) +
θi
2
Σπ2t

(−i)
+
θ2i
2

(
(σπt

(−i))2 +
1

n− 1
(νπt)2

(−i)
)
+ θict

(−i)
)

+
1

2
U ixx(t, x)(x)

2

(
θ2i

n− 1
(νπt)2

(−i)
+ (θiσπt

(−i))2
)
− γiBx

(t, X̂i
t)θiσπt

(−i)x. (1.12)
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Applying Itô-Ventzel's formula to the forward performance process Qi along the relative wealth

process X̂i
t allows to study the martingale condition of optimality from the De�nition 1.1. This leads

to a su�cient condition on the drift of the wealth utility U as well as the characterization of the optimal

strategy in this context.

Proposition 1.1. Consider an agent i ∈ {1, ..., n} and assume that each manager j ̸= i follow an

admissible strategy (πj , cj) ∈ Aj. Under the assumption that U i solves the SPDE

dU i(t, x) =

(
−φ(t, x) + 1

2
U ixx(t, x)x

2(ν2i + σ2i )
(
πi,∗t

)2
−

∼
V i(t, (

∼
ct

(−i)
)θiU ix(t, X̂

i
t))

)
dt

+ γiW (t, x)dW i
t + γiB(t, x)dBt, (1.13)

then Qi de�ned by (1.9) is a forward relative performance process for manager i in the sens of De�nition

1.1. The related optimal policy (πi,∗, ci,∗) is given by

πi,∗t =
1

ν2i + σ2i

(
σiθiσπt

(−i) − 1

U ixx(t, X̂
i
t)X̂

i
t

(
γiWx

(t, X̂i
t)νi + γiBx

(t, X̂i
t)σi

+(µ− θiσiσπt
(−i))U ix(t, X̂

i
t)
))

(1.14)

ci,∗t =

(V i
x)

−1

(
U ix(t, X̂t

i,∗
)(

∼
ct

(−i)
)θi , t

)
(
∼
ct

(−i)
)θi

X̂i,∗
t

. (1.15)

Taking a competition parameter θi = 0, we retrieve the same SPDE characterization of forward

performance processes as well as the same optimal strategies as in [9]. Also note that taking a null

volatility γi(t, x) = (0, 0), we recover the same optimal portfolio as well as the same expression for the

optimal consumption process (1.15) as in [7]. However, we characterize the utility from consumption

V i as a function of the utility from wealth U i through the SPDE (1.13), whereas [7] relies on a PDE

with random coe�cient. This is due to the use of Itô-Ventzel's formula instead of Itô's to exhibit the

dynamics of Qi(t, X̂i
t), involving the drift βi of the forward utility U i instead of its time derivative.

Proof. The proof of this result is in three steps. First, we apply Itô-Ventzel's formula to get the

dynamics of dQi(t, X̂i
t). Then, exploiting the martingale condition of De�nition 1.1, we derive the

optimal strategy processes using the �rst order condition on the drift of dQi(t, X̂i
t). We conclude on

the optimality and injecting the constraint on the drift in the Itô form of U leads to the above SPDE.

Time Consistency - Applying Itô-Ventzel's formula to get the dynamics of dQi(t, X̂i
t)

dQi(t, X̂i
t) =

(
βi(t, X̂i

t) + V i(t, ĉitX̂
i
t)
)
dt+ γiW (t, X̂i

t)dW
i
t + γiB(t, X̂

i
t)dBt

+U ix(t, X̂
i
t)dX̂

i
t +

1

2
U ixx(t, X̂

i
t)d
〈
X̂i
t , X̂

i
t

〉
+
〈
γiWx

(t, X̂i
t)dW

i
t + γiBx

(t, X̂i
t)dBt

〉
, dX̂i

t

=
(
βi(t, X̂i

t) + V i(t, ĉitX̂
i
t) + U ix(t, X̂

i
t)X̂

i
t

(
ξi − (cit − θict

(−i))
))
dt+ γiB(t, X̂

i
t)dBt

+γi(t, X̂i
t)dW

i
t + U ixX̂

i
t

(t, X̂i
t)
(
σtπ

i
t − θiσπt

(−i)
)
dBt +

νiπitdW i
t − θi

1

n− 1

n∑
k ̸=i

νkπ
k
t dW

k
t


+
1

2
U ixx(t, X̂

i
t)(X̂

i
t)

2

(
(νiπ

i
t)

2 +
θ2i

n− 1
(νπt)2

(−i)
+ (σiπ

i
t − θiσπt

(−i))2
)
dt

+γiWx
(t, X̂i

t)νiπ
i
tX̂

i
tdt+ γiBx

(t, X̂i
t)
(
σiπ

i
t − θiσπt

(−i)
)
X̂i
tdt

9



In particular, the drift of the above random �eld takes the form

driftQi(t, X̂i
t) = βi(t, X̂i

t) + V i(t, ĉitX̂
i
t) + γiBx

(t, X̂i
t)
(
σiπ

i
t − θiσπt

(−i)
)
X̂i
t + U ix(t, X̂

i
t)
(
r(1− θ) + µiπ

i
t

−θiµπt(−i) +
θi
2
Σπ2t

(−i)
+
θ2i
2

(
(σπt

(−i))2 +
1

n− 1
(νπt)2

(−i)
)
− θiσiπ

i
tσπt

(−i) − (cit − θict
(−i)
)

+
1

2
U ixx(t, X̂

i
t)(X̂

i
t)

2

(
(νiπ

i
t)

2 +
θ2i

n− 1
(νπt)2

(−i)
+ (σiπ

i
t − θiσπt

(−i))2
)
+ γiWx

(t, X̂i
t)νiπ

i
tX̂

i
t

Optimal strategies - We �nd the optimal strategy exploiting the �rst order condition on the drift

of Qi(t, X̂i
t). In other words, the drift of this compound random �eld should be non positive for any

admissible strategy and vanish at the optimum. In other words, driftQi(t, X̂i
t) reaches its maximum at

the optimal strategy, and its derivatives with respect to variables π and c vanish. The optimal portfolio

process is close to the one in [7] with an additional term involving γix, and the optimal consumption

process is the same, namely

πi,∗t =
1

ν2i + σ2i

(
σiθiσπt

(−i) − 1

U ixx(t, X̂
i
t)X̂

i
t

(
γiWx

(t, X̂i
t)νi + γiBx

(t, X̂i
t)σi + (µi − θiσiσπt

(−i))U ix(t, X̂
i
t)
))

ci,∗t =

(V i
x)

−1

(
U ix(t, X̂t

i,∗
)(

∼
ct

(−i)
)θi , t

)
(
∼
ct

(−i)
)θi

X̂i,∗
t

.

There only remains to check that the process Qi e�ectively satis�es the time consistency property

of De�nition 1.1. Using the function φ introduced in (1.12) to shorten the notation, the drift of Qi

rewrites as

driftQi(t, X̂i
t) = βi(t, X̂i

t) + φ(t, X̂i
t) +

∼
V i(t, (

∼
ct

(−i)
)θiU ix(t, X̂

i
t)) +

1

2
U ixx(t, X̂

i
t)(X̂

i
t)

2
(
(ν2i + σ2i )(π

i
t)

2

−2θiσiσπt
(−i).πit + 2(µ− θiσiσπt

(−i))πit
U ix(t, X̂

i
t)

U ixx(t, X̂
i
t)X̂

i
t

+
1

U ixx(t, X̂
i
t)X̂

i
t

(
2γiWx

(t, X̂i
t)νiπ

i
t + 2γiBx

(t, X̂i
t)σiπ

i
t

))

+V i(t, ĉitX̂
i
t)− citUx(t, X̂

i
t)X̂

i
t −

∼
V i(t, (

∼
ct

(−i)
)θiU ix(t, X̂

i
t))

= βi(t, X̂i
t) + φ(t, X̂i

t) +
∼
V i(t, (

∼
ct

(−i)
)θiU ix(t, X̂

i
t)) + V i(t, ĉitX̂

i
t)− citUx(t, X̂

i
t)X̂

i
t

−
∼
V i(t, (

∼
ct

(−i)
)θiU ix(t, X̂

i
t)) +

1

2
U ixx(t, X̂

i
t)(X̂

i
t)

2(ν2i + σ2i )
(
(πit)

2 − 2πit.π
i,∗
t

)
Necessary condition on β so that Q is consistent - From the �rst order condition, the above

drift is minimal for the optimal portfolio πi,∗t , and this minimum equals

driftQi(t, X̂i,∗
t ) = βi(t, X̂i,∗

t ) + φ(t, X̂i,∗
t ) +

∼
V i(t, (

∼
ct

(−i)
)θiU ix(t, X̂

i
t)) + V i(t, ĉitX̂

i
t)

− citUx(t, X̂
i
t)X̂

i
t −

∼
V i(t, (

∼
ct

(−i)
)θiU ix(t, X̂

i
t))−

1

2
U ixx(t, X̂

i
t)(X̂

i
t)

2(ν2i + σ2i )
(
πi,∗t

)2
. (1.16)

Moreover, by de�nition of the Fenchel-Legendre transform
∼
V i and using (1.15), one can note that

∼
V i(t, (

∼
ct

(−i)
)θiU ix(t, X̂

i
t)) = V i(t, ĉi,∗t X̂

i
t)− ci,∗t Ux(t, X̂

i
t)X̂

i
t . (1.17)
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Imposing that the quantity (1.16) equals zero ensures time consistency of the forward relative perfor-

mance process Qi. From the concavity of U i, we get that the drift of Qi(t, X̂i
t) is non positive for any

admissible portfolio and vanishes for the optimal strategy (πi,∗t , ci,∗t ). This last condition in particular

implies a constraint on the drift βi of the forward utility U i, which takes the form

βi(t, x) = −φ(t, x) + 1

2
U ixx(t, x)x

2(ν2i + σ2i )
(
πi,∗t

)2
−

∼
V i(t, (

∼
ct

(−i)
)θiU ix(t, X̂

i
t)). (1.18)

Injecting this relation in the Itô decomposition of U i leads to the SPDE

dU i(t, x) =

(
−φ(t, x) + 1

2
U ixx(t, x)x

2(ν2i + σ2i )
(
πi,∗t

)2
−

∼
V i(t, (

∼
ct

(−i)
)θiU ix(t, X̂

i
t))

)
dt

+ γiW (t, x)dW i
t + γiB(t, x)dBt. (1.19)

1.3 CRRA forward relative performance process

In the following, we focus on forward relative performance processes of CRRA type, with separable

time and space dependence. The drift constraint (1.18) can be speci�ed when the space dependence

of wealth utility is of power type.

Consider an agent i with utility from wealth U (αi)(t, x) = Zitu
(αi)(x), whose dynamics are driven by

those of some Itô process Zit and where u(αi)(x) = x1−αi

1−αi
denotes the standard power utility function

with risk aversion parameter αi ∈ [0, 1]. Moreover, we assume the process Zit to have log-normal

dynamics that we denote

dZit = Zit

(
bZ

i
(t)dt+ δW,Z

i
(t)dW i

t + δB,Z
i
(t)dBt

)
, Zi0 = 1. (1.20)

The local characteristics of the forward utility U (αi) seen as an Itô random �eld of type (1.11) are then

given by

β(αi)(t, x) = bZ
i
(t)U (αi)(t, x) and γ(αi)(t, x) =

(
δW,Z

i
(t) δB,Z

i
(t)
)
U (αi)(t, x). (1.21)

The deterministic power utility function u(αi) satis�es the following useful properties:

xu(αi)
x (x) = x1−αi = (1− αi)u

(αi)(x)

x2u(αi)
xx (x) = −αixu(αi)

x (x) = −αi(1− αi)u
(αi)(x).

Let V i be a forward utility from consumption. The time consistency of the relative performance process

Qi de�ned by (1.9), generated by U (αi) and V i implies that V i is also a forward utility of CRRA type

with the same risk aversion parameter αi and separable time and space dependence, see [9]. We will

thus consider a utility from consumption of the form V (αi)(t, c) = ϕitu
(αi)(c), where (ϕit)t≥0 follows

dϕit = ϕit

(
bϕ

i
(t)dt+ δW,ϕ

i
(t)dW i

t + δB,ϕ
i
(t)dBt

)
, ϕi0 = 1. (1.22)

For ease of notation, we introduce for i = 1, ..., n

f i(t) = r(1− θi)− θiµπt
(−i) +

θi
2
Σπ2t

(−i)
+
θ2i
2

(
(σπt

(−i))2 +
1

n− 1
(νπt)2

(−i)
)

(1.23)

gi(t) =
θ2i

n− 1
(νπt)2

(−i)
+ (θiσπt

(−i))2. (1.24)
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Proposition 1.2. Consider a couple of CRRA utility random �elds with separable time and space

dependence U (αi)(t, x) = Zitu
(αi)(x) and V (αi)(t, c) = ϕitu

(αi)(c), and let the conditions of Proposition

1.1 hold. Then the drift constraint (1.18) takes the form

bZ
i
(t) = (1− αi)δ

Zi

B (t)θiσπt
(−i) − (1− αi)f

i(t) +
1

2
αi(1− αi)

(
gi(t)− (ν2i + σ2i )π

i,∗
t

)
− (1− αi)θict

(−i) +
αi

(c̃t
(−i))

θi(1−αi)

αi

(
ϕit
Zit

) 1
αi

. (1.25)

Proof. Characterization of the utility from consumption -Wealth and consumption utilities are

related through the SPDE (1.13), which requires

βi(t, x) = −φ(t, x) + 1

2
U ixx(t, x)x

2(ν2i + σ2i )
(
πi,∗t

)2
−

∼
V i(t, (

∼
ct

(−i)
)θiU ix(t, x)),

where

φ(t, X̂i
t) = Ux(t, X̂i

t)X̂
i
t(f

i(t) + θict
(−i)) +

1

2
U ixx(t, X̂

i
t)(X̂

i
t)

2gi(t)− γiBx
(t, X̂i

t)θiσπt
(−i)X̂i

t ,

and f i and gi are de�ned as (1.23) and (1.24) respectively. Replacing (1.21) and using the identities

of the power form utility, we obtain

bZ
i
(t)U (αi)(t, x) = −(1− αi)U

(αi)(t, x)(f i(t) + θict
(−i)) +

1

2
αi(1− αi)U

(αi)(t, x)gi(t)

−1

2
αi(1− αi)U

(αi)(t, x)(ν2i + σ2i )(π
i,∗
t )2 −

∼
V i(t, (

∼
ct

(−i)
)θiUαi

x (t, x)) (1.26)

+δZ
i

B (t)θiσπt
(−i)(1− αi)U

(αi)(t, x).

This constraint implies

∼
V i(t, (

∼
ct

(−i)
)θiU (αi)

x (t, x)) = (vit − (1− αi)θict
(−i))U (αi)(t, x), (1.27)

where vit = −
[
bZ

i
(t)− (1− αi)δ

Zi

B (t)θiσπt
(−i)
]
+ (1 − αi)f

i(t) − 1
2αi(1 − αi)(g

i(t) − (ν2i + σ2i )π
i,∗
t ).

Denote wit = vit − (1− αi)θict
(−i). Di�erentiating (1.27) with respect to the space variable leads

∼
V i

x

(
(
∼
ct

(−i)
)θiU (αi)

x (t, x)

)
= wit

U
(αi)
x (t, x)

(
∼
ct

(−i)
)θiU

(αi)
xx (t, x)

= − wit

(
∼
ct

(−i)
)θiαi

x.

Since Vx(t,−
∼
V y(t, y)) = y, we obtain

(
∼
ct

(−i)
)θiU (αi)

x (t, x) = Vx

(
t,

wit

(
∼
ct

(−i)
)θiαi

x

)
, i.e (

∼
ct

(−i)
)θiU ix

t, (∼ct(−i))θiαi
wit

x

 = Vx(t, x). (1.28)

So integrating leads to

V i(t, x) =
wit
αi
U (αi)

t, (∼ct(−i))θiαi
wit

x

 =

(
wit
αi

)αi

(
∼
ct

(−i)
)θi(1−αi)U (αi)(t, x). (1.29)

Thus, utility from consumption V i is necessarily of power type, proportional to the utility from wealth

U (αi).

12



Condition on bZ
i
(t) - Equation (1.26) gives a condition on the drift of the wealth utility U (αi). In

other words, it allows to characterize the drift parameter bZ
i
, as well as the quantity vt. In fact,

comparing the general form of the utility from consumption V i(t, c) = ϕitu
αi(t, c) with (1.29) leads:

ϕit = Zit

(
vit − (1− αi)θict

(−i)

αi

)αi(
c̃t

(−i)
)θi(1−αi)

,

so that:

vit = (1− αi)θict
(−i) +

αi

(c̃t
(−i))

θi(1−αi)

αi

(
ϕit
Zit

) 1
αi

. (1.30)

Finally, the drift condition (1.18) can be rewritten as the following condition on bZ
i

bZ
i
(t) = (1− αi)δ

Zi

B (t)θiσπt
(−i) − (1− αi)f

i(t) +
1

2
αi(1− αi)

(
gi(t)− (ν2i + σ2i )π

i,∗
t

)
− (1− αi)θict

(−i) +
αi

(c̃t
(−i))

θi(1−αi)

αi

(
ϕit
Zit

) 1
αi

.

Remark 1.2. The link between U (αi) and V i pointed out in (1.29) only stands here for CRRA utilities,

since it relies on the possibility to express the �rst and second derivatives of U (αi) as functions of itself.

In the general case

βi(t, x) = −φ(t, x) + 1

2
U ixx(t, x)x

2(ν2i + σ2i )
(
πi,∗t

)2
−

∼
V i(t, (

∼
ct

(−i)
)θiU ix(t, x)),

so that

(
∼
ct

(−i)
)θiU ixx(t, x)

∼
V i
x(t, (

∼
ct

(−i)
)θiU ix(t, x)) = −βix(t, x)− φx(t, x)

+
1

2
(ν2i + σ2i )

(
πi,∗t

)2(
U ixxx(t, x)x

2 + 2xU ixx(t, x)
)
.

Denote H the random �eld

H(t, x) =
−1

(
∼
ct

(−i)
)θiU ixx(t, x)

(
−βix(x, t)− φx(x, t) +

1

2
(ν2i + σ2i )

(
πi,∗t

)2(
x2U ixxx(x, t) + 2xU ixx(x, t)

))

Then, using the identity Vx(−
∼
V x(t, x), t) = x:

(
∼
ct

(−i)
)θiU ix(t, x) = V i

x

(
−

∼
V i
x(t, (

∼
ct

(−i)
)θiU ix(t, x))

)
= V i

x(H(x, t)).

Consequently, if H admits an inverse function H−1 with respect to the space variable, we obtain a

characterization of the marginal utility from consumption

V i
x(t, x) = (

∼
ct

(−i)
)θiU ix(H

−1(x, t), t).
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2 The n-agent forward optimization problem

Having characterized forward relative performance processes and the associated optimal strategies, we

now investigate the existence of a Nash equilibrium in the many-player asset specialization problem

under common noise. Informally, a Nash equilibrium is de�ned by a set of n strategies such that

no agent can improve their performance being the only one deviating from the equilibrium. In other

words, these policies are optimal for every player in the market.

2.1 Nash equilibrium for the n-player case under forward relative performance

concerns

Let us now introduce the notion of Nash equilibrium in the framework of relative performance pro-

cesses. In the classical expected utility theory, a Nash equilibrium is characterized as n strategies

(πi,∗t , ci,∗t )i=1,...,n chosen so that no manager can increase the expected utility of her performance met-

ric by unilateral decision. We can formulate this property using the consistency condition for forward

relative performance process, as proposed in [7].

De�nition 2.1. Let for any i ∈ {1, ..., n}, (πi,∗, ci,∗) ∈ Ai be the optimal strategy for investor i from

Proposition 1.1. Let Qi be the progressively measurable random �eld

Qi(t, x) = U i(t, x) +

∫ t

0
V i(s, ĉisx)ds,

where U i and V i are progressively measurable random �elds satisfying Assumption 1.1. A forward

Nash equilibrium consists in n-triples (Qi, πi,∗, ci,∗) with i = 1, ..., n such that:

- Time consistency - Let managers j ̸= i act according (πj,∗, cj,∗) and manager i with an admissible

strategy (πi, ci). Then Qi(t, X̂i
t) is a (local) supermartingale. Let all managers j = 1, ..., n act

along their optimal strategy (πj,∗, cj,∗). Then Qi(t, X̂i,∗
t ) is a (local) martingale.

This de�nition is coherent with the classical notion of Nash equilibrium. In fact, for any i ∈
{1, ..., n}, assuming that every actor j ̸= i use its optimal strategy πj,∗t , we get from the martingale

and supermartingale properties of the above de�nition that

E

[
Qi(t, X̂i,∗

t )

]
= Qi(0, X̂i

0) ≥ E
[
Qi(t, X̂i

t)
]
, for all t ≥ 0.

Hence no manager can increase her expected utility by being the only one changing her strategy from

the Nash equilibrium.

Note that the Nash equilibrium consists in n-triples (Qi, πi,∗, ci,∗), which means that the equilibrium

strategies depend on the forward performance process Qi and thus on the chosen forward utility U i.

The investors may also have di�erent type of forward performance process. One may wonder if we can

determine an optimal relative performance Qi,∗, or more precisely a n-tuple (Qi,∗)i∈{1,...,n} in order to

maximize expected utility over all other admissible utilities for each agent i = 1, ..., n

Qi,∗(x, t) = U i,∗(t, x) +

∫ t

0
V i,∗(s, ĉisx)ds, (2.1)
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and where U i,∗ denotes the optimal forward utility U i in the sense that

U i,∗(t, x) = argsup
U i∈K2,δ

loc∩C3

E

[
Qi(t, X̂i,∗

t )|Fs
]
= argsup

U i∈K2,δ
loc∩C3

Qi(s, X̂i,∗
s ), for all s ≤ t.

Remark 2.1. Assuming that the utilities Ui solve the SPDEs (1.13), determining the Nash equilibrium

portfolio consists in solving the system for i = 1, ..., n

πi,∗t =
1

ν2i + σ2i

(
σiθi

(
1 +

U ix

U ixxX̂
i
t

)
σπt

(−i) − 1

U ixxX̂
i
t

(
γiWx

(t, X̂i
t)νi + γiBx

(t, X̂i
t)σi

)
+ µiU

i
x

)
The computation in the general case above would result in an expression involving �rst and second

derivatives of every utility U i, for i = 1, ..., n. However, it is tractable for CRRA utilities.

2.2 Nash equilibrium for power form forward utilities: the CRRA case

In this section, we investigate the Nash equilibrium in the n-player case for forward utilities of CRRA

type with separable time and space dependence. The resolution strongly relies on Section 1.3 and the

drift constraint (1.25). Consider a family of CRRA forward utilities from wealth and consumption

with separable time and space dependence as de�ned in Section 1.3, that is for i = 1, ..., n

U (αi)(t, x) = Zitu
(αi)(x), and V (αi)(t, c) = ϕitu

(αi)(c), αi ∈ (0, 1). (2.2)

To state the following results, we need to de�ne the quantities

ψn =
1

n− 1

n∑
k=1

σ2kθk(1−
1
αk

)

ν2k + σ2k

(
1 +

θk(1− 1
αk

)

n−1

) and ϕn =
1

n

n∑
k=1

σk
αk

(
δW,Z

k
(t)νk + δB,Z

k
(t)σk + µk

)
ν2k + σ2k

(
1 +

θk(1− 1
αk

)

n−1

) . (2.3)

ξn =
n∑
k=1

θk(1− αk)

(n− 1)αk − (1− αk)θk
. (2.4)

Moreover, the optimal consumption process in the framework of relative forward performance process

relies on the following process

Ait =

 ϕit
∼
Zit

 n−1
αi(n−1)−θi(1−αi)

 n∏
k=1

 ϕkt
∼
Zkt

 n−1
αk(n−1)−θk(1−αk)


−1

ξn+1

θi(1−αi)

αi(n−1)−θi(1−αi)

, (2.5)

where Z̃it is an Itô di�usion with dynamics

d
∼
Zit =

∼
Zit

(
˜bZi(t)dt+ δW,Z

i
(t)dW i

t + δB,Z
i
(t)dBt

)
, Z̃i0 = 1, (2.6)

with drift parameter bZ̃
i
given by

bZ̃
i
(t) = (1− αi)δ

Zi

B (t)θiσπt
(−i) − (1− αi)f

i(t) +
1

2
αi(1− αi)

(
gi(t)− (ν2i + σ2i )π

i,∗
t

)
. (2.7)

One can show the process Ait has log-normal dynamics, that we denote

dAit = Ait

(
bA

i
(t)dt+ δA

i
(t).dW̄ i

t

)
, (2.8)

where W̄ i
t denotes the two-dimensional Brownian motion

(
W i
t , Bt

)
.
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Theorem 2.1. Let the conditions of Proposition 1.1 hold for all agents i ∈ {1, ..., n}. Assume moreover

that agents have power form forward utility U (αi)(t, x) = Zitu
(αi)(x). If ψn ̸= 1, then there exists a

unique optimal candidate strategy (πi,∗t , ci,∗t ) given by

πi,∗
t =

1

ν2i + σ2
i

(
1 +

θi(1− 1
αi

)

n−1

)[σiθi(1− 1

αi
)

n

n− 1

ϕn
1− ψn

+
1

αi

(
δW,Zi

(t)νi + δB,Zi

(t)σi + µi

)]
(2.9)

dci,∗t = ci,∗t

(
(bA

i

(t) + ci,∗t )dt+ δA
i

(t).dW̄ i
t

)
. (2.10)

Proof. The equilibrium portfolio is simply determined with a �x point calculation from (1.14). The

characterization of the optimal consumption process is achieved in the same manner but require addi-

tional arguments because of consumption dependent terms in the drift condition (1.25).

Equilibrium portfolio - For power form forward utilities of the form U (αi)(t, x) = Zitu
(αi)(x), the

optimal portfolio strategy (1.14) rewrites as

πi,∗t =
1

ν2i + σ2i

(
1 +

θi(1− 1
αi

)

n−1

)[σiθi(1− 1

αi
)

n

n− 1
σπt +

1

αi

(
γW,Z

i
(t)νi + γB,Z

i
(t)σi + µi

)]
. (2.11)

Multiplying by σi and averaging over i ∈ {1, ..., n}, we get

σπt = σπtψn + ϕn,

where

ψn =
1

n− 1

n∑
k=1

σ2kθk(1−
1
αk

)

ν2k + σ2k

(
1 +

θk(1− 1
αk

)

n−1

) and ϕn =
1

n

n∑
k=1

σk
αk

(
γW,Z

i
(t)νi + γB,Z

i
(t)σi + µk

)
ν2k + σ2k

(
1 +

θk(1− 1
αk

)

n−1

) .(2.12)

Hence, for ψn ̸= 1

σπt =
ϕn

1− ψn
. (2.13)

Plugging this expression in (2.11) leads to the Nash equilibrium portfolio strategy. If ψn = 1, there

exists no Nash equilibrium.

Equilibrium consumption process - Let's recall that the optimal consumption process is given by

ci,∗t =

(V i
x)

−1

(
t, U ix(t, X̂t

i,∗
)(

∼
ct

(−i)
)θi
)
(
∼
ct

(−i)
)θi

X̂t
i,∗ . (2.14)

From (1.29) and the power form dynamics considered for U (αi), we get

V (αi)
x (t, x) = Zit(

∼
ct

(−i)
)θi(1−αi)

(
αi

wit
x

)−αi

,

so that

(V i
x)

−1(t, x) = (Zit)
1
αi
wit
αi

(
∼
ct

(−i)
)
θi

1−αi
αi x

− 1
αi .
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Then the optimal consumption process writes as

ci,∗t =
(
∼
ct

(−i)
)θi

X̂i,∗
t

(Zit)
1
αi
wit
αi

(
∼
ct

(−i)
)
θi

1−αi
αi

(
Zit(X̂

i,∗
t )−αi(

∼
ct

(−i)
)θi
)− 1

αi

=
vit − (1− αi)θict

(−i)

αi
.

Replacing vit with (1.30) leads

ci,∗t =
(
c̃t

(−i)
)− θi(1−αi)

αi

(
ϕit
Zit

) 1
αi

, (2.15)

where we recall that c̃t
(−i) denotes the geometric average of consumption processes of every agent

di�erent from i, de�ned in (1.5). Let's modify this last equation to express ci,∗t as a function of

c̃t =
(∏n

k=1 c
k
t

) 1
n

ci,∗t = (c̃t)
− nθi(1−αi)

αi(n−1)−θi(1−αi)

(
ϕit
Zit

) n−1
αi(n−1)−θi(1−αi)

. (2.16)

Averaging the previous line over i = 1, ..., n, we obtain

n∏
k=1

ck,∗t =
n∏
k=1

(
ϕkt
Zkt

) n−1
αk(n−1)−θk(1−αk)

(c̃t)
−n

∑n
k=1

θk(1−αk)

αk(n−1)−θk(1−αk) .

Then, de�ning the quantity

ξn =
n∑
k=1

θk(1− αk)

(n− 1)αk − (1− αk)θk
, (2.17)

the geometric average of consumption processes then takes the form

c̃t =

(
n∏
k=1

(
ϕkt
Zkt

) 1
αk(n−1)−θk(1−αk)

)n−1
n

1
ξn+1

. (2.18)

Injecting this expression in the optimal consumption (2.16) leads

ci,∗t = (c̃t)
− nθi(1−αi)

αi(n−1)−θi(1−αi)

(
ϕit
Zit

) n−1
αi(n−1)−θi(1−αi)

. (2.19)

Nash equilibrium - We complete the proof by using the optimal policy (2.19) in response to the

others players choices and the drift condition (1.25). With bZ̃
i
given by (2.7), we rewrite the latter as

bZ
i
(t) = bZ̃

i
(t)− (1− αi)θict

(−i),∗ − αic
i,∗
t . (2.20)

In fact, in order to have an equilibrium, we must solve the coupled system for i = 1, ..., n composed of

(2.19) and the SDE characterizing the di�usion Zi, namely

ci,∗t = (c̃t)
− nθi(1−αi)

αi(n−1)−θi(1−αi)

(
ϕit
Zit

) n−1
αi(n−1)−θi(1−αi)

dZit = Zit

(
bZ

i
(t)dt+ δW,Z

i
(t)dW i

t + δB,Z
i
(t)dBt

)
, Zi0 = 1. (2.21)
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We introduce the process
∼
Zt with dynamics

d
∼
Zit =

∼
Zit

(
b̃Z

i
(t)dt+ δW,Z

i
(t)dW i

t + δB,Z
i
(t)dBt

)
. (2.22)

This allows to disentangle Zt with consumption dependent terms in bZ
i
, writing

Zit =
∼
Zt exp

(
− n

n− 1
(1− αi)θi

∫ t

0
c̄sds−

(n− 1)αi − (1− αi)θi
n− 1

∫ t

0
ci,∗s ds

)
. (2.23)

Injecting (2.23) in the optimal consumption (2.10) leads

ci,∗t exp

(
−
∫ t

0

ci,∗s ds

)
= (c̃t)

− nθi(1−αi)

αi(n−1)−θi(1−αi)

 ϕit
∼
Zi
t


n−1

αi(n−1)−θi(1−αi)

exp

(
n(1− αi)θi

αi(n− 1)− θi(1− αi)

∫ t

0

c̄sds

)
.(2.24)

Taking the geometric mean of the above over i = 1, ..., n, we get

c̃t exp

(
−
∫ t

0
c̄sds

)
= (c̃t)

−ξn exp

(
ξn

∫ t

0
c̄sds

) n∏
k=1

 ϕkt
∼
Zkt

n−1
n

1
αk(n−1)−θk(1−αk)

.

Thus, taking the inverse

(c̃t)
−1 exp

(∫ t

0
c̄sds

)
=

 n∏
k=1

 ϕkt
∼
Zkt

n−1
n

1
αk(n−1)−θk(1−αk)


−1

ξn+1

. (2.25)

Plugging the last expression in (2.24) leads

ci,∗t exp

(
−
∫ t

0
ci,∗s ds

)
=

 ϕit
∼
Zit

 n−1
αi(n−1)−θi(1−αi)

 n∏
k=1

 ϕkt
∼
Zkt

 n−1
αk(n−1)−θk(1−αk)


−1

ξn+1

θi(1−αi)

αi(n−1)−θi(1−αi)

.(2.26)

Let's denote Ait the process on the right-hand side of (2.26), with log-normal dynamics

dAit = Ait

(
bA

i
(t)dt+ δA

i
.dW̄t

)
.

Integrating with respect to time, one can show that equation (2.26) admits a unique solution among

continuous Itô processes. Some Itô calculus show that the process ci,∗t given by

dci,∗t = ci,∗t

(
(bA

i
(t) + ci,∗t )dt+ δA

i
(t).dW̄ i

t

)
. (2.27)

satis�es (2.26), which concludes the proof.

2.3 Discussion on admissibility

The candidate equilibrium consumption dynamics (2.10) admits a local solution given by

ci,∗t =

exp

(∫ t
0 (b

Ai
(s)−

∥∥∥δAi
(s)
∥∥∥2)ds+ δA

i
(s).dW̄ i

s

)
1−

∫ t
0 exp

(∫ u
0 (b

Ai(s)−
∥∥δAi(s)

∥∥2)ds+ δAi(s).dW̄ i
s

)
du
, (2.28)
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de�ned up to the explosion time S de�ned as the �rst hitting time of 1 of the integrated di�usion

process

Iit =

∫ t

0
exp

(∫ u

0
(bA

i
(s)−

∥∥∥δAi
(s)
∥∥∥2)ds+ δA

i
(s).dW̄ i

s

)
du.

Integrated di�usion processes appear in models with various applications, as for example the simulation

of the dynamics of the membrane potential of a neuron or derivatives pricing in �nance and risk theory

[25], [24]. It has been shown in [8] that the integral of the exponential of Brownian motion with

negative drift is distributed as the inverse of a gamma variable, thus supported on [0,∞). This has

been generalized in [31] for a general geometric Brownian motion. In the framework of FPP Nash

equilibrium, one wants to ensure the law of I∞ to be valued only in [0, 1) . Those results thus ensure

that the probability of �nite time explosion of (2.28) is strictly positive for constant coe�cients bA and

δA.

In general, the question of admissibility of the candidate optimal consumption process (2.28) re-

mains open. In Section 3.3, we present two examples with admissible optimal consumption.

3 Mean �eld forward optimization

Consider (Bt)t≥0 and (Wt)t≥0 be two independent Brownian motions, living in a �ltered probability

space
(
Ω,F ,F = (Ft)t≥0,P

)
. In order to model the continuum of agent of the mean �eld optimization

problem, we introduce the random type vector ζ independent of B andW , whose distribution describes

the proportion of the population following the corresponding preferences. We will focus on the mean

�eld optimization problem in the framework of relative forward performance process, constructed with

separable utilities whose time variation are driven by log normal processes Z and ϕ solving

dZt = Zt
(
bZ(t)dt+ δZW (t)dWt + δZB(t)dBt

)
, Z0 = 1,

dϕt = ϕt

(
bϕ(t)dt+ δϕW (t)dWt + δϕB(t)dBt

)
, ϕ0 = 1.

To allow di�erent preferences across the population, we include the parameters δZW , δ
Z
B, b

ϕ, δϕW and δϕB
in the random type vector

ζ =
(
δZW , δ

Z
B, b

ϕ, δϕW , δ
ϕ
B, ξ, α, θ,m, ν, σ

)
with values on the type space

Z =
(
L2
loc(R

+,∗)
)2 × L1

loc(R)×
(
L2
loc(R

+,∗)
)2 × (0,∞)2 × [0, 1]× (0,∞)2 × [0,∞)2.

Denote (FMF
t )t≥0 the smallest �ltration for which ζ is FMF

0 measurable and B andW are adapted, and

(FB
t )t≥0 the natural �ltration generated by B. For general study of mean-�eld games under common

noise, we refer the reader to [3], [2].

3.1 Mean �eld Nash equilibrium under forward relative performance concerns

Under the self-�nancing condition, the generic agent's wealth process is:

dXt = rXt + πtXt(µdt+ νdWt + σdBt)− ctXtdt, µ = m− r, X0 = ξ, (3.1)
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where πt stands for the fraction of wealth invested in the risky asset and ct is the rate of consumption

per unit of wealth. The set of admissible strategies is de�ned as:

AMF =
{
(πt, ct)FMF − progressively measurable process valued in R × R+,∗,

such that ∀t ≥ 0, E

[∫ t

0
(|πs|2 + |cs|2)ds

]
<∞

}
(3.2)

De�nition 3.1 (MF CRRA equilibrium). Let (Xt)t≥0 and (Ct)t≥0 be FB adapted square integrable

stochastic processes representing the geometric average wealth and the geometric average consumption

of the continuum of agents. Let (πt, ct) be an admissible strategy and Xπ,c be the wealth process (3.1)

following this investment-consumption strategy. Consider a FMF progressively measurable random

�eld Q with dynamics

Q(t, x) = U(t, x) +

∫ t

0
V (s, ĉsx)ds, (3.3)

where ĉt =
ct

(Ct)θ
, and U , V are progressively measurable random �elds satisfying Assumption 1.1. Q

is a MF forward relative performance process if

1. Time consistency - For any admissible strategy (πt, ct), Q

(
t,
Xπ,c
t

(Xt)θ

)
is a (local) supermartingale

and there exists an admissible strategy (π∗t , c
∗
t ), such that Q

(
t,
Xπ∗,c∗

t

(Xt)θ

)
is a (local) martingale.

2. Compatibility - (π∗t , c
∗
t ) ∈ AMF is a MF Nash equilibrium if{

Xt = exp
(
E
[
logX∗

t |FB
t

])
Ct = exp

(
E
[
log c∗t |FB

t

]) (3.4)

We call strong Nash equilibrium a MF Nash equilibrium strategy (π∗t , c
∗
t ) measurable with respect

to FMF
0 .

Note that E[log(.)] is the continuous analogue of geometric mean. The last condition above can be

understood as a compatibility condition between the generic agent and the continuum. Conditionally

on the common noise B, all agents face i.i.d copies of the same optimization problem. Exploiting the

consistency condition among processes Xt satisfying (3.4) and using a �x point calculation, we can

determine the MF equilibrium portfolio for the CRRA example. Then, expressing the consumption

utility V as a function of U as in Proposition 1.2, we can establish the MF equilibrium consumption

strategy.

For tractability, we will consider the CRRA utilities example. To state the associated mean �eld

equilibrium theorem, we will need the following assumption, stating the power form of the utility U

considered to be an Itô random �eld with respect to the 2-dimensional Brownian motion (Wt Bt)t≥0.

We will also make an assumption on the drift of this utility, analogue to Proposition 1.1, su�cient for

a random �eld Q of type (3.3) to be consistent and thus a FPP.

Assumption 3.1 (MF CRRA). Consider a random �eld Q with dynamics

Q(t, x) = U (α)(t, x) +

∫ t

0
V (α)(s, ĉsx)ds,
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where U (α) and V (α) are CRRA forward utilities of the form

U (α)(t, x) = Ztu
(α)(x), and V (α)(t, c) = ϕtu

(α)(c), (3.5)

where u(α)(x) = x1−α

1−α is the standard deterministic power utility function with risk aversion α ∈ (0, 1),

and processes (Zt)t≥0, (ϕt)t≥0 follow log-normal dynamics

dZt = Zt
(
bZ(t)dt+ δZW (t)dWt + δZB(t)dBt

)
, Z0 = 1. (3.6)

dϕt = ϕt

(
bϕ(t)dt+ δϕW (t)dWt + δϕB(t)dBt

)
, ϕ0 = 1.

The utility random �eld U (α) has local characteristics

β(t, x) = bZ(t)U (α)(t, x) and γ(t, x) =
(
δYW (t) δZB(t)

)
U (α)(t, x),

and is assumed to satisfy the SPDE 1.13 from Proposition 1.1 which is equivalent to

β(t, z) = −ψ(t, z) + 1

2
U (α)
xx z

2(ν2 + σ2)(πt)
2 −

∼
V (α)(t, (Ct)

θUx), (3.7)

where

ψ(t, z) = U (α)
x (t, z)z

(
−θµπt +

θ

2
Σπ2t +

θ2

2
σπt

2 + θct

)
+

1

2
U (α)
xx (t, z)z2(θσπt)

2−γBx(t, z)θσπt
(−i)z.

(3.8)

Proposition 3.1. Under Assumption 3.1, condition (3.7) takes the form

bZ(t) = (1− α)δZB(t)θσπt − (1− α)

(
−θµπt +

θ

2
Σπ2t +

θ2

2
σπt

2

)
+

1

2
α(1− α)

(
(θσπt)

2 − (ν2 + σ2)(π∗t )
2
)
− (1− α)θct −

α(
Ct
) θ(1−α)

α

(
ϕt
Zt

) 1
α

(3.9)

Proof. Following the same calculation as in the previous section, one can characterize the utility from

consumption for the CRRA case, from the drift condition (3.7)

bZ(t)U (α)(t, y) = −(1− α)U (α)(t, y)

(
−θµπt +

θ

2
Σπ2t +

θ2

2
σπt

2 + θct

)
−

∼
V (α)((Ct)

θUx(t, y)

+
1

2
α(1− α)U (α)(t, y)(θσπt)

2 − 1

2
α(1− α)U (α)(t, y)(ν2 + σ2)(π∗t )

2

+δZB(t)θσπt(1− α)U (α)(t, x).

The latter implies
∼

V (α)((Ct)
θU

(α)
x (t, y)) = (vt − (1− α)θct)U(t, y), where

vt = −
[
bZ(t)− (1− α)δZB(t)θσπt + (1− α)

(
−θµπt +

θ

2
Σπ2t +

θ2

2
σπt

2

)
−1

2
α(1− α)

(
(θσπt)

2 − (ν2 + σ2)(π∗t )
2
)]
. (3.10)

Using the same computation as before, we get

V (α)(t, x) =

(
vt − (1− α)θct

α

)α
(Ct)

θ(1−α)U (α)(t, x). (3.11)

21



Similarly as in Section 1, comparing (3.11) with V (α)(t, c) = ϕtu
(α)(t, c), one can express the quantity

vt as

vt = (1− α)θct +
α(

Ct
) θ(1−α)

α

(
ϕt
Zt

) 1
α

. (3.12)

Finally, combining equation (3.10) with (3.12), we get the following constraint on the drift parameter

bZ(t) = (1− α)δZB(t)θσπt − (1− α)

(
−θµπt +

θ

2
Σπ2t +

θ2

2
σπt

2

)
+

1

2
α(1− α)

(
(θσπt)

2 − (ν2 + σ2)(π∗t )
2
)
− (1− α)θct −

α(
Ct
) θ(1−α)

α

(
ϕt
Zt

) 1
α

3.2 General MF Nash equilibrium

In this section, we investigate the existence of a general Nash equilibrium to the mean �eld optimization

problem associated with a forward relative performance process Q given by (3.3). We prove the

existence of an optimal strategy (π∗t , c
∗
t ) ∈ FMF

t . We work under Assumption 3.1, so that both utilities

are of separable form, respectively driven by two Itô random �elds ϕt and Zt. For the following, let's

introduce the quantities

ψσ = E

[
θ(1− 1

α
)

σ2

ν2 + σ2

]
, φσ = E

[
σ

α

(δZW (t)ν + δZB(t)σ + µ)

ν2 + σ2

]
, Kα,θ = −

θ(1−α)
α

1 + E
[
θ(1−α)
α

] . (3.13)
Similarly as in the n-player case, the equilibrium consumption process relies on an analogue log-normal

process (At)t≥0 de�ned in the following, with local characteristics

bA(t) =
1

α

(
bϕ(t)− bZ̃(t) +

1

2
(
1

α
− 1)

∥∥∥δϕ(t)∥∥∥2 + 1

2
(
1

α
+ 1)

∥∥∥δZ̃(t)∥∥∥2 − 2

α
δϕ(t).δZ̃(t)

)
+Kα,θE

[
1

α

(
bϕ(t)− bZ̃(t) +

1

2
(
∥∥∥δZ̃(t)∥∥∥2 − ∥∥∥δϕ(t)∥∥∥2))]+ 1

2
K2
α,θE

[
1

α
(δϕ,W (t)− δZ̃,W (t))

]2
+
Kα,θ

α
E

[
1

α
(δϕ,W (t)− δZ̃,W (t))

]
(δϕ,W (t)− δZ̃,W (t)) (3.14)

δA,W (t) =
1

α
(δϕ,W (t)− δZ̃,W (t)) +Kα,θE

[
1

α
(δϕ,W (t)− δZ̃,W (t))

]
, (3.15)

δA,B(t) =
1

α

(
δϕ,B(t)− δZ̃,B(t)

)
. (3.16)

Theorem 3.2. Under Assumptions 3.1, if ψσ ̸= 1, there exists a MF Nash equilibrium strategy

(π∗t , c
∗
t ) ∈ FMF

t with optimal portfolio process:

π∗t =
1

ν2 + σ2

(
θσ(1− 1

α
)

φσ

1− ψσ
+

1

α
(δZW (t)ν + δZB(t)σ + µ)

)
, (3.17)

and optimal consumption equilibrium process (c∗t )t≥0 following

dc∗t = c∗t
(
(bA(t) + c∗t )dt+ δA,W (t)dWt + δA,B(t)dBt

)
. (3.18)
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Note that both candidate optimal processes π∗t and c∗t are stochastic, measurable with respect to

the general �ltration FMF
t .

Proof. First, from the compatibility condition (3.4), we give the Itô decomposition of Xt. Then, apply-

ing Itô-Ventzel's formula to the process Q(t, Xπ,c

(Xπ,c)θ
), we investigate the martingale optimality condition

from the second point of De�nition 3.1. Then similarly as in Section 1, using Proposition 3.1 and the

linear dynamics of utilities leads to an explicit form of the MF Nash equilibrium.

Average wealth process - Condition (3.4) of De�nition 3.1 allows to restrict ourselves to processes

(Xt)t≥0 satisfying Xt = expE
[
logXπ

t |FB
t

]
. Consider an admissible strategy (πt, ct) ∈ FMF

t . Applying

Itô's formula

Xt = expE
[
logXt|FB

t

]
= expE

[
log ξ +

∫ t

0

(µπs −
1

2
π2
s(ν

2 + σ2))ds+

∫ t

0

νπsdWs +

∫ t

0

σπsdBs −
∫ t

0

csds|FB
t

]
(3.19)

= exp

(
log ξ +

∫ t

0

(µπs −
1

2
Σπ2

s)ds+

∫ t

0

σπsdBs −
∫ t

0

csds

)
(3.20)

= ξ +

∫ t

0

ηXsds+

∫ t

0

σπsXsdBs −
∫ t

0

csXsds, (3.21)

where

η = µπs −
1

2
(Σπ2s − σπs

2), ξ = expE[log ξ], µπs = E
[
µπs|FB

s

]
, cs = E

[
cs|FB

s

]
.

In fact, since (πt, ct) is admissible, it is progressively measurable with respect to the general �ltration

FMF
t = σ(ζ, (Bs)0≤s≤t, (Ws)0≤s≤t). The admissible strategy at time t thus writes as a function of ζ

and the trajectories of the two Brownian motions up to time t. On the other hand, the �ltration FB
t

generated by the common noise B at time t is the sigma algebra generated by FB
s and the Brownian

increments after time t, namely (Bu −Bs)s≤u≤t. Consequently, for 0 ≤ s ≤ t, the admissible strategy

(πs, cs) is a function of ζ, (Bu)0≤u≤s and (Wu)0≤u≤s is thus independent of (Bu − Bs)s≤u≤t, which

justi�es the equality between (3.19) and (3.20).

For any admissible strategy (π, c), de�ne Y π,c =
Xπ,c

(Xπ,c)θ
. From (3.21), the dynamics of X are

given by

dXt

Xt

= ξ̄ + (η − c̄s)dt+ σπsdBt,

and an application of Itô's formula leads

dY π,c

Y π,c
t

=

(
µπt − θµπt +

θ

2
Σπ2t +

θ2

2
σπt

2 − θσπtσπt

)
dt

+ νπtdWt + (σπt − θσπt)dBt − (ct − θct)dt, (3.22)

with Y π,c
0 =

ξ

(ξ)θ
.

Forward performance process - Applying Itô-Ventzel's formula, we obtain the dynamics of the

23



forward performance process along the relative wealth process Q(t, Y π,c
t ).

dQ(t, Y π,c
t ) = (β(t, Y π,c

t ) + V (ĉtY
π,c
t ))dt+ γW (t, Y π,c

t )dWt + γB(t, Y
π,c
t )dBt

+Ux(Y
π,c
t )dY π,c

t +
1

2
Uxx(t, Y

π,c
t )d⟨Y π,c

t ⟩+ ⟨γWx(t, Y
π,c
t )dWt + γBx(t, Y

π,c
t )dBt⟩, Y π,c

t

= (β(t, Y π,c
t ) + V (ĉtY

π,c
t , t))dt+ γW (t, Y π,c

t )dWt + γB(t, Y
π,c
t )dBt

+Ux(t, Y
π,c
t )Y π,c

t

(
µπt − θµπt +

θ

2
Σπ2t +

θ2

2
σπt

2 − θσπtσπt − (ct − θct)

))
dt

+
1

2
Uxx(t, Y

π,c
t )(Y π,c

t )2
(
(νπt)

2 + (σπt − θσπt)
2
)
dt

+Ux(t, Y
π,c
t )Y π,c

t (νπtdWt + (σπt − θσπt)dBt)

+(γWx(t, Y
π,c
t )νπtY

π,c
t + γBx(t, Y

π,c
t )(σπt − θσπt))dt.

Best response strategy - Using the martingale condition on Q(t, Y π,c
t ) at the optimum, we study

the �rst order condition

0 = Ux(t, Y
π,c
t )(µ− θσσπt)Y

π,c
t +

1

2
Uxx(t, Y

π,c
t )

(
2πν2 + 2πσ2 − 2σθσπt

)
(Y π,c
t )2

+ γWx(t, Y
π,c
t )νY π,c

t ++γBx(t, Y
π,c
t )σY π,c

t

⇔ π(ν2 + σ2)Y π,c
t Uxx(t, Y

π,c
t ) = σθσπtUxx(t, Y

π,c
t )− Ux(t, Y

π,c
t )(µ− θσσπt)

− γWx(t, Y
π,c
t )ν − γBx(t, Y

π,c
t )σ

⇔ π∗
t =

1

ν2 + σ2

(
θσσπt −

1

Uxx(t, Y
π,c
t )Y π,c

t

(γWx(t, Y
π,c
t )ν + γBx(t, Y

π,c
t )σ) + (µ− θσσπt)Ux(t, Y

π,c
t )

)
. (3.23)

The �rst order condition on the consumption process leads

0 = −Ux(t, Y π,c
t )Y π,c

t +
Y π,c
t

(Ct)θ
Vx(t, ĉtY

π,c
t )

⇔ c∗t =
V −1
x

(
t, Ux(t, Y

π,c
t )(Ct)

θ
)
(Ct)

θ

Y π,c
t

. (3.24)

Denoting

ψ(t, y) = Ux(t, y)y

(
−θµπt +

θ

2
Σπ2t +

θ2

2
σπt

2 + θct

)
+

1

2
Uxx(t, y)y

2(θσπt)
2 − γBx(t, z)θσπty,

the drift of Q(t, Y π,c
t ) takes the form

driftQ(t, Y π,c
t ) = β(t, Y π,c

t ) + ψ(t, Y π,c
t ) +

1

2
Uxx(t, Y

π,c
t )(Y π,c

t )2(ν2 + σ2)(π2t − 2πtπ
∗
t )

+
∼
V (t, (Ct)

θUx(t, Y
π,c
t )) + V (t, ĉtY

π,c
t )− ctY

π,c
t Ux(t, Y

π,c
t )−

∼
V (t, (Ct)

θUx(t, Y
π,c
t ))

The drift condition then writes as

β(t, y) = −ψ(t, y) + 1

2
Uxx(t, y)y

2(ν2 + σ2)(πt)
2 −

∼
V (t, (Ct)

θUx(t, y)),

which is coherent with (3.7) from Assumption 3.1.
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Optimality of the strategy - The optimal portfolio (3.23) for forward performance processes of

power type writes as:

π∗t =
1

ν2 + σ2

(
θσσπt +

δZW (t)ν

α
+
δZB(t)σ

α
+
µ− θσσπt

α

)
=

1

ν2 + σ2

(
θσσπt(1−

1

α
) +

1

α
(δZW (t)ν + δZB(t)σ + µ)

)
,

Multiplying both sides by σ and taking the conditional expectation with respect to FB
t leads

σπt = θ

(
1− 1

α

)
σ2

ν2 + σ2
σπt +

σ

α

δZW (t)ν ++δZB(t)σ + µ

ν2 + σ2

= ψθσπt + φσ,

where

ψσ = E

[
θ(1− 1

α
)

σ2

ν2 + σ2

]
, and φσ = E

[
σ

α

δZW (t)ν + δZB(t)σ + µ

ν2 + σ2

]
.

In fact, every variable above is measurable with respect to FMF
0 and thus independent of FB

t . Hence,

if ψσ ̸= 1, there exists a MF portfolio equilibrium π∗t given by (3.23) with σπ∗t =
φσ

1−ψσ .

Consumption equilibrium - According to the �rst order condition (3.24) and Proposition 3.1,

the optimal consumption process takes the form

c∗t =
1

α
(vt − (1− α)θct) =

1(
Ct
) θ(1−α)

α

(
ϕt
Zt

) 1
α

. (3.25)

The mean �eld equilibrium is de�ned with reference to the continuum of agents processes Xt, Ct, with

a �xed point identity. The last step to obtain the explicit formula of the optimal consumption process

in the mean-�eld framework is to use the compatibility condition (3.4) in order to express the geometric

average consumption of the continuum of agents Ct. Replacing c
∗
t with (3.25) leads

Ct = exp

(
E

[
log

(
1

(Ct)
θ(1−α)

α

(
ϕt
Zt

) 1
α

)
|FB
t

])
.

Since the process Ct is FB
t -adapted, we get

Ct = exp

(
E

[
1

α
log

(
ϕt
Zt

)
|FB
t

])
1

(Ct)
E
[
θ(1−α)

α

] ,
so that

Ct = exp

(
E

[
1

α
log

(
ϕt
Zt

)
|FB
t

]) 1

1+E

[
θ(1−α)

α

]
.

Replacing this expression in (3.25), we get an expression of the candidate optimal consumption process

for the mean �eld problem

c∗t = exp

(
E

[
1

α
log

(
ϕt
Zt

)
|FB
t

]) −θ(1−α)
α

1+E

[
θ(1−α)

α

](
ϕt
Zt

) 1
α

. (3.26)
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Nash equilibrium - Following the steps of the proof of Theorem 2.1, we exhibit the equilibrium

consumption strategy. Denote

b̃Z(t) = (1− α)δZB(t)θσπt − (1− α)

(
−θµπt +

θ

2
Σπ2t +

θ2

2
σπt

2

)
+

1

2
α(1− α)

(
(θσπt)

2 − (ν2 + σ2)(π∗t )
2
)
,

and Z̃t the associated Itô di�usion with drift b̃Z(t)

dZ̃t = Z̃t

(
b̃Z(t)dt+ δW,ZdWt + δB,ZdBt

)
. (3.27)

Then the linear dynamics of Z from Assumption 3.1 ensures that

Zt = Z̃t exp

(
−(1− α)θ

∫ t

0
c̄sds− α

∫ t

0
c∗sds

)
.

Replacing the above in the optimal candidate consumption in terms of the average consumption process

(3.26) leads

c∗t exp

(
−
∫ t

0
c∗sds

)
=
(
C̄t
)− θ(1−α)

α

(
ϕt

Z̃t

) 1
α

exp

(
(1− α)θ

α

∫ t

0
c̄sds

)
. (3.28)

Taking the logarithm, the conditional expectation with respect to FB
t and the exponent of the above

expression, we get

C̄t exp

(
−
∫ t

0
c̄sds

)
= exp

(
E

[
1

α
log

(
ϕt

Z̃t

)
|FB
t

])(
C̄t
)−E

[
θ(1−α)

α

]
exp

(
E

[
(1− α)θ

α

] ∫ t

0
c̄sds

)
.

Taking the inverse

(
C̄t
)−1

exp

(∫ t

0
c̄sds

)
= exp

 −1

1 + E
[
θ(1−α)
α

]E

[
1

α
log

(
ϕt

Z̃t

)
|FB
t

],
which replaced in (3.28) leads

c∗t exp

(
−
∫ t

0
c∗sds

)
=

(
ϕt

Z̃t

) 1
α

exp

−
θ(1−α)
α

1 + E
[
θ(1−α)
α

]E

[
1

α
log

(
ϕt

Z̃t

)
|FB
t

]. (3.29)

Denote At the right-hand side of the above equation and Kα,θ = −
θ(1−α)

α

1+E
[
θ(1−α)

α

] . The dynamics of this

process are more convenient to write in the mean-�eld framework. In fact, using Itô's formula

d log

(
ϕt

Z̃t

)
=

(
bϕ(t)− bZ̃(t) +

1

2

(∥∥∥δZ̃∥∥∥2 − ∥∥∥δϕ∥∥∥2))dt+ (δϕ(t)− δZ̃(t)).dW̄t, (3.30)

The Brownian motion B being independent from W and the type vector ζ, we get

dE

[
log

(
ϕt

Z̃t

)
|FB
t

]
= E

[
1

α
(bϕ(t)− bZ̃(t)) +

1

2
(
∥∥∥δZ̃(t)∥∥∥2 − ∥∥∥δϕ(t)∥∥∥2)]dt+ E

[
1

α
(δϕ,W (t)− δZ̃,W (t))

]
dWt.

On the other hand

d

(
ϕt

Z̃t

) 1
α

=

(
ϕt

Z̃t

) 1
α
[(

1

α
(bϕ(t)− bZ̃(t) +

1

2
(
1

α
− 1)

∥∥∥δϕ(t)∥∥∥2 + 1

2
(
1

α
+ 1)

∥∥∥δZ̃(t)∥∥∥2 − 2

α
δϕ(t).δZ̃(t)

)
dt

+
1

α

(
δϕ(t)− δZ̃(t)

)
.dW̄t

]
. (3.31)
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Finally, Itô's formula leads

dAt = At
(
bA(t)dt+ δA,W (t)dWt + δA,B(t)dBt

)
, (3.32)

where

bA(t) =
1

α

(
bϕ(t)− bZ̃(t) +

1

2
(
1

α
− 1)

∥∥∥δϕ(t)∥∥∥2 + 1

2
(
1

α
+ 1)

∥∥∥δZ̃(t)∥∥∥2 − 2

α
δϕ(t).δZ̃(t)

)
+Kα,θE

[
1

α

(
bϕ(t)− bZ̃(t) +

1

2
(
∥∥∥δZ̃(t)∥∥∥2 − ∥∥∥δϕ(t)∥∥∥2))]+ 1

2
K2
α,θE

[
1

α
(δϕ,W (t)− δZ̃,W (t))

]2
+
Kα,θ

α
E

[
1

α
(δϕ,W (t)− δZ̃,W (t))

]
(δϕ,W (t)− δZ̃,W (t))

δA,W (t) =
1

α
(δϕ,W (t)− δZ̃,W (t)) +Kα,θE

[
1

α
(δϕ,W (t)− δZ̃,W (t))

]
,

δA,B(t) =
1

α

(
δϕ,B(t)− δZ̃,B(t)

)
.

Similarly as in the proof of Theorem 2.1, there exists a unique continuous solution (c∗t )t≥0 to (3.29)

satisfying

dc∗t = c∗t
(
(bA(t) + c∗t )dt+ δA(t).dW̄t

)
. (3.33)

3.3 Examples of MF Nash equilibrium

In this section, we study the equilibrium consumption strategy (3.18) under two simplifying assump-

tions. First, assuming a proportional relationship between wealth and consumption utility, the optimal

strategy is FMF
0 − measurable. This provides a tractable example of a mean-�eld Nash equilibrium. If

the random time-dependent components of wealth and consumption utilities are non-linearly related

through a power function, we recover an equilibrium consumption with logistic-like dynamics.

Proportional market-risk preference - Condition (3.9) ensuring time consistency of the consid-

ered forward performance process is characterized by the ratio of consumption over wealth utility ϕt
Zt
.

It is natural to assume this fraction to be known for all times in order to decouple (3.9), with the

following assumption.

Assumption 3.2. ϕt = k(t)Zt, for some continuous function k : R+ → R+,∗.

We add the random variable k representing the distribution of this proportional factor over the

population to the type vector ζ, requiring that E[log(k(t))] < +∞ for all t ≥ 0.

Theorem 3.3. Under Assumptions 3.1 and 3.2, if ψσ ̸= 1, there exists a strong MF Nash equilibrium

strategy (π∗t , c
∗
t ) ∈ FMF

0 . The optimal portfolio is given by

π∗t =
1

ν2 + σ2

(
θσ(1− 1

α
)

φσ

1− ψσ
+

1

α
(δZW (t)ν + δZB(t)σ + µ)

)
, (3.34)

and the optimal consumption is given by

c∗t = exp

 −θ(1−α)
α

1 + E
[
θ(1−α)
α

]E

[
log(k(t))

α

]k(t) 1
α . (3.35)
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Note that under Assumption 3.2, the drift condition (3.9) is independent of Z. The existence of a

solution to the SDE (3.6) and thus of a forward utility of separable power type is straightforward.

Proof. The proof is the same as the one of Theorem 3.2, where the conditional expectation with respect

to the common noise are replaced with expectations. Under Assumption 3.2, the ratio ϕt
Zt

= k(t) ∈
FMF
0 , so that the optimal strategy only depends on the type vector ζ.

The forward relative performance process with non-zero volatility framework thus leads to a strong

Nash equilibrium with an optimal portfolio whose time dependence relies on the volatility parameters

δBt and δWt , and an optimal consumption which depends on time through the market-risk proportional

preference parameter kt. In contrast, in the zero volatility forward utility framework, [7] and [21] exhibit

a strong equilibrium strategy with constant portfolio and time dependent consumption process, also

function of the ratio ϕt
Zt
. This justi�es Assumption 3.2 when investigating the existence of a strong

mean-�eld Nash equilibrium.

Remark 3.1. The mean �eld equilibrium strategy (π∗, c∗) is in fact the limit as n goes to in�nity of

the n player equilibrium strategies (2.9) and (2.10), presented in the �rst section.

Relative market-consumption preference - One can also consider a non-linear dependence of

power type between wealth and consumption utility.

Assumption 3.3. ϕt = Z1−κ
t , where κ ∈ R is called the risk relative consumption preference parameter.

Injecting this condition in the proof of Theorem 3.2, one can show that (3.28) rewrites as:

c∗t exp

(
−κ
∫ t

0
c∗sds

)
= (C̄t)

1
E[κ]

×−θ(1−α)
α

E[κ]
(Z̃t)

−κ
α exp

(
κ(1− α)θ

α

∫ t

0
c̄sds

)
. (3.36)

Thus, the decoupling of the above equation is possible assuming that κ = E[κ]. This restrictive as-

sumption also appear in [7] for technical reasons and imposes that every agent in the population share

the same preference regarding relative importance of wealth and consumption utility. The risk relative

consumption preference parameter κ allows to control the quadratic growth of the Nash equilibrium

consumption process.

Theorem 3.4. Suppose that Assumptions 3.1 and 3.3 hold with market risk relative preference param-

eter κ common to all agents. If ψσ ̸= 1, there exists a unique candidate MF Nash equilibrium strategy

(π∗t , c
∗
t ). The optimal portfolio is given by

π∗t =
1

ν2 + σ2

(
θσ(1− 1

α
)

φσ

1− ψσ
+

1

α
(δZW (t)ν + δZB(t)σ + µ)

)
, (3.37)

and the optimal candidate consumption process (c∗t )t≥0 satis�es

dc∗t = c∗t
(
(bA(t) + κc∗t )dt+ δA(t).dW̄t

)
. (3.38)

Proof. Following the proof of Theorem 3.2 with κ deterministic in (3.36), we obtain

c∗t exp

(
−κ
∫ t

0
c∗sds

)
= Z̃t

− κ
α exp

 κθ(1−α)
α

1 + E
[
θ(1−α)
α

]E

[
log(Z̃t)

α
|FB
t

] := At. (3.39)
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Applying Itô's formula, we compute

d(Z̃t
−κ
α ) = Z̃t

−κ
α

[(
1

2

κ

α

(κ
α
+ 1
)∥∥∥δZ̃t ∥∥∥2 − κ

α
bZ̃t

)
dt− κ

α
δZ̃t .dW̄t

]
,

and,

dE
[
log(Z̃t)|FB

t

]
= E

[
bZ̃t − 1

2

∥∥∥δZ̃t ∥∥∥2]dt+ E
[
δZ̃,Bt

]
dBt.

Finally, the process At has log-normal dynamics where

bAt =
1

2

κ

α

(κ
α
+ 1
)∥∥∥δZ̃∥∥∥2 − κ

α
bZ̃t − κKα,θE

[
1

α

]
E

[
bZ̃t − 1

2

∥∥∥δZ̃t ∥∥∥2]
+

1

2

(
κKα,θE

[
1

α

])2

E
[
δ

˜Z,B
t

]2
+
κ2

α
Kα,θE

[
1

α

]
δZ̃,Bt E

[
δZ̃,Bt

]
, (3.40)

and

δA,Bt = −κ
α
δZ̃,Bt − κKα,θE

[
1

α

]
E
[
δZ̃,Bt

]
, (3.41)

δA,Wt = −κ
α
δZ̃,Wt . (3.42)

Then, the process c∗t with dynamics

dc∗t = c∗t
(
(bA(t) + κc∗t )dt+ δA(t).dW̄t

)
,

is solution to equation (3.39).

4 Discussion of the equilibrium

In the next section, we discuss the equilibrium obtained in the mean �eld optimization problem in the

framework of relative performance processes. We investigate the dependence of the optimal strategy

(π∗t , c
∗
t ) given in (3.26) on the di�erent parameters of the model.

4.1 Investment strategy

The optimal investment strategy in the mean �eld optimization problem in the CRRA relative perfor-

mance process framework depends on time only through the volatility parameters of wealth's utility

U , namely δZW , δ
Z
B. In fact, the optimal investment π∗t writes as a sum of π1,∗t and π2,∗t where:

π1,∗t =
1

ν2 + σ2
θσ

(
1− 1

α

)
φσ

1− ψσ
and π2,∗t =

δZW (t)ν + δZB(t)σ + µ

α(ν2 + σ2)
. (4.1)

In comparison, in the determinist CRRA utility framework of [22], [21] and the forward CRRA utility

with null volatility model of [7], the authors provide a time-independent optimal investment strategy.

The e�ect of competition on the optimal strategy is captured by the negative quantity π1,∗t . Note

that, as in [22], the optimal portfolio given by (3.17) is a decreasing function of the competition

parameter θ. This implies that the more an agent cares about relative performance rather than
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absolute, the smaller her optimal portfolio allocation will be. As θ goes to zero, the optimal portfolio

converges to a limit process π2,∗t which is the optimal strategy in the non-competitive framework [9].

As α ∈ [0, 1] decreases to 0, the time dependent quantity π2,∗t increases. Thus, the portfolio

allocation tends to be more variable in time for risk seeking agent. Moreover, π1,∗t is also decreasing

as α goes to 0, so that a risk seeking agent will see her optimal investment strategy more in�uenced

by competition.

One major feature of this result is that the equilibrium portfolio for the MF Nash equilibrium does

not depend on the relative importance the agents give to utility from wealth compared to consumption.

Conversely, we will see in Section 4.2 that the optimal consumption rate heavily depend on this

preference, characterized by the ratio ϕt
Zt
.

Single stock - Assume that (ν, σ, µ) are deterministic with ν = 0. This corresponds to the situation

of a single stock in which all agents trade. The optimal portfolio (3.17) can be rewritten as a function

of Kα,θ de�ned in (3.13), as

π∗t =
1

σ2

(
E

[
δZB(t)σ + µ

α

]
Kα,θ +

δZB(t)σ + µ

α

)
. (4.2)

The term π∗,2t =
δZB(t)σ+µ

σ2α
is the optimal investment when there is no competition, coherent with [9].

This strategy is corrected in presence of competition, with π∗,2t = 1
σ2 E
[
δZB(t)σ+µ

α

]
Kα,θ. The magnitude

of correction is de�ned by the coe�cient Kα,θ which we represent in Figure 1. Observe that for a �xed

risk aversion, the magnitude of the correction Kα,θ grows linearly in θ.

Figure 1. Kα,θ function of risk aversion α and

competition parameter θ

Figure 2. Optimal investment for µ = 0.3,

σ = 1, δB = E[δB] = 0.5 , E
[
1
α

]
= 2 and

E[θ] = 0.7.

We plot the equilibrium portfolio strategy as a function of α and θ in Figure 2. For α close to

1, the optimal investment is almost constant with respect to θ. The optimal strategy of a risk averse

agent does not vary much around π∗,2t , when having relative performance concerns. For α close to 0,

the optimal portfolio allocation π∗t is decreasing in θ. Risk seeking agents tend to invest more when

with low interest in relative performance, and decrease their investment when competing.
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4.2 Consumption strategy

Let us now turn our attention to the optimal consumption process c∗t given by (3.26). This equilibrium

strategy is random, driven by the process ϕt
Zt
, which represents the weight the representative agent

gives to her utility from consumption, relatively to her wealth utility.

Proportional market-risk preference equilibrium - Let's assume that every agent have a utility

from consumption proportional to their utility from wealth, that is ϕt = KZt, for some positive real

random variable K such that E[log(K)] < +∞, that we add in the type vector ζ. This assumption

allows to decouple the drift constraints, giving a constant value to the ratio ϕt
Zt
. The optimal consump-

tion process c∗t is then time independent, function of K, the competition parameter θ and the risk

aversion α. The optimal consumption rate takes the form

c∗t = exp

(
log(K)

α
+Kα,θE

[
log(K)

α

])
, with Kα,θ = −

θ(1−α)
α

1 + E
[
θ(1−α)
α

] . (4.3)

The value of the MF Nash equilibrium consumption thus depends on the di�erence between the loga-

rithm of the proportional market consumption preference parameter and its geometric average among

the population, with speci�c coe�cient representing the risk aversion and the competition between

agents. The MF Nash equilibrium when θ = 0 is given by

c∗,NCt = exp

(
log(K)

α

)
. (4.4)

In other words, the optimal consumption rate (4.3) is the optimal rate of consumption c∗,NCt , corrected

in the presence of competition by a term relative to the investment preference of the population

E
[
log(K)
α

]
. The magnitude of the correction is determined by the quantity Kα,θ, represented in Figure

1.

The situation where E[log(K)] = 0, meaning that on average, the continuum of agents prefers

neither consumption nor wealth utility coincides with the case with no consumption. Then, if the

representative agent prefers consumption to wealth utility that is log(K) > 0,

- c∗,NCt →
α→0

+∞, meaning that risk seeking agents tends to consume more in this setting,

- c∗,NCt →
α→1

K, so the optimal consumption rate goes to the proportional market consumption

preference parameter K as the risk aversion parameter goes to 1.

Conversely, if the representative agent prefers wealth to consumption, meaning that log(K) < 0, then

c∗,NCt →
α→0

0 the optimal consumption of risk seeking agents goes to 0. This re�ects that risk seeking

agents in this situation prefer to invest more in their portfolio strategy rather than in consumption.

The limit behavior with α of the optimal consumption is the same as before for risk averse agents.

- If E[log(K)] < 0, on average agents in the population prefer wealth utility to consumption, then

Kα,θE
[
log(K)
α

]
> 0 and c∗t ≥ c∗,NCt . In other words, the optimal consumption rate is an increasing

function of the competition parameter θ.
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- If E[log(K)] > 0, in geometric average, the continuum of agents prefers consumption to wealth

utility, then Kα,θE
[
log(K)
α

]
< 0 and c∗t ≤ c∗,NCt . The optimal consumption rate is then a decreas-

ing function of the competition parameter θ.

Figure 3. Optimal consumption for

E log(K) = −0.5, E[θ] = 0.7, E
[
1
α

]
= 2 and

K = 1.4.

Figure 4. Optimal consumption for

E log(K) = 0.5, E[θ] = 0.7, E
[
1
α

]
= 2 and

K = 1.4.

Figure 5. Optimal consumption for K = 1.4 and |E log(K)| = 0.5
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Figure 6. Optimal consumption for K = 0.7 and |E log(K)| = 0.5

Relative market-consumption preference parameter - Taking κ < 0 leads to the logistic SDE

with global solution, for which results on asymptotic behavior exist (see [18], [13]). In the following,

we assume for simplicity that the local characteristics bA, δA,B and δA,W are time independent and

denote q = 1
2 − bA

∥δA∥2
.

Proposition 4.1. Equation (3.38) admits a strong global solution c∗t given by

c∗t =

exp

(
(bA − ∥δA∥2

2 )t+ δA.dW̄t

)
1− κ

∫ t

0
exp

(
(bA −

∥∥δA∥∥2
2

)s+ δA.dW̄s

)
ds

(4.5)

- If q < 0, ct converges in law towards a Gamma distribution with shape parameter −2q and scale
∥δA∥2

2|κ| .

- If q > 0, the di�usion goes to 0 almost surely.

With the characteristics given by (3.40), (3.41) and (3.42), q < 0 if and only if 0 < bA − ∥δA∥2

2 ,

which using Kα,θ de�ned in (3.13) is equivalent to

0 <
1

α

bZ̃ −

∥∥∥δZ̃∥∥∥2
2

+Kα,θE

[
1

α

]
E

bZ̃ −

∥∥∥δZ̃∥∥∥2
2

. (4.6)

The asymptotic behavior of the equilibrium consumption rate thus depends on the di�erence between

the drift of the logarithm of wealth utility when there is no consumption and its average among the

population, with speci�c coe�cients re�ecting risk aversion and competition. Moreover, in the situation

where the optimal consumption rate converges in law towards a Gamma distribution with parameters
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(−2q,
∥δA∥2

2|κ| ), the asymptotic consumption rate is given by

E[c∞] = −2q

∥∥δA∥∥2
2|κ|

=
1

|κ|

 1

α

bZ̃ −

∥∥∥δZ̃∥∥∥2
2

+Kα,θE

[
1

α

]
E

bZ̃ −

∥∥∥δZ̃∥∥∥2
2


. (4.7)

Figure 7. Simulated paths of the equilibrium consumption rate process.

Note the similarity between (4.6) and the strong MF equilibrium consumption, where this time

the sign of the quantity R = bZ̃ −
∥∥∥δZ̃∥∥∥2

2 and its expectation re�ects the agent and the population's

preference regarding consumption or wealth utility. In fact,

- if R > 0 implies that log(Z̃) has positive drift so that Z̃ tends to increase in time. Since Z̃t starts

from 1 at time t = 0 and κ < 0, for t large enough, we will have ϕt = Z̃t
1−κ

> Z̃t almost surely.

In this setting, the agent asymptotically prefers consumption to wealth utility.

- Conversely, if R < 0, the process Z̃t tends to decrease over time so that for t large enough,

ϕt < Z̃t almost surely. In this case, the agent thus prefers wealth to consumption.
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A Regular random �eld spaces

There are several di�culties in the de�nition of semimartingales F (t, x) depending on a parameter and

their local characteristics (β, γ).

1. The �rst one is relative to the existence of a continuous modi�cation of the random �eld F .

According to the works of Kunita [20], such a modi�cation exists when the local characteristics

(β, γ) are locally δ-Holder, for some δ > 0 by Kolmogorov's criterion.

2. The second one is relative to di�erential properties: even if the random �eld F and its local

characteristics (β, γ) are di�erentiable, it is not enough to ensure that the local characteristics

of the derivative random �eld Fx are (βx, γx).

In this section, we introduce Sobolev-type seminorms and associated spaces to control, locally or

globally, the growth of a random �eld and its derivatives.

De�nition of seminorms - Let β be a Rk-valued forward random �eld of class Cm,δ(]0,+∞[), with

m a nonnegative integer and δ a number in (0, 1], i.e β is m times di�erentiable in x and its mth

derivative is δ-Hölder, for any t, almost surely.

We need to control the asymptotic behavior in 0 and ∞ of β, and the regularity of its Hölder

derivatives when they exist. We then introduce the following seminorms: for any K ⊂]0,+∞[, we

de�ne the family of random Hölder K-seminorms:

∥β∥m,K(t, ω) = sup
x∈K

∥β(t, x, ω)∥
x

+
∑

1≤j≤m
sup
x∈K

∥∥∂jxβ(t, x, ω)∥∥ (A.1)

∥β∥m,δ,K(t, ω) = ∥β∥m,K(t, ω) + sup
x,y∈K

∥∂mx β(t, x, ω)− ∂mx β(t, y, ω)∥
|x− y|δ

(A.2)

These random seminorms allow to keep a control on the function, its partial derivatives and its Hölder

regularity, with mainly two purposes:

� the control on the partial derivatives of β up to m together with the Brownian integrals approx-

imation presented in [17], will allow to di�erentiate, pass to the limit and commute limit and

integral for random �elds.

� Hölder regularity is also required so that we can apply Kolmogorov's theorem, in order to work

with a continuous modi�cation of β.

Associated function spaces - The previous norms are related to the space parameter. We add

the temporal dimension by requiring these seminorms (or their square) to be integrable in time with

respect to Lebesgue measure on [0, T ]. We then de�ne the following sets:

1. Km
loc

(resp. K
m
loc) denotes the set of C

m-random �elds β such that β
x and ∂kxβ for k ≤ m are L1

(resp. L2)-locally bounded, that is for any compact K ⊂]0,+∞[ and any T ,∫ T

0
∥β∥m,K(t, ω) <∞,

(
resp.

∫ T

0
∥β∥2m,K(t, ω) <∞.

)
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2. Km,δ
loc

(resp. K
m,δ
loc ) denotes the set of C

m,δ-random �elds such that for any compact K ⊂]0,+∞[

and any T , ∫ T

0
∥β∥m,δ,K(t, ω) <∞,

(
resp.

∫ T

0
∥β∥2m,δ,K(t, ω) <∞.

)
3. When these norms are de�ned on the whole space ]0,+∞[, the derivatives up to a certain order

are bounded in the spatial parameter, with an integrable (resp. square integrable) random bound,

so that we use the notation Km
b , K

m
b or Kδ,m

b , K
m,δ
b .

Itô-Ventzel's formula - The study of the martingale optimality condition of De�nition 1.1 in

the framework of forward performance process requires the use of Itô-Ventzel's formula. This is an

extension of Itô's formula, allowing to compute the dynamics of compounds of random �elds.

Theorem A.1. Consider a K2
loc semimartingale G with local characteristics (ϕ, ψ). For any continuous

Itô semimartingale X, the compound G(., X) is a continuous Itô semimartingale satisfying

dG(t,Xt) = ϕ(t,Xt)dt+ ψ(t,Xt).dWt +Gx(t,Xt)dXt +
1

2
Gxx(t,Xt)⟨dXt⟩+ ⟨dGx(t, x), dXt⟩|x=Xt

. (A.3)

The decomposition of G(t,Xt) appears to be the sum of three terms. The �rst one is the time

di�erential of G, the second one is the usual Itô's formula without di�erentiation in time and the third

one is the in�nitesimal covariation between the martingale parts of Gx and the one of X. Note that

when G has �nite variation, that is ψ(t, x) = 0 and ϕ(t, x) = Gt(t, x), we recover the classical Itô's

formula.

Di�erentiability of Itô random �elds The following result characterizes the regularity of an Itô

semimartingale random �eld:

F (t, x) = F (0, x) +

∫ t

0
β(s, x)ds+

∫ t

0
γ(s, x)dWs,

with the regularity of its local characteristics (β, γ).

Theorem A.2. (Di�erential rules) Let F be an Itô semimartingale random �eld with local character-

istics (β, γ) i.e:

F (x, t) = F (x, 0) +

∫ t

0
β(x, s)ds+

∫ t

0
γ(x, s)dWs. (A.4)

1. If F is a Km,δ
loc

-semimartingale for some m > 0, δ ∈ (0, 1], its local characteristics (a, b) are of

class Km,ϵ
loc

×K
m,ϵ
loc for any ϵ < δ.

2. Conversely, if the local characteristics (β, γ) are of class Km,δ
loc

× K
m,δ
loc , then F is a Km,ϵ

loc
-

semimartingale, for any δ < ϵ.

3. In any case, for m ≥ 1, δ ∈ (0, 1], the derivative random �eld Fx is an Itô random �eld with local

characteristics (βx, γx).

4. Moreover, if F is a K1,δ
loc

∩C2-semimartingale, then for any Itô process X, F (X, .) is a continuous

Itô semimartingale satisfying the Itô-Ventzel formula.
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B Some formulas of the n-agent problem

For the sake of completeness, we provide explicit formulas for the following quantities:

µπt
(−i) =

1

n− 1

n∑
k ̸=i

µkπ
k
t Σπ2t

(−i)
=

1

n− 1

n∑
k ̸=i

Σk(π
k
t )

2

σπt
(−i) =

1

n− 1

n∑
k ̸=i

σkπ
k
t (νπt)2

(−i)
=

1

n− 1

n∑
k ̸=i

(νkπ
k
t )

2.

For µπt, multiplying the optimal strategy (2.9) with µi and averaging over i = 1, ..., n, one can write:

µπt = ψµnσπt + ϕµn = ψµn
φσn

1− ψσn
+ ϕµn, (B.1)

where:

ψµn =
1

n− 1

n∑
k=1

µkσkθk(1− 1
αk

)

ν2k + σ2k

(
1 +

θk(1− 1
αk

)

n−1

) and ϕµn =
1

n

n∑
k=1

µk
αk

(
δZ

k

W (t)νk + δZ
k

B (t)σk + µk

)
ν2k + σ2k

(
1 +

θk(1− 1
αk

)

n−1

) . (B.2)

Then, we can write µπt
(−i) = n

n−1µπt −
1

n−1µiπ
i
t. For the two other quantities:

(νπt)2 =
1

n

n∑
k=1

νkσkθk(1− 1
αk

) n
n−1

φσ
n

1−ψσ
n
+ νk

αk

(
δZ

k

W (t)νk + δZ
k

B (t)σk + µk

)
ν2k + σ2k(1 +

θk(1− 1
αk

)

n−1 )


2

,

so that (νπt)2
(−i)

= n
n−1(νπt)

2 − 1
n−1(νiπ

i
t)

2. Then for Σπ2t = (νπt)2 + (σπt)2 and as before:

(σπt)2 =
1

n

n∑
k=1

σ2kθk(1− 1
αk

) n
n−1

φσ
n

1−ψσ
n
+ σk

αk

(
δZ

k

W (t)νk + δZ
k

B (t)σk + µk

)
ν2k + σ2k(1 +

θk(1− 1
αk

)

n−1 )


2

,

so that Σπ2t
(−i)

= n
n−1Σπ

2
t − 1

n−1(ν
2
i + σ2i )(π

i
t)

2.
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