
HAL Id: hal-04690154
https://hal.science/hal-04690154

Submitted on 6 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Exploiting Processor Heterogeneity to Improve
Throughput and Reduce Latency for Deep Neural

Network Inference
Olivier Beaumont, Jean-François David, Lionel Eyraud-Dubois, Samuel

Thibault

To cite this version:
Olivier Beaumont, Jean-François David, Lionel Eyraud-Dubois, Samuel Thibault. Exploiting Proces-
sor Heterogeneity to Improve Throughput and Reduce Latency for Deep Neural Network Inference.
SBAC-PAD 2024 - IEEE 36th International Symposium on Computer Architecture and High Perfor-
mance Computing, Nov 2024, Hilo, Hawaii, United States. �hal-04690154�

https://hal.science/hal-04690154
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Exploiting Processor Heterogeneity to Improve
Throughput and Reduce Latency for Deep Neural

Network Inference
Olivier Beaumont∗, Jean-François David∗, Lionel Eyraud-Dubois∗, Samuel Thibault†

∗Inria Center of the University of Bordeaux, Bordeaux, France
Email: {olivier.beaumont, jean-francois.david, lionel.eyraud-dubois}@inria.fr

†University of Bordeaux, Bordeaux, France
Email: samuel.thibault@u-bordeaux.fr

Abstract—The growing popularity of Deep Neural Networks
(DNNs) in a variety of domains, including computer vision, nat-
ural language processing, and predictive analytics, has led to an
increase in the demand for computing resources. Graphics Pro-
cessing Units (GPUs) are widely used for training and inference of
DNNs. However, this exclusive use can quickly lead to saturation
of GPU resources while CPU resources remain underutilized.
This paper proposes a performance evaluation of a solution that
exploits processor heterogeneity by combining the computational
power of GPUs and CPUs. A solution is proposed for distributing
the computational load across the different processors to optimize
their utilization and achieve better performance. A solution for
partitioning a DNN model with different computational resources
is proposed. This solution transfers part of the load from the
GPUs to the CPUs when necessary to reduce latency and increase
throughput. The partitioning of DNN models is performed using
METIS to balance the computational load to be distributed
among the different resources while minimizing communication.
The experimental results show that latency and throughput are
improved for a number of DNN models. Potential applications
include real-time processing systems such as autonomous vehicles,
drones, and video surveillance systems where minimizing latency
and maximizing throughput are critical.

Index Terms—dynamic scheduling, graph partitioning, hetero-
geneous computing, latency optimization, real-time systems

I. INTRODUCTION

The use of deep neural networks (DNNs) in a variety of
domains, including computer vision, natural language pro-
cessing, and predictive analytics, has led to an increase in
the demand for computational resources. This is evidenced
by the findings of Thompson et al. [28], who observed a
growing need for more powerful computing platforms to meet
the demands of DNN training and inference. Traditionally,
Graphics Processing Units (GPUs) have been the privileged
choice for training and inference of DNNs due to their high
computational power and efficiency. In this context, inference
refers to the process of using a pre-trained DNN model to
make predictions about new data. Using GPUs exclusively for
inference tasks can lead to scenarios where GPU resources
become saturated while CPU resources remain underutilized.

While several effective approaches have been proposed, they
are typically limited in their ability to balance the computa-
tional load between GPUs and CPUs. This underutilization

of resources has a detrimental effect on the overall system
performance, especially in real-time processing environments
where latency (time to compute an inference including data
transfers) and throughput (number of inferences per unit time)
are critical performance metrics.

In this context, we propose a solution to efficiently exploit
processor heterogeneity by combining both GPUs and CPUs
in order to leverage the performance of the system. To control
latency when using both ”slow” CPUs and ”fast” GPUs, we
rely on partitioning a DNN model into two segments with
different computational loads. The methodology also relies
on the use of the dynamic runtime scheduler StarPU [5] to
optimize the utilization of computational resources and to
efficiently overlap communication and computation. We rely
on METIS [18] for graph partitioning, which allows parti-
tioning with varying computational loads while minimizing
data transfer costs between partitions. Finally, to optimize
our partitioned DNN models for inference, we use ONNX
Runtime [10].

The specific contributions of our work are as follows:
• Detailed analysis of CPU core grouping to optimize

resource utilization and improve performance.
• Methodology for partitioning DNN models using METIS

to balance the computational load between GPUs and
CPUs.

• Demonstration of performance gains in terms of latency
and throughput across various configurations and neural
network models.

The applications of this approach include systems requiring
real-time processing such as autonomous vehicles, drones, and
video surveillance systems, where latency minimization and
throughput maximization are crucial objectives.

The following is a description of the organization of this
paper: Section II provides an overview of the motivation
and related work, while Section III presents the StarONNX
approach. SectionIV covers the Optimized Inference Request
Batching strategy. Section V addresses the topic of CPU core
grouping. The section VI discusses the partitioning strategy
of DNN models in the context of heterogeneous resources.
Section VII examines the impact of multiple CUDA streaming

on the performance. Section VIII proposes an experimental
comparison of StarONXX against the Nvidia Inference Server
Triton [1]. In conclusion, Section IX presents suggestions for
future research.

II. MOTIVATION AND RELATED WORK

A. Motivation

Our solution aims to be applicable to a wide range of models
and scenarios where maximizing throughput and minimizing
latency are both critical.

There are a number of challenges associated with the
exclusive use of GPUs. First, as models become more complex
and data resolution increases, GPU memory can become
scarce. Conversely, CPUs are often ignored due to their lower
computational capacity [4][19], resulting in a global underuti-
lization of available resources. In [28] and [27], the authors
emphasize that the computational load related to inference and
training will soon become prohibitive in technical, economic,
and environmental terms, requiring the community to explore
novel concepts or adopt more energy-efficient methods.

These challenges underscore the need to leverage other well-
known approaches in the HPC world, such as those proposed
by [24], [25], [21], which exploit heterogeneous computing
architectures to use both GPUs and CPUs. By exploiting the
complementarity of these two architectures, we will show
that it is possible to distribute the computational load in an
appropriate manner with minimal impact on latency, relying
on DNN models partitioning.

B. Related Work

Optimization of DNN inference has been studied exten-
sively, and a variety of approaches have been employed with
the goal of maximizing resource utilization and reducing
latency. Non-academic solutions for inference servers include
several robust options. TensorFlow Serving, designed for
deploying TensorFlow models, is an example of a solution
designed specifically for this purpose. Amazon SageMaker,
which is designed for large-scale model training and de-
ployment. Azure ML is proposed for deployment on the
Azure cloud. In this paper, we focus our comparison on the
NVIDIA Triton Inference Server https://developer.nvidia.com/
triton-inference-server.

With respect to throughput optimization, several solutions
have been proposed. InferLine [8] is a system that optimizes
and manages pipelining to meet latency constraints. InferLine
provides an automated parameter selection process and a dy-
namic resource adjustment mechanism to respond to variations
in request throughput. [12] optimizes video streaming for DNN
applications. It dynamically adjusts video quality based on in-
ference requirements. To maximize throughput, [29] employs
a dynamic GPU cache, hierarchical memory architecture, and
asynchronous updates. The Proteus [3] system implements a
DNN to adaptively adjust the throughput of inference requests.
In addition, they propose an adaptive batching algorithm
to handle variations in request arrival times. Some studies
concentrate on energy efficiency and resource management.

As shown by [15], the energy efficiency of a system can be
improved by grouping requests into larger batches. The system
we propose automatically adapts the batch size to the request
input rate. The approach proposed in [13] improves the quality
of service (QoS) by dynamically adjusting the batch size and
DNN model selection, at the expense of accuracy. In this
paper, we do not consider the possibility of modifying model
accuracy to cope with high throughput, but rather optimize the
use of resources. The combination of these approaches is left
for future work.

The use of parallel GPUs to optimize throughput has
been considered in several papers. AlpaServe [22] optimizes
resource utilization by serving multiple models through model
multiplexing and parallelism. In a serverless environment,
AMPS-Inf [16] proposes a partitioning approach for inferring
large models. [31] addresses the issue of optimizing multi-
tenant inference on GPUs by considering the concurrency
of operations from different models on the GPU. Other ap-
proaches include AxoNN [9], which schedules neural network
inference across different accelerators to balance performance
and energy consumption. GSLICE [11] is a GPU-based frame-
work that optimizes the use of GPU resources for infer-
ence computations. It uses a number of strategies, including
adaptive batching and spatial multiplexing. The REEF [14]
layer-by-layer scheduling system for DNN inference on GPUs
prioritizes critical tasks by preempting less important tasks in
real time. Finally, HIOS [20] optimizes the real-time inference
latency of deep learning models across multiple GPUs through
a hierarchical inter-operator scheduler.

LaLaRAND [17] improves real-time scheduling of DNN
tasks on CPUs and GPUs through CPU-adaptive quantization.
In their study, the authors of [2] investigate the potential of
alternating execution between CPU and GPU for embedded
devices. Their results indicate that some DNN operations can
be processed more efficiently on the CPU than on the GPU,
depending on the size of the input data. In their study, Wu
et al. [30] propose a pipeline scheduling method to optimize
CNN inference on heterogeneous multicore systems. Their
approach uses an iterative bi-partitioning strategy to evenly
distribute layers across CPU cores, thereby reducing latency
and increasing throughput. The present paper follows this line
of research and proposes to optimize the use of heterogeneous
resources based on model partitioning and efficient resource
utilization (through CPU core grouping and the use of GPU
multi-stream).

III. OVERVIEW OF ONNX AND STARPU INTEGRATION IN
STARONNX

This section introduces the main features of ONNX [10] and
StarPU [5]. StarONNX, which was described in [6], integrates
both runtimes to take advantage of both CPUs and GPUs for
inference.

A. ONNX Runtime

ONNX Runtime [10] is an open source platform for the
optimization and execution of DNN inference. It provides ex-

https://developer.nvidia.com/triton-inference-server
https://developer.nvidia.com/triton-inference-server

cellent interoperability through its compatibility with multiple
frameworks, including PyTorch and TensorFlow, by converting
a DNN model into the ONNX format. This enables the direct
use of pre-trained models from PyTorch and TensorFlow, while
taking advantage of the performance and optimization benefits
of the ONNX runtime.

In terms of performance, the runtime has been optimized
for use on a variety of hardware platforms, including CPUs,
GPUs, and other hardware accelerators. ONNX Runtime’s
general-purpose and processor-specific optimizations for DNN
models1, such as operator fusion and compiled graphs, re-
duce computation time. As a result, the optimizations for
deployment on CPUs are different from those for deploy-
ment on GPUs. These software and hardware optimizations
ensure optimal performance for model deployment compared
to PyTorch and TensorFlow, which prioritize development and
experimentation.

However, there are some limitations when using ONNX
Runtime. An ONNX Runtime session is an instance created
to run an ONNX model and contains all the information
necessary for that execution, including model parameters and
configuration. An ONNX Runtime provider refers to the
backend used for model execution, such as CUDA for NVIDIA
GPUs, which improve performance based on the available
hardware. For example, the initial step of initializing ONNX
Runtime sessions and memory is particularly expensive when
using the CUDA provider. This makes dynamic batch size
changes challenging, as each size change requires a reset to
reallocate memory, impacting latency.

B. StarPU

StarPU [5] is a runtime that enables the scheduling and
execution of tasks on heterogeneous architectures, including
CPUs, GPUs, and other hardware accelerators. StarPU pro-
vides great flexibility in managing tasks and data. It is unique
in its ability to model task performance based on a perfor-
mance history. This history allows prediction of execution
times and data transfers, which in turn facilitates dynamic
scheduling of tasks based on the current workload and other
details about the overall system state. Another notable feature
of StarPU is its support for automatic dependency management
between tasks. The automatically generated task graph allows
StarPU to identify dependencies between tasks. Furthermore,
the runtime supports dynamic task scheduling. This capability
is accompanied by the ability to perform asynchronous and
overlapping data transfers, allowing data transfers to overlap
with computations. As a result, StarPU can reduce idle re-
source time by ensuring that the necessary data for upcoming
tasks is available in advance.

However, there are challenges to using StarPU. Implement-
ing accurate performance models for each type of task can be
complex, requiring a deep understanding of hardware charac-
teristics and specific workloads. Furthermore, while StarPU is

1https://onnxruntime.ai/docs/performance/model-optimizations/
graph-optimizations.html

capable of automatically managing data transfers and depen-
dencies, the initial configuration for complex applications may
require development effort.

C. StarONNX
StarONNX [6] integrates the ONNX runtime with StarPU

for dynamic management of heterogeneous computing re-
sources, including CPUs and GPUs. This integration enables
better resource utilization by dynamically scheduling infer-
ence tasks across different types of hardware, leveraging the
strengths of both runtimes. StarONNX can be used with a
partitioned model, where each part of the model is seen
by StarPU as a task, for which StarONNX can produce an
executable version on each resource type.

In this paper, we introduce the possibility to additionally
partition the computing resources themselves and to partition
the model accordingly. During deployment, an initialization
phase is initiated, during which the CPU cores are grouped and
the threads used by ONNX Runtime and StarPU are identified,
including the binding of the CPU cores. A new ONNX
Runtime session is created for each partition and processor,
and the sessions are then connected to the same GPU streams.
After allocating the requested memory and compiling the
model, a second phase initializes the performance history.
Once these steps are complete, the inference server can be
launched.

Figure 1 shows the architectural framework of StarONNX,
along with an illustrative example of inference on a model
partitioned into two distinct parts.

When the application receives an inference request, the
request generates two different StarPU tasks, one for each
partition. In the initial phase of the process, the two tasks
are submitted to the scheduler. StarPU is able to detect
dependencies between tasks. In this case, the output data from
the first partition is used as input for the second, indicating
that the first task must be run before the second.

Suppose the scheduler selects the GPU to run the first
task based on a number of criteria, including queue length,
performance history, system state, and so on. In Steps 3,
4, and 5, the data for the initial task is prefetched in case
the GPU is busy with other computations. When the GPU
becomes available, it initiates processing of the initial task via
the ONNX Runtime CUDA provider.

Meanwhile, assume that in step 6, the scheduler determines
that the second task should be placed on the CPU. Then in
steps 7, 8 and 9 the data is transferred to the CPU. In step
10, the GPU completes the computation of the first task and
sends the results to the CPU. If the CPU is busy processing
other tasks, the data is prefetched. In the absence of further
instructions, the CPU initiates the processing of the second
task, resulting in the transfer of the inference result to the
application.

IV. OPTIMIZED INFERENCE REQUEST BATCHING

This section outlines a scenario in which StarONNX could
potentially be employed in the processing of inference re-
quests.

https://onnxruntime.ai/docs/performance/model-optimizations/graph-optimizations.html
https://onnxruntime.ai/docs/performance/model-optimizations/graph-optimizations.html

CPU
Execution
Provider

CUDA
Execution
Provider

StarONNX

OutputInput

CPU

CPU
driver

GPU

Memory
Management

Scheduling engine

RAM

GPU session GPU session

Transfert the ouput
to the CPU

1 1

2 6

3 7GPU
driver

4 8

5

10

9

Tsk 1 Tsk 2

Tsk 1

Tsk 1

Tsk 1

Tsk 2

Tsk 2

Tsk 2

 Application

CPU session CPU session

Fig. 1: StarONNX’s architecture

1 4 8 16 32 64
Batch size

0

5

10

15

20

25

30

35

40

Av
er

ag
e

Ti
m

e
pe

r R
eq

ue
st

 (m
s)

(a) With 32 CPU’s cores

1 8 16 32 64
Batch size

0

2

4

6

8

10

Av
er

ag
e

Ti
m

e
pe

r R
eq

ue
st

 (m
s)

(b) On the GPU

Fig. 2: Nfnet batching efficiency

We consider a server that receives a constant stream of
inference requests at a fixed rate. In order to optimize resource
utilization through CPU and GPU parallelization and minimize
the overall latency, these requests must be batched.

A. Grouping requests into batches

Inference requests are grouped together in order to take
advantage of the parallelization on both the GPU and CPU.
One limitation of batching is that it introduces latency when
forming the batch. Consequently, the lower the request rate,
the longer it takes to form a large batch. This is one reason
why it is necessary to select the optimal batch size that
minimizes latency at a fixed rate to achieve the best batch
size. Batching improves processor utilization by leveraging
their simultaneous processing capacity, as illustrated in Figure
2.

B. Batching time calculation

Assume that a batch has a size of N requests, and the
requests arrive at a time interval T . The time required to form
a batch of N requests is then given by:

Tbatch = T × (N − 1)

This time includes the interval between requests and the
gradual formation of the batch until it reaches size N .

C. Total Latency Calculation

The total latency to process an inference request includes
several components:

• Batch formation time Tbatch: The time required to group
the requests into a batch of size N .

• Data transfer time: The time taken to transfer data
between the CPU and the GPU and vice versa.

• Computation time on the GPU and CPU: The time
taken to process the data by the GPU and the CPU.

The total latency Ltotal is thus the sum of these different
components:

Ltotal = Tbatch + Ttransfer + Tcomputation

This batching approach helps to reduce overall latency and
increase throughput while optimizing CPU and GPU resource
utilization through parallelization.

V. OPTIMIZING INFERENCE WORKLOADS WITH CPU
CORE CLUSTERING STRATEGIES

This section introduces the benefits of clustering CPU cores.
The work of [30] proposes a pipelined execution approach to
optimize Convolutional Neural Networks (CNNs) on hetero-
geneous ARM multicore systems. The goal is to reduce the
latency associated with data movement between CPU cores
by clustering the cores into small compute clusters that form
the pipeline stages. Pipelined execution circumvents the use of
buses, which are inherently slower for intra-cluster transfers.
Therefore, the goal is to avoid using the Cache Coherent
Interconnect (CCI) bus or the L2 cache (second-level cache) as
much as possible by no longer parallelizing the kernels across
all CPU cores. The CCI bus is responsible for maintaining
cache coherency between different processor cores, while the
L2 cache is larger in capacity but also slower than the L1
cache. The results of [30] show that this method improves
throughput by an average of 73% compared to a conventional
multi-thread scheduler.

In order to understand the rationale behind the improved
performance obtained by clustering CPU cores, it is necessary
to describe the concept of cache locality and its importance
in the context of Non-Uniform Memory Access (NUMA)
architectures.

A. NUMA Node and CPU Package

A Non-Uniform Memory Access (NUMA) is a system
architecture in which memory is directly accessible by certain
cores of a processor but not by others. In a NUMA archi-
tecture, each processor or group of processors owns some
local memory that it can access at a faster rate than non-local
memory. The primary advantage of NUMA is the increased
performance achieved by taking advantage of memory locality,
which means minimizing the number of accesses to non-local
memory. Accordingly, cores on the same NUMA node share
the L2 cache.

A CPU socket (or package) is the physical unit containing
one or more processor cores. A socket can contain multiple
cores, a shared L3 cache, and other components such as
memory controllers. Clustering cores into small groups within
the same socket, a feature of NUMA architectures, reduces
the latency associated with inter-core communication, thereby
optimizing performance.

Multi-socket clustering refers to the use of multiple CPU
packages (or sockets) within the same system. Each socket
contains its own cores and local memory, forming multiple
NUMA nodes. To optimize performance, it is necessary to
minimize the amount of data exchanged between sockets. This
can be achieved by assigning tasks in a way that maximizes
data locality, ensuring that the data required for a task is
primarily accessible within the same socket where the task
is being executed.

B. Experimental Setup

All experiments were performed on a platform consisting
of a 16 GB NVIDIA P100 GPU and two Broadwell Intel
Xeon E5-2683 v4 processors running at 2.1 GHz, with 256
GB of RAM (8 GB per core). A number of well-known
DNN models were used, including GoogLeNet [26], Nfnet
(Normalized-Free Network) [7], and Vit-face-expression [23],
due to their prevalence in computer vision applications. Nfnet
is characterized by its ability to operate without batch normal-
ization, and Vit-face-expression uses transformers for facial
expression recognition. The software environment used in this
paper consists of ONNX Runtime 1.8.1, StarPU 1.3.4, METIS
5.1.0, Python 3.8, and NVIDIA CUDA 12.0 drivers.

C. Limitation of CPU Core Clustering using Default ONNX

First, we evaluate the ability of ONNX Runtime to take
advantage of CPU core grouping capabilities. The x-axis in
Figure 3 represents the number of cores used to process the
inference, with a maximum of 32 cores. The y-axis represents
the speedup, which is calculated by dividing the computation
time of a batch on a single core by the computation time on
n cores. The different plots illustrate the speedup achieved
for different batch sizes and different models. These results
show that the speedup gains degrade as the number of CPU
cores increases, reaching a plateau. This indicates that there are
limits to parallelizing with ONNX Runtime on a large number
of CPU cores. Consequently, it is necessary to cluster these

5 10 15 20 25 30
Number of Cores

5

10

15

20

25

Sp
ee

du
p

=
Ti

m
e

on
 o

ne
 c

or
e

/ T
im

e
on

 n
 c

or
es Theoretical Speedup (f(x) = x)

Batch size 1
Batch size 4
Batch size 8
Batch size 16
Batch size 32

(a) GoogleNet

5 10 15 20 25 30

2

4

6

8

10

12

14

16

(b) Nfnet

5 10 15 20 25 30
0

2

4

6

8

10

12

14

(c) Vit-Face-Expression

Fig. 3: A comparison of the speedups achieved by ONNX
Runtime for different models, according to CPU core group-
ing.

1 2 3 4 5 6 7 8 9 10
Batch size

0

5

10

15

20

25

30

35
Av

er
ag

e
Ti

m
e

pe
r R

eq
ue

st
 (m

s)
Default Onnx Runtime grouping cores
Grouping cores by NUMA nodes

(a) Grouping cores by NUMA

1 2 3 4 5 6 7 8 9 10
Batch size

0

5

10

15

20

25

30

35

Av
er

ag
e

Ti
m

e
pe

r R
eq

ue
st

 (m
s)

Default Onnx Runtime grouping cores
Grouping cores by sockets

(b) Grouping cores by sockets

Fig. 4: ONNX Runtime grouping cores vs by socket, vs by
NUMA on Nfnet

cores into smaller groups in order to achieve the theoretical
speedup when performing inference.

It is also important to note that ONNX Runtime does
not cluster CPU cores based on locality by default. Instead,
StarONNX clusters CPU cores based on whether they are on
the same NUMA node or within the same socket. Figure 4
illustrates the advantage of clustering CPU cores by NUMA
node or by socket over having ONNX Runtime choose, in the
worst case, which cores to group. For this experiment, we have
B batches to process with different batch sizes. In Figure 4a,
we have implemented two configurations for groupings, one
where ONNX Runtime creates 4 groups of 8 cores, and one
where cores that are on the same NUMA node are grouped
together. In Figure 4b we perform the same study, but this
time for cores on the same socket, 2 groups of 16 cores.

The observed results can be explained by a number of
factors that are inherent to the architecture of NUMA systems.
When performing inference on the same models, a perfor-
mance degradation was observed when ONNX created groups.

For small batches, the group of cores on the same NUMA
node shows superior performance. This is due to the proximity

of the cores to local memory, which reduces the latency
associated with memory access. In this configuration, the cores
benefit from faster access to local memory without having
to traverse NUMA interconnects. In addition, lower memory
bandwidth requirements and improved local cache utilization
contribute to this performance.

The benefits of proximity to memory and low latency are
most significant for small batches, favoring cores grouped
on the same NUMA node. However, the issue of memory
contention, which is minimal for small batches, becomes a
limiting factor for larger batches.

In the scenario where the goal is to partition CPU cores to
minimize latency for a given throughput, grouping cores based
on their locality avoids the costs associated with transfers
between different CPU caches. By grouping the cores into
smaller clusters, it is possible to allow ONNX Runtime to
better utilize these resources, thereby avoiding degradation
from the theoretical speedup.

VI. OPTIMIZING PERFORMANCE WITH METIS-BASED
PARTITIONING

The following section will present a methodology for
optimizing performance through the use of METIS-based
partitioning.

We assume that the minimization of latency and the max-
imization of throughput can be achieved through the imple-
mentation of dynamic partition scheduling on both GPU and
CPU resources, thereby conferring a number of advantages. It
is anticipated that the introduction of parallelism into the infer-
ence data processing will be achieved through the partitioning
of neural networks. It is anticipated that the initial partition,
which carries a significant portion of the computational load,
is expected to be processed without congestion on the GPU.
In contrast, the subsequent partition, which has a relatively
lower computational load, is expected to be executed on
either the GPU or the CPU, based on various parameters that
are automatically defined by StarPU (queue size, processing
efficiency on that processor, etc.).

The principal objective of this section is to improve the
latency and the throughput of a DNN model through the
partitioning of its components. The other objective of this
optimization is to achieve a balance in the computational
load and to minimize the costs associated with data transfer
between the GPU and CPU, with the goal of improving the
overall performance of the system. To achieve this, a two-step
process is employed. At the outset of the process, the mean
computation time on the GPU for each node is determined
through the use of ONNX Runtime. Subsequently, the com-
putational load is distributed using the METIS algorithm.

It is also important to note that each transfer introduces an
additional latency, which can become significant, particularly
for large batch sizes. To address this issue and reduce overall
latency, it is essential to minimize data transfers and ensure
a balance between data transfer times and computation times.
The objective is to optimize the sequence of GPU transfers and
computations in order to achieve complete overlap, thereby

eliminating additional delays. The aforementioned points can
be summarized as follows:

• Minimization of Data Transfers: By partitioning the
DNN model in a way that minimizes data transfers
between the GPU and CPU, the impact on latency is
reduced.

• Pipelining Transfers and Computations: It is important
to guarantee that the times required for data transfer
are aligned with the times required for CPU computa-
tion. This guarantees that transfers and computations are
conducted in an integrated and concurrent manner, thus
eliminating any additional delays. This can be achieved
by optimizing the sequence of GPU transfers and com-
putations to ensure complete overlap.

A. Methodology

In order to transform the ONNX model into a graph,
the model was converted into a graph structure. The graph-
based approach allows for the partitioning of the model. In
this representation, each node is associated with an operation
within the model, while edges indicate the transfer of tensors
between these operations.

In the subsequent phase, the dimensions of the output
tensors for each node were determined through the application
of the ONNX data types and tensor dimensions. Subsequently,
the graph was encoded in METIS format, incorporating the
weights of the nodes and edges. Subsequently, the partition
weights were defined with the objective of achieving a desired
distribution of computational load between the two partitions.
Moreover, METIS was instructed to identify the partition that
would result in the fewest data transfers.

1) Measuring Computation Time: In order to determine
the precise computational requirements of each node in our
DNN model, we conducted multiple inferences on a GPU.
The process of conducting one hundred repetitions for each
node was repeated until the requisite number of inferences
had been completed. The constituent nodes of the model were
executed in isolation during each inference, with the elapsed
time for each computation recorded.

By averaging these times, an estimate of the computation
time for each node was obtained. The provided average offers
insight into the computational load imposed on the GPU for
each node of the DNN model.

2) Partitioning with METIS: Once the necessary compu-
tation time for each node had been determined, the METIS
software was employed to create partitions with varying com-
putational loads. METIS is a graph partitioning software that
provides partitions of subgraphs while minimizing the transfer
costs between them. The software utilizes multilevel recursive-
bisection, multilevel k-way, and multi-constraint partitioning
schemes 2 to achieve a balance in the computational loads
and identify the partitioning that minimizes inter-partition
communications. This is crucial for achieving an appropriate
balance between communication and computation.

2http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

Fig. 5: Example illustrates the pipelining process, with the
initial partition executed on the GPU and the subsequent
partition executed on the CPU.

3) Implications of Data Transfer Costs on Overall Perfor-
mance: The impact of partitioning is not solely contingent
upon the distribution of computational load between the GPU
and CPUs; it is also influenced by the data transfer costs be-
tween these computing units. If the DNN model is partitioned
at points where data transfers are important, the resulting
increase in transfer times will lead to an overall increase in
latency. It is thus imperative to identify a partitioning strat-
egy that minimizes data transfers while maintaining a close
approximation to the desired computational load distribution.

Consequently, the effective control of data transfer costs
is a prerequisite for heterogeneous computing. In order to
achieve optimal performance within the constraints of a given
application, a partitioning strategy must take into account the
aforementioned factors.

As illustrated in Figure 5, which depicts an exemplar of
the pipelining process, the initial partition is executed on the
GPU, while the subsequent partition is executed on the CPU.
Subsequently, the data is transferred from the GPU to the
CPU, where it is then subjected to further computations. The
concurrent execution of transfers and computations serves to
minimize the overall latency. Upon completion of processing
a segment of data, it is transferred immediately to the CPU
for the processing of the next partition, thus eliminating any
unnecessary idle time.

To avoid an increase in latency resulting from partitioning,
the transfer time of the results from the initial partition to
the subsequent partition, added to the computation time of the
latter, must not exceed the computation time of the former on
the GPU.

Consequently, by minimizing transfer costs and overlap-
ping computations and transfers, latency can be reduced and
throughput maximized, thereby improving the overall system
performance.

B. Partitioning for a DNN Model

In this section, we present the results of an experiment with
a fixed batch in which we performed several partitionings us-
ing METIS, varying the distribution of the GPU computational

400 410 420 430 440 450
Throughput (queries/s)

0

50

100

150

200

250

300

Av
er

ag
e

la
te

nc
y

(m
s)

Without partitioning
75%-25%
80%-20%
85%-15%

(a) Nfnet, batch size of 16

1500 1600 1700 1800 1900
Throughput (queries/s)

0

10

20

30

40

50

60

70

80

Av
er

ag
e

la
te

nc
y

(m
s)

Without partitioning
75%-25%
80%-20%
90%-10%

(b) GoogleNet, batch size of 27

160 161 162 163 164 165 166 167
Throughput (queries/s)

0

25

50

75

100

125

150

175

200

Av
er

ag
e

la
te

nc
y

(m
s)

Without partitioning
80%-20%
85%-15%
90%-10%

(c) Vit-Face-Expression, batch
size 8

Fig. 6: StarONNX’s ability to handle heterogeneous resources
with different partitioning

load. Figure 6 illustrates the impact of partitioning on latency
for different models with varying computational loads on the
first and second partitions. The partitions were set to 75%-
25%, 80%-20%, and 85%-15% or 90%-10%, respectively. For
each partitioning, the latency and throughput for a fixed batch
size were quantified.

As illustrated in Figure 6a, the 80%-20% partitioning ex-
hibits the lowest latency before congestion, while the 75%-
25% partitioning demonstrates the highest throughput in ac-
cordance with the imposed rate.

It is important to note, however, that networks with higher
bandwidth, as illustrated in Figures 6b and 6c, exhibit reduced
sensitivity to throughput partitioning. In the case of nfnet, the
80%-20% partitioning is observed to be the most effective.
In contrast, for Vit-Face-Expression, the two partitionings are
evenly split between 85%-15% and 80%-20%. This is due to
the fact that these networks have relatively low throughput,
which restricts the window of opportunity for modifying the
partitioning before congestion occurs.

1) Selecting the Batch Size to Minimize Latency: The
objective of this experiment is to identify the optimal batch
size that minimizes latency while maintaining a specified
throughput. The following explanations will focus on Nfnet.

Figure 7a shows the latency performance with a fixed batch
for each plot on Nfnet, executed on a GPU. As detailed
in Section IV-B, the latency measurements demonstrate a
reduction in latency as throughput increases for a given batch
size. This reduction is more pronounced with larger batches,
as a higher throughput allows for the construction of a larger
batch in a shorter time.

Nonetheless, in a subsequent phase, as illustrated by the
dotted plots, a notable increase in latency is obvious. This

400 410 420 430 440 450 460
Throughput (queries/s)

0

25

50

75

100

125

150

175

Av
er

ag
e

la
te

nc
y

(m
s)

Batch size of 16
Batch size of 23
Batch size of 28

(a) Without partitioning

400 410 420 430 440 450 460
Throughput (queries/s)

0

25

50

75

100

125

150

175

Av
er

ag
e

la
te

nc
y

(m
s)

(b) 85%-15% partitioning

Fig. 7: Examine the impact of partitioning on latency with
varying batch sizes on Nfnet

suggests that the GPU is unable to maintain the necessary
throughput due to congestion. In such instances, it is advisable
to increase the batch size in order to ensure that the GPU is
able to maintain the requisite throughput.

Figure 7b illustrates the latency performance with a fixed
batch for each plot on Nfnet with an 85%-15% partition on a
GPU and our 32 CPU cores.

It can be observed that partitioning and employing CPUs
to assist the GPU results in an increased throughput, which
delays the onset of system congestion. By deferring the onset
of congestion to a higher throughput for each batch, it is
possible to maintain a smaller batch size for a longer period
of time, as opposed to switching to a larger batch size. This is
particularly obvious in the case of a batch size of 16, which
allows for a reduction in latency.

Figure 8 depicts an experiment wherein, for a fixed through-
put, the optimal batch size that minimizes latency for each
partition is determined. Figure 8a illustrates the latency of
varying batch sizes under a constant throughput. Figure 8b
presents the batch size that achieves the minimum latency for
each fixed throughput.

The majority of the batches illustrated in Figure 8a are
represented by the dotted gray lines. Finally, Figure 8c il-
lustrates the selection of the latency-minimizing batch for
each fixed throughput, considering each partition individually.
As previously discussed in Section VI-B, there is only one
partitioning scheme that simultaneously minimizes latency and
maximizes throughput for the Nfnet model.

In instances where throughput is suboptimal, StarPU as-
signs both tasks associated with both partitions for inference
processing to the GPU. As throughput increases, there is an
opportunity to run the second partition on the CPU, which
frees up the GPU to handle more computationally intensive
tasks. In this way, the total latency is reduced, as the first,
heavier partition is processed rapidly on the GPU, while the
second partition can be processed on the CPU. This approach
optimizes the utilization of the GPU for the most intensive
tasks, prevents congestion on the GPU by distributing tasks to
the CPU during periods of peak load, and reduces total latency
by minimizing waiting times.

400 410 420 430 440 450 460
Throughput (queries/s)

0

25

50

75

100

125

150

175

Av
er

ag
e

la
te

nc
y

(m
s)

Batch size of 15
Batch size of 18
Batch size of 23
Batch size of 28
Batch size of 29

(a) Batch size latency without par-
titioning

400 410 420 430 440 450 460
Throughput (queries/s)

0

25

50

75

100

125

150

175

Av
er

ag
e

la
te

nc
y

(m
s)

15 15 15 15 16 18 18 18
22 22 23

23 28 29

(b) Optimize batch size to mini-
mize latency without partitioning

400 420 440 460 480 500
Throughput (queries/s)

0

25

50

75

100

125

150

175

Av
er

ag
e

la
te

nc
y

(m
s)

Without partitioning
75%-25%
80%-20%
85%-15%

(c) Minimize latency by selecting
optimal batch size for differents
partitions

Fig. 8: Selection of the optimal batch that minimizes latency
for various partitioning schemes with Nfnet

VII. EVALUATION OF CUDA MULTISTREAMING IN
NEURAL NETWORK PERFORMANCE

The objective of this section is to conduct experiments with
a variety of configurations with the aim of reducing latency
and increasing throughput. The objective of this study is to
demonstrate how different setups influence performance and
provide insights into the underlying mechanisms.

It has been observed that certain tasks within the domain
of neural networks do not fully exploit the whole set of cores
of the GPU. CUDA multistreaming may prove an effective
solution to this problem. The execution of multiple instruction
streams in parallel allows to execute several of such tasks in
parallel, thereby fully utilizing the GPU.

However, while multistreaming offers numerous perfor-
mance benefits, it also increases the complexity of program-
ming, which presents a challenge for developers. It is indeed
imperative that developers exercise careful management of
synchronization between streams to prevent potential races.
In the absence of StarPU, the application would necessitate
meticulous review to circumvent synchronization and concur-
rency issues. The dynamic schedulers of StarPU, however,
already provide support for distributing tasks to available
processors and streams. Enabling multistreaming in StarPU
boils down to changing a StarPU parameter.

Figure 9 illustrates the relationship between throughput and
latency for the Nfnet model with varying CUDA streams and
partitioning schemes, with a fixed batch size.

As illustrated in Figure 9a, the results obtained in the exper-
iment without partitioning and with exclusive GPU utilization
align with expectations. The configuration with a single CUDA

stream reaches its congestion point first, followed by those
with two, three, and four streams. It is obvious for this DNN
model that an increase in the number of streams results in
improved throughput while concurrently reducing latency.

As illustrated in Figures 9b, 9c, and 9d, the configuration
with three streams demonstrates a better capacity to maintain
higher throughput compared to that with four streams. Each
CUDA stream strives to optimize the utilization of the GPU’s
available resources. However, an increase in the number of
streams may result in heightened competition for the available
resources, leading to contention and a subsequent reduction in
overall performance.

The execution of several tasks in parallel on many CUDA
streams results in the sharing of the same GPU resources,
including compute units, shared memory, and caches. This
common usage can result in resource contention. For example,
if several tasks make extensive use of shared memory or
frequently access the same cache, overall efficiency may be
diminished. Furthermore, the management of streams and their
synchronization can introduce additional processing overhead.
While this overhead is typically minimal, it can become signif-
icant when multiple operations are executed in parallel. The
necessity of certain synchronization operations to guarantee
data integrity often results in an additional delay.

The results demonstrate that, for this DNN model and
a fixed batch size, an increase in the number of streams
facilitates the management of greater throughput and can
reduce latency. It is noteworthy that multistreaming provides
a substantial enhancement in performance when partitioning
is not employed. However, the advantage of multistreaming
is lost when partitioning is employed. In this example, four
streams are necessary to achieve optimal performance in the
absence of partitioning, whereas two streams are sufficient
to attain a nearly identical result with partitioning. Moreover,
the results demonstrate that partitioning yields greater perfor-
mance improvements than multistreaming.

VIII. COMPARATIVE ANALYSIS OF TRITON INFERENCE
SERVER AND STARONNX PERFORMANCE

The objective of this section is to undertake a comparative
analysis of the performance of the Triton Inference Server and
StarONNX. This analysis has two objectives. The first is to
evaluate both platforms in terms of latency and throughput.
The second is to elucidate the underlying causes of any
observed discrepancies in performance.

A. Triton Inference Server

Triton Inference Server 3, developed by NVIDIA, is a soft-
ware platform designed for the deployment of DNN models.
It is compatible with a wide variety of frameworks, including
TensorFlow, PyTorch, ONNX Runtime, and TensorRT, thereby
providing users with a high degree of flexibility.

Triton is capable of supporting numerous frameworks, and
can optimize their performance through the use of techniques

3The Docker version of Triton nvcr.io/nvidia/tritonserver:24.01-py3 is em-
ployed

430 440 450 460 470 480 490 500
Throughput (queries/s)

0

50

100

150

200

250

300

Av
er

ag
e

la
te

nc
y

(m
s)

1 stream
2 streams
3 streams
4 streams

(a) Without partitioning

430 440 450 460 470 480 490 500
Throughput (queries/s)

0

50

100

150

200

250

300

Av
er

ag
e

la
te

nc
y

(m
s)

(b) 75%-25% partitioning

430 440 450 460 470 480 490 500
Throughput (queries/s)

0

50

100

150

200

250

300

Av
er

ag
e

la
te

nc
y

(m
s)

(c) 80%-20% partitioning

430 440 450 460 470 480 490 500
Throughput (queries/s)

0

50

100

150

200

250

300

Av
er

ag
e

la
te

nc
y

(m
s)

(d) 85%-15% partitioning

Fig. 9: Executing Nfnet with different partitioning loads and
running on multiple streams with a batch size of 27

such as dynamic batching. It can be deployed in a cloud
environment, on-premises, or at the edge. The platform is
integrated with Prometheus for the purpose of monitoring
performance, thereby enabling users to monitor and optimize
models in real time. Moreover, Triton is capable of serving
multiple models concurrently, which is advantageous for com-
plex applications that necessitate multiple inferences.

B. Comparative Performance Analysis

We conducted a comparative analysis of the performance
of StarONNX in the absence of partitioning and that of the
Triton Inference Server, which was utilized with one and four
instances of the DNN model on a GPU with GoogleNet. In
this context, the term ”instance” is used to describe a particular
configuration of the inference server that is currently running.
Each instance is capable of loading and serving a DNN model,
managing inference queries, and optimizing performance in
accordance with the specific requirements of the application.
Instances may be deployed independently or in parallel in
order to balance the load and enhance scalability.

Figure 10 shows the performance of an experiment per-
formed on GoogleNet with a P100 GPU. It compares the
latency of StarONNX in the absence of partitioning with Triton
inference server, with one and four instances of the DNN
model. Even with a single computation stream, StarONNX
demonstrates better performance in terms of latency and
throughput compared to Triton.

Figure 11 show the traces of four GoogleNet instances de-
ployed on Triton. The green rectangles represent data transfers
between the host and GPU memory, blue rectangles indicate
computations performed by a CUDA kernel on the GPU,
and the red rectangles (added post-hoc) show the complete
execution of a batch on GoogleNet.

nvcr.io/nvidia/tritonserver:24.01-py3

1300 1400 1500 1600 1700 1800
Througput (queries/s)

20

25

30

35

40

45

50

Av
er

ag
e

la
te

nc
y

(m
s)

13
13 13 14 14 15 15

16
17 17

18 18 18

19

19
23

23 24
24 27

30

30
31

18

22
23

24
24 24 24

26
26

29

32 32

18

22
23

24
24

25 25

29 29 29

32 32
StarONNX, without partitioning
Triton, 1 instance
Triton, 4 instances

Fig. 10: Triton Inference Server vs StarONNX

Fig. 11: Triton Inference Server trace with four GoogleNet
model instances

It is noteworthy that the first Triton stream displays a
performance discrepancy in comparison to the other Triton
streams. Furthermore, it is obvious that there are considerable
periods of GPU idleness observed on the other Triton streams,
which suggests that the computational activity is minimal, thus
increasing the latency of the corresponding batches. Conse-
quently, a single instance of Triton, as shown in Figure 10,
sometime demonstrates better performance.

Figure 12a shows a trace of Triton Inference Server config-
ured with a single instance, whereas Figure 12b shows a trace
of StarONNX configured with one stream for computation and
another for transfers.

It can be observed that, although Triton server typically
utilizes pinned memory by default, the Triton Inference Server
does not overlap transfers and computations; rather, all oper-
ations are conducted on a single stream.

In contrast, StarONNX performs overlapping on computa-
tion and communication, utilizing prefetching whereby data
from the subsequent batch is copied while computations are
performed on the current batch. These optimizations collec-
tively improve the performance of StarONNX, both in terms
of latency and throughput when compared to Triton Inference
Server.

IX. CONCLUSION AND FUTURE WORK

This paper presents an evaluation of a method designed to
optimize deep neural network (DNN) inference by leveraging
the capabilities of both GPUs and CPUs. The study concen-
trates on performance metrics that are of particular importance
for real-time systems, such as latency and throughput. The
methodology employs the METIS software for the partitioning
of DNN models and the distribution of computational loads,
with the objective of improving resource utilization.

(a) The traces of Triton Inference Server

(b) The traces of StarONNX

Fig. 12: Traces of Triton Inference Server and StarONNX

Through comprehensive experimentation, it was observed
that notable improvements in performance were achieved,
particularly in the reduction of latency and enhancement of
throughput. By partitioning the models and employing the
dynamic runtime scheduler StarPU, an overlap between com-
munication and computation was achieved, thereby balancing
the load between GPUs and CPUs. This approach ensures that
the system’s resources are fully utilized, addressing the issues
of GPU saturation and CPU underutilization.

A comparative analysis with the NVIDIA Triton Inference
Server indicates that the StarONNX solution demonstrates
superior performance, particularly in high-throughput sce-
narios. The incorporation of CUDA multistreaming within
StarONNX serves to improve performance, demonstrating the
potential of parallel processing to optimize GPU utilization.
In conclusion, this solution provides a framework for real-
time processing applications, such as autonomous vehicles
and video surveillance systems, where minimizing latency and
maximizing throughput are of paramount importance.

Further research should investigate the integration of ad-
ditional hardware accelerators, the refinement of partitioning
strategies for complex network architectures, and the optimiza-
tion of dynamic scheduling algorithms.

REFERENCES

[1] Triton Inference Server: Open-source ai
inference serving. https://developer.nvidia.com/
nvidia-triton-inference-server. Accessed: [2024/03/20].

[2] Ehsan Aghapour, Dolly Sapra, Andy Pimentel, and Anuj
Pathania. Cpu-gpu layer-switched low latency cnn in-
ference. In 2022 25th Euromicro Conference on Digital
System Design (DSD). IEEE, 2022.

[3] Sohaib Ahmad, Hui Guan, Brian D Friedman, Thomas
Williams, Ramesh K Sitaraman, and Thomas Woo. Pro-
teus: A high-throughput inference-serving system with
accuracy scaling. 2024.

[4] Shapna Akter, Hossain Shahriar, and Alfredo Cuzzocrea.
Autism disease detection using transfer learning tech-
niques: performance comparison between central pro-
cessing unit vs graphics processing unit functions for
neural networks. In 2023 IEEE 47th Annual Comput-
ers, Software, and Applications Conference (COMPSAC),
2023.

https://developer.nvidia.com/nvidia-triton-inference-server
https://developer.nvidia.com/nvidia-triton-inference-server

[5] Cédric Augonnet, Samuel Thibault, Raymond Namyst,
and Pierre-André Wacrenier. Starpu: a unified platform
for task scheduling on heterogeneous multicore architec-
tures. In 15th International Euro-Par Conference, 2009.

[6] Olivier Beaumont, Jean-François David, Lionel Eyraud-
Dubois, and Samuel Thibault. StarONNX: a Dynamic
Scheduler for Low Latency and High Throughput Infer-
ence on Heterogeneous Resources. In HeteroPar 2024 -
22ND INTERNATIONAL WORKSHOP Algorithms, Mod-
els and Tools for Parallel Computing on Heterogeneous
Platforms.

[7] Andy Brock, Soham De, Samuel L Smith, and Karen
Simonyan. High-performance large-scale image recogni-
tion without normalization. In International Conference
on Machine Learning. PMLR, 2021.

[8] Daniel Crankshaw, Gur-Eyal Sela, Xiangxi Mo, Corey
Zumar, Ion Stoica, Joseph Gonzalez, and Alexey Tu-
manov. Inferline: latency-aware provisioning and scaling
for prediction serving pipelines. In Proceedings of the
11th ACM Symposium on Cloud Computing, 2020.

[9] Ismet Dagli, Alexander Cieslewicz, Jedidiah McClurg,
and Mehmet E Belviranli. Axonn: Energy-aware exe-
cution of neural network inference on multi-accelerator
heterogeneous socs. In 59th ACM/IEEE Design Automa-
tion Conference, 2022.

[10] ONNX Runtime developers. Onnx runtime. https:
//onnxruntime.ai/, 2021. Version: 1.8.1.

[11] Aditya Dhakal, Sameer G Kulkarni, and KK Ramakr-
ishnan. Gslice: controlled spatial sharing of gpus for
a scalable inference platform. In ACM Symposium on
Cloud Computing, 2020.

[12] Kuntai Du, Ahsan Pervaiz, Xin Yuan, Aakanksha Chowd-
hery, Qizheng Zhang, Henry Hoffmann, and Junchen
Jiang. Server-driven video streaming for deep learning
inference. In Proceedings of the Annual conference of
the ACM Special Interest Group on Data Communica-
tion on the applications, technologies, architectures, and
protocols for computer communication, 2020.

[13] Zhou Fang, Tong Yu, Ole J Mengshoel, and Rajesh K
Gupta. Qos-aware scheduling of heterogeneous servers
for inference in deep neural networks. In 2017 ACM on
Conference on Information and Knowledge Management.

[14] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo
Chen. Microsecond-scale preemption for concurrent
{GPU-accelerated}{DNN} inferences. In 16th USENIX
Symposium on Operating Systems Design and Implemen-
tation (OSDI 22), 2022.

[15] Yoshiaki Inoue. Queueing analysis of gpu-based in-
ference servers with dynamic batching: A closed-form
characterization. Performance Evaluation, 2021.

[16] Jananie Jarachanthan, Li Chen, Fei Xu, and Bo Li.
Amps-inf: Automatic model partitioning for serverless
inference with cost efficiency. In Proceedings of the 50th
International Conference on Parallel Processing, 2021.

[17] Woosung Kang, Kilho Lee, Jinkyu Lee, Insik Shin, and
Hoon Sung Chwa. Lalarand: Flexible layer-by-layer

cpu/gpu scheduling for real-time dnn tasks. In 2021 IEEE
Real-Time Systems Symposium (RTSS).

[18] George Karypis and Vipin Kumar. A software package
for partitioning unstructured graphs, partitioning meshes,
and computing fill-reducing orderings of sparse matri-
ces. University of Minnesota, Department of Computer
Science and Engineering, Army HPC Research Center,
Minneapolis, MN, 38:7–1, 1998.

[19] Luke Kljucaric and Alan D George. Deep learning
inferencing with high-performance hardware accelera-
tors. ACM Transactions on Intelligent Systems and
Technology, 2023.

[20] Turja Kundu and Tong Shu. Hios: Hierarchical
inter-operator scheduler for real-time inference of dag-
structured deep learning models on multiple gpus. In
IEEE International Conference on Cluster Computing
(CLUSTER), 2023.

[21] Yinan Li, Ippokratis Pandis, Rene Mueller, Vijayshankar
Raman, and Guy M Lohman. Numa-aware algorithms:
the case of data shuffling. In CIDR, 2013.

[22] Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent
Liu, Ying Sheng, Xin Jin, Yanping Huang, Zhifeng Chen,
Hao Zhang, Joseph E Gonzalez, et al. {AlpaServe}:
Statistical multiplexing with model parallelism for deep
learning serving. In 17th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 23).

[23] Fuyan Ma, Bin Sun, and Shutao Li. Facial expression
recognition with visual transformers and attentional se-
lective fusion. IEEE Transactions on Affective Comput-
ing, 14(2), 2021.

[24] K Raju and Niranjan N Chiplunkar. Performance en-
hancement of cuda applications by overlapping data
transfer and kernel execution. Applied Computer Science,
2021.

[25] Dominik Schäfer, Janick Edinger, Martin Breitbach, and
Christian Becker. Workload partitioning and task migra-
tion to reduce response times in heterogeneous comput-
ing environments. In 2018 27th International Conference
on Computer Communication and Networks (ICCCN).

[26] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Erhan,
Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In IEEE conference on com-
puter vision and pattern recognition, 2015.

[27] Zhenheng Tang, Shaohuai Shi, Wei Wang, Bo Li, and
Xiaowen Chu. Communication-efficient distributed deep
learning: A comprehensive survey. arXiv preprint
arXiv:2003.06307, 2020.

[28] Neil C Thompson, Kristjan Greenewald, Keeheon Lee,
and Gabriel F Manso. The computational limits of deep
learning. arXiv preprint arXiv:2007.05558, 2020.

[29] Yingcan Wei, Matthias Langer, Fan Yu, Minseok Lee,
Jie Liu, Ji Shi, and Zehuan Wang. A gpu-specialized
inference parameter server for large-scale deep recom-
mendation models. In Proceedings of the 16th ACM
Conference on Recommender Systems, 2022.

https://onnxruntime.ai/
https://onnxruntime.ai/

[30] Hsin-I Wu, Da-Yi Guo, Hsu-Hsun Chin, and Ren-Song
Tsay. A pipeline-based scheduler for optimizing latency
of convolution neural network inference over heteroge-
neous multicore systems. In 2020 2nd IEEE Interna-
tional Conference on Artificial Intelligence Circuits and
Systems (AICAS), 2020.

[31] Fuxun Yu, Shawn Bray, Di Wang, Longfei Shangguan,
Xulong Tang, Chenchen Liu, and Xiang Chen. Au-
tomated runtime-aware scheduling for multi-tenant dnn
inference on gpu. In Int. Conference On Computer Aided
Design (ICCAD), 2021.

	Introduction
	Motivation and Related Work
	Motivation
	Related Work

	Overview of ONNX and StarPU Integration in StarONNX
	ONNX Runtime
	StarPU
	StarONNX

	Optimized Inference Request Batching
	Grouping requests into batches
	Batching time calculation
	Total Latency Calculation

	Optimizing Inference Workloads with CPU Core Clustering Strategies
	NUMA Node and CPU Package
	Experimental Setup
	Limitation of CPU Core Clustering using Default ONNX

	Optimizing Performance with METIS-based Partitioning
	Methodology
	Measuring Computation Time
	Partitioning with METIS
	Implications of Data Transfer Costs on Overall Performance

	Partitioning for a DNN Model
	Selecting the Batch Size to Minimize Latency

	Evaluation of CUDA Multistreaming in Neural Network Performance
	Comparative Analysis of Triton Inference Server and StarONNX Performance
	Triton Inference Server
	Comparative Performance Analysis

	Conclusion and Future Work

