
HAL Id: hal-04690144
https://hal.science/hal-04690144

Submitted on 6 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

ConVer-G: Concurrent versioning of knowledge graphs
Jey PUGET GIL, Emmanuel Coquery, John Samuel, Gilles Gesquière

To cite this version:
Jey PUGET GIL, Emmanuel Coquery, John Samuel, Gilles Gesquière. ConVer-G: Concurrent ver-
sioning of knowledge graphs. 40ème conférence sur la gestion des données (BDA), Oct 2024, Orléans,
France. �hal-04690144�

https://hal.science/hal-04690144
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


ConVer-G: Concurrent versioning of knowledge graphs
ConVer-G : Versionnement concurrent de graphes de

connaissances
Jey Puget Gil

jey.puget-gil@liris.cnrs.fr
Université Claude Bernard, LIRIS, UMR-CNRS 5205

Villeurbanne, FRANCE

Emmanuel Coquery
emmanuel.coquery@univ-lyon1.fr

Université Claude Bernard, LIRIS, UMR-CNRS 5205
Villeurbanne, FRANCE

John Samuel
john.samuel@cpe.fr

Université de Lyon, CPE Lyon, LIRIS, UMR-CNRS 5205
Villeurbanne, FRANCE

Gilles Gesquière
gilles.gesquiere@univ-lyon2.fr

Université de Lyon, Université Lumière Lyon 2, LIRIS,
UMR-CNRS 5205

Villeurbanne, FRANCE

ABSTRACT
The multiplication of platforms offering open data has facilitated
access to information that can be used for research, innovation,
and decision-making. Providing transparency and availability, open
data is regularly updated, allowing us to observe their evolution
over time.

We are particularly interested in the evolution of urban data that
allows stakeholders to better understand dynamics and propose
solutions to improve the quality of life of citizens. In this context, we
are interested in the management of evolving data, especially urban
data and the ability to query these data across the available versions.
In order to have the ability to understand our urban heritage and
propose new scenarios, we must be able to search for knowledge
through concurrent versions of urban knowledge graphs.

In this work, we present the ConVer-G (Concurrent Versioning
of knowledge Graphs) system for storage and querying through
multiple concurrent versions of graphs.

RÉSUMÉ
La multiplication de plateformes offrant des données ouvertes a
permis de faciliter l’accès à des informations pouvant être utilisées
pour la recherche, l’innovation et la prise de décision. Apportant
transparence et disponibilité, les données ouvertes sont mises à
jour régulièrement, nous pouvons alors observer leurs évolutions à
travers le temps.

Nous nous intéressons plus particulièrement à l’évolution des
données urbaines qui permet à des acteurs de mieux comprendre
les dynamiques et de proposer des solutions pour améliorer la
qualité de vie des citoyens. C’est dans ce contexte que nous nous
intéressons à la gestion des données urbaines et à la nécessité de
pouvoir interroger ces données à travers les versions disponibles.
Afin d’avoir la capacité de comprendre notre héritage urbain et de
proposer de nouveaux scénarios, nous devons être en mesure de
chercher de la connaissance à travers des versions concurrentes
des graphes de connaissances urbaines.

À travers ces travaux, nous présentons le système ConVer-G (Ver-
sionnement Concurrent de Graphes de Connaissances) permettant

40ème conférence sur la gestion des données (BDA), October 21-24, 2024, Orléans, France
2024.

le stockage et l’interrogation de multiples versions concurrentes de
graphes.

CCS CONCEPTS
• Information systems → Geographic information systems; Re-
source Description Framework (RDF).

KEYWORDS
RDF, versioning, concurrent versioning, graph, urban data, query

MOTS CLÉS
RDF, versionnement, versionnement concurrent, graphe, données
urbaines, requête

1 INTRODUCTION AND MOTIVATION
Urban environments, with their complex and ever-changing nature,
particularly benefit from open data. Effective urban management
requires a deep understanding of various dynamic elements, such
as population growth, infrastructure development, and transport
frequentations. Open data allows urban planners, policymakers,
and researchers to gain insights into these dynamics, fostering
better planning and decision-making processes.

Transforming 3D geospatial urban data to a knowledge graph
[11] enables the representation of complex urban environments
in a structured and semantically rich manner. Concurrent view-
points of urban evolution can be captured through the versioning
of these knowledge graphs. Moreover, this versioning allows the
representation of different states of the urban environment over
time, providing a comprehensive view of the city’s evolution.

The versioning of scientific data also represents a certain interest
in order to be able to exploit them[6]. Indeed, it’s crucial to be able
to reproduce experiments and analyses. If the data changes without
versioning, it becomes difficult to reproduce the results at a later
date. Versioning can help to protect the integrity of the data. If an
error is introduced into the data, having versioned backups allows
the data to be restored to a previous correct state. Versioning allows
them to easily switch between different versions of the data for
these experiments.

https://orcid.org/0009-0006-6198-7488
https://orcid.org/
https://orcid.org/0000-0001-8721-7007
https://orcid.org/0000-0001-7088-1067


40ème conférence sur la gestion des données (BDA), October 21-24, 2024, Orléans, France Puget Gil et al.

In this paper, we present a knowledge graph loader component
(QuaDer1) and a versioned graph query system (QuaQue2). We
have implemented demonstration scenarios to show the feasibility
of our approach. The first scenario uses a real dataset representing a
district in Villeurbanne called "Gratte-Ciel" to query the knowledge
graph using versioned SPARQL queries. The second scenario uses a
synthetic dataset to query a knowledge graph with a large number
of versions. We aim to show that our system can query a large
number of versions simultaneously and that the query response
time remains acceptable.

2 RELATEDWORK
As mentioned by Bayoudhi et al. [3], versioning is a critical aspect
of management in a project. It allows developers to track changes
to the elements, manage different versions, and collaborate with
other team members.

2.1 Code versioning
Version control systems [12] such as Git, Mercurial, Subversion,
CVS, and Bazaar are commonly used for managing the evolution of
source code. However, these systems are not specifically designed
for data versioning, especially for structured data and have certain
limitations. Apart from exceptions, like Git LFS, they don’t provide
adequate support for large files and data query. Therefore, they may
not be the ideal choice for managing data versioning in a project.

2.2 Dataset versioning
2.2.1 Snapshot-based versioning. There are several versioning tools
available for managing data in a project. Some popular Git-based
tools (snapshot-based versioning tools) like Qri3, QuitStore[2], Ge-
oGig4, and UrbanCo2Fab[9] represent versions as snapshots. These
tools provide version control capabilities specifically designed for
data versioning. However, one limitation of these tools is that in
order to query a version, it needs to be checked out. This limits the
capacity of such systems to answer queries over multiple versions
at the same time. Despite this limitation, database versioning tools
provide valuable functionality for managing data in a project.

On the other hand, there are also machine learning tools like
DVC[8], DagsHub5 and Weights and Biases6 that offer advanced
features for managing data versions. These tools are particularly
useful for structured data and provide functionalities such as track-
ing changes, managing different versions, and collaborating with
team members.

2.2.2 Interval-based versioning. Another approach to data version-
ing involves using temporal tables or bitemporal tables [7] to repre-
sent the validity of data over time. These tables store the start and
end timestamps for each version of the data, allowing for querying
the data at specific points in time or in a specific time interval.
However, this approach has limitations, in particular the lack of
support for easily identifying and querying concurrent versions.

1Quads loaDer
2Quads Query
3https://qri.dev/
4https://geogig.org/
5https://dagshub.com/
6https://wandb.ai/

2.2.3 Delta-based versioning. Delta-based versioning systems like
Delta Lake, ApacheHudi andOSTRICH (Offset-enabled TRIple store
for CHangesets) [10] provide advanced features for managing data
versions. These systems store the changes made to the data as deltas,
allowing for efficient querying of the data at different versions. They
also provide functionalities such as time travel, which allows users
to query the data at specific points in time.

3 USE CASE AND CONTRIBUTIONS
3.1 The problem
To avoid data redundancy in a quickly changing world, where each
change varies little from one state to another, we must condense the
stored evolution. This is often necessary for urban datasets at larger
scales. The problem we aim to solve with QuaQue is the efficient
querying of concurrent versioning of quad data. Traditional quad
stores are designed to efficiently store and retrieve static RDF data,
but they struggle when it comes to handling concurrent versioning
of data and more specifically multiple versions at the same time.
Concurrent versioning of quad data refers to the ability to store and
query multiple versions of the same dataset at the same time. This
is particularly useful in the context of urban data, where multiple
versions of the same dataset can represent different points of view
or different states of the data over time.

In the RDF model, a triple is a statement that consists of a subject
and an object connected by a predicate. A quad is an extension of
the triple that includes a fourth element, a named graph. A named
graph can be represented by a set of triples sharing the same graph
name. In order to version a named graph, we associate a version
with this set of quads. In SPARQL, the graph operator is used to
specify a graph name. SPARQL does not provide a way to specify a
version of a named graph. We do not want to create a new operator
to specify a version of a named graph because it would break the
compatibility with existing SPARQL queries. Instead we slightly
change the semantics of the graph operator to specify a versioned
named graph. We created URI identifiers for each versioned named
graphs and store them as metadata. The versioned graph identifier
allows us to identify the (graph name, version) pair of a versioned
named graph. By associating a variable with it, the graph operator
allows us to query the set of versioned graphs.

3.2 RDF Context Representation
3.2.1 Dataset representation. Consider our RDF context containing
data as well as its associated metadata. We define a dataset as a set
of versioned named graphs and metadata. The metadata is stored in
the default graph. 𝑑 = (𝑀,

{
((𝑣1, 𝑡𝑔1),𝐺1,1), ..., ((𝑣𝑚, 𝑡𝑔𝑛),𝐺𝑚,𝑛)

}
)

is a dataset where:

• we call a versioned graph 𝐺𝑚,𝑛 a finite subset of triples that
occurs at the version 𝑣𝑚 of the name graph 𝑡𝑔𝑛 ,

• 𝑑 represents a pair containing the metadata𝑀 and a set of
versioned graphs

{
((𝑣1, 𝑡𝑔1),𝐺1,1), ..., ((𝑣𝑚, 𝑡𝑔𝑛),𝐺𝑚,𝑛)

}
,

• 𝑑 has𝑚 versions and (𝑣1, ..., 𝑣𝑚) is the set of versions,
• 𝑑 has 𝑛 named graphs and (𝑡𝑔1, ..., 𝑡𝑔𝑛) is the set of named
graphs.

https://qri.dev/
https://geogig.org/
https://dagshub.com/
https://wandb.ai/


ConVer-G: Concurrent versioning of knowledge graphs 40ème conférence sur la gestion des données (BDA), October 21-24, 2024, Orléans, France

Example 3.1. Let’s assume that we have a dataset representing
concurrent points of view about the height of some buildings. In
the table 1 we present two versions with the following quads:

Table 1: Dataset with 2 versions and 2 named graphs

Version Subject Predicate Object Named graph

1
ex:bldg#1 height 10.5 ng:Gr-Lyon
ex:bldg#2 height 9.1 ng:Gr-Lyon
ex:bldg#1 height 11 ng:IGN

2
ex:bldg#1 height 10.5 ng:IGN
ex:bldg#1 height 10.5 ng:Gr-Lyon
ex:bldg#3 height 15 ng:Gr-Lyon

Flat model. The flat model is a classic representation, it associates
each quad with a version where it occurs.

𝑑 = (𝐺,
{
(𝑡𝑔1,𝐺1), ..., (𝑡𝑔𝑛,𝐺𝑛)

}
) is a dataset where:

• 𝐺 is the default graph storing the metadata
• 𝐺𝑖 is a named graph storing the quads

Example 3.2. After some quads transformations, the Table 2
represents the flat model of the dataset versioning.

4 QUAQUE: A QUERYABLE VERSIONED QUAD
STORE

4.1 The query engine
The problem we aim to solve is the efficient querying of concurrent
versioning of quad data. Traditional quad stores are designed to
efficiently store and retrieve static RDF data, but they struggle when
it comes to handling concurrent versioning of data and more specif-
ically multiple versions at the same time. Concurrent versioning of
quad data refers to the ability to store and query multiple versions
of a dataset. This is particularly useful in the context of urban data,
where multiple versions of the same dataset can represent different
points of view or different states of the data over time.

Table 2: Flat model of the dataset versioning

Subject Predicate Object Named graph
Versioned quads

ex:bldg#1 height 10.5 vng:1
ex:bldg#2 height 9.1 vng:1
ex:bldg#1 height 11 vng:2
ex:bldg#1 height 10.5 vng:3
ex:bldg#3 height 15 vng:3
ex:bldg#1 height 10.5 vng:4

Metadata
vng:1 is-version-of ng:Gr-Lyon
vng:1 is-in-version v:1
vng:2 is-version-of ng:IGN
vng:2 is-in-version v:1
vng:3 is-version-of ng:Gr-Lyon
vng:3 is-in-version v:2
vng:4 is-version-of ng:IGN
vng:4 is-in-version v:2

Table 3: Condensed model of the dataset versioning

Versioned quads
Subject Predicate Object Named graph Versions
ex:bldg#1 height 11 ng:IGN 10
ex:bldg#1 height 10.5 ng:IGN 01
ex:bldg#3 height 15 ng:Gr-Lyon 01
ex:bldg#2 height 9.1 ng:Gr-Lyon 10
ex:bldg#1 height 10.5 ng:Gr-Lyon 11

The challenge with concurrent versioning of quad data is that
querying it requires considering the temporal, the concurrence and
the structural aspects of the data. For example, we may want to
retrieve all quads that were valid during a specific time interval or
find the all versions where a quad matches certain criteria.

4.2 Architecture
The architecture of ConVer-G consists of three main components:
the quads loader (QuaDer), the query engine (QuaQue), and the
storage (PostgreSQL).

QuaDer is a loader component that is responsible for the ver-
sioning of quad data. It stores the different versions of the dataset
in a condensed form, allowing for efficient storage of the data.
QuaDer uses a relational database to store the different versions of
the dataset. The system uses a bitstring representation to store the
presence of quads in a set of versions. For each new version of the
dataset, QuaDer adds a new bit to the bitstring representing the
presence of the quad in that version. If the quad is present in the
version, the bit is set to 1, otherwise it is set to 0.

Example 4.1. The Table 3 represents the condensed model of the
dataset versioning.

QuaQue is a queryable versioned quad store that is designed to
query concurrent versioning of quad data. It is built on top of a
Jena Fuseki edited version and uses a relational database to store
and query multiple versions of the same dataset at the same time.
QuaQue uses the previous relational database to query the different
versions of the dataset at the same time.

4.3 Demonstration scenarios
We conducted a series of experiments to evaluate the ability of
QuaQue in terms of query translation and scalability. We used two
datasets and ran a set of queries against them:

• a urban dataset with multiple versions representing the evo-
lution of a city over time with concurrent versioning of quad
data (the urban aspect of the dataset is not important for this
paper). The dataset contains around 430000 quads repari-
tioned in 6 versioned graphs and 15000 metadata triples.

• a synthetic dataset created with BSBM [4]. This dataset is
composed of more than 175000000 quads reparted in 1000
versioned graphs.

We ran two types of queries against the datasets. The first type
of queries are non aggregative queries that retrieve all quads that
match certain criteria. The second type of queries are more complex
queries that involve aggregation.



40ème conférence sur la gestion des données (BDA), October 21-24, 2024, Orléans, France Puget Gil et al.

4.3.1 Non aggregative queries. We ran a set of non aggregative
queries against the datasets to evaluate the ability of QuaQue to
retrieve all quads that match certain criteria. The queries involve
using the bitstring representation to retrieve the quads that match
certain criteria. To compute the existence of a quad in a version,
we use the bitwise AND operation between all the bitstrings and
the result is the bitstring representing the presence of the quad in
the versions.

Query 1: Retrieve all resources and versions where a triple
matches certain criteria
SELECT ?version ?subj ?obj WHERE {

GRAPH ?vng { ?subj rdf:type ?obj . }

?vng vers:is-in-version ?version .

}

This query is equivalent to the flat model. It retrieves all ver-
sioned quads and their associated version. It is useful to test the
ability of QuaDer to insert correctly the versioned quads and the
ability of QuaQue to retrieve them with their associated version.

Query 2: Create the differences graph between two versioned
graphs
SELECT ?subj ?pred ?obj WHERE {

{ SELECT ?subj ?pred ?obj WHERE {

GRAPH <vng1> { ?subj ?pred ?obj . }

} } MINUS {

SELECT ?subj ?pred ?obj WHERE {

GRAPH <vng2> { ?subj ?pred ?obj . }

} } }

This query tests the ability of QuaQue to get the differences
between two versioned graphs. It retrieves all quads that are present
in the first versioned graph but not in the second versioned graph.
It is useful to test the ability of QuaQue to compute the differences
between two versioned graphs and compare the result with other
versioned triple store like OSTRICH.

4.3.2 Aggregative queries. We ran a set of aggregative queries
against the datasets to evaluate the ability of QuaQue to perform
complex queries that involve aggregation.

Query 3: Find the maximum value of a resource by version
SELECT ?version MAX(?o) WHERE {

GRAPH ?vng {

?s bsbm:v01/vocabulary/rating2 ?o .

}

?vng vers:is-in-version ?version .

} GROUP BY ?version

Query 4: Count the number of elements that match certain
criteria by version
SELECT ?version COUNT(?subj) WHERE {

GRAPH ?vng { ?subj rdf:type ?obj . }

?vng vers:is-in-version ?version .

} GROUP BY ?version

Query 5: Count the number of elements that match certain
criteria by graph

SELECT ?graph COUNT(?obj) WHERE {

GRAPH ?vng { ?subj rdf:type ?obj . }

?vng vers:is-version-of ?graph .

} GROUP BY ?graph

Query 6: Count the number of version that match certain
criteria by graph
SELECT ?graph COUNT(DISTINCT ?version) WHERE {

GRAPH ?vng { ?subj rdf:type "sensor" . }

?vng vers:is-in-version ?version ;

vers:is-version-of ?graph .

} GROUP BY ?graph

These queries allow the analysis of the impact of the bit vector
for the optimization of SPARQL queries. The work of Sarah Cohen
[5] allows us to rewrite queries with arbitrary aggregation functions
using views. In our case, we then use the bit vector to optimize the
computation of aggregation functions. For example, to compute the
sum of values for a resource by version, we use the bitwise sum
operation between the bit vectors representing the count values of
the resource in each version (e.g., "What’s the sum of the height of
all buildings by version?").

4.4 Discussion
4.4.1 Bitstring use. The bitstring representation is a key feature of
QuaDer that allows for efficient storage and retrieval of versioned
quad data. By using a bitstring to represent the presence of quads
in a set of versions, we use the GRAPH operator to get all graph’s
versions that satisties a basic graph pattern by performing a bitwise
AND operation between the bitstring of all satisfied quads. This is
due to the condensed representation. The more we are able to keep
the condensed representation, the more we are able to optimize the
query translation. In future work, we plan to investigate the use
of the bitstring representation to optimize the translation of more
complex queries, such as aggregation and sorting.

4.4.2 Link with metadata. The metadata is stored in the default
graph. The metadata contains information about the dataset, such
as the versions and named graphs. The metadata is used to associate
a versioned named graph with its version (using the is-in-version
property) and named graph (using the is-version-of property). We
can also add metadata about the dataset, such as the creation date,
the author, and the description. By storing the metadata in the
default graph, we can easily access it using the basic graph pattern
without GRAPH operator. This allows us to retrieve the metadata
and use it to query the different versions of the dataset.

4.4.3 Translation extension. QuaQue partially implements the trans-
lation of SPARQL operators. We have only implemented the transla-
tion for the basic operators, such as SELECT, GRAPH, JOIN, GROUP
BY and basic graph patterns. This choice was made to demonstrate
the feasibility of the approach and to evaluate the capabilities of
the condensed model on complex queries such as aggregation.

Covering all the SPARQL operators would greatly enhance the ca-
pabilities of QuaQue as a query engine. It would enable researchers
and data scientists to perform complex queries and analysis on
concurrent versioned quad data. By implementing the translation
for all SPARQL operators, QuaQue would be able to handle a wide



ConVer-G: Concurrent versioning of knowledge graphs 40ème conférence sur la gestion des données (BDA), October 21-24, 2024, Orléans, France

range of query types, including filtering, aggregation, sorting, and
joining. This would allow users to express their queries in a familiar
and expressive language, making it easier to explore and analyze
the data. Additionally, extending the translation to all SPARQL
operators would make QuaQue compatible with existing SPARQL
query tools and libraries, enabling seamless integration with other
data processing and analysis pipelines.

4.4.4 Configuration of the versioning representation. Extending the
implementation of QuaDer to handle a target representation such as
RDF-star, Java, relational database, or property graphs would allow
to understand which storage engine would be the more efficient to
manage condensed model. By incorporating support for these addi-
tional representations, QuaDer would offer researchers and data
scientists the flexibility to choose the most suitable representation
for their specific use cases and requirements.

Incorporating these target representations into QuaDer would
not only enhance its versatility but also contribute to the scientific
community by providing a comprehensive and extensible platform
for concurrent versioning of quad data. Researchers and practi-
tioners would have the freedom to choose the most appropriate
representation based on their specific needs, leading to more accu-
rate and efficient analysis of evolving datasets.

4.4.5 RDF graphs annotation. RDF graphs are a suitable choice
for representing heterogeneous data. They provide a flexible and
standardized way to express relationships between entities. Addi-
tionally, RDF-star7 and Property Graphs [1] offer advanced features
for representing complex data structures. However, it’s important to
note that the representation of data in RDF graphs can be complex,
which may introduce some limitations. We can use the RDF-star
representation to annotate the RDF graphs with versions. This
would allow us to query the different versions of the dataset.

5 CONCLUSION
In this chapter, we have explored the capabilities of QuaQue, which
contains alternative SPARQL operators. QuaQue offers a new ap-
proach to querying evolving graphs by providing an alternative to
classic SPARQL queries.

With QuaQue, we can achieve everything that a classic triple
store can do. QuaQue modifies a set of operators and functions
that allow us to query all versions of a graph. This means that we
can retrieve historical data and analyze the evolution of the graph
over transaction time. This feature is particularly useful in scenarios
where data changes frequently and we need to track the changes
and perform analysis on different versions of the graph.

In future research, it would be interesting to integrate an hybrid
approach that combines transaction versioning and existence ver-
sioning (where transaction versioning is used to track the changes
in the database and existence versioning is used to track the changes
of the entities in the real world). This would allow us to query the
graph at a specific point in time and retrieve the historical data.
This would be particularly useful in scenarios where we need to
analyze the evolution of the graph over time and perform analysis
on different versions of the graph.

7https://www.w3.org/2021/12/rdf-star.html

ACKNOWLEDGEMENTS
This work, titled ConVer-G: Concurrent versioning of knowledge
graphs, is supported and funded by the IADoc@UDL (Université
de Lyon, Universite Claude Bernard Lyon 1) and LIRIS UMR 5205.
We would like to express our gratitude to the BD team and the
members of the Virtual City Project8 for their invaluable advice
and assistance.

REFERENCES
[1] Renzo Angles, Harsh Thakkar, and Dominik Tomaszuk. 2019. RDF and Property

Graphs Interoperability: Status and Issues. AMW 2369 (2019), 1–11.
[2] Natanael Arndt. 2020. Distributed Collaboration on Versioned Decentralized RDF

Knowledge Bases. Ph. D. Dissertation. Universität Leipzig. https://doi.org/10.
33968/9783966270205-00

[3] Leila Bayoudhi, Najla Sassi, and Wassim Jaziri. 2020. A survey on versioning
approaches and tools. In International Conference on Intelligent Systems Design
and Applications. Springer, 1155–1164.

[4] Christian Bizer and Andreas Schultz. 2009. The berlin sparql benchmark. Inter-
national Journal on Semantic Web and Information Systems (IJSWIS) 5, 2 (2009),
1–24.

[5] Sara Cohen, Werner Nutt, and Yehoshua Sagiv. 2006. Rewriting queries with
arbitrary aggregation functions using views. ACM Transactions on Database
Systems (TODS) 31, 2 (2006), 672–715.

[6] Jens Klump, Lesley Wyborn, Mingfang Wu, Julia Martin, Robert R Downs, and
Ari Asmi. 2021. Versioning data is about more than revisions: A conceptual
framework and proposed principles. Data Science Journal 20, 1 (2021), 12.

[7] Krishna Kulkarni and Jan-Eike Michels. 2012. Temporal features in SQL:2011.
SIGMOD Rec. 41, 3 (oct 2012), 34–43. https://doi.org/10.1145/2380776.2380786

[8] Philipp Ruf, Manav Madan, Christoph Reich, and Djaffar Ould-Abdeslam. 2021.
Demystifying mlops and presenting a recipe for the selection of open-source
tools. Applied Sciences 11, 19 (2021), 8861.

[9] John Samuel, Sylvie Servigne, and Gilles Gesquiere. 2018. Urbanco2fab: compre-
hension of concurrent viewpoints of urban fabric based on git. ISPRS Annals of
the Photogrammetry, Remote Sensing and Spatial Information Sciences 4 (2018),
65–72.

[10] Ruben Taelman, Miel Vander Sande, Joachim Van Herwegen, Erik Mannens, and
Ruben Verborgh. 2019. Triple storage for random-access versioned querying of
RDF archives. Journal of Web Semantics 54 (2019), 4–28.

[11] Diego Vinasco-Alvarez, John Samuel Samuel, Sylvie Servigne, and Gilles
Gesquière. 2021. Towards a semantic web representation from a 3D geospa-
tial urban data model. In SAGEO 2021, 16ème Conférence Internationale de la
Géomatique, de l’Analyse Spatiale et des Sciences de l’Information Géographique.
(Actes de la Conférence SAGEO 2021). La Rochelle [Online Event], France, 227–238.
https://hal.science/hal-03240567

[12] Nazatul Nurlisa Zolkifli, Amir Ngah, and Aziz Deraman. 2018. Version Control
System: A Review. Procedia Computer Science 135 (2018), 408–415. https://doi.
org/10.1016/j.procs.2018.08.191 The 3rd International Conference on Computer
Science and Computational Intelligence (ICCSCI 2018) : Empowering Smart
Technology in Digital Era for a Better Life.

Received June 3, 2024; accepted July 12, 2024; revised September 5, 2024

8https://projet.liris.cnrs.fr/vcity/

https://doi.org/10.33968/9783966270205-00
https://doi.org/10.33968/9783966270205-00
https://doi.org/10.1145/2380776.2380786
https://hal.science/hal-03240567
https://doi.org/10.1016/j.procs.2018.08.191
https://doi.org/10.1016/j.procs.2018.08.191
https://projet.liris.cnrs.fr/vcity/

	Abstract
	1 Introduction and Motivation
	2 Related work
	2.1 Code versioning
	2.2 Dataset versioning

	3 Use case and contributions
	3.1 The problem
	3.2 RDF Context Representation

	4 QuaQue: A Queryable Versioned Quad Store
	4.1 The query engine
	4.2 Architecture
	4.3 Demonstration scenarios
	4.4 Discussion

	5 Conclusion
	Acknowledgements
	References

