
HAL Id: hal-04690077
https://hal.science/hal-04690077v1

Submitted on 6 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the enumeration of non-dominated matroids with
imprecise weights

Tom Davot, Tuan-Anh Vu, Sébastien Destercke, David Savourey

To cite this version:
Tom Davot, Tuan-Anh Vu, Sébastien Destercke, David Savourey. On the enumeration of non-
dominated matroids with imprecise weights. International Journal of Approximate Reasoning, 2024,
174, pp.109266. �10.1016/j.ijar.2024.109266�. �hal-04690077�

https://hal.science/hal-04690077v1
https://hal.archives-ouvertes.fr

On the enumeration of non-dominated matroids
with imprecise weights⋆

Tom Davot1,2, Tuan-Anh Vu3, Sébastien Destercke2, David Savourey2

1 School of Computing Science, University of Glasgow, UK
2 Université de Technologie de Compiègne, CNRS, Heudiasyc (Heuristics and

Diagnosis of Complex Systems), CS 60319 - 60203 Compiègne Cedex,
surname.name@hds.utc.fr

3 Univ. Artois, UR 3926, Laboratoire de Genie Informatique et d’Automatique de
l’Artois (LGI2A), Bethune, France, tanh.vu@univ-artois.fr

Abstract. Many works within robust combinatorial optimisation con-
sider interval-valued costs or constraints. While most of these works focus
on finding a unique solution following a robust criteria such as minimax,
a few consider the problem of characterising a set of possibly optimal
solutions. This paper is situated within this line of work, and considers
the problem of exactly enumerating the set of possibly optimal matroids
under interval-valued costs. We show in particular that each solution in
this set can be obtained through a polynomial procedure, and provide
an efficient algorithm to achieve the enumeration.

Keywords: Enumeration · Optimisation · Interval Costs · Matroids

1 Introduction

There is little question that solving combinatorial optimisation problems is both
a useful and challenging task, be it to design networks, to optimise industrial
processes, to establish a schedule, etc. It is also unquestionable that in such
problems, uncertainties in the constraints or the objective functions can occur.
This has given rise to various approaches to account for these uncertainties, with
mainly the two frameworks that are stochastic optimisation, that uses proba-
bilistic modelling, and robust optimisation, that uses (convex) sets of scenarios
as uncertainty models, with other frameworks such as evidence theory trying to
bridge the gap between the two.

This paper is mainly concerned with the case of robust optimisation, where
our uncertainty about costs is given by intervals. Such a topic has attracted
some attention in the past (one can check, for instance, the book [10] for a good
reference on the topic). In such issues, two typical problems are considered:

– finding a unique robust solution, often in the form of a minimax solution un-
der interval uncertainty (see, e.g., Yaman et al. [19] for the case of minimum

⋆ Preprint version. The editor version can be found at https://doi.org/10.1016/j.

ijar.2024.109266

https://doi.org/10.1016/j.ijar.2024.109266
https://doi.org/10.1016/j.ijar.2024.109266

spanning trees). Of course other criteria to find a robust unique solution can
be adopted [2,15,9], such as the maximin regret, that has also been consid-
ered in the case of matroids [11];

– finding possible and necessary elements, where an element is possibly optimal
if it is part of an optimal solution for at least one scenario, and necessarily
optimal if it is part of all optimal solutions, irrespectively of the chosen
scenario within the intervals. For example [19] investigate the concept of weak
(possible) and strong (necessary) edges in interval-valued minimum spanning
trees, that is, edges that belong to at least one possibly optimal solution and
to every possibly optimal solution, respectively. The same problem has been
considered for matroids [12], the combinatorial problems we will consider in
this paper.

In this paper, our interest is closer, yet different, of the latter problem rather than
the former. More precisely, we want to consider the set of all possibly optimal so-
lutions, and to enumerate efficiently and exactly such solutions. Such a problem
may be important if, e.g., one wants to browse the Pareto front of optimal solu-
tions under uncertainty. Note that the problem of finding possibly and necessarily
optimal elements is not equivalent to that, as determining possibly and necessar-
ily optimal elements only provides a possibly rough outer-approximation, as not
all feasible solutions composed of possibly optimal elements will be an optimal
solution for one scenario. This is illustrated by the next simple example.

Example 1. Consider a connected graph G = (V,E) with associated interval
costs [cij , cij] for the edge {i, j}, and the problem of finding a minimum spanning
tree, i.e., a subset T ⊆ E such that (V, T) forms a tree and has minimal cost.
Figure 1 shows a graph with four nodes and five edges with their associated
interval-valued costs. It can be checked that all edges can be in some optimal
solutions, but that no edges is present in every optimal solution. So the set of
trees described by the possibly optimal elements is simply the set of all possible
trees one can construct.

Yet, one cannot find a scenario where the edges {1, 3} and {2, 3} are simul-
taneously present in the solution, as whatever the chosen scenario, if {1, 3} is
present, one can always swap the edge {2, 3} for {1, 2} and get a lower score, as
the score of {1, 2} will always have a lower score than {2, 3}. This means that
the set of trees that are optimal for one scenario is in this case a strict subset of
those obtained by combining possibly optimal elements.

In a previous conference paper [5], we looked at the problem of enumerating
minimum spanning trees with interval-valued scores. This paper is an extension
of this paper, as we look here at much more general (and abstract) combinatorial
problems than minimum spanning trees, which are matroids. Matroids are very
general structures that embed many standard problems:

– the problem of scheduling tasks of constant time on a single machine with dif-
ferent associated deadlines and penalties corresponds to a specific transversal
matroid [13, Chapter 7, Section 4];

2

1 2 3

4

[2,3] [4,5]

[1,9]

[1.5, 1.5] [3.5, 3.5]

Fig. 1. Interval-valued graph of Example 1

– consider a set E of n jobs, where each completed job j brings a profit wj ,
and a set A of m agents, each of them able to complete a possible subset of
jobs. The task of assigning one job to each agent (that they can complete)
while maximizing the overall profit is also a specific transversal matroid
problem [7];

– the aforementioned problem of finding a minimum spanning tree corresponds
to the specific subclass of graphic matroid.

Appendices A and B provide more details about such problems. For our moti-
vation, it is sufficient to know that matroid problems can be commonly encoun-
tered.

Our paper is structured as follows: Section 1 introduces the notion of matroid
and of minimum base, which is then made imprecise, allowing us to state the
problem considered in this paper. Section 3 then describes some results that
are necessary steps to demonstrate our main results. Our main results are then
stated in Sections 4 and 5, where we derive conditions for an element being
possible or necessary given a partially instantiated solution, who in turn allow
us to provide an enumeration algorithm that has polynomial time delay, implying
that enumeration can be done efficiently, even if its overall time still depends on
the size of the set of possibly optimal solutions. Finally, Section 6 provides some
experiments giving some first hints at situation where our enumeration methods
are particularly efficient.

2 Notations and problem description

2.1 Matroid

Let M = (E,B) be a pair constituted by a set of elements E and a collection
B of subsets of E such that B1 ̸⊆ B2, for any two subsets B1 ∈ B and B2 ∈ B.
A subset B ∈ B is called a base. A subset I ⊆ E is independent if there is a
base B ∈ B such that I ⊆ B. Notice that in particular, ∅ is an independent set.
A circuit is a minimal subset C ⊆ E such that C is not independent. M is a
matroid if it has the following property.

(1) Let I1 and I2 be two independent sets such that |I1| < |I2|. There is an
element e ∈ I2 \ I1 such that I1 ∪ {e} is an independent set.

3

In a matroid, every base has the same cardinality. Let E′ ⊆ E be a subset
of elements. We denote I(E′) (or simply I if E′ = E) the set of independent
sets included in E′. In other words, I ∈ I(E′) if I is an independent set of M
and I ⊆ E′, that is to the maximal cardinality of an independent set that is
a subset of E′. Samewise, we denote C(E′) (or simply C if E = E′) the set of
circuits included in E′. In other words, C ∈ C(E′) if C is a circuit of M and
C ⊆ E′. The rank function is a function r : P(E) → N that associates every
subset E′ to the maximum cardinality of an independent set in I(E′). Notice
that for every base B, we have |B| = r(E). For the sake of simplicity, we call
r(E) the rank of M . The closure of a subset E′, denoted cl(E′) is a superset
of E′ containing every element that can be added to E′ without increasing its
rank. More formally, cl(E′) = {e ∈ E | r(E′ ∪ {e}) = r(E′)}. E′ is said closed if
cl(E′) = E′. A hyperplane is a closed set of rank r(E)− 1.

In Example 2, we depict a matroid that will be used as an illustration
throughout the rest of this article.

Example 2. Consider the matroid M = (E,B) with E = {e1, . . . , e7} and

B =


{e1, e2, e3, e5, e6}, {e1, e2, e3, e5, e7}, {e1, e2, e3, e6, e7},
{e1, e2, e4, e5, e6}, {e1, e2, e4, e5, e7}, {e1, e2, e4, e6, e7}, {e1, e2, e5, e6, e7},
{e1, e3, e4, e5, e6}, {e1, e3, e4, e5, e7}, {e1, e3, e4, e6, e7}, {e1, e3, e5, e6, e7},
{e2, e3, e4, e5, e6}, {e2, e3, e4, e5, e7}, {e2, e3, e4, e6, e7}, {e2, e3, e5, e6, e7}

 .

The matroid M has three circuits C1 = {e1, e2, e3, e4}, C2 = {e4, e5, e6, e7} and
C3 = E \ {e4} and has rank 5.

In matroid theory, we often use matroid oracle. The most used is the in-
dependence oracle which, given a subset of elements E′, returns true if E′ is
independent and false otherwise. We denote iM the time complexity of the in-
dependence oracle for the matroid M . In this article, we also use a port oracle
that was introduced by Coullard and Hellerstein [4]. A port oracle is an oracle
that, given a subset of elements E′ and an element e′ ∈ E′, returns true if there
is a circuit in C(E′) that contains e′ and false otherwise. We denote pM the
time complexity of the port oracle for the matroid M .

Remark 1. As noted in [4], the port oracle of M can be implemented by using
the independence oracle of M in O(|E′| · iM) as follows: generate a maximal
independent subset I of E′\{e} one element at a time, then test if I ∪ e contains
a circuit.

Finally, we recall an important property of circuits, used later on.

Property 1 (Strong circuit elimination axiom). Let C1 and C2 be two distinct
circuits and let e1 ∈ C1∩C2 and e2 ∈ C1\C2. There is a circuit C3 ⊆ (C1∪C2)\e1
such that e2 ∈ C3.

4

2.2 Minimum base

A weighted matroid M = (E,B,W) is a matroid with a weight function W :
E → R that associates to each element e a weight W (e). Given a subset E′ ⊆ E,
we denote W (E′) the sum of the weights of the elements of E′, that is

W (E′) =
∑
e∈E′

W (e).

A base B ∈ B is minimum if W (B) is minimum, that is, if there is no base
B′ ∈ B such that W (B′) < W (B). An important property of matroids is that
it is possible to compute a minimum base using a greedy algorithm [16] (see
Algorithm 1). Notice that we need to call an independence oracle in line 5, thus,
the complexity of this algorithm is O(|E| log |E|+ |E| · iM).

Algorithm 1: Greedy Algorithm

Data: A weighted matroid (E,B,W)
Result: A minimum base B

1 sort E by increasing order of weight;
2 B ← ∅;
3 while E ̸= ∅ do
4 e← first element in the ordered-list E ;
5 if B ∪ {e} is an independent set then
6 B ← B ∪ {e};
7 return B;

2.3 Imprecise weights and problem description

An imprecise weight [ω, ω] is an interval of numbers. An imprecise weighted
matroid M = (E,B, Ω) is a matroid with a function Ω that associates to each
element e an imprecise weight [ωe, ωe]. A realization R : E → R of Ω is a weight
function that associates to each element e a weight w ∈ Ω(e). We denote RΩ

the set of realizations of Ω.
Let E′ ⊆ E be a subset of elements of E. Given a weight realization R, the

weight of E′, denoted R(E′) is the sum of the weights of its elements, that is,
R(E′) = Σe∈E′R(e). Given two subsets of elements E1 and E2, we say that E1

dominates E2, denoted by E1 ≻ E2 if,

∀R ∈ RΩ , R(E1) < R(E2).

Given two elements e1 and e2, we say that e1 dominates e2 if ωe1 < ωe2
. In

the following, we are interested in the set of non-dominated bases.

B[Ω] := {B ∈ B |̸ ∃B′ ∈ B, B′ ≻ B}. (1)

5

An example of imprecise weighted matroid is depicted in Example 3. An
element e is possible if there is a base B ∈ B[Ω] such that e ∈ B. An element e
is necessary if for every base B ∈ B[Ω], we have e ∈ B. Kasperski et al. shown
that it is possible to determine if an element is possible or necessary by using a
greedy algorithm [12].

Theorem 1 ([12]). Let M = (E,B, Ω) be an imprecise weighted matroid, let
e ∈ E be an element and let ϵ be an infinitively small value.

(a) Let Rp ∈ RΩ such that Rp(e) = ωe − ϵ and ∀e′ ∈ E \ {e}, Rp(e
′) = ωe′ .

Let B be a minimum base under Rp, computed with a greedy algorithm. The
element e is possible if and only if e ∈ B.

(b) Let Rn ∈ RΩ such that Rn(e) = ωe + ϵ and ∀e′ ∈ E \ {e},Rn(e
′)= ωe′ .

Let B be a minimum base under Rn, computed with a greedy algorithm. The
element e is necessary if and only if e ∈ B.

In other words, an element e is possible (resp. necessary) if e belongs to
a minimum base under the best (resp. worst) realization for e. The addition
(resp. substraction) of ϵ is needed so that in case of a tie between e and another
element in the greedy algorithm, e is considered first (resp. last). In this article,
we address the problem of enumerating every base of B[Ω].

Imprecise Minimum Base (IMB)
Input An imprecise weighted matroid M = (E,B, Ω).
Output Enumeration of B[Ω]

Example 3. Consider the imprecise weighted matroid M = (E,B, Ω) where E
and B are described in Example 2 and,

Ω =

{
Ω(e1) = [1, 4], Ω(e2) = [1, 1], Ω(e3) = [1, 1], Ω(e4) = [3, 6],
Ω(e5) = [2, 6], Ω(e6) = [5, 7], Ω(e7) = [3, 5]

}
.

The set of non-dominated bases is

B[Ω] =

{
{e1, e2, e3, e5, e6}, {e1, e2, e3, e5, e7}, {e1, e2, e3, e6, e7},
{e2, e3, e4, e5, e6}, {e2, e3, e4, e6, e7}, {e2, e3, e5, e6, e7}

}
.

Every element of M is possible and e2 and e3 are necessary. However, not all
subsets of size 5 including {e2, e3} are in B[Ω], as for instance {e1, e2, e3, e4, e5}
is not. The reason is similar to the one advocated in Example 1.

2.4 Partial solution

Let M = (E,B, Ω) be an imprecise weighted matroid for which we want to
enumerate every non-dominated base. A partial solution S is a pair of sets of
elements in(S) and out(S) such that there is a non-dominated base B ∈ B[Ω]
that contains every element of in(S) and no element of out(S). In that case,

6

we say that B is associated to S. We denote BS [Ω] the set of bases of B[Ω]
associated to S. Formally,

BS [Ω] = {B ∈ B | in(S) ⊆ B ∧ out(S) ∩B = ∅}.

We denote S∅ the empty partial solution for which in(S∅) = out(S∅) =
∅. Notice that B[Ω] = BS∅ [Ω]. An example of partial solution is depicted in
Example 4. Notice that for a partial solution S, we necessarily have BS [Ω] ̸= ∅.
Hence, every disjoint pair of elements sets is not a partial solution since at least
one non-dominated base needs to be associated to this pair (see Example 5). Let
S be a partial solution. We extend the notion of possible and necessary elements
for partial solutions as follows. An element e ̸∈ in(S) ∪ out(S) is possible with
respect to S if there is a base B ∈ BS [Ω] such that e ∈ B. Similarly, e is
necessary with respect to S if for all bases B ∈ BS [Ω], we have e ∈ B. Notice
that an element e is possible (resp. necessary) if and only if e is possible (resp.
necessary) with respect to S∅.

Example 4. Pursuing Example 3, consider the partial solution S with in(S) =
{e7} and out(S) = {e1}. The set of non-dominated bases associated to S is

BS [Ω] = {{e2, e3, e4, e6, e7}, {e2, e3, e5, e6, e7}}.

The elements e3 and e4 are necessary with respect to S and every element in
E \ out(S) ∪ in(S) is possible with respect to S.

Example 5. Consider the pair of elements sets in(S′) = {e5} and out(S′) =
{e1, e4}. S′ is not a partial solution for the imprecise weighted matroid depicted
in Example 3. Indeed, B = {e2, e3, e5, e6, e7} is the only base such that in(S′) ⊆
B and out(S′) ∩B ̸= ∅ and B does not belong to B.

An important remark is that we cannot reuse Theorem 1 to determine if an
element is possible/necessary with respect to some partial solution S, otherwise
the problem of enumerating elements of B[Ω] would be trivial. For example,
consider the partial solution S given by Example 4: the element e4 is necessary
with respect to S. However, if we consider the realization Rn for which R(e4) =
6+ ϵ and R(e) = ωe for every element e ̸= e4, then the greedy algorithm returns
B = {e2, e3, e5, e6, e7}} as a minimum base of E \ out(S) which does not belong
to BS [Ω].

In the algorithm developed in Section 5, we add the element in the partial
solution by increasing order of the lower bound. Hence, we want to ensure that
if any element e belongs to in(S), then any element d with a smaller value ωd

belongs to S. Therefore, we introduce the concept of nice partial solution as
follows.

Definition 1. A partial solution S is nice if for any pair of elements e1 and e2
such that ωe1

< ωe2
, we have e2 ∈ in(S) ∪ out(S) ⇒ e1 ∈ in(S) ∪ out(S).

7

Given a nice partial solution, an element e ̸∈ in(S) ∪ out(S) is a first non-
assignated element of S if e is a minimum among the elements that do not belong
to S, that is, e = argmin{ωe | e ∈ E \ (in(S) ∪ out(S))}. An example of a nice
partial solution is depicted in Example 6. Notice that the partial solution given
in Example 4 is not a nice partial solution since ωe2

< ωe7
, e2 ̸∈ in(S) ∪ out(S)

and e7 ∈ in(S).

Example 6. Consider the pair of elements sets in(S) = {e1, e3} and out(S) =
{e2, e5}. S is a nice partial solution. The two elements e4 and e7 are the two first
non-assignated elements of S.

3 Preliminary results

In this section, we introduce some definitions and some preliminary results, that
will prove useful in the rest of the paper.

3.1 Domination

To determine if a base B1 dominates another base B2 for an imprecise weighted
matroid, we can use the following lemma.

Lemma 1. Let M = (E,B, Ω) be an imprecise weigthed matroid. Let B1 ∈ B
and B2 ∈ B be two bases. B1 dominates B2 if and only if B1 \ B2 dominates
B2 \B1.

Proof. Let R be any realization. We can establish the following relations.

R(B1) < R(B2)

⇔
R(B1 \B2) +R(B1 ∩B2) < R(B2 \B1) +R(B1 ∩B2)

⇔
R(B1 \B2) < R(B2 \B1).

Thus, B1 dominates B2 if and only if B1 \B2 dominates B2 \B1.

Corollary 1. Let M = (E,B, Ω) be an imprecise weighted matroid. Let B1 ∈ B
and B2 ∈ B be two bases. B1 dominates B2 if and only if∑

e∈B1\B2

ωe <
∑

e∈B2\B1

ωe.

Proof. Let R be a realization such that R(e) = ωe if e ∈ B1 and R(e) = ωe

otherwise. We have R(B1 \ B2) =
∑

e∈B1\B2

ωe and R(B2 \ B2) =
∑

e∈B2\B1

ωe.

Hence, if the property is false then we have R(B1 \B2) ≥ R(B2 \B1) and thus,
B1 does not dominate B2. Further, for any realization R′, we have R′(B1 \B2) ≤
R(B1 \B2) and R′(B2 \B1) ≥ R(B2 \B1). Hence, if R(B1 \B2) < R(B2 \B1),
then for any realization R′, we have R′(B1 \ B2) < R′(B2 \ B2) and thus, by
Lemma 1, B1 dominates B2.

8

3.2 Cocircuit

We now introduce the notion of cocircuit which is a central notion in our article.
A cocircuit X ⊆ E of a matroid M is usually defined as a circuit in the dual of
M . For the purpose of this article, we will use the following definition.

Definition 2. Let M = (E,B) be a matroid and let I be an independent set of
rank r(E)− 1. The set of elements X = {e ∈ E | I ∪ {e} ∈ B} is a cocircuit. In
other words, X contains any element that can be added to I without creating a
circuit.

Note that in Definition 2, cl(I) is a hyperplane and the cocircuit X is nothing
but the complement of cl(I), i.e., X = E \ cl(I). In fact, any cocircuit is the
complement of a hyperplane.

Example 7. Consider the imprecise weighted matroid M = (E,B) described in
Example 2. The subset X = {e1, e4, e6} is a cocircuit of M . Indeed the only
independent set of rank(E) − 1 in E \ X is I = {e2, e3, e5, e7} and for any
element e ∈ X, I ∪ {e} is a base. However, the subset X ′ = {e5, e6, e7} is not a
cocircuit: I ′ = {e1, e2, e3} is a maximal independent set in E \X ′ and I ′ ∪ {e5}
is not a base.

Notice also that if M is a matroid such that elements of E are the edges of a
graphG and the bases are the spanning trees ofG, then a cocircuit corresponds to
a minimal cut-set of G, that is, a minimal subset of edges such that their deletion
disconnect the graph4. The following property indicates that if a cocircuit X
intersects a circuit C, then there are at least two elements of C in X, or in other
words that a cocircuit can not intersect a circuit only once.

Property 2 (Orthogonality property). Let X be a cocircuit of a matroid M =
(E,B) and let e ∈ X. Let C ∈ C be a circuit containing e. We have |X ∩C| ≥ 2.

We are going to introduce a result (Lemma 3) aiming to construct a specific
cocircuit containing some specific elements and excluding some others. For this
purpose, we need a preliminary lemma.

Lemma 2. Let A ⊆ E and let E′ ⊆ E such that

(a) A ∩ E′ = ∅,

(b) for any subset E′′ ⊂ E′, there is no circuit in C(A∪E′′) containing E′′, and

(c) there is a circuit C ∈ C(A ∪ E′) containing E′.

Let I be a maximal independent set in A, there is a circuit D such that E′ ⊆ D
and D \ E′ ⊆ I.

4 The kind of structured we considered in [5]

9

Proof. Let e ∈ E′. We construct a circuit D by induction and we ensure that at
each step we have e ∈ D. First, we setD := C. By definition of C, we have e ∈ D.
Then, we exhaustively apply the following rule. Let x ∈ D \ I ∪ E′. Since I is
maximal, there is a circuit Cx such that x ∈ Cx and Cx\{x} ⊆ I. By Property 1,
there is a circuit C ′ ⊆ D ∪ Cx \ {x} containing e. We set D := C ′. When the
rule does not apply anymore, we obtain a circuit D such that D \ E′ ⊆ I. Let
E′′ = D ∩ E′. We have E′′ = E′ since otherwise we would have D ⊆ I ∪ E′′,
contradicting condition (b). Hence, we obtain a circuit D as thought.

We are ready to state Lemma 3.

Lemma 3. Let M = (E,B, Ω) be an imprecise weighted matroid. Let A ⊆ E
and B ⊆ E be two disjoint subsets of elements such that

– (i) for all element a ∈ A, there is no circuit containing a in B ∪ {a}, and
– (ii) for all pair of elements a1, a2 ∈ A, there is a circuit containing a1 and

a2 in B ∪ {a1, a2}.

There is a cocircuit X such that X ∩B = ∅ and A ⊆ X.

Proof. Let Iinit be a maximal independent set inB. We construct an independent
set I as follows. We initiate I by taking I := Iinit, then we apply exhaustively
the following rule: let e be an element of M , if I ∪ {e} does not contain a
circuit and for any element a ∈ A, I ∪ {e, a} does not contain a circuit, then
we set I := I ∪ {e} in I. Let X be the set of elements x such that I ∪ {x} is
an independent set. Notice that I is a maximal independent set in E \ X. By
construction, A is a subset of X. We show that X is a cocircuit of I. Toward a
contradiction, suppose not, that is, it exists two elements x1 ∈ X and x2 ∈ X
such that I ∪ {x1, x2} is an independent set. Consider the following cases.

– Suppose x1 ∈ A and x2 ∈ A. By Lemma 2, there is a circuit D such that
D \ {x1, x2} ⊆ I contradicting I ∪ {x1, x2} being an independent set.

– Suppose x1 ∈ A and x2 ̸∈ A. By construction of I, x2 does not belong to I
because there is an element a ∈ A such that there is a circuit C2 in I∪{x2, a}
containing x2 and a. Since a and x2 belong to X, there is no circuit in I∪{a}
nor in I ∪ {x2}. Hence, by Lemma 2, there is a circuit D2 such that a ∈ D2

and D2\{a, x2} ⊆ I If a = x1, then I∪{x1, x2} contains the circuit D2 which
is a contradiction. Suppose that a ̸= x1. By Lemma 2, there is a circuit D1

such that a ∈ D1 and D1 \ {a, x1} ⊆ I. Since a ∈ D1 ∪D2, by Property 1,
there is a circuit D3 such that D3 ⊆ D1∪D2−a. But then, D3 \{x1, x2} ⊆ I
and thus, I ∪ {x1, x2} contains the circuit D3 which is a contradiction.

– Suppose x1 ̸∈ A and x2 ̸∈ A. For each i ∈ {1, 2}, by construction of I, there
is an element ai such that there is a circuit Ci in I ∪ {ai, xi}. By Lemma 2,
there is a circuit Di such that {ai, xi} ⊆ Di and Di \{ai, xi} ⊆ I. Moreover,
by definition of A, there is a circuit containing a1 and a2. By Lemma 2,
there is a circuit D3 such that {a1, a2} ⊆ D3 and D3 \{a1, a2} ⊆ I. We have
x1 ̸∈ D1 ∩ D3 and a1 ∈ D1 ∩ D3. So, by Property 1, there is a circuit D4

such that x1 ∈ D4 and D4 ⊆ D1 ∪ D3 − a1. Moreover, D4 \ {x1, a2} ⊆ I.

10

If a2 ̸∈ D4, then D4 − x1 ⊆ I and thus, I ∪ {x1} contains the circuit D4

which is a contradiction. Suppose a2 ∈ D4. We have x1 ̸∈ D2 ∩ D4 and
a2 ∈ D2 ∩D4. So, by Property 1, there is circuit D5 such that x1 ∈ D5 and
D5 ⊆ D2∪D5−a2. Moreover, D5 \{x1, x2} ⊆ I. Thus, I ∪{x1, x2} contains
the circuit D5 which is a contradiction.

Hence, it is not possible to add two elements of X in I without creating a circuit,
and so, we obtain a cocircuit X as thought.

Let B be a base and let X be a cocircuit. Let e ∈ X \B. Let C be a circuit in
B ∪ {e}. We call every element e′ in C ∩B ∩X a X-blocking element for e in B
(e′ necessarily exists by Property 2). Notice that the subset B′ = B ∪ {e} \ {e′}
is also a base. We say that B′ is obtained by swapping e and e′ in B. We recall
the local optimality property.

Property 3 (local optimality property [16]). Let B be a base of a weighted ma-
troid M = (E,B,W). If B is not minimum, then there is another base B′ such
that W (B′) < W (B) and B′ is obtained by swapping two elements e ∈ B and
e′ ̸∈ B. Notice that e and e′ belong to the cocircuit induced by e and B.

Given a base B and an element e ∈ B, we sometimes need to designate the
cocircuit containing every element that can be added in B \{e} without creating
a circuit. For that, we introduce the following definition

Definition 3. Let M = (E,B) be a matroid, let B a base and let e ∈ B. Let
X = {e′ ∈ E | (B\{e})∪{e′} ∈ B} be the cocircuit containing every element that
can be added in B \ {e} without creating a circuit. The cocircuit X is designated
as the cocircuit induced by e and B.

Notice that a cocircuit X induced by a base B and an element e contains
every element e′ such that there is a circuit C ⊆ B ∪ {e′} with {e, e′} ⊆ C.
Also, notice that e is X-blocking for any element e′ of X. Moreover, if there is
another cocircuit X ′ such that e is X ′-blocking for an element e′ in B, then e′

necessarily belongs to X.

Lemma 4. Let B1 be a base and, for all 1 ≤ i ≤ 2 let ei ∈ B1 and Xi be the
cocircuit induced by B1 and ei. Let e3 be an element of X1 \ B1. Let B2 be the
base obtained by swapping e1 and e3 in B1 and let Y3 be the cocircuit induced by
B2 and e2. We have

(X2 ∪X3) \ (X2 ∩X3) ⊆ Y3 ⊆ X2 ∪X3.

Proof. Let e ̸∈ B1 be an element such that e ̸∈ X1 ∪X2. There is a circuit C in
B1∪{e} that does not contain e2 nor e3. Hence, we have (C \{e}) ⊆ B1 \{e2} =
B2 \ {e1} and so, e does not belong to Y3.

Let e ∈ X2 \ X3. If e = e2, then e ∈ Y3. Otherwise, there is a circuit C in
B1 ∪{e} that contains e2 and does not contain e3. Hence, we have C \ {e} ⊆ B2

and so, e ∈ Y3.

11

Let e ∈ X3 \ X2. If e = e3, then there is a circuit C1 that contains e1, e3
and e3 in B1 ∪ {e1}. Hence, we have C1 \ {e3} ⊆ B2 and so, e ∈ Y3. Otherwise,
there is a circuit C2 in B1 ∪ {e} that contains e3 and does not contain e2. Since
e3 ∈ C1 ∩C2, by Property 1, there is a circuit C3 that contains e2 and does not
contains e3 in C1 ∪ C2. Moreover, C3 contains e since otherwse we would have
C3 ∈ B2, contradicting B2 being a base. Hence, we have C3 \ {e} ⊆ B2 and so,
e ∈ Y3.

3.3 Core

We now introduce the notion of the core of a cocircuit and show that an element
is possible/necessary with respect to a partial solution if it respects some prop-
erty related to a core of a cocircuit. This will be essential to derive algorithms
incrementally building possibly optimal solutions.

Definition 4. Let M = (E,B, Ω) be an imprecise weighted matroid and let X
be a cocircuit of M . The core of X is a subset KX ⊆ X such that there is no
element of X that dominates KX .

Let X be a cocircuit, an element e is a minimum element of X if ωe is
minimum in X, that is, e = argmin{we′ | e′ ∈ X}. Notice that e dominates
every element e′ in X \KX . An example of a cocircuit with its core is depicted
in Example 8. The next property show that the core of a cocircuit intersects any
non-dominated base.

Property 4. Let M = (E,B, Ω) be an imprecise weigthed matroid and let B be
a base. B is non-dominated if and only if for every cocircuit (induced by an
element) X, we have KX ∩B ̸= ∅.

Proof. Let B be a non-dominated base. Toward a contradiction, suppose there
is a cocircuit X such that KX ∩ B = ∅. Let e be a minimum element of X.
Let C be a the circuit in B ∪ {e}. Let e′ be an X-blocking element for e in B.
Since e′ ̸∈ KX , e′ is dominated by e. Thus, by Lemma 1, the base obtained by
swapping e′ and e in B dominates B, contradicting B being not dominated.

For the other direction, assume that B is dominated. From Corollary 1, B is
not optimal under a specific weight realization R where R(e) = ωe ∀e ∈ B and
R(e) = ωe ∀e /∈ B. By Property 3, there is a base B′ such that B \ B′ = {e},
B′ \ B = {e′}, and R(B′) < R(B). It follows that e′ dominates e. Moreover,
both e, e′ are in the cocircuit X induced by B and e. Therefore, KX ∩B = ∅.

Example 8. Consider the imprecise weighted matroid M = (E,B, Ω) described
in Examples 2 and 3. Let X = {e1, e4, e6} be the cocircuit described in Exam-
ple 7. The element e1 is a minimum element of X and e6 is dominated by e1,
thus, we have KX = {e1, e4}. Consider the base B = {e1, e2, e3, e5, e6}. The ele-
ment e1 is X-blocking for e4 in B since there is the circuit C1 = {e1, e2, e3, e4}
in B ∪{e4}. Finally, the base B′ = {e2, e3, e4, e5, e6} is obtained by swapping e1
and e4 in B.

12

Next lemma shows that if there is an element e that does not belong to a
non-dominated base B1, then if e belongs to a core of any cocircuit, then we can
construct another non-dominated base by swapping e with another element in
B1.

(B1)

e1

e2

e3e4

e5

(B2)

e1

e2

e3e4

e5

(B3)

e1

e2

e3e4

e5

Fig. 2. Example of application of Lemma 5 in minimum spanning trees. The element e2
belongs to the core of the cocircuit X1 = {e1, e2, e5}. The element e3 has the maximum
value ωe3

in the circuit {e1, . . . , e4}. The bases B2 and B3 are obtained by swapping
e2 with respectively e1 and e3 in B1. By Lemma 5(a), the base B3 is non-dominated.
Let X2 = {e2, e3, e5} be the cocircuit induced by e3 in B2. If e3 ∈ KX2 , then By
Lemma 5(b), B2 is non-dominated.

Next lemma shows that it is possible to construct a non-dominated base from
another by just swapping two elements of a same core. This gives us a nice way
to create a new undominated base from an existing one.

Lemma 5. Let B1 be a non-dominated base and let e1 ∈ B1. Let X1 be the
cocircuit induced by e1 and B1. Let e2 ̸∈ B1 be an element that belongs to KX1

.
Let C be the circuit in B1 ∪ {e2} and let e3 be any element such that e3 =
argmax{ωe | e ∈ C} (possibly e2 = e3). Let B2 be the base obtained by swapping
e2 and e1 in B1 and let B3 be the base obtained by swapping e2 and e3 in B1.
We have the two following properties.

(a) B3 is non-dominated.
(b) If e3 ̸= e1, let X2 be the cocircuit induced by e3 and the base B2. If e3 ∈ KX2

,
then B2 is non-dominated.

Proof. (a) First, notice that if e2 = e3, then B1 = B3 and B3 is trivially non-
dominated. Thus, suppose e2 ̸= e3. Toward a contradiction, suppose B3 is
dominated by another base. By Property 4, there is a cocircuit Y3 such that
KY3 ∩ B3 = ∅. We have B1 ∩ KY3 = {e3} since otherwise, we would have
B1 ∩KY3 = ∅ contradicting B1 ∈ B[Ω]. By Property 2, there is an element
e4 ∈ C ∩ Y3 \ {e3}. Moreover, by definition of e3, we have ωe4

≤ ωe3
thus,

e4 ∈ KY3
which contradicts B3 ∩KY3

= ∅. We can conclude that B3 is not
dominated.

13

(b) Toward a contradiction, suppose B2 is dominated by another base.
By Property 4, there is a cocircuit Y3 induced by an element e4 ∈ B2 and
B2 such that B2∩KY3 = ∅. That is, e4 ̸∈ KY3 . Notice that e4 ̸= e2 since the
cocircuit induced by e2 and B2 is X1 and e2 ∈ KX1

by definition. We have
B1∩KY3

= {e1} since otherwise, we would have B1∩KY3
= ∅ contradicting

B1 ∈ B[Ω] by Property 4. Notice that since Y3∩B1 = {e1, e4}, by Property 2,
we have e4 ∈ C.
Let d = argmin{ωe | e ∈ X1} be a minimum element in X1.
We show that d does not dominate e3. If e2 = e3, then X2 = X1 and since
e2 ∈ KX1

, d does not dominate e3.
Otherwise, let X3 be the cocircuit induced by e3 and B1. If d ∈ X3, then
since e3 ∈ KX3 , by Property 4, d can not dominate e3. If d ∈ X1 \ X3,
then by Lemma 4, d ∈ X2. By hypothesis, e3 ∈ KX2 and so, e3 can not
dominate e3. Now, by definition of e3, we have ωe3

≥ ωe4
. So, since e3 is

not dominated by d, e4 is not dominated by d. It follows that no element
in X1 dominates e4. Let X4 be the cocircuit induced by e4 and B1. Since
{e2, e4} ⊂ C, we have e2 ∈ X4. By Property 4, e4 ∈ KX4

and so, no element
of X4 can dominate e4. Hence, no element of X1 ∪X4 dominates e4, and by
Lemma 4, no element of Y3 ⊆ X1 ∪ X4 dominates e4. That is, e4 belongs
to KY3

, which contradicts B2 ∩ KY3
= ∅. We can conclude that B2 is not

dominated.

Notice that if e1 = e3, then B3 = B2 and thus, B2 is necessarily non-
dominated. Moreover, if e2 = e3, the condition of property Lemma 5(b) is fullfiled
and so, B2 is non-dominated.

4 Core and partial solution

Finally, we show that the property of being possible/necessary for an element is
intrinsically linked to the concept of cores. We first introduce some definitions.

Definition 5. Let e be an element, let S be a nice partial solution and let X be
a cocircuit such that e ∈ KX .

– X is a necessary certificate for e if KX \ out(S) = {e}.
– Let Y be a cocircuit, Y is a bad cocircuit for e and X if e ̸∈ KY and

KY \ out(S) ⊆ X.
– X is a possible certificate for e if in(S)∩X = ∅ and there is no bad cocircuit

Y for e and X.

As we will show in the following, an element e is necessary with respect to
a nice partial solution S if and only if there exists a necessary certificate for e.
Samewise, an element e is possible with respect to a nice partial solution S if
and only if there exists a possible certificate for e. An example of necessary and
possible certificates is depicted in Example 9.

14

Example 9. Consider the imprecise weighted matroid M = (E,B) described in
Example 2 and consider the partial solution S with in(S) = ∅ and out(S) =
{e1}.
– The cocircuit X1 = {e1, e4, e6} is a necessary certificate for e4 since KX =

{e1, e4} and KX \ out(S) = {e4}.
– The cocircuit X2 = {e3, e4, e5} is not a possible certificate for e3 since X1 is

a bad cocircuit for e3 and X2.
– The cocircuit X3 = {e2, e3} is a possible certificate for e3 since e3 ∈ KX3

,
X3 ∩ in(S) = ∅ and there is no bad cocircuit for e3 and X3.

4.1 Necessary certificate

We show in this part that an element is necessary with respect to a partial solu-
tion if and only if there is a necessary certificate for it. We introduce Algorithm 2
that, given a nice partial solution S and an element e such that is no necessary
certificate for e, construct a base associated to S that does not contain e. An
example for Algorithm 2 is depicted in Figure 3.

Algorithm 2: not necessary

Data:
– M = (E,B, Ω): an imprecise weigthed matroid.
– S: a nice partial solution.
– e1 : an element such that there is no necessary certificate for e.
– B1: a base associated with S such that e1 ∈ B1.
– Y : a subset of forbidden elements such that B1 ∩ Y = ∅ and there is no cocircuit

X with KX \ (out(S) ∪ Y) = {e1}.

Result: a base associated to S that does not contain any element of Y ∪ {e1}.
1 i← 0 ;

2 Bi
1 ← B1;

3 Loop
4 Let Xi

1 be the cocircuit induced by e1 and Bi
1 ;

5 Let ei2 be an element in KXi
1
\ ({e1} ∪ out(S) ∪ Y);

6 Let Ci be the circuit in Bi
1 ∪ {ei2};

7 Let ei3 = arg max{ωe | e ∈ Ci};
8 Let Bi

2 be the base obtained by swapping e1 and ei2 in Bi
1 ;

9 Let Bi
3 be the base obtained by swapping ei2 and ei3 in Bi

1 ;

10 if Bi
2 is not dominated then

11 return Bi
2 ;

12 Bi+1
1 = Bi

3 // we repeat the process with the base Bi
3;

13 i← i + 1 ;

Lemma 6. Algorithm 2 is correct, that is, the returned base is associated to S
and does not contain any element of Y ∪ {e1}.

15

Step 1

Step 2

(B1
1) (B1

2) (B1
3)

(B2
1) (B2

2) (B2
3)

e1

e2e3

e4

e5

e6

e7

e8

e9

e10

[1, 4]

[2, 7]

[3, 7]
[5, 8] [2, 6]

e12

e13

e23

e22

Fig. 3. Example of application of Algorithm 2 in minimum spanning trees. We have
out(S) = {e4} and in(S) = {e2, e3, e5, e8, e10}. Any edge e ∈ in(S) has Ω(e) = [1, 1].
There exits no necessary certificate for e1 and we want to show that e1 is not necessary
with respects to S. Step 1. The algorithm starts with input tree B1

1 . We have X1
1 =

{e1, e4, e6} and e6 ∈ KX1
1
. So, we set e12 = e6. The maximum edge in the cycle C1 =

{e1, e5, e6, e7} is the edge e7, so we set e13 = e7. The bases B1
2 and B1

3 are obtained
by swapping e12 with, respectively e1 and e13 in B1

1 . The base B1
2 is dominated because

the edge d = e4 dominates e7 in the cocircuit X1
2 = {e1, e4, e7}. The base B1

3 is not
dominated by Lemma 5. We repeat the process with input tree B1

3 = B2
1 . Step 2.

We have X2
1 = {e1, e4, e9} and e9 ∈ KX2

1
. So, we set e22 = e9. The maximum edge in

the cycle C2 = {e1, e5, e6, e8, e9, e10} is the edge e6. So, we set e23 = e6. The bases B2
2

and B2
3 are obtained by swapping e22 with, respectively e1 and e23 in B2

1 . The edge e6
belongs to the core KX2

2
of the cocircuit X2

2 = {e1, e4, e6}. Hence, by Lemma 5, B2
2 is

non-dominated. We obtain a non-dominated base associated to S that does not contain
e1 and thus, e1 is not necessary with respect to S.

16

Proof. We suppose that the input is correct, that is, each parameter respects
the conditions specified by Algorithm 2. For any step i, let di be the minimum
element of Xi

1, that is, di = argmin{ωe |∈ Xi
1}. We show the following claims.

Claim 1: at each step i of the loop, we have Bi
1 ∈ BS [Ω].

By construction, we have B1 = B0
1 and thus, B0

1 ∈ BS [Ω]. Now, suppose by
induction hypothesis, that Bi

1 ∈ BS [Ω]. We show that either Algorithm 2
returns Bi

2 or, we have Bi
3 = Bi+1

1 ∈ BS [Ω]. Notice that by hypothesis, the
element ei2 exists, since otherwise we would have KXi

1
\ (out(S)∪Y) = {e1}.

If e1 = ei3, then Bi
3 = Bi

2 and thus, by Lemma 5(a) Bi
2 is non-dominated so,

Bi
2 is returned. If ωei2

= ωei3
, then by taking ei3 = ei2, we have Bi

2 ∈ BS [Ω]

by Lemma 5(b). So, Algorithm 2 returns Bi
2. If e

i
3 ̸∈ in(S), then Bi+1

1 =
Bi

3 ∈ BS [Ω] by Lemma 5(a) Hence suppose that e1 ̸= ei3, ωei2
< ωei3

and

ei3 ∈ in(S). Since ei3 ∈ in(S) and since S is a nice partial solution, we have
ωei2

= ωei3
which is a contradiction. Hence, we can assume that ei3 ̸∈ in(S)

and thus, by Lemma 5(a), Bi
3 ∈ BS [Ω].

Claim 2: at each step i of the loop, we have Bi
1 ∩ Y = ∅.

By construction, we have B1 = B0
1 and thus, B0

1 ∩ Y = ∅. Now, suppose by
induction hypothesis that Bi

1∩Y = ∅. By construction, we have Bi+1
1 \Bi

1 =
{ei2}. Since ei2 ̸∈ Y , it follows that Bi+1

1 ∩ Y = ∅.
Claim 3: at each step i of the loop, we have ωdi

≤ ωdi+1
.

Let Xi
3 and Y i be the cocircuits induced by ei3 and Bi

1 and Bi
2, respectively.

Since Bi
2 is not returned, there is an element f ∈ Y i that dominates ei3. By

Lemma 4, f ∈ Xi
1∪Xi

3. The element f can not belong to Xi
3 since otherwise,

we would have KXi
3
∩ Bi

1 = ∅ contradicting Bi
1 being non-dominated by

Property 4. Thus, f belongs to Xi
1 and so, no element of Xi

1 ∪Xi
3 dominates

di. By Lemma 4, Xi+1
1 ⊆ Xi

1 ∪Xi
3, thus, no element of Xi+1

1 dominates di.
It follows that ωdi

≤ ωdi+1
.

Claim 4: the algorithm stops, that is, Algorithm 2 returns Bi
2 at some step i.

Toward a contradiction, suppose the loop is infinite. Rougly speaking, it
means that there is an element x that is swapped in during a step j and the
same element x is swapped out during another step k. That is, there are two
steps j and k, with j < k such that ek3 = ej2. We show that in that case,
Algorithm 2 returns Bk

2 during the step k.
Now suppose that there are two steps j and k of the loop with j < k such
that ek3 = ej2. Since ej2 is considered at step j, we have ej2 ∈ KXj

1
, that is, ej2

is not dominated by dj nor dk. The element ek3 can not be dominated by an
element of KXk

3
since otherwise we would have KXk

3
∩Bk

1 = ∅ contradicting

Bk
1 being non-dominated by Property 4. Hence, ek3 is not dominated by

an element of Xk
1 ∪ Xk

3 and by Lemma 4, we have ek3 ∈ KY k . It follows
that, by Lemma 5(b) Bk

2 is non-dominated and thus, Bk
2 is returned by the

Algorithm 2 at step k.

Hence, by combining the previous claims, we can conclude that Algorithm 2
returns a base, which finishes the proof.

17

Hence, we can deduce the following corollary.

Corollary 2. Let S be a nice partial solution. Let e ̸∈ in(S) ∪ out(S) be an
element, e is necessary with respect to S if and only if there is a necessary
certificate for e.

Proof. Let X be a cocircuit such that KX \ out(S) = {e}. Then, for any base
B ∈ BS [Ω], we have e ∈ B since otherwise it contradicts Property 4. Thus, e is
necessary with respect to S. We now show the reciprocity. Let e ̸∈ in(S)∪out(S)
be an element and let assume that there is no cocircuitX such thatKX\out(S) =
{e}. Let B be a base of BS [Ω]. If e ̸∈ B then e is not necessary with respect
to S. Otherwise, by Lemma 6, Algorithm 2 with input M,S,B, e and Y = ∅
returns a base associated to S that does not contain e. So, we can conclude that
e is not necessary.

4.2 Possible certificate

In this part, we show that an element is possible with respect to a nice par-
tial solution if and only if there exists a possible certificate for it. We introduce
Algorithm 3 that, given a partial solution S, an element e with a possible cer-
tificate for it, constructs a base associated to S containing e. An example for
Algorithm 3 is depicted in Figure 4.

Algorithm 3: is possible

Data:
– M = (E,B, Ω): an imprecise weigthed matroid.
– S: a nice partial solution.
– e : an element of M .
– X: a possible certificate for e.
– B: a base associated to S.

Result: a base associated to S that contains e.
1 i← 0 ;

2 Bi ← B;
3 Loop
4 if e ∈ Bi then
5 return Bi ;

6 Let xi be an element that is X-blocking for e in Bi;

7 Y i ← X \ (Bi ∪ {e});
8 Bi+1 = not necessary(M,S, xi, Bi, Y i) // we repeat the process with a

base that does not contain xi ;
9 i← i + 1 ;

Lemma 7. Algorithm 3 is correct, that is, the returned base is associated to S
and contains e.

18

Proof. We suppose that the input given to the algorithm is correct, that is, each
parameter respects the conditions specified by Algorithm 3.

First, we show that at each step i, the call of the function not necessary at
line 8 is correct. That is, all parameters given as input respect the conditions
specified by Algorithm 2. By definition,M and S respect the specified conditions.
By construction of Bi, we have xi ∈ Bi. Further, there is no cocircuit X ′ such
that KX′ \ out(S) = {xi}, since otherwise we would have KX′ \ out(S) ⊂ X
which is a contradiction. By construction of Y i, we have Y i ∩ Bi

2 = ∅. Finally,
suppose that there is a cocircuit X ′ such that KX′ \ (out(S)∪Y i) = {xi}. Since,
Y i ⊂ X and xi ∈ X, we have KX′ \out(S) ⊂ X, which is a contradiction. Hence,
we can conclude that all parameters respect the specified conditions.

Further, we show that the algorithm stops. Let W = X \ {e}. By Lemma 6,
at each step i, we have xi ̸∈ Bi+1 and Y i ∩ Bi+1 = ∅. By construction of Y i,
we have W ∩ Bi+1 = W ∩ Bi \ {xi} (no element of W can be added to Bi to
construct Bi+1). It follows that |W ∩Bi| > |W ∩Bi+1|, and so there is at most
|W | loop steps. Notice that after |W | steps, we necessarily have Bi ∩W = ∅.

Finally, by Algorithm 2, at each step i, Bi is not dominated. By Property 4,
we have KX ∩Bi ̸= ∅. Hence, since after |W | steps Bi and W are disjoint and
since KX \W = {e}, it implies that there is a step i ≤ |W | such that e ∈ Bi.
We can conclude that the algorithms returns a base as thought.

From Lemma 7, we can infer the following corollary.

Corollary 3. Let S be a nice partial solution. Let e ̸∈ in(S) ∪ out(S) be an
element, e is possible with respect to S if and only if there is a possible certificate
for e.

Proof. Let e be an element and let X be a possible certificate for e. Let B be a
base associated to S. If e ∈ B, then e is possible with respect to S. Otherwise, by
Lemma 7, Algorithm 3 with input M,S,X, e an B returns a base associated to S
that contains e. So, e is possible with respect to S. We now show the reciprocity.
Let e ̸∈ in(S) be an element and suppose that there is no possible certificate
for e. Toward a contradiction, suppose e is possible with respect to S. Let B
be a base associated to S that contains e. Let X be the cocircuit induced by
e and B. Notice that in(S) ∩ X = ∅ as e ̸∈ in(S). Since X is not a possible
certificate, there is necessarily another cocircuit Y that is bad for X and e. But
then, we have KY ∩ B = ∅, which is a contradiction by Property 4. Thus, we
can conclude that e is not possible with respect to S.

5 Enumerating algorithm

Having stated our formal results, we are now ready to provide our enumerating
algorithms relying on them. In this section, we use Corollaries 2 and 3 to develop
two algorithms that determine if an element e is possible/necessary with respect
to a given nice partial solution. Informally, the principle of the algorithms is to
observe/check if e closes a circuit in some specific independent sets.

19

(B1) (B2) (B3)

e1

e2e3

e4

e5

e6

e7

e8

e9

e10

[1, 4]

[2, 7]

[3, 7]
[5, 8] [2, 6]

x1

e e e

x2

Fig. 4. Example of application of Algorithm 3 in minimum spanning trees. We have
out(S) = {e8} and in(S) = {e2, e5}. Any edge e ∈ in(S) ∪ out(S) has Ω(e) = [1, 5].
The cocircuit X = {e1, e4, e6} is a possible certificate for the edge e = e6. Step 1. The
algorithm starts with input tree B1. The edge x1 = e1 is X-blocking for e in B1. We
set Y i = ∅ and we call not necessary(M,S, x1, B1, Y 1) to obtain a tree B2 that does
not contain x1. Step 2. We repeat the process with the tree B2. The edge x2 = e4
is X-blocking for e. We set Y 2 = {e1} and we call not necessary(M,S, x2, B2, Y 2) to
obtain a tree B3 that does not contain x2 nor an edge in Y 2. Step 3. The tree B3

contains e and so, B3 is returned at this step. Thus, e is possible with respect to S.

5.1 Possible element of nice partial solutions

We now show how to determine if a first unassignated element is possible with
respect to a nice partial solution S. To see if a first unassignated element e is
possible with respect to a nice partial solution, we simply need to check if the
addition of e inside a specific subset of elements closes a circuit, as shown by
Algorithm 4. The difficulty here is to show that if the algorithm returns true,
then there exists a cocircuit that is a possible certificate for e. To do this, we
introduce Algorithm 5 which produces such possible certificate. An example for
Algorithm 5 is given by Figure 5.

Lemma 8. Algorithm 5 is correct.

Proof. First, note that at each step i, the subset of elements Ei exists by
Lemma 3. Further, we show that at each step i, we have e ∈ KXi . Suppose
not, and let x be element in KXi \ out(S). Note that by hypothesis x ̸∈ in(S),
since in(S) ⊆ Ei. Since e ̸∈ KXi and x ∈ KXi , it implies that ωx < ωe contra-
dicting that E′ contains every element that dominates e. Thus, e ∈ KXi at each
step i.

20

Algorithm 4: check is possible

Data: An imprecise weighted matroid M = (E,B, Ω), a nice partial solution
S and a first unassignated element e of S.

Result: true if e is possible with respect to S, false otherwise.
1 Let E′ = {e′ ∈ E | e′ dominates e} ∪ in(S) ∪ {e};
2 if there is a circuit in C(E′) containing e then
3 return false;
4 return true;

Step 1

Step 2

(E0) (X0) (Y 0)

(E1) (X1)

e1 e2 e3

e4

e5

e6 e7e8

e9

e10

e11

e12

e13

e14

e15

Fig. 5. Example of application of Algorithm 5 in minimum spanning trees. We have
out(S) = {e10} and E0 = in(S) = {e1, e3, e5, e9, e11, e13, e14, e15}. We have W (e4) =
[4, 6], W (e10) = [1, 3], W (e) = [2, 5] for any edge in {e6, e7, e8, e12} and W (e) = [1, 3]
for any other edge. We want to construct a possible certificate for the edge e4. Step
1. The algorithm starts with X0 = {e4, e6, e7, e7, e12}. There exists a bad cocircuit
Y 0 = {e7, e10, e12} for e4 and X0: indeed we have Y 0 \ out(S) = {e7, e12} ⊂ X0.
Hence, we have W 0 = ∅ and thus, we set E1 = E0 ∪ {e7, e12}. We also obtain the
cocircuit X1 = {e2, e4, e8} that contains W 0 ∪{e4} and avoid E1. Step 2. There is no
bad cocircuit for e and X1 and thus, X1 is returned at this of the algorithm. Hence,
X1 is a possible certificate for e.

Now we show that the algorithm stops at some point. We first show that for
each step i, ifXi is not a possible certificate for e, then |Ei| > |Ei−1|. Notice that
we can not have |Ei| < |Ei−1| since Ei−1 ⊆ Ei by construction. Suppose there
is a step i such that |Ei| = |Ei−1|. Then, in that case we have Y i−1 \W i−1 = ∅.
Thus, we obtain Y i−1 ⊆ Xi, by definition of a cocircuit we have Y i−1 = Xi

since otherwise it contradicts the minimality of Xi. But then, since Y i−1 is a
bad cocircuit for Xi−1 and e, it implies that e ̸∈ KY i−1 which is a contradiction.
Hence, we have |Ei| > |Ei−1|. Since the number of element in M is finite, it also
implies that the algorithm stops at some point.

21

Algorithm 5: construct possible certificate cocircuit

Data:
– M = (E,B, Ω): an imprecise weighted matroid.
– S: a nice partial solution.
– e: element not in in(S) ∪ out(S).
– X: such that e ∈ KX and in(S) ∩X = ∅.
– E′: a set of elements X ∩ E′ = ∅.

Result: If in(S) ⊆ E′ and E′ contains every elements not in out(S) that
dominates e, then the algorithm returns a possible certificate for e.

1 i← 0;
2 E0 ← E′;
3 X0 ← X ;

4 while There is a bad cocircuit Y i for e and Xi do
5 W i ← {e′ ∈ KY i | ∃C ∈ C(Ei ∪ {e, e′}) s.t.{e, e′} ⊆ C};
6 Ei+1 ← Ei ∪ Y i \W i;

7 Let Xi+1 be the cocircuit containing W i ∪ {e} and avoiding Ei+1;
8 i← i + 1 ;

9 return Xi;

Lemma 9. Algorithm 4 is correct. Hence, given a nice partial solution S, we
can determine if a first unassignated element is possible with respect to S in
O(|E|+ pM) or in O(|E| · iM), depending on the used oracle.

Proof. We show that Algorithm 3 returns true if and only if e is possible with
respect to S. First, suppose that the algorithm returns true, that is, there is no
circuit C in E′ such that C contains e. By Lemma 3, there is a cocircuit X such
that e ∈ X and X ∩ E′ = ∅. By Lemma 8, Algorithm 5 with input M,S, e,X
and E′ returns a possible certificate for e. Hence, by Corollary 3, e is possible
with respects to S.

Now suppose that e is possible with respect to S. By Corollary 3, there
is a cocircuit X that is a possible certificate for e. That is, no element of X
dominates e. By construction of E′, no element of X belongs to E′ \ {e}. Thus,
by Property 2 for any circuit C containing e, we have C ̸⊆ E′. Hence, E′ does
not contain a circuit containing e and thus, the algorithm returns true.

Concerning the running complexity of the algorithm: E′ is constructed in
O(|E|), then there is one call of the port oracle in line 2. Hence, we obtain a
time complexity O(|E|+ pM). If we do not use the port, then by Remark 1, we
have time complexity O(|E| · iM), using the independence oracle.

Notice that, we can also use Algorithm 4 to determinate if an element is
possible with respect to the empty partial solution S∅. Since there is no need to
sort the elements by increasing order of weight if the partial solution is empty,
Algorithm 3 has a better time complexity than the one developed by Kasperski
and Zielińsky [12] to determine if an element is possible (i.e. if we run Algorithm 3
with S := S∅).

22

5.2 Necessary element of nice partial solutions

We now show how to determinate if an element is necessary with respect to a
nice partial solution S. Notice that, contrary to Algorithm 4 that only works for
first unassignated elements (or if S = S∅), Algorithm 6 works for any element
e ̸∈ in(S) ∪ out(S).

Algorithm 6: check is necessary

Data: An imprecise weighted matroid (E,B, Ω), a nice partial solution S and
an element e.

Result: true if e is necessary with respect to S, false otherwise.
1 Let E′ such that E′ = {e′ ∈ E \ {e} | e does not dominate e′};
2 if there is no circuit containing e in E′ ∪ {e} then
3 return true;
4 forall ei ∈ out(S) such that ei does not dominate e do
5 Let Ei such that

Ei = {e′ ∈ E | ei does not dominate e′} \ (out(S) ∪ {e});
6 if there is no circuit containing e in Ei ∪ {e}, and
7 there is no circuit containing ei in Ei ∪ {ei}, and
8 there is a circuit containing e and ei in Ei ∪ {e, ei}, then
9 return true;

10 return false;

Lemma 10. Algorithm 6 is correct. Hence, we can determine if an element is
necessary with respect to a nice partial solution S in O((pM+|E|)·(|out(S)|+1))
or in O(iM · |E| · (|out(S)|+ 1)), depending on the used oracle.

Proof. We show that Algorithm 6 returns true if and only if e is necessary with
respect to S. First, suppose that the algorithm returns true. Two cases can
occur.

1. Algorithm 6 returns true at line 3. That is, there is no circuit containing e
in E′. By Lemma 3, there is a cocircuit X such that e ∈ X and E′ ∩X = ∅.
Any element e′ ̸= e in X is dominated by e since otherwise e′ would belong
to E′. Hence, we have KX = {e} and so, X is a necessary certificate for e.
By Corollary 2, e is necessary with respect to S.

2. Algorithm 6 returns true at line 8. That is, there is an element ei ∈ out(S)
that does not dominate e and such that (a) there is no circuit containing e
in Ei, and (b) there is a circuit in C ⊆ Ei containing e and ei. By Lemma 3,
there is a cocircuit X such that {e, ei} ⊆ X and Ei ∩X = ∅.
Further, note that no element e′ ∈ X \ (out(S) ∪ {e}) belongs to KX since
otherwise e′ would not be dominated by ei and would belong to Ei. Suppose
that e ̸∈ KX , then we have KX ⊆ out(S) = ∅. So, any base B such that
in(S) ⊆ B and out(S) ∩ B = ∅ does not belong to B[Ω] since it is not

23

possible to respect Property 4. Thus, no non-dominated base is associated
to S, contradicting that S is a partial solution. Hence, e ∈ KX and we have
KX \out(S) = {e}, that is, X is a necessary certificate for e. By Corollary 2,
e is necessary with respect to S.

Now suppose that e is necessary with respect to S. By Corollary 2, there
is a cocircuit X that is necessary certificate for e. If KX = {e}, then no ele-
ment of X belongs to the set E′ defined at line 1. By Property 2, any circuit
containing e contains another element in X. Thus, E′ ∪ {e} does not contain a
circuit containing e. So Algorithm 6 returns true at line 3. Now suppose that
KX contains more than one element and let eX ̸= e be an element of X that
dominates every element in X \ KX . We have eX ∈ out(S). Let Ei be the set
defined at line 5 when ei = eX . By definition of Ei, we have X ∩Ei = ∅. Thus,
by Property 2, Ei ∪ {e} and Ei ∪ {ei} do not contain a circuit containing e
and ei, respectively. It remains to show that there is a circuit in Ei ∪ {e, ei}
containing e and ei. Toward a contradiction, suppose not. Let B ∈ BS [Ω] be a
non-dominated base associated to S. Since ei ∈ out(S), ei does not belong to
B. Let C be the circuit created by the addition of ei in B. By Property 2, there
is an element e′ in X ∩ C ∩ B. If e′ ̸= e, then e′ ̸∈ KX and thus, ei dominates
e′. So, the base obtained by swapping e′ and ei in B dominates B which is a
contradiction. Now suppose that e′ = e. There is an element e′′ in C such that
e′′ ̸∈ Ei. By definition of Ei, e

′′ is dominated by ei and so, the base obtained by
swapping e′′ and ei in B dominates B which is a contradiction.

Finally, concerning the time complexity of the algorithm: E′ can be con-
structed in O(|E|), then a call to the port oracle is made in line 2. So, lines 1
to 3 involve a time complexity of O(|E| + pM). For each element ei ∈ out(S),
Ei can be constructed in O(|E|), then three calls to the port oracle are made
in the lines 6 to 8. So, we obtain a time complexity O((pM + |E|) · |out(S)|) for
the loop at lines 4 to 9. Thus, the time complexity for the entire algorithm is
O((pM + |E|) · |out(S)|+1). If we do not use the port oracle, then by Remark 1,
we obtain a time complexity O((iM · |E|) · |out(S)|+ 1) using the independence
oracle.

Notice that, once again, since there is no need to sort the elements by increas-
ing order of weight if the partial solution is empty, Algorithm 6 has a better time
complexity than the one developed by Kasperski and Zielińsky [12] to determine
if an element is necessary. Indeed, if we run Algorithm 6 with S := S∅, then the
time complexity is O(pM + |E|) or O(iM · |E|).

5.3 The enumerating algorithm

Now that we developed two polynomial-time algorithms to determine if a first
unassignated element is possible/necessary with respect to some partial solution,
we can enumerate every base of B[Ω] with an exhaustive search.

Corollary 4 (Lemma 9 and Lemma 10). Algorithm 7 is correct. Hence,
B[Ω] can be enumerated in O(b · (|E|2 · pM + |E|3)) (or in O(b · (|E|3 · iM)) if
the port oracle is not allowed), where b = |B[Ω]|.

24

Proof. We show that the time complexity is correct. First, the list L is created in
log |E|. Then, at each call of the enumeration, the two functions is possible and
is necessary are called on each element in E \ (out(S) ∪ in(S)). So, each call,
without taking in account the recursive call, has a complexity of O((|E|+ pM) ·
(|out(S)|+1)) = O(|E| · pM + |E|2). We need |E| reccursive calls to display one
non-dominated base, that is, the complexity for one enumeration isO((|E|2·pM+
|E|3)). Finally, since there are b bases to enumerate, we obtain a time complexity
of O(b ·(|E|2 ·pM + |E|3)+log |E|) = O(b ·(|E|2 ·pM + |E|3)). If the port oracle is
not allowed, by Remark 1, we have a time complexity O(b · (|E|3 · iM)) by using
the independence oracle.

Algorithm 7: Enumeration Algorithm

1 Function Enumeration(M):
Data: An imprecise weighted matroid M = (E,B, Ω)

2 S ← S∅
3 L← sort E by increasing order of ωe

4 EnumerationRec(M ,S,L)

5

6 Function EnumerationRec(M , S, L):
Data: An imprecise weighted matroid M = (E,B, Ω), a nice partial

solution S and L the sorted list of elements in E \ in(S) ∪ out(S).
7 if L = ∅ then
8 Display(in(S))
9 else

10 e← first element of L
11 L← L \ {e}
12 if not check is possible(M, e, S) then
13 S′ ← S
14 out(S′)← out(S′) ∪ {e}
15 EnumerationRec(M,S′, L)

16 else
17 S′ ← S
18 in(S′)← in(S′) ∪ {e}
19 EnumerationRec(M,S′, L)
20 if not check is necessary(M, e, S) then
21 out(S)← out(S) ∪ {e}
22 EnumerationRec(M,S′, L)

6 Numerical Experiments

In this section, we present some tests on random generated instances. For this
section, we were interested in the problem of finding all non-dominated spanning
trees of a given graph, which is a specific yet well-studied instance of Matroids

25

(where E are the set of edges of the graphs, and the bases all the spanning
trees of the graph, that are of constant size). The source code and the instances
are available at https://gitlab.utc.fr/davottom/enum-imst. We compare
Algorithm 7 with the two following methods.

– Outer approximation. This method first compute a subgraph G′ con-
stituted by the possible and necessary edges in the initial graph. Then, it
enumerates every spanning trees of G′ that contains all necessary edges.

– Reduce. This method uses same algorithm than the outer approximation
plus check for each spanning tree T of G′ if T is non-dominated. To check
if a tree T is non-dominated, we use the same idea as the one described in
Theorem 1: we compute a minimum spanning tree in the realization R where
R(e) = ωe − ϵ if e ∈ E(T) and, R(e) = ωe, otherwise.

In the following, we refer to Algorithm 7 as the exact method.

6.1 Instances

We generated imprecise weighted graphs with 12 vertices by varying the density
of the graph and the weight function. We chose to generate the instances ac-
cording to three graph densities and three scenarios for the weight function. The
three possible densities sparse, middle, dense for which the graph contains 18, 30
and 42 edges, respectively. The graph is generated using the random generator
of the library boost in C++. If the graph is not connected, we add a random
edge between two connected components until the graph is connected. For the
generation of weight functions, given a scenario i for each edge e, we pick two
random numbers ℓ ∈ [1− 10] s ∈ [ai, bi], where ai and bi depend on the selected
scenario. Then, we set Ω(e) = [ℓ, ℓ + s]. For scenario 1, we have ai = 1 and
bi = 10, for scenario 2, we have ai = 7 and bi = 9 and, for scenario 3, we have
ai = 2 and bi = 3. Note that scenario 1 generates intervals with quite varying
sizes, while scenario 2 generates intervals that will very often overlap. For each
scenario and each density, we generate 10 instances.

6.2 Results

The tests were run on a personal computer with 32Go of RAM and with an
Intel Core 7 processor 5.20Ghz. The results are depicted in Tables 1 and 2. The
detailled statistics for scenario 2 are depicted in Table 3. We can first observe that
in scenarios 1 and 3, the exact method is the fastest method or, has an execution
time almost equivalent to the other two methods for the sparse densities. For
scenario 2, the results are more contrasted. In dense graphs, the exact method
is the fastest for 4 instances, the second fastest for 2 instances and the slowest
for 4 instances. In graphs with a middle density, the exact method is the fastest
for 3 instances, the second fastest for 2 instance and the slowest for 5 instances.
In sparse graphs, the running times are roughly the same, except for 2 instances
where the exact method is significantly slower. Not surprisingly, the running

26

https://gitlab.utc.fr/davottom/enum-imst

time of the exact method has better running time compare to the running time
of the outer approximation if the difference between the number of enumerated
spanning trees is high, as shown by Figure 6. Regarding the statistics on the
number of trees enumerated, the denser the graph, the bigger the cardinality
of the enumerated sets for both methods. Samewise, the larger the intervals
(i.e. in scenario 1), the bigger the cardinality of the enumerated sets. We can
also observe than when the graph is not dense, the outer approximation seems
reasonably close to the exact method.

Table 1. Time statistics. A set contains every graphs generated with the same density
and scenario. For each set and each method, average, minimum and maximum times
are depicted.

Set Exact Approx Reduce
density scenario Avg Min Max Avg Min Max Avg Min Max
dense 1 1 s 71 ms 7 s 24 s 357 ms 1 m 33 s 510 ms 2 m
middle 1 120 ms 10 ms 610 ms 912 ms 25 ms 3 s 1 s 32 ms 4 s
sparse 1 1 ms <1ms 5 ms 1 ms <1ms 4 ms 1 ms <1ms 5 ms
dense 2 7 m 52 s 17 m 6 m 4 m 7 m 8 m 6 m 9 m
middle 2 5 s 2 s 11 s 4 s 1 s 6 s 5 s 2 s 8 s
sparse 2 5 ms 1 ms 9 ms 3 ms 1 ms 6 ms 4 ms 2 ms 7 ms
dense 3 76 ms 1 ms 184 ms 323 ms 6 ms 828 ms 417 ms 6 ms 1 s
middle 3 2 ms <1ms 9 ms 16 ms <1ms 117 ms 19 ms <1ms 135 ms
sparse 3 <1ms <1ms <1ms <1ms <1ms <1ms <1ms <1ms 1 ms

Table 2. Result statistics on the number of enumerated tree. A set contains every
graph generated with the same density and scenario. Exact and Approx: number of
enumerated trees for the corresponding method. The Diff column is the difference of
cardinality between the exact method and the outer approximation.

Set Exact Approx Diff
dens. scen. Avg Min Max Avg Min Max Avg Min Max

dense 1 904,332 17,909 1.7M 16M 229,596 70M 16M 197,940 69M
middle 1 85,267 3,648 213,070 676,426 15,921 2.6M 633,793 8,903 2.6M
sparse 1 1,178 78 2,148 1,009 117 3,641 420 0 1,928
dense 2 207M 13M 249M 242M 196M 280M 139M 31M 250M
middle 2 3.6M 944,655 4M 3.2M 1.2M 4,9M 1.5M 180,968 3.3M
sparse 2 4,580 696 3,868 2,840 1,435 4,150 550 0 1,567
dense 3 35,428 400 43,278 218,853 3,581 559,927 201,139 2,266 517,639
middle 3 1,930 34 4,384 11,927 54 84,830 10,962 20 80,446
sparse 3 247 10 280 292 13 794 169 0 514

27

Table 3. Statistic details for sets generated with scenario 2.

Scenario 2 - Dense
Instance Exact Approx Reduce

Time #Trees Rank Time #Trees Diff Time
g 1 10m 14s 144M 3 5m 50s 228M 84M 7m 38s
g 2 17m 25s 249M 3 6m 54s 280M 31M 9m 10s
g 3 1m 31s 22M 1 6m 59s 272M 250M 9m 06s
g 4 6m 44s 96M 2 6m 43s 242M 146M 8m 35s
g 5 6m 26s 82M 2 6m 15s 242M 160M 8m 13s
g 6 0m 52s 12M 1 4m 53s 196M 184M 6m 23s
g 7 4m 26s 64M 1 5m 58s 228M 164M 7m 50s
g 8 5m 24s 78M 1 7m 18s 275M 196M 9m 33s
g 9 9m 00s 122M 3 5m 58s 228M 106M 7m 51s
g 10 11m 40s 164M 3 6m 6s 228M 64M 7m 55s

Scenario 2 - Middle
Instance Exact Approx Reduce

Time #Trees Rank Time #Trees Diff Time
g 1 7s 751ms 2.5M 3 5s 620ms 4M 1.5M 7s 333ms
g 2 4s 287ms 1.5M 2 3s 681ms 2.7M 1.2M 4s 722ms
g 3 4s 550ms 1.5M 1 5s 715ms 4.1M 2.6M 7s 397ms
g 4 4s 329ms 1.5M 2 3s 980ms 3M 1.5M 5s 107ms
g 5 5s 679ms 2M 3 3s 452ms 2.8M 0.8M 4s 514ms
g 6 11s 762ms 4M 3 6s 595ms 4.9 0.9M 8s 605ms
g 7 2s 794ms 0.9M 1 4s 176ms 3M 2.1M 5s 382ms
g 8 4s 296ms 1.5M 1 6s 633ms 4.9M 3.4M 8s 426ms
g 9 3s 768ms 1.2M 3 2s 830ms 2M 0.8M 3s 633ms
g 10 2s 970ms 1M 3 1s 567ms 1.2M 0.2M 2s 066ms

Scenario 2 - Sparse
Instance Exact Approx Reduce

Time #Trees Rank Time #Trees Diff Time
g 1 2ms 1,503 2 1ms 1,503 0 2ms
g 2 2ms 1,033 1 2ms 1,711 678 2ms
g 3 1ms 696 1 2ms 1,435 739 3ms
g 4 9ms 3,829 3 4ms 3,829 0 5ms
g 5 4ms 1,887 3 2ms 1,887 0 2ms
g 6 5ms 2,868 1 6ms 3,840 972 7ms
g 7 4ms 2,262 1 4ms 3,829 1,567 5ms
g 8 5ms 2,946 2 4ms 3,829 883 5ms
g 9 7ms 3,868 2 5ms 4,150 282 7ms
g 10 8ms 2,010 3 2ms 2,389 379 3ms

7 Conclusions

In this paper, we have discussed how sets of possibly optimal matroids B[Ω]
under interval-valued costs can be enumerated efficient, as given a partial solu-
tion, we have provided polynomial-time algorithms to check whether different

28

0 20 40 60 80 100

0

1,000

2,000

3,000

4,000

5,000

6,000

Diff #Trees (%)

D
iff

T
im

e
(%

)
Scenario 1
Scenario 2
Scenario 3

0 20 40 60 80 100
−500

−400

−300

−200

−100

0

100

200

300

400

500

600

700

800

900

1,000

Diff #Trees (%)

Scenario 1
Scenario 2
Scenario 3

Fig. 6. Relation between the difference of number of enumerated trees and the dif-
ference of running time between the exact method and the approximation. The value
of differences are displayed in percentage. A negative value for the time indicates that
the approximation has a faster running time than the exact method. When the exact
method has a better running time, the displayed value is equal to the running time
of the approximation over the running time of the exact method. When the approxi-
mation has a better running time, the displayed value is equal to minus the running
time of the exact method over the running time of the approximation. Left: contains
all values. Right: contains values with a difference running time between -300% and
1000%.

elements are possible or necessary. What the paper also tells us is that this
problem is in the case of Matroid very different from the simple problem of
determining whether an element is in one or all of the solution of B[Ω].

A natural further direction would be to consider more general uncertainty
models, such as possibility distributions [8], belief functions [18] or credal sets [17,6].
However, the results in [6, Section 4] suggests that in optimisation problems
where one mainly search to optimize sums of weights, either by minimizing (in
the case of costs) or by maximizing (in the case of utilities) it, shifting to a credal
setting does not modify significantly the problem, as lower/upper expectations
remain linear, at least when every probability set is specified separately.

Another problem that we would like to revisit using the adopted point of view
in this paper is the one of querying new information. Such problems have already
been considered in the past for matroids, where one had to find an optimal (in

29

the sense of minimal total cost) set of queries that would lead to a unique optimal
solution [14]. While such a view is interesting provided one is sure that all such
queries can be performed, we would like to consider the problem in terms of
incremental queries under uncertainty [1], where the budget is unknown and
where the task is to choose the query that will result in the greatest uncertainty
reduction (e.g., in terms of sets of possibly optimal solutions). Similar approaches
have been sucessfully devised for matroids in the case where the (non-additive)
objective function is unknown and has to be learned [3], letting us hope that we
can develop the same kind of approaches for uncertain weights.

Acknowledgments

During this research, Tom Davot post-doctoral position was supported by the
ANR project Preserve (ANR-18-CE23-0008).

30

References

1. Nadia Ben Abdallah and Sébastien Destercke. Optimal expert elicitation to reduce
interval uncertainty. In Uncertainty in Artificial Intelligence (UAI 2015), pages
12–22, 2015.

2. Ionut D. Aron and Pascal Van Hentenryck. On the complexity of the robust
spanning tree problem with interval data. Operation Research Letter, 32(1):36–40,
2004.

3. Nawal Benabbou, Cassandre Leroy, Thibaut Lust, and Patrice Perny. Interac-
tive optimization of submodular functions under matroid constraints. In Algorith-
mic Decision Theory: 7th International Conference, ADT 2021, Toulouse, France,
November 3–5, 2021, Proceedings 7, pages 307–322. Springer, 2021.

4. Collette R. Coullard and Lisa Hellerstein. Independence and port oracles for ma-
troids, with an application to computational learning theory. Comb., 16(2):189–
208, 1996.

5. Tom Davot, Sébastien Destercke, and David Savourey. On the enumeration of
non-dominated spanning trees with imprecise weights. In European Conference on
Symbolic and Quantitative Approaches with Uncertainty, pages 348–358. Springer,
2023.

6. Sébastien Destercke and Romain Guillaume. Necessary and possibly optimal items
in selecting problems. In Information Processing and Management of Uncertainty
in Knowledge-Based Systems: 19th International Conference, IPMU 2022, Milan,
Italy, July 11–15, 2022, Proceedings, Part I, pages 494–503. Springer, 2022.

7. David Gale. Optimal assignments in an ordered set: an application of matroid
theory. Journal of Combinatorial Theory, 4(2):176–180, 1968.

8. Romain Guillaume, Adam Kasperski, and Pawe l Zieliński. Distributionally robust
possibilistic optimization problems. Fuzzy Sets and Systems, 454:56–73, 2023.

9. Mikita Hradovich, Adam Kasperski, and Pawel Zielinski. The recoverable robust
spanning tree problem with interval costs is polynomially solvable. Optimization
Letters, 11(1):17–30, 2017.

10. Adam Kasperski. Discrete optimization with interval data. Springer, 2008.
11. Adam Kasperski and Pawe l Zieliński. An approximation algorithm for interval

data minmax regret combinatorial optimization problems. Information Processing
Letters, 97(5):177–180, 2006.

12. Adam Kasperski and Pawe l Zieliński. On combinatorial optimization problems
on matroids with uncertain weights. European Journal of Operational Research,
177(2):851–864, 2007.

13. Eugene L Lawler. Combinatorial optimization: networks and matroids. Courier
Corporation, 1976.

14. Arturo I Merino and José A Soto. The minimum cost query problem on ma-
troids with uncertainty areas. In 46th International Colloquium on Automata,
Languages, and Programming (ICALP 2019). Schloss-Dagstuhl-Leibniz Zentrum
für Informatik, 2019.

15. Roberto Montemanni and Luca M. Gambardella. A branch and bound algorithm
for the robust spanning tree problem with interval data. European Journal of
Operational Research, 161(3):771–779, 2005.

16. Christos Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algo-
rithms and Complexity, volume 32. 01 1982.

17. Erik Quaeghebeur, Keivan Shariatmadar, and Gert De Cooman. Constrained op-
timization problems under uncertainty with coherent lower previsions. Fuzzy Sets
and Systems, 206:74–88, 2012.

31

18. Tuan-Anh Vu, Sohaib Afifi, Éric Lefèvre, and Frédéric Pichon. On modelling and
solving the shortest path problem with evidential weights. In Belief Functions: The-
ory and Applications: 7th International Conference, BELIEF 2022, Paris, France,
October 26–28, 2022, Proceedings, pages 139–149. Springer, 2022.

19. Hande Yaman, Oya Ekin KaraŞan, and Mustafa Ş. Pınar. The robust spanning
tree problem with interval data. Operations Research Letters, 29(1):31–40, 2001.

A Specific Matroid structures

In this appendix, we recall some specific cases of matroids that can play impor-
tant roles in some optimisation problems, some of which are discussed in details
in Appendix B.

A.1 Transversal matroid

Let E be a finite set of n elements. Let Q = (Q1, Q2, . . . , Ql) be a family of
subsets of E. It is important to note that the members of the family Q are not
necessarily distinct.

A transversal (or system of distinct representatives) ofQ is a subset {e1, . . . el}
of l elements of E such that for all i, ei ∈ Qi. Similarly, a subset I ⊆ E is a
partial transversal of Q if for some K ⊆ {1, . . . , l}, I is a transversal of the family
(Qi : i ∈ K).

Definition 6. M = (E, I) is a transversal matroid with respect to Q where a
subset I ⊆ E is independent, i.e., I ∈ I if and only if I is a partial transversal
of Q. A base of M is just a transversal of Q.

There is another definition of transversal matroid, which is used very often
in the literature.

Recall that a matching in an undirected graph G is just a set of edges of G
without common vertices, i.e., each vertex appears in at most one edge of the
matching. Let GQ := (Q, E,A) be a bipartie graph where arc (Qi, ej) ∈ A if and
only if ej ∈ Qi.

Definition 7. M = (E, I) is a transversal matroid with respect to Q where a
subset I ⊆ E is independent, i.e., I ∈ I if and only if I can be matched in GQ.

It can be easily checked that these definitions are equivalent.

Example 10. Let E = {1, 2, 3, 4} and the family Q = (Q1 = {1, 2, 3, 4}, Q2 =
{3, 4}, Q3 = {3, 4}). The bipartie graph GQ = (Q, E,A) is represented in Fig-
ure 10. We see that {1, 3, 4} is independent because there exists a matching in
GQ (in blue) that covers it. On the other hand, {1, 2} is dependent because it
cannot be matched in GQ.

32

1,2,3,4Q1

3,4Q2

3,4Q3 4

3

2

1

Fig. 7. The bipartite graph of the transversal matroid in Example 10

A.2 Partition matroid

A partition matroid M = (E, I) is a matroid in which the ground set E is
partitioned into (disjoint) sets E1, E2, . . . , El and

I = {I ⊆ E : |X ∩ Ei| ≤ di for all i = 1, . . . , l} , (2)

for some given integers di, i = 1, . . . , l.

Remark 2. Partition matroid can be seen as a special case of transversal matroid:
take the family Q in the Definition 7 such that Q contains each set Ei exactly
di times.

B Some practical matroid optimization problems

B.1 The task scheduling problem

There is a set E of n tasks to be completed one by one by a single machine.
The required time for each task is one unit time. Each task j has a deadline
1 ≤ dj ≤ n, the final time by which it must be completed. A penalty wj incurs if
the task is not finished by its assigned deadline. The goal is to select a schedule
(permutation on {1, . . . , n}) for tasks in order to minimize the total penalty.

We’re going to show that the task scheduling problem, i.e., selecting an opti-
mal (schedule) permutation, can be reduced to the problem of selecting a subset,
which is a matroid problem.

Let π be an arbitrary schedule. Denote by early(π), late(π), the tasks which
are early and late under π, respectively. It is obvious that the penalty W (π) of
the schedule can be computed as:

W (π) =

n∑
j=1

wj −
∑

j∈early(π)

wj . (3)

33

Job Deadline Penalty

1 1 6
2 3 5
3 1 7
4 2 3
5 4 4
6 3 4

Table 4.

Consider a task scheduling problem with data is given in Table 4 and the schedule
π = 1 → 2 → 3 → 4 → 5 → 6. Under this schedule, the early tasks are
early(π) = (1, 2) and the late tasks are late(π) = (3, 4, 5, 6).

We call a set of tasks I is on-time if there exists a schedule for tasks in I
such that no task is late.

Example 11. The set I = {1, 2} is on-time because in the schedule 1 → 2 no
task is late. Note that in the schedule 2 → 1, task 1 is late.

Note 1. I is on-time if and only if when tasks in I are scheduled in increasing
order of deadlines no task is late.

Proof. The direction (⇐) is obvious. For the other direction, let πI be a schedule
such that under πI no task is late. Assume there exists two consecutive tasks
i → j in πI with the finishing times t, t + 1, respectively and dj < di. Because
j is early so t + 1 ≤ dj . Now swap positions of i and j. Since dj < di, so
t+ 1 < di. Hence, after the swap, i is early. Finally, j is still early because it is
now performed even earlier. Repeat such swap to eventually get a new on-time
schedule for I in which tasks are scheduled in increasing order of deadlines.

Note 2. The task scheduling problem boils down to finding an on-time set of
tasks with maximum total penalty.

Proof. Let π be a schedule with minimum total penalty, then thanks to Equa-
tion 3, the set of tasks early(π) is the one with maximum total penalty. Con-
versely, let I be an on-time set with with maximum total penalty. Create a
schedule by executing tasks in I in increasing order of deadlines while the rest
of tasks can be performed under any order. Again, thanks to Equation 3, this
schedule has minimum penalty.

The problem is now reduced to finding an on-time set with maximum total
penalty.

Note 3. The pair M = (E, I) is a transversal matroid where I ∈ I if and only
if I is on-time

To see this, let a family Q = (Qt : t = 1, . . . , n) such that Qt = {j ∈ E : dj ≥
t}. In other words, Qt is a set of tasks whose deadline are at least t. We show
that M is indeed a transversal matroid problem with respect to Q.

34

Proof. If I is on-time then by Note 1, no task is late when tasks in I are scheduled
in increasing order of deadlines. Let j1 → . . . → jm is such schedule of I with
dj1 ≤ . . . ≤ djm . Because no task is late so the deadlines dj1 ≥ 1, . . . , djm ≥ m.
It follows directly from the definition of the family Q that I is indeed a partial
transversal of Q: j1 ∈ Q1, . . . , jm ∈ Qm.

Conversely, if I is not on-time then there is a late task jk in the schedule
(of increasing order of deadlines) j1 → . . . jk . . . → jm, and thus its deadline
djk ≤ k − 1. Hence, dj1 ≤ . . . ≤ djk ≤ k − 1. It follows directly (the pigeonhole
principle) that we cannot match k tasks {j1, . . . , jk} into k−1 sets Q1, . . . , Qk−1.
So I is not a partial transversal of Q.

Example 12. In the concrete problem with data given as in Table 4, we have
Q1 = {1, 2, 3, 4, 5, 6}, Q2 = {2, 4, 5, 6}, Q3 = {2, 5, 6}, and Q4 = {5}. Let us
construct the bipartie graph GQ = (Q, E,A) as described in Section A.1. GQ
is given in Figure 8. Note that Q5 = Q6 = ∅, so they are discarded from the
graph.

The set I = {1, 4, 2, 5} is on-time and the corresponding matching is depicted
in blue.

1,2,3,4,5,6Q1

2,4,5,6Q2

2,5,6Q3

5Q4 6

5

4

3

2

1

Fig. 8. The bipartite graph in Example 12

Having shown that the problem is a matroid optimization problem, we can
solve it as follows.

– Sort tasks in decreasing order of penalties.

35

– Start with the empty set and add tasks one at a time as long as the resulting
set of tasks is on-time.

– Eventually, we’ll obtain an on-time set with maximum total penalty. Then
we create an optimal schedule (permutation) with minimum total penalty
as described in the proof of Note 2.

To implement the greedy algorithm, we need a procedure to check if a given
set I of m tasks (1 ≤ m ≤ n) is on-time (independent). By Note 1, an obvious
approach is to sort tasks in I in increasing order of deadlines j1 →, . . . ,→ jm
and check if dj1 ≥ 1, . . . , djm ≥ m. This procedure takes O(n log n).

A faster procedure, without the need for sorting, is as follows. Note that the
second part of the proof of Note 3 already shows that if there are k tasks in I
with deadlines at most k − 1, then I is definitely not on-time. With only minor
arguments, it follows that

I is on-time ⇔ It ≤ t ∀t = 1, . . . , n, (4)

where It is the number of tasks in I whose deadline are at most t, i.e., It = |{j ∈
I : dj ≤ t}|. Using (4), a new test based on counting tasks in I (Algorithm 8)
runs in O(n). Overall, the greedy algorithm runs in O(n2).

Example 13. Consider again the problem given in Table 4. Because two tasks
1 and 3 have deadline 1, so any set that contains 1 and 3 is not (independent)
on-time.

Algorithm 8: Check if I is on-time (independent) or not

Data: a set of tasks I
Result: Whether I is on-time or not

1 A← [0]*n, V ← [0]*n ; // Initialize arrays of n zeros

2 for j in I do
3 A[j.deadline]← A[j.deadline] + 1 ; // Save number of tasks in I

// with deadline j.deadline

4 V [1]← A[1];
5 if V [1] > 1 then
6 return not on time;
7 for t in 2, . . . , n do
8 V [t]← V [t− 1] + A[t] ; // Number of tasks in I with deadline ≤ t
9 if V [t] > t then

10 return not on time;

11 return on time;

B.2 The semi matching problem

Let W be an m× n matrix, where each entry has a weight wij . The problem is
to choose a set of entries with maximum weight in W such that no two entries
are from the same row of W .

36

Let the ground set E consists of m×n entries of W . We’ll show that the pair
M = (E, I) is a (partition) matroid where I ∈ I if and only if no two entries in
I are from the same row.

Proof. Recall the definition of partition matroid in Section A.2. Let a partition
of E be such that E = E1 ∪ . . .∪Em where Ei is just the ith row of the matrix.
By the definition, M is a partition matroid with respect to E1, . . . , Em.

Hence, the greedy algorithm works as follows: start with the empty set and
add entries one at a time in decreasing order of weights, as long as no two
entries in the resulting set are from the same row. The implementation for the
independence test is evident.

B.3 The assignment problem

There is a set of n jobs E, each job j has a weight wj that represents the profit
if it is performed. There is a set of m agents A. Each agent x is able to perform
a set of jobs Ex. The goal is to select a set of jobs to be performed for maximum
profit. The requirement is that two different jobs are assigned to two different
agents. Note that not all jobs are assigned. This is normal, because in some cases
there are more jobs than agents.

By definition of transversal matroid in Section A.1, the problem is indeed a
(transversal) matroid optimization problem.

Example 14. Consider a problem with data given in Table 5 where, for instance,
agent 1 can do jobs 1,2,3 and 4. The corresponding bipartite G is given in
Figure 9.

Agent Doable jobs

1 {1,2,3,4}
2 {2,5,6}
3 {1,4,6}
4 {3,5}
Table 5.

Hence, the greedy algorithm can be applied by choosing jobs in decreasing
order of profits. To check if a set in the current iteration, say, I = {1, 2, 4} is
independent amounts to checking if I can be matched in G. It can be done,
for example, by considering the subgraph GI of G (depicted in Figure 10) and
checking if I is the maximum cardinality matching of GI , for which there exists
standard algorithms.

37

1,2,3,4E1

2,5,6E2

1,4,6E3

3,5E4 6

5

4

3

2

1

Fig. 9. The bipartite G in Example 14

1,2,3,4

2,5,6

1,4,6 4

2

1

Fig. 10. The subgraph GI

38

	On the enumeration of non-dominated matroids with imprecise weights

