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Abstract The main motivation of this work is the dynamic
behavior of very long structures such as diaphragm and
quay walls. Indeed despite a seemingly bi-dimensional or
periodic geometry, a true three dimensional analysis has to
be carried out since the seismic loading is fully three-di-
mensional. Unfortunately usual 3D models are not able to
account for such large structures either from the theoret-
ical or the numerical point of view. The development of a
periodic approach accounting for general 3D loadings and
using a Boundary Element Method is addressed in this
paper. After introducing geometrical and functional
frameworks, a generalised theory for periodicity ®elds and
operators is given. It accounts for periodic domains and
®elds decompositions in view of a subdomain approach.
Periodic boundary elements and special Green functions
are then worked out. The third part points out some nu-
merical validations and results issued from this theory
applied to a real quay wall.

1
Introduction
The seismic behaviour of very long structures partially
embedded in soil such as tunnels, diaphragm and quay
walls is a major issue in earthquake engineering. The
catastrophic failures of such structures that have occured
in 1995 in Kobe [8] has pointed out the need of advanced
modelling in this ®eld to assert or modify usual designs
based on simpli®ed methods [11]. Beside the non-linear
phenomena that often take place in the soil around these
structures and which will not be accounted for in this
paper, the effects of the dynamic interaction between the
soil, the structure and the ¯uid together with the spatial
variation of the incident ®elds have to be carefully ad-
dressed. Indeed, it has been shown that these interactions
play a major role in the seismic behaviour of large build-
ings [16] or dams [14] modifying their dynamic response.
It has also been shown that travelling incident waves can
generate dangerous torsional motions in these structures.

For tunnels, diaphragm or quay walls, this last point
may play a signi®cant role for two reasons:

± these structures are very long compared to either the
wave length or the correlation length of the seismic
waves and in phase motion of such structures is very
unlikely to occur during an earthquake,

± these structures are usually made of periodic cells
connected with joints. The resistance of these joints is of
critical importance for these structures especially when
water is present. The maximum differential displace-
ments or the coupling forces and moments inside these
joints that are induced by spatially varying incidents
®elds have to be precisely known in order to design
them properly.

At last for these structures the effect on the dynamic be-
haviour of the anchors usually added in the soil to ensure
the static stability has to be investigated.

Accounting for all these aspects requires tri-dimen-
sional models of these structures and the surrounding soil.
Unfortunately mainly because of their very long size, such
analyses can hardly be performed even using advanced
numerical methods coupling FEM for the structure and
BEM for the soil and the ¯uid together with powerful
computers (see comparison results in Sect. 4.3). Moreover,
in the limit case where these structures are supposed to be
in®nite, these methods lack for mathematical backgrounds
to ensure their correctness.

To overcome these dif®culties we propose to take ad-
vantage of the periodicity of these structures, building a
numerical model dealing with only one cell on which al-
most classical numerical methods will be used. This ge-
neric model represents the overall structure submitted to
any three-dimensional incident ®eld provided the follow-
ing hypotheses are assured:

± The structure is supposed to be in®nite and periodic
along one given direction denoted d. This is in fact a
better hypothesis than accounting for a very small
portion of it. We will give in the conclusion some ideas
to account for the two ends of the structure.

± The soil is supposed to be horizontally layered, with no
lateral heterogeneities. This is often the most valuable
hypothesis that can be done on the soil regarding the
available data in practical application. Let us remark
that periodic lateral heterogeneities localised around the
structure can be easily incorporated in the structure
itself (this will be done for example for the anchors).
For non periodic heterogeneities being either known or
undeterministic one will refer to [25].

± The soil, the structure and the joints are supposed to
have a visco-elastic behaviour so that superposition
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theorem can be applied. For local non-linear phenom-
ena such as pounding or sliding along the joints, one
will refer to [16].

Moreover in this paper we will only consider the case
of deterministic seismic loadings consisting of plane
waves. The case of stochastic incident ®elds is dealt in
detail in [15] following the same framework. In addition
one will restrict the theoretical developments to
soil-structure interaction.

After some useful de®nitions and notations Sect. 2 will
recall some classical results on periodic ®elds and opera-
tors and the associated Floquet transform which plays the
same role as the usual Fourier transform. It is mainly
based on Floquet pioneering work [21] on differential
equations with periodic coef®cients (see also [9]). It is then
shown that one can restrict the analysis to a set of inde-
pendant problems posed on a reference cell. Some math-
ematical details on these aspects can be found in [5, 24, 12]
and more speci®cally in [15]. One can also refer to [7] as
the methodology is quite similar to the one used for
symmetry conditions.

In Sect. 3 we will see how these generic problems can be
effectively solved using the classical substructuring tech-
nique [2, 4, 13] coupling Finite and Boundary Elements.
For each of these methods one will address in detail the
modi®cation induced by the periodic conditions and es-
pecially the construction of periodic Green functions for
an homogeneous or a strati®ed visco-elastic half-space
(see [1, 23] for similar developments in other ®elds).

Section 4 will focus on numerical aspects related to the
proposed method, its validation and its ef®ciency.

Section 5 will show a practical application of the method
to a quay wall. We will concentrate here on the differential
displacements between two neighboring panels.

2
The Floquet decomposition
In this section we will ®rst present the three-dimensional
problem we intend to solve together with the periodic
assumption on its geometry. Then we will recall classical
results concerning periodic functions and operators in
one-dimension. These results will be extended to the 3D
case leading to a set of independent problems posed on a
generic cell.

2.1
Problem layout
Let us consider a very long structure modeled as an
unbounded open set Xl with given elastic properties
and which is embedded in an elastic half-space
Xs � Dÿ �D \ Xl�, D being the half-space. X � Xs [ Xl

will denote the global domain. Xl is supposed to be peri-
odic which means that there exists an elementary bounded
cell ~Xl such that:

~Xl � Xl \ So So � fx 2 D such that 0 < x � d < Lg

�1�

Xl � [
�1

n�ÿ1

~Xln
~Xln � fx 2 D such that xÿ nLd 2 ~Xlg

�2�

The interfaces between Xl and Xs will be denoted R. The
part of the boundary of each domain Xb on which Neu-
mann boundary conditions are applied will be denoted Crb

(see Fig. 1).
For any displacement ®eld u de®ned on X, ub will

denote its restriction to domain Xb, e�ub� and rb�ub� will
be the strain and elastic stress tensors associated to these
®elds and tb�ub� � rb�ub�n the traction vector on the
boundary using the outer normal convention for n.
Moreover one will use the following notations, a and b
being any two vectors of R3 and A and B being any two
tensors of R3 � R

3, �Div A�j �
P

i oiAji is the divergence
of the tensor, a � b �

P

i aibi is the scalar product,
A : B �

P

ij AijBij is the contraction of two tensors and
�a
 b�ij � aibj is the tensorial product.

Thanks to the linear hypothesis one will restrict the
analysis to the dynamic pertubation of the static ®eld due
to dynamic loadings. This pertubation denoted u�x;x� has
to satisfy the Navier equation in X and boundary condi-
tions on Cr both written in the frequency domain for any
circular frequency x:

Problem 1 Find u�x;x� de®ned on X satisfying:

Div r�u�x;x�� � ÿqx2u�x;x� in X �3�

t�u��x;x� � 0 on Cr �4�

The dynamic loads consist in an incident ®eld uinc satis-
fying the Navier equation in D and the free-surface
boundary conditions on oD. To avoid the de®nition of
proper radiation conditions either in the half-space or in
the structure, one will assume that some damping occurs
in the materials modeled as a small imaginary part added
to the elastic constants being either constant for hysteretic
damping or proportional to x for a viscous one. Thanks to
this hypothesis, one can restrict the analysis to ®elds
ud � uÿ uincr having a ®nite energy on X i.e.:
Z

X

fud � ud � r�ud� : e�ud�gdV < �1 �5�

where v denote the complex conjugate of v, and where uincr
is any smooth ®eld on X such that uinc ÿ uincr has a ®nite
energy on Xs. Provided with hypothesis (5) one knows that
Eqs. (3) and (4) have an unique solution for any given uinc
even though Xl is unbounded and uinc has not a ®nite
energy on Xs. However as X is unbounded, one has to ®nd

Fig. 1. Model layout
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a way to build a numerical approximation of u on a
functional space of ®nite dimension. In this section we will
restrict the analysis to the reference cell ~X � X [ So using
the Floquet transform.

2.2
1D Floquet periodicity
Before dealing with the 3D case, let us ®rst recall some
classical results due to Floquet [21]:

De®nition 1 A complex valued function f de®ned on R is
periodic of the second kind with period L and wavenum-
ber j if for any x in R:

f �x� L� � eÿijLf �x� �6�

This means that one can build this function for any x once
it is known on �0; L�. This will be used to synthetize the
solution on X once it will be known on ~X, provided that
this solution is periodic of the second kind. Unfortunately
this is not true in general, but the following theorem will
show that any function can be written as the superposition
of a set of periodic functions of the second kind:

Theorem 1 Given a function f de®ned on R and a period
L, its Floquet-transform ~f de®ned on �0; L��� ÿ p=L; p=L�
as follows:

~f �~x; j� �
X

�1

n�ÿ1

f �~x� nL�einjL �7�

is periodic of the second kind and for any x � ~x� nL, f
may be recovered from its Floquet transform ~f by:

f �x� �
L

2p

Z

p=L

ÿp=L

~f �~x; j�eÿinjL dj �8�

Let us remark that ~f may be build from f̂ the Fourier
Transform of f using the following formula:

~f �~x; j� �
X

�1

n�ÿ1

f̂ �j� 2np=L�eÿi�j�2np=L�~x �9�

f̂ �k� �
1

L

Z

L

0

~f �~x; j�eik~x d~x; k � j� 2np=L �10�

These properties are of a great practical importance when
dealing with differential operators with periodic coef®-
cients. Indeed, let A be any differential operators with
periodic coef®cients i.e. satisfying for any u in D�A� its
domain of de®nition and for any x 2 R:

A�x� L�u � A�x�u �11�

Then one can de®ne the family of operators ~Aj as the
restriction of A on the reference cell 0 < x < L with ad-
ditional periodic conditions of the second kind on the
boundary of this cell, i.e. for any 0 < ~x < L and any
functions ~u 2 D� ~Aj�:

~Aj�~x�~u � A�~x�ur with ur�~x� � ~u�~x� and ur 2 D�A�

�12�

~u�L� � eÿijL~u�0� �13�

Provided with this de®nition one can easily prove that:

� ~A~u��~x; j� � ~Aj�~x�~u�~x; j� �14�

for any u 2 D�A�. As a consequence one can prove the
following theorem:

Theorem 2 Let A be a periodic operator and f any
function belonging to the image of A. If Eq. (15) (resp.
(16)) has an unique solution u in D�A� (resp. �u
in D� ~Aj� for any j 2 �ÿp=L; p=L�):

Au � f �15�

~Aj�u � ~f ; �u�L� � eÿijL�u�0� �16�

then �u � ~u, the Floquet transform of u.
This means that instead of solving Eq. (15) on R one

can solve Eq. (15) on the generic cell for any j such that ~f
does not vanish and then build solution u using the re-
construction formula (8).

The key point in using this theorem is that each equa-
tion must have a unique solution. In the following this will
be achieved as long as damping is accounted for.

2.3
3D periodic domains
The aforementioned framework can be easily extended to
our original three-dimensional problem having a period-
icity L along one direction d (x is now a vector in R

3).
Using a simple separation of variables, it comes out that
the analysis can be restricted to the generic domain ~X. At
this point, it is worth to notice that the boundary of ~X may
be decomposed as follows:

o~X � ~Cr [ Ro [ RL �17�

Ro � fx 2 X=x � d � 0g; RL � fx 2 X=x � d � Lg

�18�

where ~Cr is the restriction of Cr on the generic cell, and
where Ro and RL are additional boundaries on which
periodic conditions are imposed. Provided with the Flo-
quet transform of the incident ®eld ~uinc�~x; j� de®ned as
follows:

~uinc�~x; j� �
X

�1

n�ÿ1

ui�~x� nLd�einjL �19�

and separating Eqs. (3) and (4) into ®eld equations in Xs

and Xl, coupling equations on R and boundary conditions
on Crs and Crl, one has to solve the following generic
problem for any j 2� ÿ p=L; p=L�:

Problem 2 Find �~us�~x; j�; ~ul�~x; j�� de®ned on ~Xs � ~Xl

satisfying:

Div rs�~us ÿ ~uinc� � ÿqsx
2�~us ÿ ~uinc� in ~Xs �20�

Div rl�~ul� � ÿqlx
2~ul in ~Xl �21�

~us � ~ul; ts�~us� � tl�~ul� � 0 on ~R �22�

tb�~ub� � 0 on ~Crb; b 2 fs; lg �23�
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~ub�x� � eÿijL~ub�xÿ Ld� for x 2 RbL; b 2 fs; lg

�24�

and the ®nite energy condition (5).
The global solution u�x�, is recovered using formula (8)

as follows:

ub�x � ~x� nLd� �
L

2p

Z

p=L

ÿp=L

~ub�~x; j�e
ÿinjL dj �25�

Let us remark that when dealing with incident plane waves
characterized by its horizontal wave number kinc one has:

ûinc�k� �

Z

�1

ÿ1

uince
ikxd dxd � d�k� kinc � d�ûinc�ÿkinc�

�26�

with xd � x � d. This means that using Eq. (9) one gets:

~uinc�~x; j� � d�jÿ ji�ûi�kinc�e
ÿikinc�~x;

ji � ÿkinc:d mod �2p=L�
�27�

and as a consequence only one problem corresponding to
j � ji has to be solved.

2.4
Remarks on the Floquet decomposition
Before trying to solve problem (2) on the generic cell using
standard numerical techniques, let us draw some remarks:

± The only mathematical tool that is required to perform
the Floquet decomposition is the theory of Fourier se-
ries. Indeed the decomposition formula (7) for a given ~x
is nothing but the computation of the Fourier coef®-
cient f �h � jL� of the series ffn � f �~x� nLd�gn2Z, re-
construction formula (8) being nothing but the general
Fourier series decomposition.

± As a consequence of the previous remark, any numer-
ical technique can be used together with the Floquet
decomposition.

± The Floquet decomposition may be applied either in 1D,
2D or 3D.

± It may extended to 2D or 3D periodicity using a simple
separation of variables.

± When the dimension of the periodicity is equal to the
dimension of the space the reference cell is bounded
otherwise it is not.

± The Floquet decomposition may be applied to 1D or 2D
physical domains subjected to 3D loads. Indeed, 1D or
2D physical domains are periodic for any period L.
Taking the limit when L tends to 0 gives the classical
Fourier transform.

± The Floquet decomposition is a particular application of
the group theory to physical problems governed by
partial differential equations. For that reason it is very
similar to the general framework proposed by Bossavit
[7] for ®nite groups (plane symmetries, cyclic symme-
tries ...). As a consequence its implementation in nu-
merical softwares that already account for these
symmetries is very simple as we will see in the next
section.

3
The numerical solution on the reference cell
As mentioned in Subsection 2.4, the Floquet decomposi-
tion applied to our original problem 1 is compatible with
any numerical technique and it can take advantage of al-
ready existing methodologies developed to handle sym-
metries. For these reasons the numerical solution of
problem 2 will be built using the classical domain de-
composition approach [2] using FEM for the structure and
BEM for the soil.

3.1
The subdomain approach
As ~Xl is bounded one can decompose the displacement
®eld ~ul on a given ®nite basis f/I�j�gI�1;N that has to
satisfy the periodicity conditions (24). Moreover let
~udo � ~uinc and ~udI be ®elds de®ned in ~Xs satisfying the
homogeneous Navier equation (20), the periodicity con-
ditions (24), the homogeneous boundary conditions (23)
and the following boundary conditions on ~R the restriction
of R on the reference cell:

~udI � /I on ~R �28�

~udo � ~uinc � 0 on ~R �29�

Then one has the following decomposition either in ~Xl

or in ~Xs:

~ul�~x� �
X

N

I�1

cI/I�~x� �30�

~us�~x� � ~uinc�~x� � ~udo�~x� �
X

N

I�1

cI~udI�~x� �31�

At last, using a standard Galerkin approximation
procedure in writing the equilibrium of ~Xl in a weak sense
for any /J in the basis, one comes up with the following
linear system:

K�j� ÿ x2M�j� � Ks�x; j�
� 	

c�x; j� � Fs�x; j� �32�

where:

KIJ �

Z

~Xl

rl�/I� : e�/J�dV; MIJ �

Z

~Xl

ql/I � /J dV

KsIJ �

Z

~R

ts�~udI� � /J dS; �33�

FsJ � ÿ

Z

~R

�ts�~uinc� � ts�~udo�� � /J dS

In order to solve this equation for any x and j one
has ®rst to compute the unknown traction ®elds ts�~udI�
and ts�~udo�. The next subsection is devoted to this task
using a boundary element technique. Another issue
consists in building the basis /I�j� using a standard Finite
Element technique and will be presented in 3.3. The main
point is thus that the classical domain decomposition
approach is then extended to the case of periodic domain
very easily.
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3.2
Periodic boundary elements
We propose here to compute the ®elds ~udI and ~udo, solu-
tions of local boundary value problems of the following
type:

Problem 3 Find u in ~Xs such that:

Div r�u� � ÿqx2u in ~Xs �34�

u � uo on ~R �35�

ts�u� � 0 on ~Crs �36�

u�x� � eÿijLu�xÿ Ld� for x 2 RsL �37�

using a Boundary Element Method [6] based on classical
integral equations [17]. However as neither the left peri-
odic interface Rso nor the right one RsL is bounded (see
Fig. 1), a standard BEM cannot be directly used. Moreover,
although it may be possible to account for periodic con-
ditions in a BEM framework, this would still require heavy
developments in existing computer codes. To avoid these
drawbacks, let us use the following periodic fundamental
solutions and integral operators [1, 23, 12]:

De®nition 2 UG
s being the Green tensor of the elastic

half-space D, let ~UG
s be the periodic Green Tensor and ~UG

s
the associated integral operator de®ned as follows:

~UG
s �~x; ~y; j� �

X

�1

ÿ1

einjLUG
s �~x; ~y � nLd� �38�

~UG
s �q��~y� �

Z

~R

~UG
s �~x; ~y�~q�~x�dS�~x� �39�

From these de®nitions one can easily remark that ~UG
s �~x; ~y�

and ~UG
s �~q� are periodic of the second kind with respect to

~y and with wavenumber equal to j. Moreover one can
remark that locally ~UG

s has the same singularities as UG
s . As

a consequence problem 3 is equivalent to the following
Boundary integral equation where the integral is only on
the bounded interface ~R as periodic boundary conditions
are automatically accounted for:

Problem 4 Find ~q on ~R satisfying for any ~y 2 ~R:
Z

~R

~UG
s �~x; ~y�~q�~x�dS�~x� � uo�~y� �40�

The tractions ts�u� needed in Eqs. (34) and (34) are then
given for any ~y 2 ~R:

ts�u��~y� � ÿ1=2~q�~y� �

Z

~R

ts�~U
G
s ��~x; ~y�~q�~x�dS�~x� �41�

The numerical solution of this integral equation may be
computed using either standard three-dimensional BEM
using collocation procedure or Symmetric Galerkin
Boundary Elements. In both cases, the only modi®cation
consists in computing the periodic Green tensors using
formula (38) and integrate it on the boundary elements.
Because of the singularity of the Green tensors around

x � y one will use the following procedure : let us consider
®rst constant shape function for ~q and collocation point at
the baricenter of each element. Then one has to compute
the following 3� 3 matrix:

UEF �

Z

E

~UG
s �~x; ~yF�dS �42�

As long as removing the term n � 0, the series (38) con-
verges uniformly for any �~x; ~y�, one can invert the sum-
mation in Eq. (38) and the integral in Eq. (42) to get the
following expression of UEF :

UEF �
X

�1

ÿ1

einjLUn
EF; U

n
EF�

Z

E

~UG
s �~x; ~yF � nLd�dS �43�

In this sum the singular terms arising only for n � 0 are
nothing but the usual 3D-BEM terms and are handled
using classical techniques (either singular integral proce-
dures or regularisation techniques for homogeneous [6] or
strati®ed domains [3]). The other terms are regular and
can be computed using standard gaussian formula. The
in®nite sum is truncated when convergence is reached
[19, 20](see Sect. 4.1).

3.3
The periodic structure
When dealing with Finite Elements, the computation of the
matrices K and M de®ned in Eq. (33) is not straightfor-
ward as /I depends explicitly on j (See [22] for periodic
FEM). Using classical dynamic substructuring it is shown
that K and M have an explicit dependence on j by an
extension of the Craig-Bampton [18] substructuring
technique. It consists in the expansion of the displacement
®eld of the structure ~Xl on dynamic eigenmodes /a with a
®xed interfaces and on static modes (x � 0 in Eq. (21))
generated by given displacements of the interface (prac-
tically unitary displacements of the nodes belonging to the
interface). In the present case the interface consists of
three parts ~R, Rlo and RlL. Let us ®rst call wb the static
modes that vanish on Rlo and RlL. As a consequence they
satisfy the periodic condition (24). Then, as long as the
structure is periodic, one can ®nd couples of the remaining
static modes �uoc;uLc� satisfying:

uoc�~x� � uLc�~x� Ld�uoc�~x� Ld� � uLc�~x� � 0

for ~x 2 Rlo �44�

One can then build new static modes ~uc combining these
ones such that they also satisfy the periodic condition (24):

~uc�~x� � eijL=2uoc�~x� � eÿijL=2uLc�~x� �45�

As the stiffness and mass matrices Ko andM
o expressed on

the static and dynamic mode basis satisfy:

/T
a0K

o/a � x2
a/

T
a0M

o/a � x2
adaa0 ;

/T
aK

owb � /T
aK

ouc � 0
�46�

one is then able to compute easily the stiffness and mass
matrices arising in Eq. (32) as a function of the FEM
stiffness and mass matrices Ko and Mo, using a simple
projection technique on this new basis. For example,
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denoting k � eÿijL=2, the stiffness coef®cient for two
modes ~uc�~x� and ~uc0�~x� is then given by:

Kaa0 � x2
aMaa0 � x2

adaa0 Kab � Kac � 0

Kbb0 � wT
bK

owb0 Mbb0 � wT
bM

owb0 Mab � /T
aM

owb

�47�

Kcb � kÿ1uT
ocK

owb � kuT
LcK

owb

Mcb � kÿ1uT
ocM

owb � kuT
LcM

owb

Mca � kÿ1uT
ocM

o/a � kuT
LcM

o/a

�48�

Kcc0 � kÿ2uT
ocK

ouoc0 � �uT
ocK

ouLc0 � uT
LcK

ouoc0�

� k2uT
LcK

ouLc0 �49�

Mcc0 � kÿ2uT
ocM

ouoc0 � �uT
ocM

ouLc0 � uT
LcM

ouoc0�

� k2uT
LcM

ouLc0

In this manner it is clearly seen that the stiffness and
the mass matrices have an explicit expression with respect
to k and thus need not be computed each time.

4
The numerical aspects
In Subsection 3.2 we saw that the numerical solution of
the periodic integral equation which is the core of the
method is handled using standard three-dimensional
BEM but with an additional sum on the source terms as
expressed in Eq. (43). Numerically this in®nite sum is
replaced by a ®nite one:

UEF �
X

�Nc

ÿNc

einjLUn
EF �50�

Nc being large enough to ensure the convergence. The aim
of this section is on the ®rst hand to examine this con-

vergence and on the second one to validate the periodic
formulation. In fact we will examine the convergence and
the accuracy of the terms of the impedance matrix as given
in formula (34).

Let us consider a set of identical and regularly spaced
rigid cubes lying in an in®nite homogeneous space as
shown in Fig. 2. As these cubes are rigid they have only six
degrees of freedom, the impedance matrix being a 6� 6
matrix. The cubes dimension denoted by a is set to one
meter (a � 1 m) and the distance L between their gravity
centres is the geometric periodicity length.

On Fig. 3 we have plotted the real and the imaginary
parts of the impedance in the e1e1 direction. One can notice
that convergence becomes slower when the cubes get
closer. Two extreme cases are shown: one deals with very
distant cubes (a � 1 m, L � 50 m) for which Nc can be set
equal to ®ve, the other one corresponds to side by side
cubes (a � L � 1 m) where Nc has to be greater than 30.

Fig. 2. Model layout for numerical validation

Fig. 3. Convergence thresholds for
impedances
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4.1
Convergence
The dots on Fig. 4 show the convergence thresholds, as
computed above, plotted for several dimensionless ratios
L=a. These thresholds seem to have a second order
polynomial variation function of the ratio L=a more
convincing than a logarithmic one according to the
correlation factor R2 shown on this graph.

4.2
Effect of the periodicity length
Once convergence being ensured, one can observe the
in¯uence of the periodicity length. Figure 5 gives the im-
pedance in the e1e1 direction for several values of L. The
impedance of an isolated cube lying in the same in®nite

space is also plotted (black thick line). As L grows, the
curves of the periodic set get closer to the isolated one
enhancing the fact that when the distance between cubes
increases, their mutual in¯uence varies in the opposite way
and they behave as isolated cubes.

4.3
Validation and efficiency
Several validation have been performed comparing the
periodic results with either 2D or 3D results. As an ex-
ample we show on Fig. 6 the impedance of side by side
case using two approaches: the classical BEM (dotted
curves) and the periodic one (continuous curves). The
correlation between the two approaches is quite convinc-
ing. Let us remark that in order to reach convergence for

Fig. 4. Estimation of the convergence
thresholds

Fig. 5. In¯uence of the Periodicity
length (L)
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3D model one has to use a very large mesh including about
100 cubes whereas in the periodic case only one cube has
been meshed.

The gain in computational time between these two
models is of about ®fty and reaches several thousands for
disk requirements. Indeed with the periodic approach
the size of ®les needed is the one corresponding to one
generic cell whatever Nc should be which is clearly not the
case in the classical approach where the size is propor-
tional to N2

c .
As mentioned in Sect. 3.2 periodic BEM can be easily

implemented in any existing BEM code. We have shown in
this section some validations of this approach and its
ef®ciency compared to a full 3D approach.

5
Application
We present here a study on the dynamic behaviour of
diaphragm and quay walls. These retaining walls (see
Fig. 7) which can reach 1 kilometer long, are made of
identical panels of about six meters long connected with
joints. The panels are anchored using tiebacks. Their static
behavior is relatively well-known, which is not the case
concerning their dynamic one. In fact when earthquake
occurs, waves propagate in many directions. For inclined
incident waves or surface incident waves, the panels will
not vibrate in phase creating differential displacement
between panels which may lead to water in®ltration and
other dangerous phenomena. The presence of joints and
anchors as well as the 3D characteristics of the loadings
require a full 3D analysis. Regarding to the dimensions of
such structures a Finite Element model would lead to a
huge number of degrees of freedom. A Boundary Element
Method is more suitable since only the interfaces between
domains need to be meshed. Let us remark that for an
industrial case and even using BEM and a high

performance supercomputer we were able to model only
six panels using a full 3D approach; which is clearly
not enough to account for interactions effects between
panels.

The periodic approach proposed in this paper is par-
ticularly suited for these analyses as quay walls are peri-
odic, the generic cell made of one panel with its anchors,

Fig. 6. Validation example in a quasi-2D
case

Fig. 7. An example of a quay wall and its generic cell
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the corresponding slice of soil and eventually the ¯uid as
shown on Fig. 5. The panel is a concrete thick plate. Three
inclined anchoring beds reinforce its stability. The panel
lies in a linear elastic strati®ed halfspace made of two
layers referred to by numbers 1 and 2. The loading is a
plane shear wave propagating vertically with a polarisation
in the e1 direction. In order to make a comparative study,
we have computed several models including or not the
anchors and the water (see Fig. 5).

± case AW (Anchors and Water) will denote the case with
Anchors and Water,

± case AN the same case without water,
± case FW will stand for Free of Anchors with Water,
± case FN standing for Free of Anchors with No water.

As shown in Subsection 3.3 a Finite Element analysis is
required for the structure (the free panel in cases FW and
FN and with the anchors in cases AW and AN) in order to
determine the displacement ®elds decomposition (see
Eq. (31)). This leads to the eigenmodes f/I�j�gI�1;N where
N is set to 20. The choice of this basis dimension is made
according either to an a posteri criterium: we verify that
the participation of the last eigenmode taken into account
(/20) is negligible, or an a priori criterium where the last
eigenmode frequency must be at least 2.5 time the maxi-
mum of the frequency range ([0.1 Hz, 12.5 Hz] in our
study). Our choice ful®lls the two criteria.

Another preliminary veri®cation was made concerning
the number of cells (threshold Nc) to take into account
when computing the numerical periodic Green function.
Indeed as in this case we are using the Green functions of a
strati®ed half-space we were not able to use the conver-
gence results given in Sect. 4.1. On Fig. 8 we have plotted
the moduli of cI for Nc � 8 and Nc � 13 at low and high
frequencies. The value Nc � 8 was adopted despite the
difference on the ®fth mode at high frequency and the
following results are then provided when 17 panels
(2Nc � 1) were taken into account. Results in the fre-
quency domain show that the most active participation

factors are those corresponding to a ¯exural mode of the
plate in the e1 direction which is the loading polarisation.
Moreover the moduli of these participation factors de-
crease when the mode number increases. We have chosen
here some interesting participation factors. For example,
the effect of water on the seismic behaviour of the quay
wall can be seen on Fig. 9 where we plot the moduli of two
participation factors (c4 and c5) versus the frequency in the
two cases AW (black lines) and AN (grey ones). The re-
sponses are quite similar except for some resonance fre-
quencies where the AW responses are higher. In fact near
resonance frequencies one can easily show that the mod-
ulus of a frequency response function is proportional to
the mass. The presence of water bringing additional mass
to the system, case AW responses are higher than case AN
ones. The effect of anchors can be seen on Fig. 10 where
we compare cases AW and FW responses. These have
quite similar shapes, the free panel response (dark curves)

Fig. 8. Participation factors (fcIgI�1;20) convergence

Fig. 9. The effect of water on some participation factors

Fig. 10. The effect of anchors on some participation factors
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being smoother than the anchored panel one where the
perturbations are due to the presence of the 8 anchors in
the soil. Concerning the displacement, we show the Fre-
quency Response Functions at the top and at the bottom of
the panels in the four studied cases (Fig. 11). These FRF
are normalized using the displacement at the top of the
layer which explains the disampli®cations of the bottom
displacement curves. We notice that the e1 direction is the
most active one because it is the loading excitation di-
rection.

6
Conclusion
We have presented in this paper a periodical approach
coupling ®nite elements and boundary elements even for
non periodic loadings. The case of stochastic loading has
been presented in another paper [15]. Moreover, the ef®-
ciency of this approach has been proven and several val-
idation tests shown. We have applied this new
methodology to model a dynamic soil-quay wall interca-
tion and we compared several con®gurations of the quay-
wall under a vertically propagating plane wave. Convinc-
ing results have been obtained.
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