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Abstract: Over the last decade, the world has witnessed many breakthroughs in artificial intelligence,
largely due to advances in deep learning technology. Notably, computer vision solutions have
significantly contributed to these achievements. Human face analysis, a core area of computer vision,
has gained considerable attention due to its wide applicability in fields such as law enforcement,
social media, and marketing. However, existing methods for facial age estimation often struggle
with accuracy due to limited feature extraction capabilities and inefficiencies in learning hierarchical
representations. This paper introduces a novel framework to address these issues by proposing
a Multi-Stage Deep Neural Network (MSDNN) architecture. The MSDNN architecture divides
each CNN backbone into multiple stages, enabling more comprehensive feature extraction, thereby
improving the accuracy of age predictions from facial images. Our framework demonstrates a
significant performance improvement over traditional solutions, with its effectiveness validated
through comparisons with the EfficientNet and MobileNetV3 architectures. The proposed MSDNN
architecture achieves a notable decrease in Mean Absolute Error (MAE) across three widely used
public datasets (MORPH2, CACD, and AFAD) while maintaining a virtually identical parameter
count compared to the initial backbone architectures. These results underscore the effectiveness and
feasibility of our methodology in advancing the field of age estimation, showcasing it as a robust
solution for enhancing the accuracy of age prediction algorithms.

Keywords: age estimation; deep learning; multilevel deep features; adaptive regression

1. Introduction

Biometric technologies, particularly facial analysis, have seen a tremendous surge in
advancements, driven largely by the advent of artificial intelligence and deep learning [1].
These remarkable achievements have opened the door to further investigations into the
usability of facial features in various applications, including demographics (age, gender,
and ethnicity), affective computing (emotion and pain recognition), and security and
authentication (face verification, detecting spoofing and facial attacks). These technologies
have become increasingly crucial in a wide array of applications, ranging from demographic
analysis to security systems. Among these applications, age estimation based on facial
features has emerged as a particularly important field due to its diverse applications and
inherent challenges [2].
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The topic of age estimation from face images continues to receive much attention from
computer vision researchers due to its importance and use in various applications [3–5].
Age estimation through facial analysis is paramount in demographic studies, providing vi-
tal insights into population age distributions, which in turn are crucial for both sociological
research and governmental policy-making [6]. In law enforcement and security, accurate
age estimation is indispensable for identifying individuals in investigations and enhancing
security protocols through advanced face verification systems [7]. Moreover, in the field of
affective computing, age estimation plays a key role in personalizing user experiences and
improving human–computer interactions [8].

The use of facial features for age estimation is highly recognized for its reliability and
the speed with which assessments can be completed, making it generally preferred over
other biometric markers. Advances in machine learning and image processing have further
enhanced the viability of facial analysis tools for this purpose. Recent developments such
as descriptive human visual cognitive strategies using graph neural networks underscore
that innovative approaches in facial expression recognition can contribute to the nuanced
detection and interpretation of age-defining facial features [9]. However, despite these
technological strides, the field continues to face significant hurdles. One of the core issues
is the development of robust age estimation systems that can consistently deliver accurate
predictions across diverse demographic groups. This difficulty stems primarily from the
varying nature and progression of facial aging among different individuals and populations,
a variability that is well-documented in the literature [7,10]. Moreover, factors such as
environmental influences, genetics, and lifestyle choices significantly impact the aging
process, adding further complexity to accurate age estimation using facial features [6,11].
As a result, ongoing research seeks to refine algorithms and methodologies to better handle
these variations and improve the accuracy and applicability of age estimation technologies.

The advent of deep learning, particularly through the development of convolutional
neural networks (CNNs), has dramatically transformed the landscape of computer vision,
and by extension age estimation models. These deep learning methods have shown
remarkable superiority in accuracy and efficiency compared to traditional techniques.
Their strength lies particularly in managing large and diverse datasets with enhanced
effectiveness [12]. Our research builds upon this innovative groundwork by proposing
novel modifications to existing CNN architectures. These enhancements aim to further
refine the accuracy of age estimation models while addressing some of the persistent
challenges in the field. Utilizing advanced neural network strategies, we seek to push the
boundaries of what is currently achievable in age estimation accuracy, making significant
contributions to both theory and practical applications [13,14].

The goal of this study is to improve the performance of existing deep neural networks
by making simple modifications to CNN architectures that enable more accurate prediction
of a person’s age and age group based on facial images. The proposed idea divides
each CNN backbone into multiple stages, each of which generates a feature map that
is then concatenated with the other stages using adaptive average pooling. In addition,
an adaptive loss function is used to improve the training of the modified backbones.
To empirically validate our proposed modifications, we employ two renowned CNN
architectures: EfficientNet and MobileNetV3. These networks were selected for their
efficiency and proven effectiveness in various computer vision tasks [15,16]. We conducted
extensive experiments using three publicly available datasets: MORPH2, CACD, and AFAD.
These datasets were chosen for their diversity and comprehensiveness in order to ensure
that our model is robust and able to generalize between different demographic groups.

The main contributions of our work are summarized as follows:

• We introduce a straightforward yet effective architecture that leverages channels at
various stages of a deep neural network within the regression module.

• Our approach is implemented with two distinct CNN architectures: EfficientNet and
MobileNetV3. Notably, this scalable method can be adapted to work with any CNN
architecture.
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• We conduct experiments using three public datasets: MORPH2, CACD, and AFAD. We
provide an extensive comparison with several leading-edge methods, demonstrating
that age estimation accuracy can be enhanced using the same backbone network
without incurring additional costs.

The remainder of this paper is structured as follows. In Section 2, we dive into the
different methods of determining age from facial images. This section comprehensively
reviews the evolution of techniques, starting from classical methods that rely on texture
and shape feature extraction to the more sophisticated deep learning approaches that have
revolutionized the field. We discuss the strengths and limitations of each method, providing
a holistic understanding of the landscape of age estimation techniques.

Section 3 introduces our proposed framework, which marks a significant shift from
traditional methods. We detail our innovative approach, which involves modifications to
CNN architectures to enhance their predictive accuracy in age estimation. This section
explains the rationale behind dividing the CNN backbone into multiple stages and the
benefits of concatenating these feature maps through adaptive average pooling. Moreover,
we elaborate on the adaptive loss function, a crucial component designed to fine-tune the
training process of these modified backbones.

In Section 4, we present our experimental setup and the results obtained from testing
our framework on three public datasets: MORPH2, CACD, and AFAD. This section is
crucial as it not only validates our proposed method but also provides a comprehensive
comparison with existing state-of-the-art methods. We discuss the implications of our
findings, emphasizing how our modifications lead to improvements in age estimation
without incurring additional computational costs.

Finally, Section 5 summarizes the key points of our research, highlighting the advances
made in age estimation through our approach. We also discuss potential areas for future
research, including suggestions that can further enhance the accuracy and efficiency of age
estimation techniques in biometric systems.

This paper aims to not only contribute to the academic discourse in computer vision
and biometrics but also to offer practical insights that can be applied in various domains
where age estimation is crucial, such as security, marketing, and healthcare.

2. Related Work

Age estimation from facial images has attracted significant attention in the field of
computer vision [17], primarily due to its wide-ranging applications in areas such as
security, marketing and human–computer interaction. This research domain has evolved
through two major methodologies: classical methods and deep learning approaches.

Classical approaches to age estimation largely focus on the extraction and analysis
of facial features. Key techniques include Local Binary Patterns (LBP); introduced by
Bekhouche et al. [18], LBP has been extensively used for texture analysis. Its effectiveness
in capturing fine-grained textural changes makes it particularly useful for distinguishing
age-related features in facial images. Scale-Invariant Feature Transform (SIFT), introduced
by Ren et al. [19], leverages SIFT to capture keypoints that are resistant to changes in
image scale, rotation, and illumination. This method is instrumental in identifying age-
related variations in facial structure. Active Appearance Model (AAM), as discussed
by Tian et al. [20], provides a framework for both shape and texture analysis, allowing
for comprehensive modeling of facial dynamics with aging. Binarized Statistical Image
Features (BSIF) and Local Phase Quantization (LPQ), highlighted in works by Dornaika [21]
and Bekhouche [22], respectively, focus on encoding texture information in a way that is
more resistant to variations in lighting and other extrinsic factors.

In conjunction with these feature extraction techniques, various machine learning
algorithms such as Support Vector Machine (SVM) [23], Partial Least Squares (PLS) [24],
and Coupled Similarity Reference Coding Model (CSRC) [25] have been employed to
perform the classification or regression tasks necessary for age estimation.
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The advent of deep learning has revolutionized age estimation, offering more robust
and accurate models. As mentioned by Kong et al. [26], Convolutional Neural Networks
(CNNs) have become a fundamental tool in age estimation thanks to their ability to auto-
matically and hierarchically extract features from raw images. Shen et al.’s [27] proposal
of Deep Regression Forests (DRFs) showcases an innovative integration of CNNs with
decision forests, tailoring the model to handle the diverse and complex data distributions
found in age-related features. The Identity-Preserving Generative Adversarial Network
(IPCGAN) framework by Wang et al. [28] signifies a significant leap in the generation of
advanced facial images while preserving the identity of the subjects. This approach has
implications not only for age estimation but also for digital entertainment and forensics.
The introduction of robust loss functions by Dornaika et al. [29] and innovative label
distribution learning techniques by Akbari et al. [30] exemplify the ongoing efforts to refine
the training process of deep neural networks for more accurate and stable age estimation.

Transfer learning has become a cornerstone in this domain [31], allowing researchers
to apply the knowledge gained from one task to another. In age estimation, this means
utilizing pretrained models on large datasets, which is especially beneficial in light of the
high variability and subtlety of age-related features in facial images. This approach not only
saves significant computational resources but also improves the generalization capabilities
of age estimation models.

Gil Levi and Tal Hassner [13] utilized convolutional neural networks; their paper
represents an early transition phase in which deep learning began to gain prominence for
age and gender classification. Their focus was on the effectiveness of CNNs in handling real-
world uncontrolled images. Rothe et al. [12] introduced the DEX algorithm, which estimates
apparent age from a single image using deep learning techniques without relying on facial
landmarks. Antipov et al. [32] focused on the challenge of age estimation in children
using a combination of general and child-specialized deep learning models. Yang et al. [33]
presented SSR-Net, a new compact and efficient architecture for age estimation. Hossein
Hassani and Amirhossein Hosseini [34] introduced AgeNet, combining regression and
classification approaches in deep learning for age estimation. These papers illustrate the
evolution from classic methods to sophisticated deep learning techniques in the field of
face age estimation.

The field of age estimation from facial images has seen remarkable advancements,
evolving from initial reliance on classical feature-based methods to the incorporation of
sophisticated deep learning models [35]. This evolution is a testament to the dynamic
nature of research in biometrics and computer vision. Initially, classical feature-based
methods laid the groundwork. These methods, focusing on the characteristics of texture,
shape, and appearance extracted from facial images, were crucial in establishing a basic
understanding of how facial characteristics correlate with age. Techniques such as Local
Binary Patterns (LBP), Gabor filters, and Active Appearance Models (AAM) were among
those commonly employed. Although these methods provided significant information,
they were often limited by their dependency on manual feature selection and susceptible
to variations in image quality, lighting, and facial expressions.

The advent of deep learning, particularly Convolutional Neural Networks (CNNs),
has revolutionized the field [36]. These models automatically learn hierarchical feature
representations, making them highly effective in capturing complex age-related patterns in
facial images. Techniques such as transfer learning and data augmentation further enhance
the robustness and accuracy of these models. Deep learning approaches excel in handling
large datasets and diverse age groups, offering a level of precision and generalization that
the classical methods struggled to achieve.

However, deep learning models come with their own set of challenges. They require
substantial computational resources and large annotated datasets for training. Moreover,
the “black box” nature of these models often leads to difficulties in interpretability, making it
challenging to understand the specific features the model is focusing on for age estimation.
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As we move into the next section focusing on our proposed approach, it is important
to consider both the advantages and disadvantages of these methodologies. Our approach
aims to integrate the interpretability and simplicity of classical methods with the advanced
feature extraction capabilities of deep learning models. This hybrid strategy is designed to
take advantage of the strengths of both paradigms, offering enhancing accuracy and robust-
ness while maintaining computational efficiency and ensuring a degree of interpretability.
Through this approach, we aim to push the boundaries of automatic age estimation while
balancing the trade-offs between complexity, accuracy, and practical applicability.

3. Methodology

Age estimation, like any image-related task, essentially involves two main steps: pre-
processing, which includes face detection, normalization, and augmentation; and modeling,
which encompasses feature extraction, modeling, and prediction. In this pipeline, the
quality and appropriateness of preprocessing and feature extraction play a crucial role in
enhancing the performance of age estimation models. Figure 1 shows the overall architec-
ture that we adopt for estimating facial age. These steps collectively form a comprehensive
pipeline that ensures the robustness and generalization ability of age estimation models
across diverse facial characteristics and conditions.

Stage 1 Stage 2 Stage 3 Stage 4

Face Preprocessing

3 × 224 × 224

Stage 5

GAP GAP GAP GAP GAP

…

CONCAT

FC Age

… … … …

𝐶1 × 𝐻1 ×𝑊1 𝐶2 × 𝐻2 ×𝑊2
𝐶4 × 𝐻4 ×𝑊4𝐶3 × 𝐻3 ×𝑊3 𝐶5 × 𝐻5 ×𝑊5

𝐶1 × 1 𝐶2 × 1 𝐶3 × 1 𝐶4 × 1 𝐶5 × 1

(𝐶1 + 𝐶2 + 𝐶3 + 𝐶4 + 𝐶5) × 1

Figure 1. General structure of a multistage deep neural network based on a backbone with five stages.

3.1. Preprocessing

The initial step of age estimation from facial images involves performing face de-
tection, including locating and identifying facial regions within an image. Following
detection, the faces are normalized to standardize their size, orientation, and illumination.
Normalization ensures that subsequent analyses are not influenced by variations in facial
appearance. Augmentation techniques are then applied to diversify the dataset, enhancing
the model’s ability to generalize to different facial variations, expressions, and environmen-
tal conditions [37]. This step is crucial for training robust age estimation models capable of
handling real-world scenarios.

To ensure the quality of the preprocessing steps, the highly efficient MTCNN face
detection and alignment model [38] is employed. MTCNN excels in handling challenging
scenarios, including partial occlusion and shadows. It is utilized to acquire a cropped and
aligned face, which is then adjusted to meet the 224 × 224 standards of the age model back-
bone. Throughout the training phase of the proposed approach, various data enhancement
techniques are applied to the aligned face images. These techniques encompass alterations
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to brightness, contrast, and saturation, random conversion of a color image to grayscale,
and horizontal flipping of the image.

3.2. Proposed Architecture: Multi-Stage Deep Neural Nets (MSDNN)

In contrast to traditional machine learning approaches, deep learning fundamentally
alters the landscape of age estimation by sidestepping the labor-intensive process of manual
feature extraction. Instead, these advanced neural networks automatically learn relevant
features from the data, a capability that is especially potent in the context of facial analysis
for age estimation. Classical machine learning techniques are heavily dependent on domain
expertise for feature selection, which may not effectively capture all the subtle complexities
of aging facial features; however, deep learning excels at discerning and leveraging intricate
nonlinear relationships within data through its multiple layers and transformations. This
ability enables the model to identify and use subtle visual cues associated with age, such as
fine lines, wrinkles, and texture changes, which can be challenging to quantify manually
but are critical for accurate age predictions. Moreover, as these networks delve deeper they
refine these features, enhancing their ability to generalize from training data to new unseen
images, thereby improving reliability and accuracy in real-world applications. This shift
not only streamlines the analytical pipeline but also potentially increases the accuracy of
age estimation models, making them more robust across diverse populations and varying
image conditions.

Furthermore, CNN architectures are designed to capture various levels of abstraction
at different layers within the network, which is pivotal for progressively refining the
understanding of image content relevant to tasks such as age estimation. In the initial
layers of a CNN, the extracted features are typically low-level, such as edges, textures,
and colors. These foundational elements are essential for the preliminary interpretation
of visual data. As the data progress through the network, subsequent layers focus on
higher-level features that incorporate more complex aspects of the image, such as specific
facial attributes associated with aging, for example the shape and sag of facial contours or
the presence of age-related spots [39,40]. Each successive layer abstracts and compounds
information from the previous layers, enabling the network to make more sophisticated
inferences about age from facial characteristics. This hierarchical processing not only
improves the precision of age estimation but also enhances the network’s ability to adapt
to different facial idiosyncrasies and demographic variations, ultimately leading to more
accurate and robust age prediction models.

The motivation behind this research is to harness the benefits offered by varying levels
of abstraction and seamlessly integrate them into the age regression module. In contrast
to age estimation methods solely based on deep learning, our approach stands out by
directly amalgamating all types of features through the regression module. This strategy
ensures a comprehensive utilization of diverse information encapsulated in different levels
of abstraction, paving the way for a more holistic and nuanced understanding of age-related
characteristics in the data. By integrating multiple layers of abstraction, our methodology
aims to enhance the accuracy and robustness of age regression, ultimately contributing to
the refinement and optimization of age estimation models (Equation (2)).

Consider a CNN architecture consisting of L layers, each performing similar or varied
transformations. The initial layer takes an input image and generates the primary feature
map. Subsequently, each following layer i processes the feature map FMi−1 generated by
its predecessor i−1. As we progress from the first layer (i = 0) to the final layer (i = L),
the level of abstraction of the features systematically increases. This progressive increase
in abstraction allows the network to transition from simple discernible patterns to more
complex abstract representations. This enhances its ability to analyze and interpret the
intricate details pertinent to tasks such as age estimation from facial features.

FMi = FM1 ⊕ FM2 ⊕ · · · ⊕ FMi ⊕ · · · ⊕ FML (1)
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Features = FM1 ⊕ FM2 ⊕ · · · ⊕ FMi ⊕ · · · ⊕ FML (2)

The flowchart of the proposed architecture is shown in Figure 1. The proposed archi-
tecture was tested on two types of CNN backbones, namely, EfficientNet and MobileNetV3.

3.2.1. Efficientnet

Since AlexNet won the ImageNet competition in 2012, CNNs have been the de facto
method for numerous deep learning tasks, especially computer vision. Since 2012, re-
searchers have experimented in attempting to develop succeedingly better architectures
to increase the accuracy of models on various tasks [41]. Tan et al. proposed the Effi-
cientNet concept in “EfficientNet: Rethinking Model Scaling for Convolutional Neural
Networks” [15]. They studied scaling and discovered that a careful balance between the
depth, width, and resolution of the network can improve performance. EfficientNet is
a design for a convolutional neural network that uses a compound to equally scale all
dimensions of depth/width/resolution to l. Unlike the common practice of setting these
elements freely, the EfficientNet scaling approach scales width, depth, and resolution uni-
formly using a set of predetermined coefficients. The EfficientNet B0 base model provides
a good balance between accuracy and FLOPs using neural architecture research. The base
model has been scaled using scaling approaches to create the B1–B7 family of models.
Despite recent claims of improvements in learning speed or inference, these are often
simply EfficientNet in terms of their parameters and FLOP efficiency. EfficientNet Edge is a
variant of EfficientNet with a different input size and mesh depth and width. In this work,
we use as a backbone architecture EfficientNet Edge Large B, which assumes an input size
of 300 × 300 and extends the depth and width by 1.4 and 1.2, respectively.

3.2.2. Mobilenetv3

MobileNet [42] is a lightweight deep neural network designed for mobile computer
vision applications. MobileNetV3 [43] is a new generation of the MobileNet family. It is a
platform-independent network that uses NAS [44] and NetAdapt [45] to search and define
two models: MobileNetV3-Small for low-resource use cases, and MobileNetV3-Large for
high-resource use cases. MobileNetV3 uses different activation functions with nonlinearity
depending on the target layer, and uses squeeze-and-excite in its bottleneck blocks. In this
work, we use MobileNetV3-Large pretrained on ImageNet-1K with a scaling factor of 1.25
for the width of the layers.

3.3. Loss Function Used

The adaptive loss function used in [29] exploits both the ℓ2- and ℓ1-norms. It is provided by

LAda =
1
N

N

∑
i=1

(1 + σ) (Yi − Ti)
2

|Yi − Ti|+ σ
, (3)

where σ is a positive parameter that affects the shape of the loss function, while Yi and Ti
denote the predicted and ground-truth ages of the i-th image. The adaptive loss function
becomes comparable to the MAE loss function when σ approaches zero, and becomes
identical to the MSE loss function as σ approaches infinity.

4. Performance Evaluation

We begin this section by introducing the three public datasets used in our experiments.
Subsequently, we outline the evaluation metrics we employed. We present the performance
of our proposed scheme and compare it with other competing methods. The section in-
cludes an analysis and discussion of the results obtained from each dataset. Following that,
we provide a concise ablation study. Finally, we conclude with a cross-dataset evaluation
that assesses the generalization capability of the proposed solution.
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4.1. Datasets

To assess the effectiveness of the proposed approach, a comprehensive evaluation
using three publicly available benchmark datasets (AFAD, CACD, MORPH2) is conducted.
These datasets were chosen due to their extensive use in the field of face age estimation,
allowing for meaningful comparisons with other state-of-the-art-approaches. In addition, a
cross-dataset protocol is adopted across the three datasets, further enhancing the rigor and
the generalizability of the overall assessment. This protocol, which spans across multiple
datasets, not only increases the comprehensiveness of the experiments but also ensures that
the findings are transferable and applicable in diverse real-world scenarios. The datasets
are divided into training, validation, and test sets following the same split proposed by [46].

MORPH2 (Craniofacial Longitudinal Morphological Face Database) [10] is a large
longitudinal face database containing 55,134 images of 13 K subjects labeled with age,
gender, and race. Thousands of facial images of subjects taken in the real world make up
the MORPH database corpus (uncontrolled conditions). Ages used in this dataset ranged
from 16 to 70 years.

CACD (Cross-Age Celebrity Dataset) [47] contains 159,449 images of 2000 celebrities
collected from the internet ranging in age from 14 to 62 years. The images were collected
from search engines using celebrity names and years as keywords.

AFAD (Asian Face Age Dataset) [48] contains 165,501 faces ranging in age from
15 to 40 years. The images were collected from the RenRen Social Network, which is used
by Asian students. The dataset includes middle school, high school, undergraduate, and
graduate students.

4.2. Evaluation Metrics

The performance measures used to evaluate the proposed facial age estimation model
are the Mean Absolute Error (MAE) and the Cumulative Score (CS). The MAE is the average
of the absolute errors between the ground-truth ages and predicted ages. The MAE is
calculated as follows:

MAE =
1
N

N

∑
i=1

|pi − gi| (4)

where N, pi, and gi are the total number of samples, predicted age, and ground-truth age,
respectively. The CS indicates the percentage of tested cases for which the age estimation
error is smaller than a threshold. The CS is provided by

CS(T) =
Ne≤T

N
%, (5)

where T, N, and Ne≤T are the error threshold (years), total number of samples, and number
of samples for which the age estimate has an absolute error no greater than the threshold
T, respectively; thus, CS indicates the percentage of tested samples that were correctly
predicted within the tolerance T.

4.3. Implementation

MSDNN is implemented in Python 3.8 and uses the Pytorch 2.0 and Pytorch lightning
frameworks. The model is trained with distributed data parallelism, which can be run on
single/multiple machines, and half-precision tensors are used to reduce training time. The
implementation was run on a laptop with a Core I7 CPU and a GeForce RTX 2070 GPU.
By default, we trained the model using the AdamW optimizer with ReduceLRonPlateau
scheduling and a batch size of 32 for 100 epochs; the initial learning rate of the optimizer
was set to 1 × 10−3 and the learning rate limit to 1 × 10−7.

4.4. Comparison with State-of-the-Art Methods

The results show that the proposed MSDNN architecture based on the Efficient-
Net backbone for facial age estimation using three public datasets (AFAD, CACD, and
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MORPH2) outperforms previous state-of-the-art approaches in terms of MAE, as shown in
Table 1.

The proposed MSDNN architecture achieves a significant improvement, with an
MAE of 4.90 compared to the best SOTA approach, (CORAL-CNN), which had an MAE of
5.25 using the CACD dataset. In another comparison the performance was notably better,
with an MAE of 2.59 compared to the best SOTA approach (ADPF), which had an MAE
of 2.71 using the MORPH2 dataset. Similarly, the difference in performance was minimal,
with an MAE of 3.25 compared to the best SOTA approach (CDCNN), which had an MAE
of 3.30 using the AFAD dataset. In addition, the MSDNN model has 8.5 k parameters,
whereas the best models for ADPF, CDCNN, and CORAL-CNN have 14 M, roughly 21 M
(based on ResNet34), and 138 M (based on VGG16), respectively.

Figure 2 shows the cumulative scores of the proposed model based on the EfficientNet
backbone on the three public datasets. Comparing the results from the three datasets
(see the curves in Figure 2), it can be seen that the results for the MORPH2 dataset are
more stable and accurate compared to the AFAD and CACD datasets, which is due to the
age imbalance in the datasets. From the figure, the percentages of correct age estimates
with respect to 5 years of absolute error are 86.66%, 65.31%, and 80.17% for the MORPH2,
CACD, and AFAD datasets, respectively. The latter shows that the CACD dataset is more
challenging compared to the other two datasets, as the percentage of correct age estimates
with respect to 10 years of absolute error in the CACD dataset is only 88.86%.

Overall, the use of EfficientNet as a backbone combined with features from different
stages shows significant performance improvements across the three datasets. The highest
performance was reported on the MORPH2 dataset, with an MAE of 2.59, followed by the
CACD and AFAD datasets, with MAEs of 3.25 and 4.90, respectively.

The significant improvements in MAE suggest that the combination of EfficientNet
and MSDNN effectively captures age-related features across diverse datasets. The ex-
perimental effects demonstrate that the proposed architecture can generalize well even
on datasets with varying characteristics. Despite these promising results, this study has
limitations. For instance, the performance may vary with different preprocessing tech-
niques or when applied to datasets not included in this study. Potential biases could arise
from the specific demographics of the datasets used here, which may not fully represent
the global population. Future research should explore these aspects and test the model’s
robustness across a wider range of data in order to validate its applicability and address
any inherent biases.

In our experiments, we observed that the Multi-Stage Deep Neural Network (MSDNN)
architecture significantly improved the accuracy of age estimation compared to the baseline
models. Specifically, MSDNN demonstrated a lower Mean Absolute Error (MAE) across all
tested datasets. This improvement can be attributed to the effective utilization of feature
maps at different stages of the CNN backbone, which provides a more comprehensive
representation of age-related features. Despite these positive results, our study has several
limitations. First, the datasets we used (MORPH2, CACD, and AFAD) may not fully
represent the diversity of real-world facial images, potentially limiting the generalizability
of our findings. Additionally, our model’s performance may be influenced by the quality
and resolution of the input images as well as variations in lighting and facial expressions.
Future studies should aim to validate our approach on more diverse and comprehensive
datasets. Our study may be subject to bias related to the demographic compositions present
in the datasets; for example, the MORPH2 dataset mainly includes images of individuals
from a specific age range and ethnic background, which might not reflect the global
population. To mitigate this, we recommend that future research include more diverse
datasets encompassing various age groups, ethnicities, and environmental conditions in
order to help ensure that the model’s performance is robust and unbiased across different
demographic groups.
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Table 1. Mean absolute error (MAE) (years) obtained with the three public datasets: comparison with
state-of-the-art.

Approach MORPH2

SGD [49] 5.69

OR-CNN [48] 3.27

Google-Net [50] 2.94

CORN [51] 2.98

Soft-Ranking [52] 2.83

IMDB-WIKI (ResNet-50) [53] 2.81

deep-JREAE [54] 2.77

CDCNN [55] 2.76

Adaptive-CNN [29] 2.75

SADAL [56] 2.75

MSFCL [57] 2.73

Wasserstein [58] 2.71

CORAL-CNN [46] 2.64

ADPF [59] 2.71

Ours 2.59

Approach CACD

CAAE [60] 44.20

Lifespan [61] 11.70

IPCGAN [28] 9.10

S2 GAN [62] 8.40

PADA [63] 7.71

UAN [64] 7.57

OPDA-BP [65] 7.48

ORUDA [66] 7.26

DANCE [67] 7.13

Self-Estimate [68] 6.70

ADPF [59] 5.39

CORAL-CNN [46] 5.25

Ours 4.90

Approach AFAD

PADA [63] 7.11

OPDA-BP [65] 6.84

UAN [64] 6.73

DANCE [67] 6.25

ORUDA [66] 6.19

CNN + LSVR [14] 5.56

CORAL-CNN [46] 3.47

OR-CNN [48] 3.34

CDCNN [55] 3.30

Ours 3.25
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Figure 2. Cumulative scores obtained by the proposed approach on the three public datasets.

4.5. Ablation Study

To prove the effectiveness of the MSDNN concept, two different experiments were
conducted by training the two different backbones with and without MSDNN. The results
are shown in Table 2. For the MORPH2 dataset and the EfficientNet backbone, the use
of multistage features in the regression module improved MAE by 0.15 years, while the
number of parameters increased by 304 over 8.6 million. For the MORPH2 dataset and the
MobileNetV3 backbone, the improvement was 0.19 years and the number of parameters
increased by 248 over 4.4 million.

In both cases, the increase in model parameters is negligible in terms of computa-
tional cost compared to the improvement in estimation capability, which is considered a
good tradeoff.

Table 2. Performance on the MORPH2 dataset.

Backbone MSDNN Params MAE (Years) Time

EfficientNet
× 8,693,521 2.74 16.1 ms

✓ 8,693,825 2.59 16.2 ms

MobileNetV3
× 4,399,945 2.93 13.0 ms

✓ 4,400,193 2.72 13.0 ms

4.6. Cross-Dataset Evaluation

An interesting property in age estimation is the generalization ability of a given model.
This generalization can be quantified by performing a cross-dataset evaluation using one
whole dataset for training and another dataset for testing. We conducted extensive cross-
dataset testing using the same three public datasets. The experiments were performed using
test subsets, with Table 3 showing the results of all three datasets. The best generalization
was obtained with MORPH2 as the training set and the AFAD dataset as the testing set. The
results on the AFAD test dataset seem to be close to each other, which can be attributed to the
age interval of this dataset, which ranges from 15 to 40 years. In general, the performance
decreased significantly over the course of the experiments, which can be explained by the
demographic diversity of the faces and the photo conditions of each dataset.
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Table 3. Performance in cross-dataset experiments on the testing subsets.

Train Test MAE CS

MORPH2
CACD 10.62 26.23%

AFAD 7.15 40.22%

CACD
MORPH2 8.38 33.41%

AFAD 9.54 33.89%

AFAD
MORPH2 8.10 41.89%

CACD 9.59 29.42%

5. Conclusions

The accurate estimation of age is not merely a scientific pursuit but a pivotal tool with
far-reaching implications across diverse domains, from healthcare and forensic science to
biometric security and demographic analysis. In this paper, we introduce a novel Multi-
Stage Deep Neural Network (MSDNN) architecture that uses feature maps at different
levels of a CNN backbone to yield more discriminative features. This approach shows
its usefulness in the inference phase. We tested MSDNN on three public datasets: AFAD,
CACD, and MORPH2, where we also adopted a cross-dataset testing protocol. As back-
bones, we used two famous edge device architectures: EfficientNet and MobileNetV3. Due
to the portability of these architectures, we used them to validate the effectiveness of the
proposed architecture against state-of-the-art approaches in terms of time and accuracy.
In addition, we conducted an ablation study to investigate the efficiency of the proposed
MSDNN concept.

The results show that when the MSDNN was trained on MORPH2, the MEA for AFAD
and CACD was 8.38 and 8.10, respectively. On the other hand, when the MSDNN was
trained on CACD, the MAEs were 10.62 and 9.59 for MORPH2 and AFAD, respectively.
Finally, when the MSDNN was trained on AFAD, the MAEs were 7.15 and 9.54 for MORPH2
and CACD, respectively. These results can be explained by the fact that the datasets each
contain different information, including variations in lighting conditions, image sizes, and
image quality. Overall, despite these different dynamics, MSDNN shows the ability to
mostly exceed the performance of SOTA approaches on the different datasets, indicating its
effectiveness and robustness.

In the future, we plan to use modules for spatial and channel attention between the
different stages; we also envision the use of visual transformers to improve the performance
of age estimation.
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