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D.CLOUTEAU, D.AUBRY, M.L. ELHABRE and E. SAVIN

Periodic and Stochastic BEM for Large
Structures Embedded in an Elastic Half-Space

1. Introduction

Modcling wave propagation around very long structures such as bridges or tunnecls is
a major issuc in the ficlds of cither carthquake engineering or ground borne vibrations
induced by car or railway traffic. Indeed despite a seemingly bidimensional or periodic
geomelry, a true three-dimensional analysis has to be carried out since the loads are
fully three-dimensional. Unfortunately usual 3D models are not able to account for
such large structures either from the theoretical or the numerical point of view. The
development. of a periodic approach able to account for 3D loadings is addressed in
the paper. Moreover, for such large geometries an accurate knowledge of either the
loads or the soil parameters cannot be usually achieved. Consequently the analysis is
also carried out in a stochastic sense using the deterministic tools previously defined.
The cases of random moving loads and random incident field is studied in detail.

Let us consider a very long structurec modeled as an unbounded open set €, with
given elastic propertics and which is embedded in an clastic half-space €2, = D —
(D ngYy). D being the full half-space. 2, = Q, U £ will denote the global domain.
§ s supposed to be periodic : an elementary bounded cell §); exists such that €, =
Un2® o8, U, being the tramslation of €2, of length L in direction d. The interfaces
between € and 2, will be denoted £. The part of the boundary of each domain €2
on which Neumann boundary conditions are applied will be denoted T',5. uz will be
the displacement field in each domain €23, €(us) and os{ug) will be the strain and
stress tensors associated to these fields and ¢3{ug) the traction vector on the boundary
using the outer normal convention (see figure 1). Moreover one will use the following
notations, a and & being any two vectors of R? and A4 and B being any two tensors of
RExR3, (DivAd), = 3, &;4,, is the divergence of the tensor, a.b = 3, a;b; is the scalaire
product, A : B =37, A, B;; is the contraction of two tensors and (a ® b);; = a;b; is
the tensorial product. The loads are either forces f applied in € or incident fields u,
satisfying the Navier equation in D and the free-surface boundary conditions on 8D.

As we assume a linear elastic behaviour for each domain the equations can be
written in the frequency domain for a given circular frequency w, and every field will
depend implicitly on «:. To avoid the definition of proper radiation conditions either
in the half-space or in the structurc, onc will assume that some damping occurs in
the materials modeled as a small imaginary part added to the elastic constants being
either constant for hysteretic damping or proportional to w for a viscous onc. Thanks
to this hypothesis, one can work in the usual Sobolev spaces even for the unbounded
domains.

2. The generalized periodicity

In this section we will assume that the loads are exactly known. In a first step fellowing
the framework of Floquet |15] we will show that the analysis can be performed on a set
of independent fields defined on the reference cell (see {4] or |21] for more details). On



this cell we apply the classical subdomain approach [2] [7] allowing us to use boundary

elements in ©; and finite elements in €2;. For these methods the periodic assumption
is addressed in detail.

Figure 1: Model layout

2.1. The periodic decomposition

Before dealing with 3D periodic structures we first account for the one-dimensional
case.

1D Floquet periodicity Let us first recall some classical results due to Floquet
[15]:

Definition 1. A complex valued function f defined on R is periodic of the second
kind with period L and wave number  if for any z in R :

fle+L)=e"Lf(z) (1)

This means that one can build this function for any = once it is known on |0, L].
The following theorem shows that any function can be written as the superposition of
a set of periodic functions of the second kind :

Theorem 1. Given a function f defined on R and a period L, its Floquet-transform
f is defined on |0, L[x] — /L, w/L{ as follows :

+00
f(@,x) Z f(z + nL)e™L 2
+00
Z f(/i + 2n7r/L)e-i(~+2nn/L)i 3)

n=-—00



Where f is the Fourier Transform of f. For any z = Z + nL and k = & + 2nr/L, f
and { may be recovered from its Floquet transform f by :

/L .
f0 =g [ feme i, =1 [ f@metas @

27 n/L

This property is of a great practical importance when dealing with periodic oper-
ators defined as follows :

Definition 2. A linear differential operator A with domain D(A) depending on z is
periodic of period L if it satisfies for any x and for any u in D(A) :

Az + L)u = A(z)u

Then family of operators A, defined formally as the restrictions of A on the reference
cell 10, L[ with respect to z and applied on functions @ being the restriction of functions
u € D(A) whose traces at the two ends of the reference cell satisfy the periodicity
condition u(L) = e~*Ly(0).

Indeed one can easily prove that as (Auw)(Z, k) = Ac(Z)a(Z, k) for any u € D(A)
so that the following theorem holds :

Theorem 2. Let (A, f) be a periodic operator and a function. If the following

equations have unique solutions u in D(A) and @ in D(A,) for any k € [-7/L,n/L|
then 4 = u, the Floguet transform of u :

Au=f, Agi=f, a(L)=e"*Lu(0) (5)

This means that instead of solving the first equation in (5) one can solve the second
one on the generic cell for any k such that f does not vanish and then build solution
u using the reconstruction formula (4). The key point in using this theorem is that
each equation must have a unique solution. In the following this will be achieved as
long as damping is accounted for.

3D domains and fields decomposition The aformentionned framework can be
easily extended to three-dimensional domains having a periodicity L along direction
d (z is now a vector in R3). The analysis can be restricted to the generic domains
Qs =9Q3NS, (B € {l,s}) where S, = {z € R® such that 0 < z.d < L}. It is worth
noticing that the boundary of Qs not only includes ¥ and T4 the restrictions of ¥
and I',3 on the generic cell but also ¥3, and X, the additional interfaces between
previous and following cells. With the help of the Floquet transform of either the

incident field @;(Z, k) or the force f(%) defined as follows :

+o0
f(z Z f(&+nLd)e™t | 4;(z, k) = Z ui(Z + nLd)e™~F
n=-00 n=-o00

one has to solve the generic problem for any &, the global solution u(z) being recovered
using formula (4):



Problem 1. Find (i(%, ), w(Z, x)) defined on Qs X satisfying :

Divo, (s — ;) = pw?(iis — %) in Qs (6)
Divoy(@) = pw*ty  in (7)

Uy =1 5 ty(s) + () =0 on T (8)
tg(ig) =0 on T,p8¢€{s} (9)

tp(z) = e "Fag(x — L) for =€ Bpp,08€ {s,1} (10)

2.2. The subdomain approach

In this section a numerical solution of problem (1) is built using the classical domain

decomposition approach [2]. As Q is bounded one can decompose the displacement
field @ on a given basis {¢;(k)}=1 » that has to satisfy the periodic conditions (10).

Moreover let where 4, + %; and Ug; be fields defined in Qs satisfying the homogeneous
Navier equation (6), the periodicity conditions (10), the homogeneous boundary con-

ditions (9) and the following boundary conditions on ¥ :
Gar = ¢, Gao+%=0 on% (11)

Then one has the following decomposition either in € and in Q :
N
= ZCIQJ’I(CE) y Us(T) = Ui(T) + Ugo(T) + Z crtiar (T (12)
=1

At last, using a standard Galerkin approximation procedure in writing the equilibrium

of { in a weak sense for any ¢, in the basis, one comes up with the following linear
system :

{K(k) — w*M(k) + K(w, k) } C(w, k) = F(k) + Fy(w, k) (13)

where :
K :[ oi(¢r) 1 e(9,)dV , My, = / pidr - 6,4V, Fy = f f ¢,dV
ﬂ! Q.r QE

Koy = [(ia) 6,45 Fuy == [ (@) + @) 6,8 (4)

In order to solve this equation for any w and « one has first to compute the unknown
traction fields ts(@g;) and t(itg,). The next subsection is devoted to this task using a
boundary element technique. Another issue consists in building the basis ¢;(«) using
a standard Finite Element technique and will be presented in 2.4. The main point is
thus that the classical domain decomposition approach is then extended to the case
of periodic domain very easily.



2.3. Periodic Boundary elements

We propose here to compute the fields 44y and ig,, solutions of local boundary value
problems of the following type :

Problem 2. Find v in Q, such that :

Divo(u) = —pw?u  in Q,
u=u, on L

(

(
ts(u)=0 on Ty (17)
u(z) = e *y(z — L) for z €Iy (

using an Indirect Boundary Element Method [6] [11]. However as neither the left
periodic interface ¥,y nor the right one X,; is bounded (see figure 1), a standard
BEM cannot be directly used. Moreover, although it may be possible to account for
periodic conditions in a BEM framework, this would require some heavy developments.
To avoid these drawbacks, let us use the following periodic fundamental solution and
integral operators [1][20]:

Definition 3. UC being the Green tensor of the elastic half-space D, let fjs(’ be the
periodic Green Tensor and US the associated integral operator defined as follows :

+00
US(&,3) = Zei"ﬂLUf(aé,ngnLd) (19)
Ue()(5) = / U8 (z,3)4(2)dS (@) (20)

From these definitions one can easily remark that US(Z, ) and US(§) are periodic
of the second kind with respect to § and with a wave number equal to k. Moreover one

can remark that locally (,75(" has the same singularities as US. As a consequence problem
(2) is equivalent to the following Boundary integral equation where the integral is

only on the bounded interface T as periodic boundary conditions are automatically
accounted for :

Problem 3. Find § on ¥ satisfying for any j € S :
[ O EDi@asE = i) 1)
The tractions ¢,(u) needed in (14) are then given for any § € % :
to(u)(@) = -1/24() +/2 J(U9)E,§)q(2)dS(2) (22)

The numerical solution of this integral equation is handled using standard three-
dimensional BEM. The only modification consists in computing the periodic Green
tensors using formula (19). In this sum the singular terms arising for n = 0 are carried
out using the 3D-BEM, the other terms being computed using standard procedures.
This sum is truncated when convergence is reached [14].



2.4. The periodic structure

When dealing with Finite Elements, the computation of the matrices K and M defined
in (14) is not straightforward as ficlds ¢; depend explicitly on # (See [19] for periodic
FEM). Using classical dynamic substructuring it is that K" and M have an explicit
dependence on & by an extension of the Craig-Bampton {12] substructuring technique.
[t consists in the expansion of the displacement field of the structure €; on dynamic
eigenmodcs ¢, with a fixed interface and on static modes ( «w = 0 in (7) generated by
given displacements of the interface (practically unitary displacements of the nodes
belonging to the interface). In the present case the interface consists of three parts 3,
Y and 2. Let us first call 44 the static modes that vanish on Y4 and ;.. As a
consequence they satisfy the periodic condition (10). Then, as loug as the structure is
periodic, one can find couples of the remaining static modes (ipy.,, 1) satisfying :

Py (ff) = CPL’r(j + Ld) #o- (j + Ld) = (f"\],-,-(f) =0 forze El‘) (23)

Then one can bnild new static modes o, combining these ones such that they also
satisfy the periodic condition (10) :

B,(Z) = €20, (&) + e 2 () (24)

One is then able to compute easily the stiffness and mass matrices arising in (13) as a
function of the FEM stiffness and mass matrices £° and M?, using a simple projection
techniquc on this new basis. For example, denoting ) = e~%L/2 the stiffness coefficient
for two modes ., (2) and ¢.,(Z) is then given by :

K‘Y‘r’ =A 2(P”‘g"y‘Ka"p0’y’ + (K?O'Or"y I\,o@L'y' + S’)Z», ,(0(1007') + ’\2@02’71{099147‘ (25]

In this manner it is clearly scen that the stiffness and the mass matrices have an
explicit expression with respect to A and thus nced not be computed each time.

2.5. The Fundamental solution of the composite domain

Provided with the results of this section one is now able to compute at least numerically
cither in the Floquet domain (Z, ) or in the physical one the solution in each domain
for any loads defined on the domains.

In particular one is able to compute the Green tensor Uf(z,y) of the composite
domain §), made of the assembling of the individual ones giving the dispacement ficld
at any point r € Q, created by any ponctual forces applied at any point y € Q,. In
domains modeled using Finite Elements, the ponctual force becomes nodal forces when
in domains modeled by Boundary Elements one can still account [er ponctual forces
as long as they are applied inside the domain. Indeed, in such domains one can define
analytically an incident field w, being nothing but. the Green function of this local do-
main having a knewn singularity around y and then, computed numerically, the regular
diffracted field ug in the domain using the classical BEM techniques. This mcans that
in either case one can effectively and accurately uses this fundamental solution in ei-
ther integral representations or integral cquations as long as the domain of integration
does not include or cross an internal boundary of the composite domain. In this latter
case somc additional work has to be done. At last let us remark that this procedure
has been implicitly used when using the Green functions of the elastic layered media
in (21) as described in [3](see also [10] for BEM and Ray coupling).



3. Load variability

The aim of this section is to account for the variability on the load that arises when
dealing with very large structures. We will first recall the usefulness of Karhunen-
Loeve [22] expansions allowing us to deal with random variables instead of random
fields. Then using the classical theory of linear filtering of Gaussian process [17], two
particular cases of practical interest are investigated; the first one consists in a random
moving source, and the second one in a random incident field.

Given stochastic inputs such as the preceding the response will be characterized
by its first and second order moment. We assume here that the input is centered
so that the output is centered too. The second moment is embodied by the auto-
correlation function and it is the purpose of the following sections to sketch how it
may be determined.

3.1. Karhunen-Loeve expansion

Let us consider a second order Gaussian centered random field F(z) indexed on 2, an
open set of R”?, with values in RP. Tt is therefore characterized by its auto-correlation
tensor cp(z,2') = E[F(z) ® F*(2')], E[.] denoting the mathematical expectation and
*. the conjugate transpose. One can then define the covariance operator Cr and its
associated Karhunen-Loeve modes ®, and eigenvalues A, as follows (|22]):

Definition 4. For any v defined on Ly(Q) let Cr be the hermitian positive definite
operator defined by :

Cr(v) (&) = / er (z,2') 0(z)dV () (26)

and let ®, be the normalized eigenfunctions of operator Cr and N2 the associated
positive eigenvalues. Then any random field F' can be decomposed using the Karhunen-
Loeve modes ®,, and its auto-correlation tensor cg(x,x') takes the following form :

+00
Cr(z, ') = > A& (z)® o, (2) (27)

For numerical purposes one can truncate the infinite sum in (27) to get an approx-
imation which is controlled by the covariance norm.

3.2. Random loads

As far as Gaussian random loads F' are concerned (either applied forces in the struc-
tures or incident fields in the soil) one can use the classical theory of linear filtering
of Gaussian random fields to show that the response u(y,t) at a given point in the
domain is also Gaussian. In the following analysis stationary fields with respect to
time will be accounted for, a more general development for non-stationary fields can
be found in [8]. As a consequence, one can work directly in the frequency domain
where the covariance C, of the response is given by :

Culy,y) = / / H(y,2)Cr (2, 2') H* (¢, ')V (2)dV (') (28)



where H is the deterministic transfer function. Using the Karhunen-Loeve expansion
the covariance of the load takes a much simpler expression :

Colw.) = L MW B« Hale) = [ Hp 0000V (@) (20)

where ®,(z) appears as a deterministic loading mode, H,, being the associated de-
terministic response. As a consequence a stochastic analysis consists on one hand of
computing the covariance of the input and on the second hand of computing the trans-
fer function as it is done in the next two examples where the modeling tools defined
in the first section will be used.

3.3. Random moving sources

Vibrations induced in the ground by cars or trains are mainly due to vertical irregular-
ities of either the wheels or the rolling area. Both of these are added in the following
and denoted wu,. It is assumed that u, can be modeled by a centered second-order
Gaussian homogeneous random field of known spectral density ¢,, and that the force
applied under one wheel is vertical and linearly dependent on u, at the wheel location.
Then the applied force f(z4,t) along the road or the rail at point z by a wheel moving
at speed v along direction d, is :

flza, t) = kod(zq — vt)uo(z4) (30)

where z4 = z.d is the coordinate of point z along direction d, 2+ = = — dz, is the
location vector in the plane normal to direction d, d is the Dirac distribution and &, the
local stiffness. Taking the Fourier transform of f(z4,t) with respect to time one gets
the following autocorrelation function in the frequency domain, denoting k, = w/v :

Cylzad) = / hy (a, k) by (' k) dk

o0

hy(za k) = koe™*®el/?(ky — k) (31)

Splitting the integral in (31) into an infinite series of integrals on [(2n — 1)7/L, (2n +
1)7/L] and taking 4 = %4 + n.L and zi; = &), + n,L one gets :

mfL , o2
Ciza,zly) = / el N N D, (T4, ) ® B (), K)dre
—w/L e — 55
O (Za, k) = eXnmie/leinta ) (k) = é&Y2%(k, — k — 2nm/L) (32)

which is the Karhunen-Loeve expansion of é,,(Z4, Z}, k) on the generic cell for a given
k, ®,(Z4, k) being the Karhunen-Loeve modes and A, their eigenvalues. The transfer
function H(y,z,) in the present case is nothing but the Fundamental solution of the
global domain including the soil and the structure for a vertical source located on the
rail at position £t + z4d. Thus C, reads :

{s &} oc
Clwny) = / / H(y, 24)Cy(za, &) H* (¢, ) dradl (33)
]



Noticing that the effective computation of H(y, z4) is performed according to section
2as:

n/L _
H(y,z4) = H(§, &4, k)€™ LM="m) gy (34)
-w/L

with y = § 4+ nyLd, 0 < Z4.d < L and 0 < §.d < L, and splitting the integrals in (33)
into pieces of length L, one can then finally get the auto-covariance of the response :

12 ”/L = 2 * ’
cuvy) = | 3 Nl Haly ) @ H )

L ~
Hn(y,ﬂ) - e—mnny H(g,.’i‘d)q)n(i‘d,}i)did (35)
o

Taking this covariance for y = y’ represents the spectral energy emitted by the moving
source at point y. Many simplified expressions may be derived from (35). For example
stating that v is small compared to the wave speed in the soil, and y is far from the
source, the correlation length is small (resp. large) compared to the period L.

3.4. Random incident fields

We now account for a random incident field modeled as a second order homogeneous
and stationary random process U;(z,t) defined on S, x R where S, is the free surface.
It is characterized by its power spectral density C;(z,w) (see [18] and [13] for either
theoretical or experimental expressions). Unfortunately formula (28) cannot be used
directly here because although using the inverse transform (4), the modal synthesis
(12), and the equation (13) where the force is given by (14), one can come up with a
rather complex expression of the response u(y) at any point y in the structure. This

expression depends linearly on #; and t,(%;) on £ but not depending on U; on the free
surface as it is given. Thus one has to first find u; and its associated covariance C; on
¥ as a function of U; and C; on the free surface and then a simple expression of the
response as a function of 4; on ¥ that can be practically computed.

The stochastic deconvolution The first step is the classical deconvolution process
used in earthquake engineering. Given a deterministic ground motion at the free
surface one makes some assumptions of a hypothesis on the incident field (usually a
vertical incident plane wave) to find its amplitude, this motion being given. The same
kind of process can be applied for random incident field [16]. Although the incident
field is supposed to be random it is still assumed to satisfy the Navier equation in the
half-space D. Then for an horizontally layered medium one can perform a stochastic
deconvolution as follows :

1. compute ®,(k, z,) the three eigenvectors of C;(k) the Fourier transform of C; on
the free surface z = z, with respect to the horizontal space variables,

2. compute &,(k, 2) performing the deterministic deconvolution of él(k, z,) for the
given horizontal wavenumber £,



3. compute C;(k,z2) =5 (I>l (k,z) ® ®;(k,z') and computing Ci(z, %' k) with 7 =
(Zn,2), 3 = (&},2') on £ and k = (ke, & + 2n7/L), using the Fourier to Flo-
quet transform (3) in the periodic horizontal direction and an inverse Fourier
transform in the other one.

4. find the Karhunen-Loeve modes ®,(Z, k) of C’i(i‘, #,k) on ¥ for any k.

Covariance on the response We propose here a simple method to compute the
transfer function between the incident field at a given point & of the soil-structure
interface and any point y in the structure, so that equation (33) can be directly ap-
plied. As in the case of a moving load the basic idea is to define the Fundamental
solution of the global problem (in the present case for a given &), denoted UgG(z,y),
defined and continuous over every domain and which can be computed using section
2 methodology. In addition, let 4 be the response in the structure for a given incident
field @; and the diffracted field %, — @; in the soil. This field satisfies all prescribed
equations over the different domains except on the interface ¥ where it satisfies the
following jump relationships:

(@] = @ ,[{(@4)] = ts(@;) on ¥ (36)
As a consequence, using the representation theorem one directly gets :
iy(§) = tg(j / UZ () — t(UF).wdS (37)

Now, noticing that either u; or any single layer L{G(qs) defined by (20) satisfies the

Navier equation in Q = D\Q and thus satisfies the reciprocity theorem in Qs, leads
to:

/}_JZ’.{sG((js)-ts (ﬁz) - ts(asc((js))ﬁlds =0 (38)

as integrals over the periodic interfaces or the free surface of the half-space vanish and
where the traction vectors are defined using the outer normal of 2}. Then using (37),
the continuity of @;, t,(%;) and USG(LL) across & and the classical jump relationship

[ts(asc(fjs))] = —(s, one gets :
0(0) = (@) = [ Q2(7.5-1()d5 @ (39)
where Qg is the source density on % such that df(@g) = UgG in €, which is computed

when solving equation (21). Coming back to the stochastic analysis one then has using
the same notation as in (35):

Culy,y) = f f 3 () Haly, 1) © Hi(/, k)
w /L

n=—oc

it

Hyy, k) = e / 09§, £0).Dn (4, 5)dS () (40)

10



4. Conclusion

We have shown in this paper that deterministic dynamic analyses on long periodic
structures embedded in an infinite half-space may be carried out combining Domain
Decomposition, BEM and standard FEM even for non periodic loadings (see [14] for
numerical results). Moreover it has been shown that these deterministic tools combined
with the Karhunen-Locve expansion technique casily allow a stochastic analysis for
various kinds of random loads. One has to remark that this methodology also applies
for non periodic cases as presented in |8]. The extension of this analysis to random soil
characteristics can be found in |9]. Further developments to account for the coupling
between periodic and bounded structures throughout a propagation media can be
found in [10] using Boundary Integral techniques together with asymptotic analysis.
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