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D. CLOUTEAU, D. AUBRY, M. L. ELHABRE and E. SAVIN

Periodic and Stochastic BEM for Large 

Structures Embedded in an Elastic Half-Space 

1. Introduction 

l\fodcling wave propagation around very long structures such as bridges or tunnels is 
a major issue in the fields of either earthquake engineering or ground borne vibrations 
indm�C'd hy car or railway traffic. Indeed despite a seemingly bidimensional or periodic 
geomeLry, a true Lluee-dimensional analysis has to be carried out since the loads arc 
fully three-dimensional. Unfortunately mmal 3D models are not able to account for 
such large structures either from the theoretical or the numerical point of view. The 
development. of a periodic approach able to account for 3D loadings is addressed in 
the paper. ivloreover, for such large geometries an accurate knowledge of either the 
loads or the soil parameters cannot be usually achieved. Consequently the analysis is 
also carried out in a stochastic sense using the deterministic tools previously defined. 
The cases of random moving loads and random incident field is studied in detail. 

Let us consider a very long structure modclcd as an unbounded open set r21 with 
given elastic properties and which is embedded in an elastic half-space fls = D -

(D n Dr), 1J being the full half-space. n9 = fls U D1 will denote the global domain. 

01 ii; supposed to be periodic : an elementary bounded cell fl1 exists such that fl1 = 

u;;�_:_=Drn, Din being the translation of 01 of length L in direction d. The interfaces 
between n, and n. will be denoted 2:. The part of the boundary of each domain n11 
on which Neumann boundary conditions are applied will be denoted fa-J'.J· u11 will be 
the displacement field in each domain np, .-:-(up) and a-B(uB) will be the strain and 
stress tensors associated to these fields and t.a( u.a) the traction vector on the boundary 
ming· the outer normal convent.ion (see fi.gurn 1). Moreover one will use the following 
notations, a and b being any two vectors of lR3 and A and B being any two tensors of 
�3 x R3, (DivA)1 = Li a,A), is the divergence of the tensor, a.b = Li a,b, is the scalaire 
product, A : n = Lij A,)nij is the contraction of two tensors and (a 0 b);j = a;bj is 
the t.cnsorial product. The loads are either forces f applied in f.!1 or incident fields u, 
satisfying the Navier equation in D and the free-surface boundary conditions on 8D. 

As we assume a linear ela:;tic behaviour for each domain the equations can be 
written in the frequency domain for a given circular frequency w, and every field will 
depend implicitly on !.JJ. To avoid the definition of proper radiation conditions either 
in the half-space or in the structure, one will assume that some damping occurs in 
the ma.teriab rnodeled as a small imaginary pa.rt added to the elastic constants being 
either constant for hysteretic damping or proportional to w for a viscous one. Thanks 
to this hypothesis, one can work in the usual Sobolcv spaces even for the unbounded 
domains. 

2. The generalized periodicity 
In this section we will assume that the loads are exa.clly known. In a first slep following 
the framework of Floquet [ 15J we will :;how that the analysis can be performed on a set 
of independent fields defined on the reference cell (see (4] or [21] for more details). On 
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this cell we apply the classical subdomain approach [2] [7] allowing us to use boundary

elements in Ds and finite elements in D1. For these methods the periodic assumption
is addressed in detail. 

L 

Figure 1: Model layout

2.1. The periodic decomposition 

Before dealing with 3D periodic structures we first account for the one-dimensional
case. 

ID Floquet periodicity Let us first recall some classical results due to Floquet 
[15]: 
Definition 1. A complex valued function f defined on IR is periodic of the second 
kind with period L and wave number K if for any x in IR : 

f(x + L) = e-ii<L f (x) (1) 
This means that one can build this function for any x once it is known on ]O, L[. 

The following theorem shows that any function can be written as the superposition of 
a set of periodic functions of the second kind : 

Theorem 1. Given a function f defined on IR and a period L, its Floquet-transform 
J is defined on JO, L[ x] - 7r / L, 7r / L[ as follows :

+oo ](x, K) = L f (i: + nL)eini<L
n=-oo 

+oo 
L f(K + 2n7r / L)e-i(i<+2mr/L)x

n=-oo

(2) 

(3) 
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Where J is the Fourier Transform of f .  For any x = x + nL and k = r;, + 2mr / L, f 
and j may be recovered from its Floquet transform J by : 

L j"/L - . L • 1 1L - ·k-
f (x) = - f (x, r;,)e-m" dr;,, f(k) = -

L
f(x, r;,)e' xdx 

271" -rr/ L 0 
(4) 

This property is of a great practical importance when dealing with periodic oper
ators defined as follows : 

Definition 2. A linear differential operator A with domain D(A) depending on x is
periodic of period L if it satisfies for any x and for any u in D(A) 

A(x + L)u = A(x)u 

Then family of operators A" defined formally as the restrictions of A on the reference
cell JO, L[ with respect to x and applied on functions u being the restriction of functions
u E D(A) whose traces at the two ends of the reference cell satisfy the periodicity
condition u(L) = e-i;;;Lu(O). 

Indeed one can easily prove that as �(x, K) = A"'(x)u(x, r;,) for any u E D(A) 
so that the following theorem holds : 

Theorem 2. Let (A, J) be a periodic operator and a function. If the following
equations have unique solutions u in D(A ) and u in D(A11:) for any r;, E [-7r / L, 7r / L[ 
then u = u, the Floquet transform of u :

(5) 
This means that instead of solving the first equation in (5) one can solve the second

one on the generic cell for any K such that J does not vanish and then build solution 
u using the reconstruction formula (4). The key point in using this theorem is that
each equation must have a unique solution. In the following this will be achieved as 
long as damping is accounted for. 

3D domains and fields decomposition The aformentionned framework can be 
easily extended to three-dimensional domains having a periodicity L along direction
d ( x is now a vector in IR3). The analysis can be restricted to the generic domains
D/3 = !:2/3 n S0 ((3 E {l,s}) where S0 = {x E IR3 such that 0 < x.d < L}. It is worth

noticing that the boundary of D/3 not only includes E and f' u/3 the restrictions of E
and f u/3 on the generic cell but also E/30 and E/3L the additional interfaces between
previous and following cells. With the help of the Floquet transform of either the 
incident field u;(x, r;,) or the force f (x) defined as follows :

+oo +oo 
f (x, r;,) = L f (x + nLd)ein"L , u;(x, K) = L u;(X + nLd)einKL

n=-oo n=-oo 

one has to solve the generic problem for any K, the global solution u(x) being recovered
using formula ( 4) :
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Problem 1. Find (us(x, K), Ut(i, K)) defined on flsXflt satisfying: 

Diva5(us - ui) = p8w2(us - u;) 

Divat(ut) = Ptw2ut

us= Ut , t.(u,) + tt(ut) = o 

t13(u13) = o 

u13(x) = e-i"Lu13(x - L) 

2.2. The subdomain approach 

in 

in 

on 
on 
for 

fls 

flt 

t 
f'(j13,(3 E {s,l}
X E L,13L,f3 E {s,l}

(6) 

(7) 
(8) 
(9) 

(10) 

In this section a numerical solution of problem (1 ) is built using the classical domain 
decomposition approach [2]. As flt is bounded one can decompose the displacement 
field Ut on a given basis {<f;1(K)}J=! ,N that has to satisfy the periodic conditions (10). 
Moreover let where Udo+ ui and udI be fields defined in fls satisfying the homogeneous 
Navier equation (6) , the periodicity conditions (10), the homogeneous boundary con-

ditions (9) and the following boundary conditions on f: : 

UdJ = <f; I , Udo + U; = 0 on f= (11) 

Then one has the following decomposition either in flt and in fl. : 

N N 
ut(X) = L c1<f;1(x) , u,(x) = u;(x) + uda(x) + L c1ud1(x) (12) 

1=1 I=! 

At last, using a standard Galerkin approximation procedure in writing the equilibrium 
of flt in a weak sense for any <f; 1 in the basis, one comes up with the following linear
system : 

(13) 

where : 

Ku = ( at(<f;1): t:(i1)dV , Mu= ( Pt<P1 · j1dV, F1 = ( f · j1dV}� }� }� 
Ks]J = l ts(UdJ) · i1dS , FsJ = - .l (ts(i'i;) +is( Udo))· i1dS (14) 

In order to solve this equation for any w and K one has first to compute the unknown 
traction fields t8(ud1) and t8(ud0). The next subsection is devoted to this task using a
boundary element technique. Another issue consists in building the basis <f;1(K) using 
a standard Finite Element technique and will be presented in 2.4. The main point is 
thus that the classical domain decomposition approach is then extended to the case 
of periodic domain very easily. 
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+oo 

L ein1<L U:/ ( i;' fj + nLd) (19) 
-00 

uf(q) (fJ) = ft uf(x, fJ)ii(x)dS(x) (20) 

From these definitions one can easily remark that up (x, fj) and up (ij) are periodic
of the second kind with respect to fj and with a wave number equal to r;,. Moreover one
can remark that locally Uf has the same singularities as up. As a consequence problem
(2) is equivalent to the following Boundary integral equation where the integral is 
only on the bounded interface t as periodic boundary conditions are automatically
accounted for : 

Problem 3. Find ij on 't satisfying for any fj E 't :
h Uf (x, fJ)ij(x)dS(x) = ua(fJ) (21) 

The tractions ts(u) needed in (14) are then given for any fj E t  :
ts(u) (fj) = -l/2ij(fj) +ft ts(U:/)(x, fj)ij(x)dS(x) (22) 

The numerical solution of this integral equation is handled using standard three
dimensional BEM. The only modification consists in computing the periodic Green 
tensors using formula (19) . In this sum the singular terms arising for n = 0 are carried
out using the 3D-BEM, the other terms being computed using standard procedures. 
This sum is truncated when convergence is reached [14]. 
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2.4. The periodic structure 

\Vhen dealing with Fini Le Elements, the computation of the matrices Kand i'vl defined 
in (14) is not straightforward as fields cp1 depend r.xplicitly on r;. (Sr.e 1191 for periodic 
FE!vl). Using dassical dynamic substructuring it is that K and }vf have an explicit 
dependence on r;, by an extension of the Craig-Bampton [12] substructuring technique. 
It consists in the expansion of the displacement field of the structure 0.1 on dynamic 
eigenmodes <Pa with a fixed interface an<l on static modes ( :,; = 0 in (7) genernted by 
given displacements of the interface (practically unitary displacements of the nodes 
belonging to the interface). ln the present case the interface consists of three parts f:, 
�m and I:rL· Let us first call 1/J,� the static modes that vanish on �w and �IL. As a 
consequence they satisfy the periodic condition (10). Then, as loug as the structure is 
periodic, one can find couples of the remaining static modes (<p0..,, 'PL.,) satisfying: 

:Prry ( x) = 'fL,.p: + Ld) 'Po-, ( i + Ld) = 'P 1, .. li) = 0 for i E I:rn ( 23) 

Then one can bnil<l new static modes IP,., combining these ones such that they also 
satisfy the periodic condition (10) : 

(24) 

One is then able to compute easily Lhe stiffness and mass matrices arising in (13) as a 
function of the FEM stiffness and mass matrices }{0 and A1°, using a simple projection 
technique on this new basis. For example, denoting>.. == e-it:L/2, the stiffness coefficient 
for two modes :P,.,(i) and <f,.,,(x) is then given by : 

K1..,, = X 2ifJ'[rKo:po1' + (1P6,.,KoifJL1' + ipLK"'Po,·) + A2'PI1K"'PL-r' (25) 

In this manner it is clearly seen that the stiffness anrl the mass matrices have an 
explicit expression with respect to >. and thus need not be computed each time. 

2.5. The Fundamental solution of the composite domain 

Provided with the results of this section one is now able to compute at least numerically 
either in the Floquet domain (i, K) or in the physical one the solution in each domain 
for any loads defined on the domains. 

In particular one is able to compute the Green tensor U�; (x, y) of the composite 
domain !19 made of the assembling of the individual ones giving the dispaccment field 
at any point x E n9 created by any ponctual forces applied at any point y E 119• ln 
domains modeled using Finite Elements, the ponctual force becomes nodal forces when 
in domains modeled by Boundary Elements one can still account for ponctual forces 
as long as they are applied inside the domain. Indeed, in such domains one can define 
analytically an incident field u, being nothing but. the Green function of this local do
main having a known singularity around y and then, computed numerically, Lhe regular 
diffracted field 'Ud in the domain using- the classical BEM techniques. This means that 
in either case one can effectively and accurately uses this fundamental solution i11 ei
ther integral representations or integral equations a.� long as the domain of integration 
doe� not include or cross an imernal boundary of the composite domain. In this latter 
case some additional work has to be done. At last let us remark that this procedure 
has been implicitly used when using 1.he Green functions of 1.he elastic lfLyered media 
in (21) as described in [3](see also [10] for BEM and Ray coupling). 
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3. Load variability

The aim of this section is to account for the variability on the load that arises when 
dealing with very large structures. We will first recall the usefulness of Karhunen
Loeve [22] expansions allowing us to deal with random variables instead of random 
fields. Then using the classical theory of linear filtering of Gaussian process [17], two 
particular cases of practical interest are investigated; the first one consists in a random 
moving source, and the second one in a random incident field. 

Given stochastic inputs such as the preceding the response will be characterized 
by its first and second order moment. We assume here that the input is centered 
so that the output is centered too. The second moment is embodied by the auto
correlation function and it is the purpose of the following sections to sketch how it 
may be determined. 

3.1. Karhunen-Loeve expansion 

Let us consider a second order Gaussian centered random field F(x) indexed on !:1, an
open set of IRn, with values in !RP. It is therefore characterized by its auto-correlation
tensor cF(x, x') = E[F(x) 0 F*(x')], E[.] denoting the mathematical expectation and
*, the conjugate transpose. One can then define the covariance operator CF and its 
associated Karhunen-Loeve modes <I>n and eigenvalues An as follows ([22]):

Definition 4. For any v defined on L2 (!:1) let CF be the hermitian positive definite 
operator defined by : 

CF(v)(x') = l cF(x, x').v(x)dV(x) (26) 

and let <I>n be the normalized eigenfunctions of operator CF and .A;2, the associated 
positive eigenvalues. Then any random field F can be decomposed using the K arhunen
Loeve modes <I>n and its auto-correlation tensor cF(x, x') takes the following form : 

+oo 

CF(x,x') = L .A;2,<I>n(x)@<I>n*(x') (27) 
n=l 

For numerical purposes one can truncate the infinite sum in (27) to get an approx� 
imation which is controlled by the covariance norm. 

3.2. Random loads 

As far as Gaussian random loads F are concerned (either applied forces in the struc
tures or incident fields in the soil) one can use the classical theory of linear filtering
of Gaussian random fields to show that the response u (y, t) at a given point in the 
domain is also Gaussian. In the following analysis stationary fields with respect to 
time will be accounted for, a more general development for non-stationary fields can
be found in [8]. As a consequence, one can work directly in the frequency domain
where the covariance Cu of the response is given by :

Cu(Y, y') = ii H(y, x)CF(x, x')H*(y', x')dV(x)dV(x') (28) 
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where H is the deterministic transfer function. Using the Karhunen-Loeve expansion 
the covariance of the load takes a much simpler expression : 

Cu(Y, y') = � >.�Hn(Y) © H�(y) , Hn(Y) = L H(y, x)<I>n(x)dV(x) (29) 

where <I>n(x) appears as a deterministic loading mode, Hn being the associated de
terministic response. As a consequence a stochastic analysis consists on one hand of 
computing the covariance of the input and on the second hand of computing the trans
fer function as it is done in the next two examples where the modeling tools defined 
in the first section will be used. 

3.3. Random moving sources 

Vibrations induced in the ground by cars or trains are mainly due to vertical irregular
ities of either the wheels or the rolling area. Both of these are added in the following 
and denoted u0• It is assumed that u0 can be modeled by a centered second-order
Gaussian homogeneous random field of known spectral density Cu0 and that the force
applied under one wheel is vertical and linearly dependent on u0 at the wheel location. 
Then the applied force f (xd, t) along the road or the rail at point x by a wheel moving 
at speed v along direction d, is : 

(30) 

where xd = x.d is the coordinate of point x along direction d, xj_ = x - dxd is the 
location vector in the plane normal to direction d, bis the Dirac distribution and k0 the 
local stiffness. Taking the Fourier transform off (xd, t) with respect to time one gets 
the following autocorrelation function in the frequency domain, denoting kv = w/v : 

(31) 

Splitting the integral in (31) into an infinite series of integrals on [(2n - 1 )7r / L, (2n +
1 )7r / L] and taking xd = xd + nxL and x� = x� + n�L one gets :

(32) 

which is the Karhunen-Loeve expansion of Cu0 (xd, x�, ,,.,) on the generic cell for a given
,,.,, <I>n(xd, ,,.,) being the Karhunen-Loeve modes and An their eigenvalues. The transfer
function H(y, xd) in the present case is nothing but the Fundamental solution of the
global domain including the soil and the structure for a vertical source located on the 
rail at position xj_ + xdd. Thus Cu reads :
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Noticing that the effective computation of H(y, xd) is performed according to section
2as: 

(34) 

with y = fJ + nyLd, 0 < !hd < L and 0 < fJ.d < L, and splitting the integrals in (33)
into pieces of length L, one can then finally get the auto-covariance of the response : 

1tr/L oo 

Cu(Y, y') L >..;,(K,)Hn(Y, K,) 0 H�(y', K,)dK,-tr/L n=-oo

Hn(Y, "') = e-ilmyL lL 
H(fJ, xd)�n(xd, K,)dxd (35) 

Taking this covariance for y = y' represents the spectral energy emitted by the moving 
source at point y. Many simplified expressions may be derived from (35). For example 
stating that v is small compared to the wave speed in the soil, and y is far from the 
source, the correlation length is small (resp. large) compared to the period L. 

3.4. Random incident fields 

We now account for a random incident field modeled as a second order homogeneous 
and stationary random process U;(x, t) defined on S0 x IR where S0 is the free surface.
It is characterized by its power spectral density C;(x,w) (see [18] and [13] for either
theoretical or experimental expressions). Unfortunately formula (28) cannot be used 
directly here because although using the inverse transform ( 4), the modal synthesis 
(12), and the equation (13) where the force is given by (14), one can come up with a 
rather complex expression of the response u(y) at any point y in the structure. This 
expression depends linearly on u; and t,(u;) on E but not depending on U; on the free
surface as it is given. Thus one has to first find u; and its associated covariance C; on
E as a function of U; and C; on the free surface and then a simple expression of the
response as a function of u; on E that can be practically computed.

The stochastic deconvolution The first step is the classical deconvolution process 
used in earthquake engineering. Given a deterministic ground motion at the free 
surface one makes some assumptions of a hypothesis on the incident field (usually a 
vertical incident plane wave) to find its amplitude, this motion being given. The same 
kind of process can be applied for random incident field [16]. Although the incident 
field is supposed to be random it is still assumed to satisfy the Navier equation in the 
half-space D. Then for an horizontally layered medium one can perform a stochastic 
deconvolution as follows : 

1. compute <t1(k, z0) the three eigenvectors of C;(k) the Fourier transform of C; on
the free surface z = z0 with respect to the horizontal space variables,

2. compute <t1(k, z) performing the deterministic deconvolution of <t1(k, z0) for the
given horizontal wavenumber k,
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3. compute Ci(k,z) = 2::1<i>1(k, z) @<i>[(k,z') and computing C;(i,i',K) with i; = 

(ih,z), i' = (i�,z') on f; and k = (k( , K + 2mr/L) , using the Fourier to Flo
quet transform (3) in the periodic horizontal direction and an inverse Fourier
transform in the other one.

4. find the Karhunen-Loeve modes <I>n ( i;, K) of C; ( i;, i', K) on f; for any K.

Covariance on the response We propose here a simple method to compute the 
transfer function between the incident field at a given point i of the soil-structure
interface and any point y in the structure, so that equation (33) can be directly ap
plied. As in the case of a moving load the basic idea is to define the Fundamental 
solution of the global problem (in the present case for a given K), denoted u:(x, y),
defined and continuous over every domain and which can be computed using section 
2 methodology. In addition, let ud be the response in the structure for a given incident 
field ui and the diffracted field u8 - u; in the soil. This field satisfies all prescribed
equations over the different domains except on the interface f; where it satisfies the
following jump relationships: 

[ud] = u; , [t(ud)] = ts(u;) on f; (36) 
As a consequence, using the representation theorem one directly gets : 

Us(Y) = ud(Y) = h uff .ts(ui) - t(Uff).u;dS (37) 

Now, noticing that either u; or any single layer Uf (qs) defined by (20) satisfies the
Navier equation in s1; = D\s1s and thus satisfies the reciprocity theorem in s1;, leads
to: 

h Uf(qs).ts (u;) - ts(Uf(qs)).u;dS = 0 (38) 

as integrals over the periodic interfaces or the free surface of the half-space vanish and 
where the traction vectors are defined using the outer normal of s1;. Then using (37), 
the continuity of u;, t5(u;) and Uf (q5) across f; and the classical jump relationship

[ts (Uf(qs))] = -q" one gets:

(39) 

where Q� is the source density on f; such that U5c(Q�) = Uff in s1s which is computed
when solving equation (21). Coming back to the stochastic analysis one then has using 
the same notation as in (35): 

Cu(Y, y') {"1T//
L
L n"=

oo

-oo 
}_ L >.-;,(K)Hn(Y, K) 0 H�(y', K)dK

e-i1<n,L h Q;(y, id).<I>n(id, K)dS(id) (40) 
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4. Conclusion

\Ve have shown in this paper that deterministic dynamic analyses on long periodic 
structures embedded in an infinite half-space may be carried out combining Domain 
Decomposition, BEM and standard FEM even for non periodic loadings (see [14] for 
numerical results). \1oreover it has been shown that these deterministic tools combined 
with the Karhunen-Loeve expansion technique easily allow a stochastic analysis for 
various kinds of random loads. One has to remark that this methodology also applies 
for non periodic cases as presented in [8]. The extension of this analysis to random soil 
characteristics can be found in [9]. Further developments to account for the coupling 
between periodic and bounded structures throughout a propagation media can be 
found in 110] using Boundary Integral techniques together with asymptotic analysis. 
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