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Abstract: Let p; ;(n) denotes the number of (7, k)-regular overpartitions of a positive integer
n such that none of the parts is congruent to j modulo k. Naika et al.(2021) proved infinite
families of congruences modulo powers of 2 for ps ¢(n), Ps 10(n) and pg 15(n). Saikia et al.(2023)
also obtained infinite families of congruences modulo 4, 8, 16, 32 and 64 for p,s(n), modulo
4 and 8 for pg 12(n), and modulo 16 for psi(n). In this paper, we obtain infinite families of
congruences modulo 2, 4, 8, 9 for p33(n), psa(n), ps5(n) and pr7(n).
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1 Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers A\; > Ay >
-+« > )\, such that Ay + Ay + - - - > Ay = n. The number of partitions of a natural number n
is usually denoted by p(n)(with p(0) = 1) and the generating function is given by

> p(n)g" = L
n=0

(¢ @)oo

where, for any complex number a and g,

(@;0)o = [ (1 — ag™), lql < 1.
n=0
Throughout the paper, we denote
fr = (0" 4",

where k is any positive integer. An overpartition introduced by Corteel and Lovejoy[5], of
a non-negative integer n is a non-increasing sequence of natural numbers whose sum is n in
which the first occurrence of a number may be overlined. For example, the 8 overpartitions
of 3 are

3,3, 2+1,24+1,2+1,24+1, 1+1+1, 1+1+1.
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Let p(n) denotes the number of overpartitions of n with p(0) = 1. Then, the generating
function for p(n) is given by

Z —¢; )
p -
(¢ q)oc
Again, for any positive integer [, an [-regular partition of a non-negative integer n is a
partition in which no part is divisible by I. If b;(n) denotes the number of I-regular partitions
of n with (b,(0) = 1), then the generating function of b;(n) is given by

Z bi(n)g" = %
n=0 1

Naika et.al[l1] defined a new overpartition function known as (j, k)-regular overparti-
tion. An overpartition of a non-negative integer n is said to be (j, k)-regular overpartition if
none of the parts is congruent to j (mod k). If p;(n) denotes the number of (j, k)-regular
overpartition of n (with p;;(0) = 1), then its generating function is given by

ijk —(; q) (qjvqk)oo (11>

(q @)oo (—F;5 %) o

Naika et.al[IT] obtained many infinite families of congruences modulo powers of 2 for
D36(n), Ps.10(n) and pg1s(n). Saikia et al[I2] obtained infinite families of congruences modulo
4,8, 16 and 32 for pys(n), modulo 4 and 8 for pg 12(n), and modulo 16 for ps 14(n).

In this paper, we obtain infinite families of congruences modulo 2, 4, 8 and 9 for ps 3(n),

Paa(n), Pss(n) and pr7(n).

2 Preliminaries

In this section, we present some basic terminology and dissection formulas to prove our
results.
Ramanujan’s general theta function f(a,b) is defined as:

fla,p) = Y @R N2 g < (2.1)
= (—a;ab)oo(—b; ab)u(ab; ab) . (2.2)

The identity (2.2) is the Jacobi triple product identity in Ramanujan’s notation [4, Ch. 16,
Entry 19].
It follows from (2.2)) and (2.1 that [4, Ch. 16, Entry 22],

2

w2 (@GP
W(q) = Zq ol (2.3)

and
o0

fl=) = f(=¢,=¢") = > (=1)"¢"®" V7 = (g:¢9)s = f1. (2.4)

n=—oo



Lemma 2.1. The following 2-dissections hold:

3 fifefh faf§ foa

-5 = + 2¢q 2.5
TR TN TP 29
DAl St 6
fs Jelsfau fafs
Equations (2.5) and (Z.€) can be found in [15].
Lemma 2.2. The following two dissection hold:
fs _ St fiffio
4o +q 2.7
£ B i 20
Equation (210) was proved by Hirschhorn and Sellers[9).
Lemma 2.3. The following two dissections hold:
2
é: f§f6f16f24 +q f6f8f48 (2.8)
S Jifshafas f2f16f24
fi _ hwfh _ foffifs 29)

fs Rfsfs  Fafihofa
Xia and Yao[14] gave a proof of (2.8)). Replacing ¢ by —¢ in (2.8) and using the fact that

(_q Q) f f4 we get (m)

Lemma 2.4. The following two dissections hold:

R
AT (2.10)

6 £3 2¢ £2
b AR BR

i s /3
Hirschhorn, Garvan and Borwein[7] have proved equation (2I0) and the equation (ZIT]) can
be found in [3].

(2.11)

Lemma 2.5. The following dissection hold:

18 fiff
-3 = +2q . 2.12
T TR T 212
The equation can be found in [6].
Lemma 2.6. The following 3-dissection hold:
Jofy 2 f3fis

hife= — qfofis — 2¢ : 2.13
2= 9/18 Fof? (2.13)



We can find the equation in [10].

Lemma 2.7. The following binomial results holds for positive integer k and m;

f2k — m (IIlOd 2)7
om = ,fm (mod 4),
8m — rdm )

o= fy (mod 8),

Lom = £8m (mod 16).

Lemma 2.8. The following dissections hold:

10 f f4

4 4 2J8

W= g ip

and . 14 o
= dg—==E

71

The equations (2.I8)) and (2.I9) can be found in [6].

Lemma 2.9. For any prime p and positive integer n,

n—1

=" (modp).
The equation can be found in [2].

Lemma 2.10. We have

1 21/ 5
o= 1o (s — - PR,
where R(q) = 7;[((_;’_‘14))

We can find the equation (221)) in [10].

Lemma 2.11. The following 3-dissections hold:

Lo RS, BB
7T e T T
BB ik
f2 f18 f3

Lemma 2.11] was proved by Hirschhorn and Seller[§].

3 Some new congruences for p; ;.

(2.20)

(2.21)

(2.22)

(2.23)

In this section, we present new congruences modulo 2, 4, 8, 9 for ps 3(n), psa(n), pss(n) and

prr(n).



Theorem 3.1. For non-negative integers n and the integer ., we have

> Pss(dn+3)g" = 6(1(q)° (mod 9), (3.1)
ipg,g(zl.zan 4 (42— 1))g" =0 (mod 9), a > 1. (3.2)

n=0

Moreover, for k=1,2,3,4,--- and a > 0,

> P3s(4.2°Tn 4+ 4k.(2°T 1)+ 3)¢" =0 (mod 9). (3.3)

n=0

Proof. Setting j = k = 3 in ([IL1I), we see that

— EE
p33(n)q" = : 3.4
2 i = 34
Invoking (2.0) in (B.4]), we have
— fifis JaJo[s.foa
n)q" = +2 . 3.5
2 P = o+ A (3:5)
Equating odd parts of (3.5]), we obtain
Zp373(2n+ 1)qn — 2f2f33f4f12' (36)
n=0 fl fG
Employing (2.17)) in (8.6), we get
% 7 42 343
> pas@n+1)q" :2f§f6 +6qf4];12. (3.7)
= f3 iz f3
Equating the odd parts of equation (3.7, we have
o 343
> p3s(dn+3)q" = 612 {;6 . (3.8)
n=0 ‘fl
Employing binomial theorem (Z.20)) in (3.8]), we obtain
o AN
N Paaldn +3)¢" = (—) (mod 9). (3.9)
—~ fi
Employing (2.3]) in the equation ([3.9), we have
> Pas(dn+3)g" = 6(¢(q))°  (mod 9). (3.10)
n=0



2n+1

Collecting the coefficients of ¢ in the equation (3.8]), we get

Zﬁ3,3(8n +7)¢"=0 (mod9). (3.11)
n=0

Suppose that the congruence ([B.2)) is true for all integer o > 1. Now, collecting the coefficients
of ¢**1 in (B2)), we have

> P33(42°2n+ 1)+ (42" = 1))¢" =0 (mod 9). (3.12)
n=0
This implies
> p3s(42°Tn 4 (42771 = 1))¢" =0 (mod 9). (3.13)
n=0

Thus, the result is true for integer o + 1. Hence, by induction, the result (3.2]) is true for all
integers a > 1.

Similarly, we can prove by collecting the coefficients of ¢?*** in the equation (3.8) for k =
2,3,--- that

> P3s(42°Tn 4+ 4k.(2°T 1)+ 3)¢" =0 (mod 9). (3.14)
n=0

O

Theorem 3.2. For positive integer n,

= — 2041 1 « n f??
g D33 (2 n+ =(2.4% + 1))q =22 (mod4),aa>0 (3.15)
—~ 3 fi
and -
- Lo o f3 1,
270+ =(24°7 4+ 1) )" = 22273 d4),a>1. 3.16
Do ma(2n+ (247 4 1) =250 (mod o> (3.16)
Proof. Setting j = k = 3 in ([I.1]), we see that
— _ f3fs
n)q" = . 3.17
;p&:&( )q iR (3.17)
Employing ([2.22) in (3.17), we have
o fofs o 1efs |, 2tefis
paa(n)q" = +2¢—F +4q : (3.18)
2.7 B 75 fi

Equating odd parts in (3.I8) and replacing ¢* to ¢, we have

313

> p3s(@n+1)q" =222
fi

n=0

(3.19)



Using binomial theorem (2.I5)) in (8:19), we obtain

ad 3
Zﬁ373(2n +1)q" = 2f—3 (mod 4). (3.20)
n=0 fl
Employing ([2.I0) in (B:20) and collecting odd parts, we get
- n_ o lé
ZP3,3(471 +3)¢" =2 (mod 4). (3.21)
n=0 f2
From (B.21)), we have
s 3
Zﬁza 3(8n+3)¢" = 2f—3 (mod 4). (3.22)

N fi
Suppose the congruence (B.13]) is true for all integers o« > 0. Using (ZI0) in (3I5) and

collecting the coefficients of ¢!, we have
f: 20t (4 4 1) + 2 (24% +1) ) " = Iy d4 3.23
5 (2 q_fl(mo ). (3.23)
—0
This gives
S = 2(a+1)+1 1 a+1 n f?i:)
> a2 nt (2400 + D)g" = T (mod4) (3.24)
0 1

The congruence ([B15) is true for integer « 4+ 1. By induction, the congruence ([B.I5) is true
for all integers o > 0.
Collecting the even part in (3.13]), we have

Z 20+1 Lo o S L
P332 (2n) + 5 (247 + 1) )¢" = 275 (mod 4).

3 fT e
This gives

N (o2(at) Lo e w_ oo f3

> pss(2 (n) + 5(24% + 1) )¢" = 222"%  (mod 4).

n=0 3 fl f6
So, the result is true for integer o + 1, where o > 1. Thus, the congruence (3.16) is true for
all integers o > 1. O

Corollary 3.1. For positive integer n and o > 1,
Zp33<4 s E gt _ 1)) "=0 (mod 4), (3.25)
where k Z (mod 3), k > 1 and

ip373(40‘n + k(4 =1))¢" =0 (mod 4), (3.26)

n=0

where k =1,2,3,---



Proof. Employing (2.10) in (3.I5) and collecting the coefficients of ¢*"**, we get
. — a+1 k a+2 n —
Zp373 <4 n+ 5(4 - 1)>q =0 (mod 4), (3.27)
n=0

where k # (mod 3), k£ > 1 and

> P3s(A°Tn+ k(4T —1))¢" =0 (mod 4), (3.28)
n=0
where k =1,2,3,---.
Similar to the proof of Theorem B2 using induction, we can prove the congruences (3.25))
and (3.20) are true for all integers o > 1. O

Theorem 3.3. For non-negative integer n and o > 0,

> Paa(49°n + 9%+ 1)¢" = (=1)°4.f1f3  (mod 8), (3.29)
n=0
- = a+1 n — « f22 ??
> Paa(49°Tn +2)¢" = (—=1)4.27%  (mod 8), (3.30)
—~ fifs
- 1
3 i (4.9°‘+1n 5007 + 3)>q” =0 (mod 8), (3.31)
n=0
- 1
3 pua (4.9°‘+1n +5(397 + 1)>q" =0 (mod 8), (3.32)
n=0
and .
> paa(4.9°Tn +2.9°M)g" =0 (mod 8). (3.33)
n=0
Proof. Setting j = k =4 in ([I1I), we see that
— fife
Daa(n)g" = . 3.34
2 i = (331
Making use of (2.12)) in equation ([B.34) , we get
— fifs o, fifg
DPra(n)qg" = + 2q . (3.35)
2 IR
Collecting the even parts of the equation (B.30]), we have
0 2 ¢4
> Paal2n)q" = %};. (3.36)
n=0 1J8



Now, using (2.19) in (3.30), we obtain

OO 18 2
; Paa(2n)q" =7 f12 Tag! j*f? . (3.37)

Collecting the odd parts of equation (3.37), then replacing ¢ to ¢ and using the binomial
theorem (2.16), we get

o

D Daa(n+2)g" =4f7f;  (mod 8). (3.38)

n=0

Using (Z.13)) in above equation (3.38) and then collecting the coefficients of ¢°" from both
sides of the resultant equation, we obtain

f:ﬁ4,4(36n +10)¢" = —4f2f7 (mod 8). (3.39)

n=0

Suppose that ([3:29) is true for @« > 0. Applying (2.I3) in (329) and the collecting the
coefficients of ¢""*2, ¢", ¢°**1, ¢°"*3 and ¢”"**, we have

S 51a(4.9%(9n +2) + 9%+ 1)g" = (~1)* 422 (mod 8),

n=0

f:p4’4(4‘9a+1(9n) + 2)qn = (_l)oc-l-l f2 f3 (mod 8),
n=0 .fl fﬁ

ZP44< 4.9 (9n + 1) + 2(90”rl + 3))q" =0 (mod 8),

1
Zp44< 49741 (0n +3) + S(3.9° + 1)>q" =0 (mod 8)

and .
Zﬁ474(4.9°‘+1(9n +4) +2.9*g" =0 (mod 8), respectively.
n=0

This implies

Zm,4(4.9“+1n + 9T L g™ = (—=1)*M 422 (mod 8),
n=0

ip4,4(4.9"+2n +2)¢" = (—1)*"4. f3fs (mod 8),
2 1

= 1
Z@A (4~9°‘+2n + 5(9‘1Jr2 + 3)>q” =0 (mod 8),

= 1
S s (1972 + 53972 +1)¢" =0 (mod 8),



and

Zﬁ474(4.9°‘+2n +2.9°")¢" =0 (mod 8), respectively.

n=0

So, the congruences (3:29), (3:30), (331), 332) and B33) are true for o+ 1. By induction,
the congruences (3.29), (3:30), (3:31)), (332) and ([B33) are true for all integers o > 0. O

Corollary 3.2. For positive integer n and o > 1,

- k
S paa(49%0+ S(9° ~ 1) +2)q" =0 (mod 8), (3.40)

n=0
where k =15,6,7,---.
Proof. From ([3.29)), collecting the coefficients of ¢”"**, we get

- k
> Paa (4.9°‘+1n + 507~ 1)+ 2) ¢"=0 (mod 8), (3.41)
n=0

where k =5,6,7,---.
The proof of the Corollary is similar to the proof of Theorem Using induction, we
can prove the congruence (3.40) is true for all integers « > 1 and k =5,6,7,---. 0

Theorem 3.4. For positive integer n and o > 0,

> Pss(45%n+ 5" =2f1f; (mod 4), (3.42)
n=0
> Pss(45°n+1)g" = 2f1fsR(q)”"  (mod 4), (3.43)
n=0
and -
> Pss(45°n +25%)" = 2f1fsR(g) (mod 4), (3.44)
n=0
where R(q) = ]f((_‘q‘gi’j;%.
Proof. Setting j = k =5 in (I.T]), we find that
— f2 12
n)g" = . 3.45
2 palma’ = 70 (345)

Applying (Z.7) in (3.43]), we get

= _ N 5 o [ 10/ f20f3
2 ool = 5 B+ 0 2 (3.46)

Collecting the coefficients of ¢**** and using binomial theorem in (3.46)), we have
Zﬁ575(2n +1)¢" =2f2fi0  (mod 4). (3.47)
n=0

10



From the equation (8.47), we have

> pss(An+1)g" =2f1fs (mod 4). (3.48)
n=0
Applying (227)) in (3:48]), we have
Zﬁ575(4n +1)¢" = 2f5{f5(R(¢°) " — ¢ — ¢*R(¢°))}. (3.49)
n=0

Now, collecting the coefficients of ¢°", ¢°**1 and ¢°" from (3.49), we obtain

> Pss5(20n+1)g" = 2f1fsR(q)™" (mod 4), (3.50)
n=0
> P5s(20n+5)¢" =2f1f; (mod 4), (3.51)
n=0
and o
Zﬁ575(20n +5)¢" =2f1fsR(q) (mod 4), respectively. (3.52)

n=0

Suppose that the congruences (3.42), (8:43) and (3:44) are true for o > 0. Now, applying
(Z21) in ([B3:42) and collecting the coefficients of ¢°, ¢°" 1 and ¢°"2, we get

> Pss(45°(5n) + 1)¢" = Pss(45°T 4+ 1)¢" = 21 fsR(q)”" (mod 4),  (3.53)

n=0 n=0

D Pss(A5°(Gn+ 1) +5%)" = P45+ 5" = 2fifs (mod 4),  (3.54)

n=0 n=0

and
Zﬁ5,5(4.5"(5n+2) +2.5%¢" = Zﬁ5,5(4.5a+1n+2.5a+1)q" =2f1fsR(q) (mod 4), (3.55)
n=0 n=0

respectively. Therefore, the statements are true for integer o + 1. Thus, the congruences
(6.42), (3.43) and (3.44]) are true for all integers a > 0. O

Corollary 3.3. For positive integer n and o > 1,

Zﬁ5,5(4.5"n +E(B*—1)+1)¢" =0 (mod 4), (3.56)

n=0

where k = 3,4,5,6,7,---.

11



Proof. Employing dissection formula (221)) in (8.42)), then collecting the coefficients of ¢°***,
we get

> Pss(45°Tn + k(5T — 1)+ 1)¢" =0 (mod 4), (3.57)
n=0
where k = 3,4,5,---.
The proof of the Corollary B3] is similar to the prove of Theorem 34l Using induction, we
can prove the congruence (3.50) is true for all integers a > 1 and k = 3,4,5,---. O

Theorem 3.5. For non-negative n and o > 0,
_
E p77(7.9%0)¢" = = (mod 2). (3.58)

Proof. Setting j = k=7 1in (EEI:I), we get

- f2fe
n)q" = . 3.59
;pm( )a P Fur (3.59)
Using binomial theorem in equation (3.59), we obtain
w7
> pra(n)g" = <= (mod 2). (3.60)
n=0 f14

Comparing the coefficients of ¢™ in both side of the equation (3.60)), we obtain

Zp” (Tn)q fc—l (mod 2). (3.61)
Applying the dissection (2.23) in the equation ([B.61), we get
13 fsf is
n)q = — mod 2). 3.62
ZP?? <f18 f3 ) ( ) (3.62)

Collecting the coefficients of ¢° in the equation (3.62)), we have

Zp77 7. 97’L ;—1 (IIlOd 2)

Suppose that (58] is true for a« > 0. Applying ([2:23)) in (B:58), we have

Zﬁ777(7.9°‘n) <% — f?}?s) (mod 2)
n=0

and collecting the coefficients of ¢”", we get

fo

Therefore, it is true for integer o + 1. Thus, by mathematical induction, it is true for all
integer o > 0. U

s 2
> pra(7.9°Tn)g" = I (mod 2).
n=0

12



Corollary 3.4. For positive integer n and o > 1,
=, o Tk, n
Zp”(w n+ (9" - 1)>q =0 (mod2), (3.63)
n=0

where k =1,2,3,---.
Proof. Applying (2.23) in Theorem B.58 and collecting the coefficients of ¢°***, we obtain

> Tk
> prr (19 4 (07 = 1))g" =0 (mod 2), (3.64)
n=0

where k =1,2,3,---.
The proof of the Corollary [3.4] is similar to the proof of Theorem Using induction, we
can prove the congruence ([B.63) is true for all integers « > 1 and k =1,2,3,---. 0
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