Supporting Information

Proton-Coupled Electron Transfer of Macrocyclic Ring Hydrogenation: The Chlorinphlorin

Rui Sun,^{*a*,[‡]} Mengran Liu,^{*a*,[‡]} Shao-Liang Zheng,^{*a*} Dilek K. Dogutan,^{*a*,*} Cyrille Costentin,^{*b*,*c*,*} and Daniel G. Nocera^{*a*,*}

^a Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, United States. ^b Université Grenoble Alpes, CNRS, 38000 Grenoble, France. ^c Université de Paris, 75013 Paris, France.

> Emails: dkiper@fas.harvard.edu, cyrille.costentin@univ-grenoble-alpes.fr, dnocera@fas.harvard.edu

Table of Contents

Figure S1. Thin-layer UV-vis spectroelectrochemistry of hangman ester compounds	S3
Figure S2. Successive CVs of H ₂ CX ¹⁰ -H	S4
Figure S3. CVs of H_2CX^3 -Me and H_2CX^{10} -Me in the presence of benzoic acid	S5
Figure S4. UV-vis characterization of chemically prepared chlorinphlorin	S6
Figure S5. Successive CVs of H ₂ CX ³ -Me and H ₂ CX ¹⁰ -H	S7
Figure S6. Simulation of CVs of H ₂ CX ³ -Me	S8
Figure S7. CVs of ZnCX ³ -H and ZnCX ¹⁰ -H in the presence of benzoic acid	S9
Figure S8. CVs of H ₂ CX ³ -H and H ₂ CX ¹⁰ -H in the presence of benzoic acid	S10
Figure S9. CVs of ZnCX ³ -H and ZnCX ¹⁰ -H in the presence of benzoic acid	S11
Scheme S1. CV simulation model	S12
Table S1. Parameters used in digital simulation	S12
Figure S10. NMR spectra for meso-tetraphenylchlorinphlorin	S13
Figure S11. Crystal structure showing difference-Fourier map	S14
Table S2. Crystal data and structure refinement for meso-tetraphenylchlorinphlorin.	S15

Figure S1. Thin-layer UV-vis spectroelectrochemistry in acetonitrile containing n-Bu₄NPF₆ (0.1 M) in a nitrogen-atmosphere glovebox at room temperature. The black and blue traces show the initial and final spectra, respectively. (A) Potential held at –2.00 V vs Fc⁺/Fc for ZnCX³-Me solution without benzoic acid. (B) Potential held at –2.00 V vs Fc⁺/Fc for ZnCX¹⁰-Me solution without benzoic acid. (C) Potential held at –1.85 V vs Fc⁺/Fc for a H₂CX³-Me solution without benzoic acid. (D) Potential held at –1.85 V vs Fc⁺/Fc for a H₂CX¹⁰-Me solution without benzoic acid.

Figure S2. Two successive cyclic voltammograms of H_2CX^{10} -H (2 mM) in acetonitrile containing *n*-Bu₄NPF₆ (0.1 M) collected using a 3 mm glassy carbon working electrode. v = 0.1 V/s. The blue trace shows the first scan while the red trace shows the second.

Figure S3. CVs of (A) H_2CX^3 -Me (1.0 mM) and (B) H_2CX^{10} -Me (1.6 mM) in the presence of low benzoic acid concentrations: for (A) 0 (red), 0.2 (orange), 0.5 (green), 1 (blue) mM; and for (B) 0 (red), 0.2 (orange), 0.5 (green), 1 (cyan), 2 (blue) mM. CVs of (C) H_2CX^3 -Me (1.0 mM) and (D) H_2CX^{10} -Me (1.6 mM) in the presence of high benzoic acid concentrations: for (C) 0 (red), 2 (orange), 3 (purple), 5 (green), 10 (cyan), 20 (blue) mM; and for (D) 0 (red), 2 (orange), 3 (purple), 5 (green), 10 (cyan), 20 (blue) mM. All CVs were taken in anhydrous acetonitrile with *n*-Bu₄NPF₆ as the supporting electrolyte (0.1 M) using a 3 mm glassy carbon working electrode. *v* = 0.1 V/s.

Figure S4. UV-vis characterization of chemically prepared chlorinphlorin. (**A**) Thin-layer UV-vis spectroelectrochemistry in a N₂-filled glovebox on a solution of 15 mM *meso*-tetraphenylchlorin and 100 mM benzoic acid in CD_2Cl_2 with *n*-Bu₄NPF₆ (0.1 M) as an electrolyte under an applied potential of -1.78 V vs Fc⁺/Fc. The black and red traces show the initial and final spectra, respectively. (**B**) UV-vis spectrum of the isolated *meso*-tetraphenylchlorinphlorin product from chemical reduction in DCM.

Figure S5. (A) Two successive cyclic voltammograms of H_2CX^3 -Me (1 mM) in the presence of 2 mM benzoic acid. (B) Two successive cyclic voltammograms of H_2CX^{10} -Me (1.6 mM) in the presence of 3 mM benzoic acid. The blue trace shows the first scan while the red trace shows the second. In all cases, the solvent was acetonitrile containing *n*-Bu₄NPF₆ (0.1 M) and the measurements were performed using a 3 mm glassy carbon working electrode. *v* = 0.1 V/s.

Figure S6. (A) H_2CX^3 -Me (1.0 mM) in the presence of 1 mM benzoic acid in anhydrous acetonitrile with *n*-Bu₄NPF₆ as the supporting electrolyte (0.1 M) using a 3 mm glassy carbon working electrode. *v* = 0.1 V/s. (B) Simulated CVs of H_2CX^3 -Me (1.0 mM) in the presence of 1 mM benzoic acid with k_{H2} = 10 (red), 100 (burgundy) and 1000 (brick red) M⁻¹ s⁻¹. The dotted vertical line indicates the location of the ChI(H₂) reduction wave. Simulation reproduces experimental CV for k_{H2} = 10 M⁻¹ s⁻¹.

Figure S7. Cyclic voltammograms of ZnCX³-Me (0.8 mM) in the presence of benzoic acid (from black to red): (A) 0, 2, 3, 5, 10, 20 mM, (B) 0, 0.2, 0.5, 1, 2, 3, 5 mM. Cyclic voltammograms of ZnCX¹⁰-Me (1 mM) in the presence of benzoic acid (from black to red): (C) 0, 2, 3, 5, 10, 20 mM, (D) 0, 0.2, 0.5, 1, 2, 3, 5 mM. In all cases, the solvent was acetonitrile containing *n*-Bu₄NPF₆ (0.1 M) and the measurements were performed using 3 mm glassy carbon electrodes. v = 0.1 V/s. Electroactive impurities are observed for both samples at ca. –0.9 V vs. Fc⁺/Fc.

Figure S8. CVs of (A) H_2CX^3 -H (1.0 mM) and H_2CX^{10} -H (2.0 mM) in the presence of low benzoic acid concentrations: for (A): 0 (red), 0.2 (orange), 0.5 (green), 1 (cyan), 2 (blue) mM and for (B) 0 (red), 0.2 (orange), 0.5 (green), 1 (cyan), 2 (blue) mM. CVs of (C) H_2CX^3 -H (1.0 mM) and (D) H_2CX^{10} -H (2.0 mM) in the presence of high benzoic acid concentrations: for (C) 0 (red), 2 (orange), 3 (purple), 5 (green), 10 (cyan), 20 (blue) mM and for (D) 0 (red), 2 (orange), 3 (purple), 5 (green), 10 (cyan), 20 (blue) mM and for (D) 0 (red), 2 (orange), 3 (purple), 5 (green), 10 (cyan), 20 (blue) mM and for (D) 0 (red), 2 (orange), 3 (purple), 5 (green), 10 (cyan), 20 (blue) mM and for (D) 0 (red), 2 (orange), 3 (purple), 5 (green), 10 (cyan), 20 (blue) mM and for (D) 0 (red), 2 (orange), 3 (purple), 5 (green), 10 (cyan), 20 (blue) mM and for (D) 0 (red), 2 (orange), 3 (purple), 5 (green), 10 (cyan), 20 (blue) mM and for (D) 0 (red), 2 (orange), 3 (purple), 5 (green), 10 (cyan), 20 (blue) mM and for (D) 0 (red), 2 (orange), 3 (purple), 5 (green), 10 (cyan), 20 (blue) mM and for (D) 0 (red), 2 (orange), 3 (purple), 5 (green), 10 (cyan), 20 (blue) mM and for (D) 0 (red), 2 (orange), 3 (purple), 5 (green), 10 (cyan), 20 (blue) mM. All CVs were taken in anhydrous acetonitrile with *n*-Bu₄NPF₆ as the supporting electrolyte (0.1 M) using a 3 mm glassy carbon working electrode. *v* = 0.1 V/s.

Figure S9. Cyclic voltammograms of **ZnCX³-H** (0.4 mM) in the presence of benzoic acid (from black to red): (**A**) 0, 2, 5, 10, 20 mM, (**B**) 0, 0.2, 0.5, 1, 2, 5 mM. Cyclic voltammograms of **ZnCX¹⁰-H** (0.4 mM) in the presence of benzoic acid (from black to red): (**C**) 0, 2, 3, 5, 10, 20 mM, (**D**) 0, 0.2, 0.5, 1, 2, 5 mM. In all cases, the solvent was acetonitrile containing *n*-Bu₄NPF₆ (0.1 M) and the measurements were performed using 3 mm glassy carbon electrodes. v = 0.1 V/s. Electroactive impurities were observed for both samples at ca. -0.9 V vs. Fc⁺/Fc.

Scheme S1. Simulation model using the parameters in Table S1 as well as $D = 5 \times 10^{-6}$ cm²/s, v = 0.1 V/s, T = 293 K, S = 0.071 cm².

	H ₂ CX ¹⁰ -Me (1.6 mM)	H ₂ CX ³ -Me (1 mM)
E_1^0 (V vs. Fc ⁺ /Fc)	-1.68	-1.65
$k_{H1}~({ m M}^{-1}~{ m s}^{-1})$	5 × 10 ⁵	5 × 10 ⁵
E_h^0 (V vs. Fc ⁺ /Fc)	>-1	>-1
$k_{H2}~({ m M}^{-1}~{ m s}^{-1})$	1 to 10 ³	1 to 10 ³
E_{h2}^0 (V vs. Fc ⁺ /Fc)	-1.85	-1.85
E_2^0 (V vs. Fc ⁺ /Fc)	-2.12	-2.05
$k_{diff} (M^{-1} s^{-1})$	10 ¹⁰	1010

Table S1. Summary of Parameters used in CV Simulation.

Figure S10. NMR spectra for *meso*-tetraphenylchlorinphlorin. (A) 1 H NMR (400 MHz, CD₂Cl₂) and (B) 13 C NMR (101 MHz, CD₂Cl₂).

Figure S11. Crystal structure with the difference-Fourier map (green) used to locate hydrogen atoms bound to pyrrolic nitrogen atoms.

Empirical formula	CaaHaaNs
Formula weight	697.85
Т (К)	100
λ (Å)	0.41328
Crystal system	Monoclinic
Space group	P21/n
<i>a</i> (Å)	16.617(4)
b (Å)	11.878(2)
<i>c</i> (Å)	20.263(7)
α (º)	90
β (º)	110.077(7)
γ (º)	90
V (Å ³)	3731.9(17)
Ζ	4
$ ho_{calcd}$ (Mg/m ³)	1.242
μ (mm ⁻¹)	0.034
hetarange for data collection (°)	2.29 to 14.15
Index ranges	$-19 \leq h \leq 19, -14 \leq k \leq 12, -24 \leq \ell \leq 24$
Reflections collected	6673
R _{int}	0.0694
Completeness to $ heta_{ extsf{max}}$	99.4%
Data/restraints/parameters	6673 / 0 / 644
GOF on <i>F</i> ²	1.055
R1	0.0537
wR2	0.1394
Largest diff. peak, hole (e Å ^{–3})	0.324, -0.258

 Table S2. Crystal data and structure refinement for meso-tetraphenylchlorinphlorin.