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1. INTRODUCTION

In Raous et al [1], an algorithm for solving unilateral contact problem with
Coulomb friction was proposed. It is based on the coupling of a fixed point
method on the sliding limit with a minimization problem under constraints
corresponding to a Tresca friction problem.

With a view to solving this minimization problem under constraints, we
previously used projection techniques associated with Gauss-Seidel procedure
accelerated by means of either overrelaxation [1] or Aitken's procedure [2].

To be able to use the conjugate gradient method, a special projection
procedure has to be introduced to preserve the conjugate property between the
directions, and the differentiability has to be obtained by regularizing the
friction term.

We present here a variant of the methods proposed by May [3], Dilintas et
al [4], Jeusette-Sonzogni [5], and Marks-Salamon [6] for the frictionless
problem, and we extend the method to the frictional case.

Preconditioning is essential to improve the efficiency of the conjugate
gradient method. Four preconditioning procedures are tested. Two of them are
specific to the friction problem and take the regularization term into account ;
this is very important because of the connection between the regularization
parameters and the conditioning of the problem.
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2. THE PROBLEM

A unilateral contact problem with Coulomb friction can be split into a fixed
point problem where the sliding limit g is the unknown, and a minimization
problem under constraints of a non differentiable functional (see Raous et al[1]).

We are dealing here with quasi static problems and this formulation has
been developed by using an incremental form. The problem to be solved at each
step ti is therefore very similar to the static one. At each time t, we have to
solve:

Problem 1: Find g fixed point of the application
g 1[FN(uy) ()

with ug = uk 1+ Aug , where Aulg( is solution of problem 2

Problem 2: Find Auk € Kk such that:
g

J(Auf)<I(v) , VveKk 2)
with J(v)=%a(v,v)—(Rk"l +AFE V) + j(v) 3)
where;

Kkz{Auk / (u¥! +Auk)N <0 on F3} , the convex Kk is depending
on k-1, it is variable but remains given at each step k ,
a(v,v)=jgo.edx ,

(R¥1 +Afk,v)=J'QAcp{‘.vdx+J'r.2 A(plzc.vdl+.]'1.3 R¥! var,

j(v)= vrldl,

J fr3 g I TI

u displacements ,

c the stresses ,

A(pig increment of volumic forces ,
Acp% increment of surfacic forces ,

RX! frictional forces at the previous step (equilibrium residu) ,
u friction coefficient , -

Fn  normal component of the contact force ,

I’y part of the boundary submitted to a given load ¢ ,

I'3  part of the boundary where contact can occur,

vt  tangential velocity of a contact point .
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A particular approximation of problem 2, which is based on the use of P1
finite elements, is given in [7]: we project both v and j(v) into the finite element
space discretization. In this case, existence and uniqueness, when the friction
coefficient is small, have been proved in [7]. The main problem to be solved can

then be written:

Problem 3: Find X € X such that:

X)<Ix) , VxeX 4)
wih J(x)=4xTAx-FTx+G'[x| . (%)
where:

A s the classical finite element matrix (dimension N) ,
F is the loading vector,

G is the sliding limit vector,

N is the number of degrees of freedom,

x, € Rm where m is the number of contact nodes ,

N

X=[[K; with K;=R"if "i" is the number of the normal component of
i=1

the displacement of a contact node and K; = R if not.

3. UNILATERAL CONTACT

The constraints for the minimization are the conditions of non penetration
of the solid into the obstacle. They are characterized by the convex K. Using P1
elements for the discretization, the constraints are separate due to the
positiveness of the shape functions, and the convex K is written as the product
of R or R- sets depending on the degree of freedom concerned. A projection
onto X is therefore simply the product of projections onto R

With the conjugate gradient method it is not possible to use a simple
projection as has been done previously with the Gauss-Seidel method (see [11)
because the conjugation property between two successive directions would then
be broken. To preserve the qualities of the conjugate gradient, we will search for
the solution in the subspace RNk, where k is the number of saturated constraints.
This means that whenever a penetration occurs, the system will lose a degree of
freedom and the new directions and the conjugation will be defined on the
boundary of the convex (related to the active constraints). The convergence in a
finite number of iterations is therefore preserved in each subspace, where the
conjugations are written. The condition of compressive normal force is naturally
tested and a constraint can be relaxed if necessary.
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There exist various ways to carrying out this process. May [3] introduces
evolutive boundary conditions into the matrix itself. The conjugation is always
written with the actual matrix ; but these changes are costly. Dilintas et al [4]
and Jeusette-Sonzogni [5] project the descent directions. This means that for a
calculated descent direction which would give penetration, the solution is
stopped on the boundary of the convex and will keep going in the tangential
direction, i.e. on the boundary of the convex. We use this process but we
introduce a different algorithm to check if the normal force is negative or zero
and to relax the constraint if necessary.

The main steps of the algorithm are as follows:

» regular gradient conjugate iteration and computation of the optimal

coefficient for the descent pop,

« for all the contact nodes, in the case of penetration, computation of the
maximum value p; of the descent coefficient which ensures that the
solution remains in the convex,

» the final descent coefficient is the minimum between pqp and p; ,

« when a new contact is obtained, we take the normal component of the
direction in question to be zero in what follows. We project therefore the
direction and avoid dealing with a matrix characterizing the projection.
Then, we initiate the next conjugate gradient iteration (on the subspace
RN-1) with a regular gradient direction,

« the dual condition on the normal force Fy that should be either negative
or zero has to be checked. If the condition is not fullfilled by a node in
contact (for the others Fn=0), we have to relax the constraint (un=0) on
this node and to use a non projected direction again. Our strategy differs
of those used by Dilintas et al [4] and Jeusette-Sonzogni [5]. A diagonal
process is developped: the condition on Fy is checked after partial
convergence of the conjugate gradient, i.e. when an accuracy & is
obtained. The value of €; is taken to be 10°.eg where &g is the require
final accuracy (go = 0,5.1079).

4. THE FRICTION

4.1 Regularization
To obtain the differentiability, the absolute value of the friction term (6)

has to be regularized.

m
(Zgi'|xrl§um(i)|) (6)
i=1
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Three classical methods of regularization have been tested and their

efficiency has been compared:
» regularization REG1 (square root)

: X
pe=Vx*+e? . P =T—s ()
X“ +€
« regularization REG2 (hyperbolic tangent)
oe(x)=e.Ln(ch(¥)) , ¢ (x)=tanh(3) , &)
« regularization REG3 (piecewise polynomial)
(—x -5 ifx<-¢
5 -1 ifx<-€
‘Pe(x)‘—"%g if—-e<x<e , @(x)= 181 f-e<x<e. 9)
kx_% Fx>E +1 ifx>e¢
4.2 Conjugate gradient for the non linear case
Problem 4: Find X € X such that
Je(X) T (x) , VxeK (10)
: 1.T T, , ©
with Jg(x)=3x Ax—-F x+ >8i-9¢ (Xpum(i)) - (11)

i=1

Conjugation between the successive descent directions vk is written with

the Hessian J"¢ of (11).
To avoid having to compute the Hessian, we approximate J"¢ with a Taylor
development of J'¢(xk)=r¥, taking all the other derived functions to be small and

the displacements between two iterations to be very close. This gives us :

k+1 _ rk ,P.rk+l S

<rk,P.rk>

<r

vl op kHl gk gk wim yR = (12)

The optimal descent coefficient is computed by writing:

<J e (xX+pE VK vE>=0 (13)
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This non linear problem can be solved in two different ways:
* an approximation using the Taylor development of J's(xk*+1) :

kK _ <rfvEs (14)

<J' (xk ).vk,vk >

* a few iterations of an iterative method like the false position to avoid
computing J"¢. The prescribed accuracy of the determination of pk is 10~
and the number of iterations required is about twenty.

The two procedures have been tested. The first is preferred because it does
not need to iterate and we obtain nearly the same number of gradient iterations.
Computing time is therefore shorter.

5. PRECONDITIONING

It is well known that the convergence can be considerably improved by
applying a suitable preconditioning procedure which consists of working on the
matrix C-V2AC-12, This is integrated into the algorithm and needs only a change
of variables (r* is replaced by C-/2.r% | vk by C122.vk and xk by C-12.xK) and an
extra resolution of (15).

C.Zk+l — l'k+1 (15)

Four preconditioning procedures (i.e. four choices of C) have been tested:
« the simple diagonal, C=D=diag(A),
» SSOR or Evans Preconditioning :

_; -1 t
C_m(z_w).[DﬂoE].D [D + wE] (16)

where D=diag(A), E is the lower triangular part of A and ® a relaxation
parameter (in fact, we avoid computing an optimum ®, we use ®=1 ; and
the preconditioning is a Gauss-Seidel one in this case),

* the two previous preconditioning applied to the Hessian J"g(x¥) and
taking into account the non linear term. If I denotes the set of the
tangential components of the contact nodes, we have:



Conjugate gradient method for frictional contact 429

( 1 1" . -
'(J e(xk)).. = Aj; +8i-9 s(xgum(i)) , if iel
1
) an
(17 (x ))ij=Aij ,ifi#j or if i=jel

The non linear part is located on the diagonal and involves only a few
terms. We apply the preconditioning (either the simple diagonal one or
the SSOR one) to the Hessian J"¢(x¥) instead of the matrix A . In this
case, the preconditioning is connected to the regularization parameter €.
The efficiency of this procedure will be demonstrated.

6. NUMERICAL RESULTS

6.1 Examples
The compression of a block on a plane (fig. 1) and a dovetail assembly

(fig.2) will be considered. Details of the characteristics and the loadings can be
found in [1]. Different meshes will be used.

It should be note that the solutions are obtained here with a given sliding
limit g corresponding to the last iteration of the fixed point on g.

RN '

by

7))

Fig. 1 compression of a block on a plane Fig. 2 dovetail assembly

F

6.2 Comparison between the various projections of the descent direction
(Table 3) and (table 4) give the number of iterations involved in the various
methods of projecting of the descent direction:
» GCl the Jeusette-Sonzogni method,
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¢ GC2 the Dilintas method,
¢ GC3 our method.

Results with the overrelaxation method with projection previously
published in [1] are also given (they need an extra determination of the optimum
relaxation coefficient which is not taken into account here).

(Table 3) is related to example 1 with a discretization of 366 degrees of
freedom and 20 nodes of contact, (table 4) deals with example 2 with 2234
degrees of freedom and 25 nodes of contact ; the SSOR preconditioning is used
on the Hessian and ¢ is equal to10-8.

Methods Iterations for :

Applied: REGI REG2 REG3
GC1 102 71 93
GC2 98 93 9%
GC3 50 49 47

SORP
(o opti=1,58) 225
Table 3 example 1 (366 degrees of freedom)

Methods Iterations for :

Applied: REGI REG2 REG3
GC1 289 227 257
GC3 241 223 220

SORP
(o opti=1,96) 776

Table 4 example 2 (2234 degrees of freedom)

Line GC3 in both tables shows the savings in the number of iterations
obtained. And as predicted, it is much more efficient than the overrelaxation

with projection.

6.3 Comparison between the various regularization procedures
In all tables, REG1, REG2 and REG3 relate to the regularization

procedures presented in (§4.1).
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The three methods of regularization are fairly equivalent, but since the
polynomial one is slightly more efficient and easier to implement, it was the one
we preferred.

6.4 Comparison between the preconditioning procedures

The influence of the preconditioning is shown on (table 5) and (table 6).
Here it is very important to include the non linear part in the preconditioning,
because of the presence of non sliding nodes among those in contact with the
obstacle, which gives the regularization terms (equivalent to 1/€) more weight
than the diagonal terms of A.

The computational CPU times given in (table 5), (table 6) and (table 7)
were obtained on a VAX 6310.

A Morse storage of the matrix widely improves the computational time. It
has been used here instead of a skyline one.

Methods | GC3 with a precon- | GC3 with a precon- | SORP
applied | ditioning on A ditioning onJ"  opti
Diagonai | SSOR | Diagonal | SSOR
Iterations 115 49 113 47 225

Time 30s 28s 30s 27s 30s

Table 5 example 1 with 366 degrees of freedom (computed with REG1 ,
the approximate computing of uk, =103 and partial convergence at 10’3)

Methods | GC3 with a precon- | GC3 with a precon- | SORP
applied | ditioning on A ditioning onJ"  opti
Diagonai | SSOR | Diagonal | SSOR
Iterations 676 305 584 277 3646
Time 12mn22s | 9mn48s | 11mn20s | 9mn20s | 26mn19s

Table 6 example 2 with 4506 degrees of freedom (computed with REG2 , the
approximate computing of uk, £=10"% and partial convergence at 0.5.10'3)

7. CONCLUSION

Various methods and various preconditioning procedures were tested. The
most satisfactory results were obtained using the following strategy:

« to deal with the unilateral contact, using the variant of Dilintas' method

and checking relaxation of some of the saturated constraints if necessary
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after a partial convergence (€=103 or 0,5.10°3 ) of the algorithm (final
convergence €=0.5.107),

 to deal with the friction term, using the piecewise polynomial or the
hyperbolic tangent regularization procedure with €=10-7 or e=10-8
(accuracy of the solution has been checked by making comparisons with
solutions obtained by means of non regularized methods).

o for the preconditioning procedure, using Evans' one (SSOR with w=1)
applied to the Hessian including the non linear part (polynomial
regularization makes it easy to calculate @"¢(x)).

, (Table 7) shows efficiency of this strategy on example 2 with a structured
mesh with 4506 degrees of freedom, of which 50 are involved in the contact.

Method Iterations CPU time
GC3 (a=1) 277 9mn20s
SORP
(o opti=1,86) 3646 26mn19s

Table 7 example 2 (4506 degrees of freedom)
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