
HAL Id: hal-04689420
https://hal.science/hal-04689420v1

Preprint submitted on 12 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Genetic and Graph-Guided Feature Learning Strategy
for Improving Decision Tree Construction

Nour El Islem Karabadji, Abdelaziz Amara Korba, Ali Assi, Hassina Seridi,
Mohamed Aimen, Yacine Ghamri-Doudane, Abdelghani Lakhdari, Mohamed

Elati, Wajdi Dhifli

To cite this version:
Nour El Islem Karabadji, Abdelaziz Amara Korba, Ali Assi, Hassina Seridi, Mohamed Aimen, et al..
A Genetic and Graph-Guided Feature Learning Strategy for Improving Decision Tree Construction.
2024. �hal-04689420�

https://hal.science/hal-04689420v1
https://hal.archives-ouvertes.fr

A Genetic and Graph-Guided Feature Learning Strategy for Improving Decision Tree
Construction

Nour El Islem Karabadji𝑎,𝑏,ℎ (n.karabadji@ensti-annaba.dz), Abdelaziz Amara Korba𝑐,𝑑
(abdelaziz.amara_korba@univ-lr.fr), Ali Assi𝑒 (axacad5@rit.edu), Hassina Seridi𝑏(seridi@labged.net), Mohamed

Aimen Karabadji𝑔 (ma.karabadji@insidjam.com), Yacine Ghamri-Doudane𝑑 (yacine.ghamri@univ-lr.fr),
Abdelghani LAKHDARI𝑎 (a.lakhdari@ensti-annaba.dz), Mohamed Elati𝑓 (mohamed.elati@univ-lille.fr), Wajdi

Dhifli𝑓 (wajdi.dhifli@univ-lille.fr).

𝑎 National Higher School of Technology and Engineering, Laboratoire De Technologies Des Systemes Energetiques (LTSE)
E3360100, 23005, Annaba, Algeria.
𝑏 Electronic Document Management Laboratory (LabGED), Badji Mokhtar-Annaba University, P.O. Box 12 Annaba, Algeria.
𝑐 Networks and Systems Laboratory (LRS), Badji Mokhtar-Annaba University, P.O. Box 12 Annaba, Algeria.
𝑑 L3i, University of la Rochelle, Av. Michel Crépeau, 17042 La Rochelle, France.
𝑒 Rochester Institute of Technology, Dubai, United Arab Emirates.
𝑓 CANTHER, University of Lille, CNRS UMR 1277, Inserm U9020, 59045 Lille, France.
𝑔 Insidjam ERP Villa ELDER, Boumerdes, Algeria.
ℎ Environmental Research Centre, Annaba, Algeria.

Corresponding Authors:
Nour El Islem Karabadji
National Higher School of Technology and Engineering, Laboratoire De Technologies Des Systemes Energetiques (LTSE)
E3360100, 23005, Annaba, Algeria.
Tel: (+213) 38 43 84 02
Fax: +213 (0) 38 43 84 01
n.karabadji@esti-annaba.dz
Wajdi Dhifli
CANTHER, University of Lille, CNRS UMR 1277, Inserm U9020, 59045 Lille, France.
Tel.: +33 (0)3 20 96 40 40
Fax: +33 (0)3 20 95 90 09
wajdi.dhifli@univ-lille.fr

A Genetic and Graph-Guided Feature Learning Strategy for
Improving Decision Tree Construction
Nour El Islem Karabadjia,b,h,∗, Abdelaziz Amara Korbac,d, Ali Assie, Hassina Seridib, Mohamed
Aimen Karabadjig, Yacine Ghamri-Doudaned, Abdelghani Lakhdaria, Mohamed Elatif and
Wajdi Dhiflif,∗

aNational Higher School of Technology and Engineering, Laboratoire De Technologies Des Systemes Energetiques (LTSE) E3360100, 23005,
Annaba, Algeria.
bElectronic Document Management Laboratory (LabGED), Badji Mokhtar-Annaba University, P.O. Box 12 Annaba, Algeria.
cNetworks and Systems Laboratory (LRS), Badji Mokhtar-Annaba University, P.O. Box 12 Annaba, Algeria.
dL3i, University of la Rochelle, Av. Michel Crépeau, 17042 La Rochelle, France.
eRochester Institute of Technology - RIT Dubai - United Arabe Emirates.
fCANTHER, University of Lille, CNRS UMR 1277, Inserm U9020, 59045 Lille, France.
gInsidjam ERP Villa ELDER, Boumerdes, Algeria.
hEnvironmental Research Centre, Annaba, Algeria.

A R T I C L E I N F O
Keywords:
Decision Tree
Feature selection
Feature Construction
Genetic Algorithm
Internet of Vehicles

Abstract
Machine learning algorithms have offered unprecedented solutions for many real-world prob-
lems. These algorithms frequently involve using a large number of features. However, several
of these features could not be very informative due to data uncertainties, such as noise and
residual variation. Decision trees are among the most preferred classification models. This is due
to their simplicity, explainability, and readability. However, data inaccuracies could impact the
construction of decision trees and thus hinder their results. Feature selection and construction
present promising research direction to enhance the performance of decision tree models. In
this paper, we present a strategy that combines feature selection and construction where the
construction of new features is performed by using the ones that were not chosen during the
selection step. However, the search space of combinations of selected/constructed features is
extremely large. To find the best solution, a genetic algorithm has been developed combined
with a graph covering vertices set guided approach. The obtained results on a large number of
datasets from the UCI Repository demonstrate that our approach outperforms both recent and
classical decision tree construction techniques. We also present a successful use case of our
approach in detecting Botnet traffic in the Internet of Vehicles.

1. Introduction
Classification is one of the most important predictive modeling problem. Out of the different existing classification

algorithms, decision tree (DT) is considered to be a prominent and robust classifier. It has proven its efficiency as a
standalone classifier (Karabadji, Khelf, Seridi, Aridhi, Remond and Dhifli, 2019) as well as a weak learner in ensemble
methods (Karabadji, Korba, Assi, Seridi, Aridhi and Dhifli, 2023). Decision tree uses a set of rules to make decisions
where the dataset is split repeatedly into subsets of samples. The splitting is based on the most significant features
(splitting features) in the input samples, and this step is repeated recursively until all samples belonging to the same class
(leaf) are isolated (or the decision tree reaches a predefined maximum depth). In general, the splitting step generates
large complex DTs that may include data uncertainties. Pruning techniques are used to address this issue. They allow
to discard one or more branches (sub-trees) from the DT including noisy or irrelevant data. However, pruning the
overgrowing tree may lead to underfitting or overfitting. Therefore, finding the right balance between complexity and
accuracy is a critical aspect of decision tree modeling (Quinlan, 1987).

∗Corresponding author.
n.karabadji@ensti-annaba.dz (N.E.I. Karabadji); abdelaziz.amara.korba@univ-annaba.org (A. Amara Korba);

axacad5@rit.edu (A. Assi); seridi@labged.net (H. Seridi); ma.karabadji@insidjam.com (M.A. Karabadji);
yacine.ghamri@univ-lr.fr (Y. Ghamri-Doudane); a.lakhdari@ensti-annaba.dz (A. Lakhdari); mohamed.elati@univ-lille.fr (M.
Elati); wajdi.dhifli@univ-lille.fr (W. Dhifli)

ORCID(s):

Karabadji et al.: Preprint submitted to Elsevier Page 1 of 21

A Genetic and Graph-Guided Feature Learning Strategy for Improving Decision Tree Construction

In classification, features that are irrelevant or redundant can hinder the accuracy, and increase the complexity of
the classification model and the running time (Karabadji, Seridi, Bousetouane, Dhifli and Aridhi, 2017). The objective
of feature selection is to select a subset of variables that effectively characterizes the input data, while also reducing the
influence of noise or insignificant variables (Chandrashekar and Sahin, 2014; Tan, Gui and Qiu, 2024; SabbaghGol,
Saadatfar and Khazaiepoor, 2024). Feature construction methods, on the other hand, are utilized to generate new,
higher-level features from the original ones. This is done to reduce the dimensionality of the features, enhance the
classification performance, and can reveal hidden/weak signals in the original features (Vouk, Guid and Robnik-
Šikonja, 2023).

Feature selection and construction can be considered as alternative methods to tackle the complexity-accuracy
balance (discussed earlier), and to improve the classification performances of DTs (Ma and Gao, 2020b). Typically,
these techniques are used during the preprocessing as filters. However, although it is more complex, feature selection
and construction can also be embedded and performed during the model construction.

Combining feature selection and construction can reduce feature dimensionality, leading to improved classification
results (Tran, 2018). Therefore, adopting this solution will enable us to improve the construction of a compact decision
tree with superior classification capabilities.

The main contributions of the paper are as follows:
• We present a novel method for improving the performances of decision trees by performing both feature selection

and the construction of new features based on the ones that were not selected.
• As the search space is extremely large, we developed a genetic algorithm that employs a graph-guided strategy

to discover the optimal solution among the numerous potential candidates.
• We used a wide range of datasets selected from the UCI machine learning repository to experimentally evaluate

the proposed method against existing competitors. This evaluation shows the effectiveness of the proposed
approach.

• We further evaluate our method on a real world application for detecting Botnet traffic in the Internet of Vehicles
(IoV), using the experimental framework developed in (Rahal, Amara Korba, Ghoualmi-Zine, Challal and
Ghamri-Doudane, 2022). The obtained results show the competitivity and high performance of our approach.

The remaining sections of the paper are organized as follows. In Section 2, we explore existing research on the
construction of decision trees. In Section 3, we describe the preliminaries and used notations. In Section 4, we discuss
the proposed decision tree construction method. Section 5 reports the benchmark datasets and the experimental setup
configuration. The experimental results on benchmark datasets are presented in Section 6. In Section 7, we demonstrate
the validity of the proposed approach on a real-world application for Botnet traffic detecting in the IoV. Finally, the
conclusion of the paper is presented in Section 8.

2. Related Works
Many approaches have been proposed to develop effective ways of building optimized decision trees. In this context,

evolutionary and meta-heuristic approaches have often been used (Fu, Golden, Lele, Raghavan and Wasil, 2006;
Otero, Freitas and Johnson, 2012; Boryczka and Kozak, 2015; Karabadji et al., 2017, 2019; Liu, Lin, Lai and Miao,
2022). Based on swarm intelligence and using Ant-Colony Optimization, (Otero et al., 2012; Boryczka and Kozak,
2015) propose approaches to build trees. Ant-Tree-Miner (Otero et al., 2012) selects the nodes using the amount of
pheromone. It uses the information gain ratio from the C4.5 approach as a heuristic function. ACDT (Boryczka and
Kozak, 2015) follows the same principle as in Ant-Tree-Miner. It applies a modified decision criteria to select decision
nodes where each ant creates a decision tree. (Karabadji et al., 2019) proposes an approach based on the particle
swarm optimization (PSO). This approach identifies the optimal combination of learning samples and feature subsets
to construct a decision tree model. This model offers the best generalization on a given training set and overcomes both
tree size and overfitting problems.

In their study, the authors of (Fu et al., 2006) proposed a method that begins with an initial population of trees.
Subsequently, genetic operations are applied to refine this population. The initial tree population, originally generated
using the C4.5 method, undergoes a correction and pruning process.

Karabadji et al.: Preprint submitted to Elsevier Page 2 of 21

A Genetic and Graph-Guided Feature Learning Strategy for Improving Decision Tree Construction

Similarly, in (Karabadji et al., 2017) the authors introduced an evolutionary meta-heuristic optimization-based
approach for identifying the optimal settings during the construction of a decision tree. Their approach involves
utilizing a genetic algorithm in conjunction with a multi-objective function to extract the most suitable decision
tree. The objective function takes into account several factors, including precision with test samples, the reliability
of constructing the decision tree with the smallest feasible training set and the largest possible testing set, as well as
the choice of feature set.

Numerous studies have focused on the features selection and/or construction. The results obtained have demon-
strated a significant improvement in the performance of decision trees. In (Tran, Xue and Zhang, 2019), the
authors explored a variety of methods for generating multiple features and evaluated their efficiency and underlying
characteristics. This analysis provided valuable insights about the process of constructing multiple features using
genetic programming on high-dimensional data. (Ma and Gao, 2020b) proposes a hybrid approach that employs genetic
programming based on feature construction and selection. They suggest creating multiple features before selecting the
most effective ones based on combine two filter methods.

Two methods for constructing genetic programming based classifiers have been proposed in (Ma and Gao, 2020a)
to mitigate the negative impact of irrelevant and redundant features. The first method (GPMO) is based on a multiple-
objective fitness function that simultaneously minimizes the classification error rate and the number of selected
features. The second method (FSGPMO) involves using a feature selection technique, such as linear forward selection
(LFS), to eliminate irrelevant and redundant features before constructing classifiers using GPMO.

PSOFC (Xue, Zhang, Dai and Browne, 2013) is a PSO-based feature construction approach. It builds a single high-
level feature from the original low-level features to directly solve binary classification problems. BFC-GA (Hammami,
Bechikh, Louati, Makhlouf and Said, 2020) is a bi-level evolutionary method for features construction. An upper-level
population is used to select features, and a lower-level population is used to find the best combinations of features. EFC
(Explainable Feature Construction) (Vouk et al., 2023) reduces the large search space of constructive induction to a
linear space of co-occurring features. This approach permits to construct various types of features including logical,
relational, Cartesian and numerical operators. These new features are built from rule learning and threshold-based
features.

3. Preliminaries and definitions
This section presents the preliminaries and definitions related to the Power-set system and graph minimum vertex

cover.
Definition 1. (Power-set system) Let 𝐸 be a finite set. With the subset relation ⊆, the power-set system (𝐸) is a
partially ordered set, also known as poset, composed of all possible subsets of 𝐸, ((), ⊆).

Given a set of features  of size 𝑛. The power-set () has 2𝑛 subsets of possible combinations of features.
Each subset in () is denoted by  𝑖 where 𝑖 is an integer in [0, 2𝑛]. This subset can be identified by its size and
identifier denoted by 𝑆 𝑖

and 𝐼𝐷 𝑖
, respectively. () is a lattice such that ∀ 𝑖, 𝑗 ∈ (), the least

upper bound is  𝑖 ∪ 𝑗 ∈ () and the greatest lower bound is  𝑖 ∩ 𝑗 ∈ ().
A lattice 𝐴𝑇 can be organized as follows:
• Every subset of features, 𝑖.𝑒.  𝑖, is a node in  .
• The bottom node corresponds to the empty set ∅ and the top node corresponds to the  set. Thus, ∅ and 

are the least element and the greatest element of  , respectively.
•  consists of 𝑛 + 1 ranges where 𝑛 = | |. Each range 𝑘, denoted by 𝑅𝑘 where 𝑘 ∈ {0,… , 𝑛}, consists of

(𝑛
𝑘

)

= 𝑛!
𝑘!(𝑛−𝑘)! features subsets of size 𝑘. For example, range 𝑅0 includes the empty subset ∅, 𝑅1 contains all the

subsets with one feature, and so forth.
Definition 2. (Child node). A node  𝑥 is a child of a node  𝑦 in a lattice  , if the following properties hold:

1.  𝑥 ⊂  𝑦
2.  𝑥 and  𝑦 differ by exactly one feature.

Karabadji et al.: Preprint submitted to Elsevier Page 3 of 21

A Genetic and Graph-Guided Feature Learning Strategy for Improving Decision Tree Construction

Figure 1: An illustrative example of a power-set system.

A child node  𝑥 is called more general (respectively more specific) than a node  𝑦, if  𝑥 and  𝑦 differs
by more than one feature.

In addition to the ⊆ order between subsets at different levels, two other linear orders are defined. The first
one, denoted by ⪯, is defined between subsets at the same range of the power-set. This order is introduced as
a lexicographic order between features in the same subset where  𝑣 ⪯  𝑤 ⇒ 𝑣 ≤ 𝑤. The second one,
denoted by ⊴, introduces a linear lexicographic order between ordered feature sets having equivalent sizes. An
ordered feature set  𝑖 = {𝑎𝑖0 , 𝑎𝑖1 ,… , 𝑎𝑖𝑡 ,… , 𝑎𝑖𝑛} is lexicographically more general than an ordered features set
 𝑗 = {𝑎𝑗0 , 𝑎𝑗1 ,… , 𝑎𝑗𝑡 ,… , 𝑎𝑗𝑛}, if and only if the equation 1 is true:

∃𝑡, 0 ⩽ 𝑡 ⩽ 𝑛, 𝑎𝑖𝑘 = 𝑎𝑗𝑘 and 𝑎𝑖𝑡 ⪯ 𝑎𝑗𝑡 , ∀ 𝑘 < 𝑡 (1)

Example 1. Let  = {●,▲,■,◆} be a set of four features. Figure 1 illustrates the power-set () where:

1. The subsets  𝑖 are arranged by their sizes from 0 to | | = 4;
2. At each level, subsets  𝑖 are indexed by their position at this level (𝑖.𝑒., chain).

According to this formalization, the set {●,▲}, at the range 2, can be identified by its size 𝑆 2
= 2 and position

𝐼𝐷 2
= 0.

In the following, graph related definitions will be presented. These definitions will be used during the feature
construction (see Section 4.2).
Definition 3. (Vertex Cover). A vertex cover, denoted by , in a graph 𝐺 is a set of vertices such that each edge has
at least one of its two end points in this set.

Definition 4. (Minimum Vertex Cover). A minimum vertex cover in a graph 𝐺 is a vertex cover that has the smallest
number of vertices among all possible vertex covers.

Example 2. In Figure 2, the set {1, 2, 4, 8} is a minimum vertex cover of the graph 𝐺 since it is a vertex cover and
there is no other vertex cover with fewer vertices.

Karabadji et al.: Preprint submitted to Elsevier Page 4 of 21

A Genetic and Graph-Guided Feature Learning Strategy for Improving Decision Tree Construction

1

2

3

4

5

6

7

8

Figure 2: An undirected graph 𝐺. Red vertices represent a minimum vertex cover in 𝐺.

4. Evolutionary mining of optimal decision tree
This Section depicts our genetic algorithm-based approach for decision tree construction. This approach contains

three stages. First, encoding and decoding operations are presented. Next, the feature construction process is introduced.
Then, a fitness function is defined. Finally, a genetic optimization step is applied to build an optimal decision tree.
4.1. Encoding and decoding of chromosomes

This phase is a crucial step in the genetic algorithm. It allows to appropriately represent the candidate solutions in
a format that can be processed by the genetic algorithm.
4.1.1. The encoding phase

The purpose of the encoding phase consists of defining an injective function that represents each candidate solution
as a binary string of 0s and 1s.

Figure 3 illustrates an example of a representation of a chromosome. This chromosome consists of 4 decision
variables:

1. 𝑔𝑒𝑛𝑒0 : represents the variable 𝑖𝑠_𝑝𝑟𝑢𝑛𝑒𝑑.
2. 𝑔𝑒𝑛𝑒1 : represents the variable 𝑆 𝑖

.
3. 𝑔𝑒𝑛𝑒2 : represents the variable 𝐼𝐷 𝑖

.
4. 𝑔𝑒𝑛𝑒3 : represents the variable 𝑡cut.
These four genes encode distinct pieces of information. 𝑔𝑒𝑛𝑒0 encodes in one bit (0 for unpruned or 1 for pruned), if

the constructed decision tree will use pruning or not. 𝑔𝑒𝑛𝑒1 and 𝑔𝑒𝑛𝑒2 are used to represent the selected set of features.
𝑔𝑒𝑛𝑒3 is used to encode the cut-off threshold 𝑡𝑐𝑢𝑡 that will be used later to prune the similarity graph between the non
selected features (detailed later). Each of these genes will be encoded using 𝑋 bits. 𝑆 𝑖

is an integer in the interval
[

0, | |

]. It represents the size of the selected feature set. 𝐼𝐷 𝑖
is another integer encoded in 𝑔𝑒𝑛𝑒2 in the interval

[

0…
(

|𝐴𝑇 |
𝑆 𝑖

)]. Based on both 𝐼𝐷 𝑖
and 𝑆 𝑖

, we can identify the corresponding selected subset of features  𝑖. The
𝑔𝑒𝑛𝑒3 encodes an integer in the interval [1, 9]. This integer represents a cut-off threshold that will be used to construct
new variables from the set of the not selected features.
4.1.2. The decoding phase

In this step, the four encoded decision variables are transformed into 𝑖𝑠_𝑝𝑟𝑢𝑛𝑒𝑑 binary value, a pair of selected
features set and a cut-off threshold. To achieve that, the following steps are applied. First, the identifiers of all the sets
of features (𝑖.𝑒., in the lattice) are determined. Then, the selected sets of features and the new constructed ones are
computed.

In fact, we start by computing the different decision variables. Formally:
(P) Decoding 𝑔𝑒𝑛𝑒0 (i.e., the first bit) yields a binary value, either 0 or 1, which indicates whether a pruning phase

will be undertaken or not.

Karabadji et al.: Preprint submitted to Elsevier Page 5 of 21

A Genetic and Graph-Guided Feature Learning Strategy for Improving Decision Tree Construction

Figure 3: Representation of a chromosome.

(A) The size of the selected subset of features, represented by 𝑔𝑒𝑛𝑒1, is encoded as a binary string of 𝑋1 bits. Decod-
ing 𝑔𝑒𝑛𝑒1 produces an integer 𝑆 𝑖

∈
[

0… | |

] defined here by: 𝑆 𝑖
= Integer_In(𝑋1) 𝑚𝑜𝑑𝑢𝑙𝑜 (| |).

(B) The identifier of the subset of the selected features, represented by 𝑔𝑒𝑛𝑒2, is encoded using 𝑋2 bits. Decoding
𝑔𝑒𝑛𝑒2 gives an integer 𝐼𝐷 𝑖

∈
[

0…
(

| 𝑖|
𝑆 𝑖

)] defined as follows: 𝐼𝐷 𝑖
= Integer_In(𝑋2) 𝑚𝑜𝑑𝑢𝑙𝑜 (

(

| 𝑖|
𝑆 𝑖

)

).

(C) The value encoded in 𝑔𝑒𝑛𝑒3 consists of 𝑋3 bits. Decoding 𝑔𝑒𝑛𝑒3 gives an integer in the interval [0…9
] that

allows to define the cut-off threshold 𝑡cut as follows: 𝑡cut = Integer_In(𝑋3) 𝑚𝑜𝑑𝑢𝑙𝑜(10)
10 .

The second step focuses on 1) generating the selected features and 2) constructing the new features using the not
selected irrelevant ones. In fact, using the integers 𝑆 𝑖

and 𝐼𝐷 𝑖
, the set of selected features is generated based on

the Algorithm 1 and the equation (2). Formally:

𝐼𝐷 0
+
∑

𝑥=1

(𝑛 − ( 𝑖[𝑎] + 𝑥))!
(𝑘 − 𝑎)! ∗ ((𝑛 − ( 𝑖[𝑎] + 𝑥)) − (𝑘 − 𝑎))!

≤ 𝐼𝐷 𝑖 (2)

where 𝐼𝐷 0
is the identifier of the subset  0. Starting from this first subset  0, we can pick out all the

elements from  𝑖[1] to  𝑖[𝑘′]. Each element will be updated if it exists an 𝑥 > 0 for which the equation 2 is
valid, where  𝑖[𝑎] =  𝑖[𝑎] + 𝑥, (𝑎 is the index of the array  𝑖). As a results, the set of the selected features
𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝐴𝑇 _𝑠𝑒𝑡 will be determined.
4.2. Feature construction

To generate new features from the non selected ones, an undirected graph 𝐺 = (𝑉 , 𝐸) will be constructed where 𝑉
is the set of nodes and 𝐸 is the set of edges. Each node 𝑣 ∈ 𝑉 is a feature which does not belong to 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝐴𝑇 _𝑠𝑒𝑡.
Formally: 𝑉 =  − 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝐴𝑇 _𝑠𝑒𝑡. With each edge 𝑒 = (𝑣𝑎, 𝑣𝑏) ∈ 𝐸, we associate a real number 𝑤𝑒 that
represent its weight. This weight is computed using the Pearson similarity between the nodes (features) 𝑣𝑎 and 𝑣𝑏. All
the edges having weights less than 𝑡cut will be pruned from 𝐺. Using this pruned graph, the minimum cover vertex
set  is then computed. Based on , subsets of nodes are constructed from not selected features. Each subset is
composed of a node from  and its neighbor nodes within the graph 𝐺. Finally, each set of not selected features will
be merged to generate a new feature by using a mean vector.
Example 3. Given a feature set  composed of 20 features. Figure 4 illustrates two binary sequences representing
two chromosomes (a) and (b). Decoding (a) gives the triplet 𝐿 = 5, 𝑖𝑑 = 5997 and 𝑡cut = 0.2. Similarly, decoding

Karabadji et al.: Preprint submitted to Elsevier Page 6 of 21

A Genetic and Graph-Guided Feature Learning Strategy for Improving Decision Tree Construction

Algorithm 1: | Generation of subsets of features
Input:  , 𝐼𝐷 𝑖

and 𝑘. in
Output: An array of integers of length 𝑘 > 0. out

1: 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝐴𝑇 _𝑠𝑒𝑡[𝑘] ← {1…1};
2: 𝐼𝐷 0

= 0;
3: for 𝑎 = 1 to 𝑘 do
4: 𝑐𝐼𝐷 ← 𝐼𝐷 0

;
5: 𝑥 ← 0;
6: while (𝑐𝐼𝐷 <= 𝐼𝐷 𝑖

) do
7: 𝐼𝐷 0

← 𝑐𝐼𝐷;
8: 𝑒 ←

( −(𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝐴𝑇 _𝑠𝑒𝑡[𝑎−1]+𝑥)
𝑘−𝑎

);
9: 𝑐𝐼𝐷 ← 𝑐𝐼𝐷 + 𝑒;

10: if (𝑐𝐼𝐷 <=𝐼𝐷 𝑖
) then

11: 𝑥 ← 𝑥 + 1;
12: end if
13: end while
14: 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝐴𝑇 _𝑠𝑒𝑡[𝑎 − 1] ← 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝐴𝑇 _𝑠𝑒𝑡[𝑎 − 1] + 𝑥;
15: if (𝑎 − 1 < 𝑘 − 1) then
16: 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝐴𝑇 _𝑠𝑒𝑡[𝑎] ← 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝐴𝑇 _𝑠𝑒𝑡[𝑎 − 1] + 1;
17: end if
18: end for
19:
20: return 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝐴𝑇 _𝑠𝑒𝑡;

Figure 4: Example of two chromosomes.

the chromosome (b) gives the triplet 𝐿 = 10, 𝑖𝑑 = 109 and 𝑡cut = 0.7. Based on the Algorithm 1, the features sets
selected from (a) and (b) are [2, 7, 8, 17, 20] and [1, 2, 3, 4, 5, 6, 7, 9, 15, 19], respectively. Thus, the not selected
features sets are [1, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19] and [8, 10, 11, 12, 13, 14, 16, 17, 18, 20],
respectively.

Example 4. Let us consider a set of 5 instances (see Figure 5). Each instance consists of four features 𝑥1, 𝑥2, 𝑥3, 𝑥4
and one feature 𝑦 representing its label (𝑖.𝑒., class). In addition, suppose that the following subsets of features are
computed to generate two new features:

1. {𝑥1, 𝑥2}
2. {𝑥1, 𝑥3, 𝑥4}

Thus, the mean vector 𝑎1 generated from {𝑥1, 𝑥2} is equal to (1 + 5)∕2, (2 + 2)∕2, (3 + 3)∕2, … , (5 + 1)∕2.
Similarly, the mean vector 𝑎2 is computed from {𝑥1, 𝑥3, 𝑥4} and is equal to 1+4+3

3 , 2+3+5
3 , 3+2+1

3 , … , 5+2+1
3 (see

Figures 5 (b) and (c)).

4.3. Evaluation of chromosomes
To evaluate the candidate solutions, an evaluation (fitness) function is defined. At each iteration, this function will

be tested over all chromosomes. The chromosomes with the best fitness scores will be considered for the next iteration.
Karabadji et al.: Preprint submitted to Elsevier Page 7 of 21

A Genetic and Graph-Guided Feature Learning Strategy for Improving Decision Tree Construction

𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒚

5.0 4.0 3.0 𝑐1

2.0 3.0 5.0 𝑐2

3.0 2.0 1.0 𝑐1

. . . .

𝑥1

1.0

2.0

3.0

.

5.0 1.0 2.0 1.0 𝑐3

𝒂𝟏

3.0

2.0

3.0

.

3.0

𝒂𝟐

2.67

3.33

2

.

2.67
(a)

(c)

(b)

Figure 5: An illustrative example of the creation of two new features.

More precisely, each chromosome 𝑐ℎ encodes a candidate solution  (i.e., the selected and constructed features). It
will be evaluated in terms of its ability to generate an accurate decision tree  .

The fitness function is defined as the average score of the 10-fold cross-validation accuracy (𝐴𝑣𝑔𝐴𝐶𝐶) of the
decision tree (constructed based on ) over only the transformed training samples  ′. Formally, the fitness of a
chromosome is defined as:

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑐ℎ) = 𝐴𝑣𝑔𝐴𝐶𝐶10−𝐶𝑉 ( ( ′)) (3)
4.4. Genetic operators

This section will describe the crossover and mutation operators used in our approach.
Crossover. This operator is applied on two chromosomes (parents) randomly picked from the population. This

leads to the generation of a new chromosome. This latter is formed by the displacement of a portion of the considered
(parents) chromosomes. For the next generation, two offsprings will be generated. Among the different types of
crossover, single point crossover will be applied in our approach.

Mutation. This operation is implemented on an individual by altering one or more randomly chosen genes. It is one
of the operators that facilitate the introduction of diversity in the population. The altered genes are randomly selected
from the parent chromosomes to create a new offspring. The mutation percentage defines the likelihood of substituting
one bit with another (changing 0 to 1 or 1 to 0) in a random manner, without any interaction with other chromosomes.
4.5. The convergence criteria

The genetic algorithm will converge when the fittest individual of the newly generated population is an optimal or
a near-optimal solution. To avoid the cases of the high computation time, the genetic algorithm can be terminated after
a predefined maximum number of generations. In our case, This number is set to 2000.

5. Experimental setup
Software. All experiments are carried out on a 2.9 GHz Intel Core i5 dual-core PC with 12 GB of RAM. Our

approach, termed 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇 , is implemented in Java using the frameworks Weka (Witten, Frank, Hall, Pal and
DATA, 2005) and Mosek (ApS, 2019).

Karabadji et al.: Preprint submitted to Elsevier Page 8 of 21

A Genetic and Graph-Guided Feature Learning Strategy for Improving Decision Tree Construction

Table 1
Experimental datasets.

Datasets #𝐶𝑙𝑎𝑠𝑠𝑒𝑠 #𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 #𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦_𝐶𝑙𝑎𝑠𝑠_𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (in %)
Artificial-characters (AC) 10 7 10218 11.72
Wisconsin-Breast-Cancer (WBC) 2 9 699 65.52
Column2C (C2) 2 6 310 67.74
Column3C (C3) 3 6 310 48.38
CNAE-9 (CN) 9 856 1080 11.11
Dermatology (DE) 6 34 366 30.60
Diabetes (DI) 2 8 768 65.10
Heart (HE) 2 13 270 55.55
Hepatitis (HEP) 2 19 155 79.35
Ionosphere (IO) 2 34 351 35.89
Letter (LE) 26 16 20000 04.06
Liver Disorders (LI) 2 6 345 57.97
Mammographic Mass (MA) 2 5 961 53.69
Optdigits (OP) 10 64 5620 10.17
Parkinsons (PA) 2 22 195 75.38
Pendigits (PE) 10 16 10992 10.40
QSAR biodegradation (QS) 2 41 1055 66.25
Segment (SE) 7 19 2310 14.28
Sonar (SO) 2 61 208 46.63
Spambase (SP) 2 57 4601 60.59
Spectf heart (SPE) 2 44 349 72.77
Vehicle (VE) 4 18 846 74.23
Waveform-5000 (WA) 3 40 5000 66.16

Datasets. We experiment on 23 real-world benchmark datasets from UCI (Dua and Graff, 2017). Their statistics
are summarized in Table 1 where #𝐶𝑙𝑎𝑠𝑠𝑒𝑠 represents the number of classes, #𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 represents the number of
features, and #𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 is the number of samples (instances) in each dataset. Moreover, for each dataset, we show
the 𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦_𝐶𝑙𝑎𝑠𝑠_𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 which refers to the obtained accuracy (in %) if the most frequent class is always
predicted. The sizes of the used datasets range from 195 up to 20000 instances, and the number of attributes ranges from
4 to 856. The used dataset also encompass both binary and multiclass classifications, and 9 of them are of balanced
data. This variation of characteristics ensures a deliberate and unbiased selection of databases for our analysis.

Parameter settings. To evaluate the performance of our approach, we perform a 10-fold cross validation
classification on the benchmark datasets. Changes are made between randomly selected pairs of chromosomes (𝑖.𝑒.,
crossover) using a probability value of 0.8, a mutation probability value of 0.05, 20 chromosomes, and 2000 iterations.

Baseline models. We compare 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇 with:
• C4.5 algorithm (i.e., J48), implemented in Weka, with and without pruning;
• EFC (Vouk et al., 2023) with and without the feature selection. We use the authors implementation with the

default parameters.

6. Results and analysis
Our approach 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇 will be evaluated in two scenarios. The first one involves comparing our approach

to C4.5 and EFC in terms of accuracy, precision, recall, F-measure, tree size, and number of generated attributes. Note
that the EFC method does not provide precision, recall, F-measure, or a confusion matrix, making it impossible to
compute these metrics in this specific case. The second scenario is a real-world application designed to evaluate the
effectiveness of our approach in solving a practical problem (presented in the next Section).

Karabadji et al.: Preprint submitted to Elsevier Page 9 of 21

A Genetic and Graph-Guided Feature Learning Strategy for Improving Decision Tree Construction

Table 2: Precision, recall and F-measure (in %) of our approach compared to C4.5.

Datasets Metrics C4.5
with pruning

C4.5
without pruning 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇

AC
PR(%) 74.00 74.29 74.17
RE(%) 73.65 73.98 74.61
F1(%) 73.61 73.93 74.16

WBC
PR(%) 94.69 93.78 96.45
RE(%) 94.56 93.70 96.61
F1(%) 94.57 93.68 96.42

C2
PR(%) 80.92 80.92 84.21
RE(%) 80.64 80.64 82.90
F1(%) 79.75 79.75 82.63

C3
PR(%) 81.39 81.09 79.92
RE(%) 80.96 80.64 79.35
F1(%) 80.84 80.51 78.68

CN
PR(%) 90.76 88.63 89.75
RE(%) 88.79 87.87 88.60
F1(%) 89.00 87.79 88.60

DE
PR(%) 93.72 92.61 97.95
RE(%) 93.71 92.62 97.56
F1(%) 93.70 92.61 97.51

DI
PR(%) 74.19 74.20 72.58
RE(%) 74.34 74.47 72.24
F1(%) 73.64 73.95 70.57

HE
PR(%) 79.29 75.67 81.86
RE(%) 78.51 74.81 80.76
F1(%) 78.25 74.64 80.44

HEP
PR(%) 75.90 76.48 82.92
RE(%) 76.79 77.41 83.17
F1(%) 75.82 76.18 81.71

IO
PR(%) 89.69 89.97 92.56
RE(%) 89.45 89.73 92.03
F1(%) 89.25 89.56 91.98

LE
PR(%) 87.99 88.07 88.18
RE(%) 87.79 87.85 88.01
F1(%) 87.81 87.87 88.02

LI
PR(%) 67.35 67.12 67.79
RE(%) 67.21 66.94 69.86
F1(%) 66.59 66.029 68.98

MA
PR(%) 81.68 80.78 81.97
RE(%) 81.68 80.54 82.24
F1(%) 81.64 80.45 82.01

OP
PR(%) 90.67 90.50 91.06
RE(%) 90.42 90.26 91.27
F1(%) 90.43 90.26 91.05

PA
PR(%) 81.47 88.53 89.52
RE(%) 80.50 87.26 89.33
F1(%) 79.92 86.92 89.24

PE
PR(%) 96.60 96.56 96.48
RE(%) 96.57 96.53 96.43
F1(%) 96.57 96.53 96.42

Karabadji et al.: Preprint submitted to Elsevier Page 10 of 21

A Genetic and Graph-Guided Feature Learning Strategy for Improving Decision Tree Construction

QS
PR(%) 83.34 81.94 85.07
RE(%) 83.50 82.08 85.12
F1(%) 83.39 82.00 85.01

SE
PR(%) 96.39 96.37 96.53
RE(%) 96.32 96.32 96.42
F1(%) 96.31 96.31 96.41

SO
PR(%) 68.31 68.31 74.53
RE(%) 67.78 67.78 73.08
F1(%) 67.54 67.54 72.40

SP
PR(%) 92.72 92.64 92.80
RE(%) 92.71 92.61 92.79
F1(%) 92.70 92.60 92.78

SPE PR(%) 86.57 86.96 88.16
RE(%) 84.50 84.78 87.68
F1(%) 84.85 85.22 87.69

VE PR(%) 70.62 71.36 72.53
RE(%) 70.33 70.57 72.22
F1(%) 69.60 70.07 71.58

WA PR(%) 74.38 74.10 81.87
RE(%) 74.30 74.02 81.73
F1(%) 74.29 74.01 81.72

Table 2 illustrates the obtained results in terms of precision, recall, and F-measure between 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇 and
C4.5. The results clearly show the superiority of 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇 where it outperforms C4.5 (with and without pruning)
in 19 out of the 23 benchmark datasets.

Table 3 shows the obtained accuracy results for our approach compared to EFC and C4.5. The results show that
𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇 demonstrates impressive performance, often outperforming the competing methods C4.5 (with and
without pruning) and EFC (with and without feature selection). More specifically, regarding the number of classes,
we have 10 datasets ranging from 3 to 26 classes. 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇 proves to be more effective than the competitive
approaches in terms of precision with a score of 6 out of 10. Similarly, for binary classification datasets, it achieves
a higher score in 8 out of the 13 datasets. Based on the number of features in the datasets, the results show that
𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇 is significantly better than the competitive approaches in 10 out of the 16 datasets having more than 10
features and in 4 out of the 7 datasets with fewer than 10 features. Regarding the number of instances, 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇
dominates all the other approaches in 7 out of 9 of the datasets with a number of instances exceeding 1000. It also scores
best in 7 out of the 14 datasets with less than 1000 instances. It is worth noting that the benchmark datasets contain
10 balanced and 13 unbalanced. Our approach scored best in 7 out of the 10 balanced and 7 from the 13 unbalanced
datasets. Notably, even on the datasets where 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇 did not outperform the best competing approach, the
difference between its accuracy and the best score is very small.

Table 4 shows the average size of decision trees constructed in 10-cv. A cross examination of the results in both
Table 3 and 4 shows that 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇 has a better ability to effectively balance model complexity and performance,
than both C4.5 and EFC. This allows our approach to generate simpler yet more efficient decision tree models. In the
same context, we also show the number of constructed features for 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇 and EFC (with and without feature
selection) in Table 5 as well as the frequency of pruning per dataset (only for 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇). A cross examination
of the results in the Tables 3, 4, 5 and the Figure 6 demonstrates a notable efficiency of 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇 in feature
reduction across various dataset. For instance, for the dataset WA, 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇 was able to make a notable increase
in accuracy while having a much smaller decision tree model than the competing methods and with only 25.20 averagely
constructed features. The same observation could be noticed with multiple other datasets such as WBC and MA, which
endorses the effective strategy of our approach in achieving model simplicity without sacrificing accuracy. Finally,
we also notice that, given the nature of decision trees, particularly the pruning phase, we can observe that the two
algorithms, 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇 and 𝐸𝐹𝐶 , can construct unnecessary attributes that will be pruned later, such as 𝑉 𝐸 for
𝐸𝐹𝐶 and 𝐶𝑁 for 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇 .
Karabadji et al.: Preprint submitted to Elsevier Page 11 of 21

A Genetic and Graph-Guided Feature Learning Strategy for Improving Decision Tree Construction

Table 3
Classification accuracy (in %) of our approach compared to C4.5 and EFC.

Datasets
C4.5

with pruning
C4.5

without pruning
EFC

without feature selection
EFC

with feature selection 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇

AC 73.65 73.99 - - 74.17
WBC 94.56 93.70 94.42 95.42 96.42
C2 80.65 80.65 81.94 84.19 82.90
C3 80.97 80.65 80.32 80.00 79.35
CN 88.80 87.87 88.98 88.98 88.61
DE 93.72 92.62 94.80 95.08 97.56
DI 74.34 74.47 73.70 73.96 72.27
HE 78.52 74.81 78.15 79.63 80.74
HEP 76.79 77.42 81.21 79.88 83.17
IO 89.45 89.74 92.31 92.88 92.04
LE 87.79 87.85 - - 88.00
LI 67.22 66.95 66.12 66.12 68.98
MA 81.69 80.54 81.06 81.27 82.00
OP 90.43 90.27 87.51 90.50 91.05
PA 80.50 87.26 89.79 89.29 89.34
PE 96.58 96.53 - - 96.43
QS 83.51 82.09 83.23 83.13 85.12
SE 96.32 96.32 95.24 95.93 96.41
SO 67.79 67.79 76.45 76.90 73.07
SP 92.72 92.61 92.61 92.39 92.78
SPE 84.50 84.79 86.52 85.67 87.67
VE 70.33 70.57 72.71 73.41 72.23
WA 74.30 74.02 76.96 75.40 81.74

7. Application on the detection of Botnet traffic in Internet of Vehicles
This section addresses the critical issue of vehicular bot malware within the realm of Internet of Vehicles (IoV)

technology. Our emphasis is on the pressing need to enhance IoV security by developing an intrusion detection system
capable of identifying and mitigating the impact of vehicular bot malware on driver privacy and safety. To this end, we
propose a flow-based detection approach utilizing 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇 to identify bots within the vehicle network traffic.
Furthermore, we provide an overview of the experiments conducted to evaluate the effectiveness of this approach.
7.1. Botnet in Internet of Vehicles

The IoV is a technology that enables information exchange between vehicles and related entities, aiming to reduce
accidents, ease traffic congestion, and provide other information services (Wen, Zhang, Zhang, Cui, Cai and Chen,
2024). With its heterogeneous network architecture and compatibility with various communication devices, IoV
enables the sharing of big data and reliable communication services, expanding the application range of automotive
communication. However, with the increase in security threats, enhancing the IoV security is necessary to develop trust
among vehicles. One of the most dangerous cybersecurity threats is vehicular bot malware, which involves the remote
exploitation of a connected vehicle’s onboard computer by an attacker. This cyber threat is particularly concerning as
it can be used to execute a variety of malicious tasks remotely, including distributed network attacks (DDoS), violating
driver’s privacy (e.g., tracking their location, eavesdropping on conversations), controlling the vehicle remotely (e.g.,
opening doors, starting the engine, disabling brakes), and misleading the driver with false information about the vehicle
state.

Despite the serious impact of vehicular bot malware on driver privacy and safety, research on this topic is limited.
Only a few studies have investigated this issue. A recent work (Rahal et al., 2022) proposed a multilevel behavior-
based framework called AntibotV to detect vehicular botnets, which can detect DDoS, and in-vehicle attacks. The
framework monitors vehicle activity at the network and in-vehicle levels by training a decision tree with a set of
features extracted from network traffic data of legitimate and malicious applications and in-vehicle data. (Garip, Lin,
Reiher and Gerla, 2019) proposed SHIELDNET, a machine learning-based botnets detection mechanism. SHIELDNET

Karabadji et al.: Preprint submitted to Elsevier Page 12 of 21

A Genetic and Graph-Guided Feature Learning Strategy for Improving Decision Tree Construction

Table 4
Average size of the constructed decision tree (10-cv).

Datasets
C4.5

with pruning
C4.5

without pruning
EFC

without feature selection
EFC

with feature selection 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇

AC 2268 2444.4 - - 2366.4
WBC 20.8 40.2 25.00 19.90 12.6
C2 19.2 19.4 25.2 21.2 17.2
C3 22 23.6 24.6 23.4 25.8
CN 115.6 161.4 115.80 116.20 130.4
DE 37 45 24.20 31.00 13.6
DI 42.6 52.6 102.00 64.60 29.6
HE 37.2 64 27.30 28.90 34
HEP 16.6 28.8 16.80 19.60 24.4
IO 25.4 26 15.00 14.80 24.4
LE 2344.2 2562.2 - - 2467.4
LI 49.4 59.2 45.2 23.5 43.6
MA 21 57.8 21.90 22.60 16.6
OP 401 436.4 435.80 430.50 384.8
PA 18.8 20.2 12.00 12.20 12
PE 375.2 410.4 - - 390.4
QS 129 179 91.7 92.1 119.4
SE 80.2 87.4 91.60 85.40 81.4
SO 28.4 28.4 23.80 24.20 28.8
SP 200.6 339.6 207.50 211.20 202
SPE 41.4 43.4 32.80 33.60 43
VE 128.2 143.2 173.50 162.10 132.4
WA 594.2 609.8 706.10 732.50 330.4

specifically detects the use of GHOST (Garip, Reiher and Gerla, 2016), a botnet communication protocol that disguises
its communication over the control channel using Basic Safety Messages (BSMs). The researchers identify vehicular
botnet communication by detecting abnormal values of specific BSM fields. However, SHIELDNET’s effectiveness
relies on the use of GHOST protocol, so it may not be effective if the botmaster changes the communication protocol.

This paper aims to analyze and model vehicle network traffic to effectively detect bots. Among the various available
intrusion detection techniques, decision trees have proven to be highly effective due to their ability to create rules that
classify network traffic and identify potential intrusions based on traffic features and patterns. Furthermore, the high
level of interpretability offered by decision trees is a significant advantage, allowing security analysts to comprehend
the decision-making process and rules employed by the model. This facilitates the identification of false positives and
false negatives and assists analysts in developing more efficient countermeasures while gaining a deeper understanding
of the threat. Therefore, in this paper, we propose a novel flow-based detection approach that utilizes the𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇
decision tree algorithm.

In the following, we will provide an overview of the experiment that was conducted. Firstly, we will discuss the
process of creating the dataset. Next, we will outline the steps involved in the network flow processing. Finally, we will
present the results obtained from the experiment.
7.2. Experimental environment

To test the proposed approach, we used the experimental environment built in (Rahal et al., 2022). To simulate
realistic benign vehicular network traffic, we implemented 17 applications based on safety, convenience, and
commercial criteria. It is recommended to refer to (Rahal et al., 2022) for learning more about the simulated applications
and their descriptions. To ensure diversity and realistic traffic representation, we considered various factors such as
physical-layer channel, transfer protocols, message Time-To-Live (TTL), routing protocols, trigger conditions, and
communication technologies.

We simulated four bot attacks to generate malicious network traffic related to bot malware activity. The first attack
is the Wave Short Message Protocol (WSMP) Flood, where the hacker sends WSM packets with unknown Packet

Karabadji et al.: Preprint submitted to Elsevier Page 13 of 21

A Genetic and Graph-Guided Feature Learning Strategy for Improving Decision Tree Construction

Table 5
Average numbers of constructed features (10-cv).

Datasets
EFC

without feature selection
EFC

with feature selection 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇

AC - - 4.22
WBC 22.4 16.8 1.50
C2 17.4 12.7 3.33
C3 16.3 14.2 2.00
CN 59.7 58.7 232.30
DE 11.8 12.00 18.90
DI 71.3 40.8 3.60
HE 24.4 22.8 4.10
HEP 11.3 12.00 10.75
IO 13.9 12.4 7.40
LE - - 9.50
LI 23.6 23.6 5.70
MA 17.00 13.5 1.90
OP 397.50 249.20 4.20
PA 11.00 10.1 2.00
PE - - 7.30
QS 76.90 64.40 10.10
SE 70.6 57.00 6.30
SO 20.3 19.5 14.30
SP 160.8 134.1 18.50
SPE 26.6 25.3 4.56
VE 137.7 119.00 3.44
WA 718.8 521.3 25.20

Service Identifier (PSID) field values to the targeted vehicle, causing it to exhaust its resources by attempting to check
the PSID of numerous WSM packets simultaneously. The second attack, the Geographic WSMP Flood, is a variant of
the WSMP Flood attack that operates on a larger scale. In this attack, the hacker broadcasts forged WSMP messages
within a specific geographic area, affecting all neighboring vehicles in that region, causing a significant impact on
multiple vehicles’ bandwidth and resources. The third attack is GPS tracking, where hackers can exploit vulnerabilities
to track the real-time location of a vehicle, retrieve its complete trajectory, or check its location. This paper focuses
on the real-time GPS tracking scenario, where the bot vehicle sends its latitude, longitude, speed, time, and direction
coordination in a continuous streaming mode to the botmaster. The fourth attack is Eavesdropping, where hackers can
use virtual assistant tools, such as Siri, to embed malicious commands in innocuous-seeming speech, recorded music,
or low-powered lasers. Once activated, Siri records conversations using the vehicle’s microphones and sends them to
the hacker’s remote server at regular intervals. We recommend referring to (Rahal et al., 2022) for detailed descriptions
of the four bot attacks.

We simulated various scenarios for both benign and malicious traffic based on nodes ID. We used the Network
Simulator version 3 (NS3) to conduct the simulation of vehicular traffic, while the Simulation of Urban MObility
(SUMO) package provided realistic vehicular traffic simulation. The experiment used different types of nodes and
generated traffic dataset as summarized in Table 6. Figure 7 shows the distribution of the network traffic dataset, where
green and red colors represent benign and malicious traffic, respectively.

After collecting network traffic data generated during the simulation and storing them as Packet Capture (PCAP)
files, we extracted flows and calculated features from the raw traffic. To achieve this, we utilized several scripts
developed using the popular traffic exporter CICFlowMeter (Lashkari, Draper-Gil, Mamun, Ghorbani et al., 2017).
We present the resulting list of features, along with their descriptions, in Table 7. The features under consideration can
be categorized into three main categories: time-based, bytes-based, and packets-based.
7.3. Results and discussion

In the context of Network-based Intrusion Detection (NIDS), the choice of performance metrics should focus on
the model’s ability to accurately detect and classify Bot activity while minimizing false positives. Commonly used

Karabadji et al.: Preprint submitted to Elsevier Page 14 of 21

A Genetic and Graph-Guided Feature Learning Strategy for Improving Decision Tree Construction

AC

WBC

C2

C3

CN9

DEDI
HE

HEP

IO

LE

LD

MM

OP

PA

PE

QS
SE SO

SP

SPE

VE

WA

0 1 2 3 4 5 6 7 8 9 10
Unpruned

Pruned

Figure 6: A radar chart depicting the adoption of a pruning phase within the 10 cross-validation (CV) runs.

Table 6
Simulation parameters.

Network Simulator NS3
Traffic Generator SUMO
Simulation Area Manhattan Map
Simulation Time 500 seconds
Number of Nodes 40
Max Speed 20 m/s
MAC/PHY Standard IEEE802.11p
Traffic Type WSMP, IP
Bandwidth Channel CCH, SCH
Propagation Model Two-ray ground-reflection model
Transmission Power 20 dBm
Packets Size Depend on the application and protocol
Packets Data Rate Depend on the application

metrics include True Positive Rate (TPR), False Positive Rate (FPR), Precision, Recall, F1-measure, and Area Under
the Receiver Operating Characteristic Curve (AUC). These metrics provide a comprehensive evaluation of the NIDS’s
performance in terms of its ability to detect malicious traffic while minimizing false alerts. Table 8 shows the results
of a 10-fold cross-validation (cv) evaluation of 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇 using the aforementioned metrics. The results suggest
that our approach efficiently detects bot’s network traffic with high TPR, low FPR, and high precision and F-measure.
The AUC is also high, indicating that our approach is able to distinguish between legitimate and malicious network

Karabadji et al.: Preprint submitted to Elsevier Page 15 of 21

A Genetic and Graph-Guided Feature Learning Strategy for Improving Decision Tree Construction

Table 7
List of features.
Features Description
Protocol Protocol type
Duration Duration of flow in micro second
total Fwd/bwd Packet Total packets in the forward/backward direction
total Length of Fwd/Bwd Packet Total size of packet in forward/backward direction
Fwd/Bwd Packet Length Min/Max/Mean/Std Min/Max/Mean/Std size of packet in forward/backward direction
Flow Byte/s, Packets/s Number of flow packets/Byte per second
Flow IAT Min/Max/Mean/Std Min/Max/Mean/Std time between two packets sent in the flow
Fwd/Bwd IAT Min/Max/Mean/Std/Total Min/Max/Mean/Std/Total time between two packets sent in the forward/backward direction
SYN Flag Count Number of packets with SYN
Subflow Bwd Bytes The average number of bytes in a sub flow in the backward direction
Fwd/Bwd Header Length Total bytes used for headers in the forward/backward direction
Fwd/bwd Packets/s Number of forward/backward packets per second
Min/Max/Mean/Std Packet Length Min/Max/Mean/std length of a packet
down/Up Ratio Download and upload ratio
Avg Fwd/Bwd Segment Size Average size observed in the forward/backward direction
Fwd Header Length Length of the forward packet header
Fwd Avg Bytes/Bulk Average number of bytes bulk rate in the forward direction
Avg Packet Size Average size of packet
Fwd /Bwd AVG Bulk Rate Average number of bulk rate in the forward/backward direction
Bwd Avg Bytes/Bulk Average number of bytes bulk rate in the backward direction
Bwd AVG Packet/Bulk Average number of packets bulk rate in the backward direction
Init_Win_bytes_forward/Backward The total number of bytes sent in initial window in the forward/backward direction
Subflow Fw/Bwd Packets The average number of packets in a sub flow in the Forward/backward direction
Active Min/Mean/Max/Std Min/Max/Mean/Std time a flow was active before becoming idle
Idle Min/Max/Mean/Std Min/Max/Mean/Std time a flow was idle before becoming active
Subflow Fwd/bwd Packets The average number of packets in a sub flow in the forward/backward direction
Act_data_pkt_forward Count of packets with at least 1 byte of TCP data payload in the forward direction
Subflow Fwd/bwd Bytes The average number of bytes in a sub flow in the forward/backward direction

Table 8
Predictive performances for 10-cv.

CV TPR FPR Precision F-Measure AUC ACC
CV_01 100.00% 0.00% 100.00% 100.00% 100.00% 100.00%
CV_02 99.60% 0.40% 99.60% 99.60% 99.90% 99.58%
CV_03 100.00% 0.00% 100.00% 100.00% 100.00% 100.00%
CV_04 98.40% 0.20% 98.50% 98.40% 99.50% 98.35%
CV_05 99.60% 0.40% 99.60% 99.60% 99.60% 99.58%
CV_06 100.00% 0.00% 100.00% 100.00% 100.00% 100.00%
CV_07 99.20% 0.40% 99.20% 99.10% 99.60% 99.17%
CV_08 99.60% 0.00% 99.60% 99.60% 99.80% 99.58%
CV_09 99.20% 0.10% 99.30% 99.20% 99.60% 99.17%
CV_10 100.00% 0.00% 100.00% 100.00% 100.00% 100.00%
Average 99.56% 0.15% 99.58% 99.55% 99.80% 99.55%

flows effectively. The high accuracy further supports the performance of the approach.
We conducted an extensive investigation of the model’s performance, specifically focusing on its ability to detect

each type of bot traffic. The detailed results are presented in Table 9. Overall, the obtained results indicate exceptional
performance across all classes and metrics. The TPR is impressively high for all classes, indicating that the approach
is capable of correctly identifying bot traffic. The FPR is also low, indicating that the model does not classify too many
legitimate network flows as bot traffic. Compared to other traffics, detecting geographic WSMP flood traffic is very
challenging since this class has a very low number of samples (see Figure 7) which makes the dataset imbalanced.
Despite this difficulty, our approach is able to capture geographic WSMP flood traffic with a very good TPR at over 96%.

By analyzing the relevance of features used by 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇 , we can also gain insights on how these features
impact the accuracy of the model. The algorithm’s use of features varies across different cvs. In 90% of the cvs,
Karabadji et al.: Preprint submitted to Elsevier Page 16 of 21

A Genetic and Graph-Guided Feature Learning Strategy for Improving Decision Tree Construction

N
or

m
_

IP

N
or

m
_

W
SM

P

GP
S

Ea
ve

sd
ro

p

W
SM

P

Ge
o_

W
SM

P

0

200

400

600

800

1000

1200 1150

364
429

320

143

24

Traffic Types

N
b.

Sa
m

pl
es

Figure 7: Number of samples per traffic type.

Table 9
Detection performances per traffic type.

Traffic Type TPR FPR Precision F-Measure AUC
Benign WSMP Traffic 98.07% 0.10% 99.44% 98.74% 99.36%

IP Traffic 99.74% 0.24% 99.73% 99.75% 99.78%
Malicious GPS Tracking 100.00% 0.05% 99.77% 99.89% 99.98%

Eavesdropping 100.00% 0.00% 100.00% 100.00% 100.00%
WSMP Flood 00.00% 0.22% 96.83% 98.32% 99.94%

Geo WSMP Flood 96.67% 0.00% 100.00% 98.00% 99.81%

𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇 creates more new features than it retains (from the initial features set). Figure 8 illustrates the percentage
decrease in the number of features for each cv. Remarkably, in one cv, 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇 achieved 100% accuracy while
reducing the number of features by 72.22%. In this case, 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇 preserved two original features and introduced
three new ones. On average, 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇 reduces the number of features by 52.78%. Figure 9 displays the frequency
of use of the features used in this experiment. This suggests that the 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇 classifier can achieve impressive
predictive performance by relying on time-based and packet-based features without the need for byte-based features.
The high frequency of use of features related to inter-arrival time between packets, both in the forward direction and for
the overall flow, highlights their importance in the classification process. The three most frequently selected features
across the 10-cv are “Flow Duration”, “Flow Pkts/s” and “Fwd IAT Mean”.

The selection of time-based and packet-based features as the most pertinent for the classifier can be explained
by their effectiveness in distinguishing different types of cyberattacks. For volume-based attacks, such as Denial of
Service (DoS), time-based features are crucial in revealing anomalies, exemplified by the rapid influx of packets. This
is complemented by packet-based features, which accentuate the sheer number of packets, a hallmark of these attacks.
On the other hand, targeted attacks, such as GPS tracking and eavesdropping, present more subtle indications. In
these scenarios, time-based features are instrumental in detecting irregular traffic patterns. Meanwhile, packet-based

Karabadji et al.: Preprint submitted to Elsevier Page 17 of 21

A Genetic and Graph-Guided Feature Learning Strategy for Improving Decision Tree Construction

22
.2

2%

33
.3

3%

33
.3

3%

33
.3

3%

61
.1

1%

61
.1

1%

61
.1

1%

66
.6

7%

72
.2

2%

83
.3

3%

98

98.5

99

99.5

100

99.58

100

99.17

99.58

100

99.17

100

99.58

100

98.35

Features Reduction Percentage (in %)

A
cc

ur
ac

y
(%

)

Figure 8: Accuracy and features reduction percentage of our approach on each of 10-cv.

0 10 20 30 40 50 60 70 80 90 100

Flow Duration
Flow Pkts/s

Fwd IAT Mean
Fwd IAT Tot

Flow IAT Min
Idle Mean

Tot Fwd Pkts
Bwd Pkts/s

Flow IAT Std
Fwd IAT Min

Fwd Pkts/s
Flow IAT Max
Fwd IAT Max
Fwd IAT Std

Flow IAT Mean
Down/Up Ratio

Idle Std
Idle Min

100
29

25
24

22
22
22
21

18
17
16
15
14
14
13
12

7
2

Frequency

Figure 9: Feature usage frequency across the 10-cv.

features shift the focus to the specific nature and alterations of packets, rather than sheer volume. This sophisticated
understanding and application of features enable a tailored and effective approach in differentiating and responding to
both the widespread, volume-based attacks and the more nuanced, targeted cyber threats.

To assess the effectiveness of our approach, we compare it with Antibot (Rahal et al., 2022). We chose
Antibot (Rahal et al., 2022) for comparison due to its significant relevance and alignment with our research objectives.
Notably, this study represents the most recent significant development in the current state-of-the-art. Like our work,
it employs a decision tree-based methodology. Importantly, both our study and Antibot utilize the same dataset and
adhere to a comparable validation schema. This ensures a robust and consistent foundation for our comparative analysis.
We consider the True Positive Rate (TPR) and the False Positive Rate (FPR) because these are the two widely used

Karabadji et al.: Preprint submitted to Elsevier Page 18 of 21

A Genetic and Graph-Guided Feature Learning Strategy for Improving Decision Tree Construction

W
SM

P IP
GP

S
Tr

ac
k

Ea
ve

sd
ro

p
W

SM
P

Fl
oo

d
Ge

o
W

SM
P

90

92

94

96

98

100

T
P
R

𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇 AnibotV

Figure 10: Comparison of TPR per traffic type.

metrics that provide the most insight into the performance of an IDS. A high TPR ensures effective detection of
real cyber threats, while a low FPR avoids excessive false alarms, thereby maintaining the reliability and operational
effectiveness of the IDS. Together, these metrics are crucial in assessing an IDS’s ability to provide reliable security
without unnecessarily burdening security teams.

Looking at the TPR results in the Figure 10, we can see that 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇 has a higher TPR than AnibotV in
all bot traffics. For WSMP Traffic, IP Traffic, GPS Tracking, and Eavesdropping, both classifiers have very high TPR,
with 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇 having a higher rate in all cases. However, for WSMP Flood and Geo WSMP Flood, there is a
notable difference between the TPR of the two classifiers. 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇 has a perfect TPR for WSMP flood and high
TPR of 96.67% for Geo WSMP flood, while AnibotV has a lower rate of 98.70% and 91.66%, respectively. This shows
that 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇 is better suited for detecting of these types of bot attacks than AnibotV.

By referring to Figure 11, it is apparent that 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇 exhibits a substantially lower FPR in almost all
categories when compared to AnibotV. Specifically, our approach surpasses AntibotV in terms of legitimate traffic, as
it shows a lower FPR. Furthermore, 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇 demonstrates superior performance in mitigating GPS Track and
Eavesdrop attacks, with lower FPR rates compared to AntibotV. However, it is worth mentioning that AnibotV exhibits
a slightly lower FPR for WSMP Flood.

8. Conclusion
The popularity of decision trees can be attributed to their simplicity and their close resemblance to human

reasoning. Nonetheless, the effectiveness of the resulting trees is significantly influenced by the specificities of the
dataset under consideration. Usually, after the generation phase, decision trees undergo a pruning process to reduce
their complexity and size. However, in numerous applications, this pruning step comes at the cost of reduced accuracy
in the models.

Feature selection and construction have proven to be very efficient methods to emphasize regularities in the data
and to boost the performances of predictive approaches especially in the presence of noise and uncertainties in the
data.

Karabadji et al.: Preprint submitted to Elsevier Page 19 of 21

A Genetic and Graph-Guided Feature Learning Strategy for Improving Decision Tree Construction

W
SM

P IP

GP
S

Tr
ac

k

Ea
ve

sd
ro

p

W
SM

P
Fl

oo
d

Ge
o

W
SM

P

0

0.1

0.2

0.3

0.4

0.5

0.1

0.24

5 ⋅ 10−2

0

0.22

0

0.16

0.39

8 ⋅ 10−2 7 ⋅ 10−2

0.14

0

FP
R

𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇
AnibotV

Figure 11: Comparison of FPR per traffic type

This paper introduces 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇 , a graph-based approach that combines both feature selection and construc-
tion. It uses a genetic algorithm and a lattice-based representation to find the best features to select from the dataset as
well as the best parameters to use for the feature construction on the non-selected features. This feature construction
relies on a similarity graph-based representation between the non-selected features and covering set algorithm to find
the best combinations of attributes.

Experiments on 20 datasets show the competitiveness of 𝐹𝑆𝐶_𝐺𝐴_𝐷𝑇 and how it allows to obtain decision trees
of higher performances than existing state-of-the-art approaches. Additionally, a real-world cybersecurity application
was used to evaluate the proposed approach, specifically for detecting botnet traffic in IoV. The obtained results
demonstrate the efficiency of our approach in accurately detecting botnet traffic in an IoV environment.

Acknowledgment
This work also benefitted from the PRFU project A14N01EP230220230001, funded in Algeria by The Directorate-

General for Scientific Research and Technological Development (DGRSDT). Moreover, this research was supported
by the 5G-INSIGHT bilateral project (ID: 14891397) / (ANR-20-CE25-0015-16), jointly funded by the Luxembourg
National Research Fund (FNR) and the French National Research Agency (ANR). Additional funding came from the
FEDER MISMAR, Région Nouvelle-Aquitaine B4IoT.

References
ApS, M., 2019. The MOSEK optimization toolbox for MATLAB manual. Version 9.0. URL: http://docs.mosek.com/9.0/toolbox/index.

html.
Boryczka, U., Kozak, J., 2015. Enhancing the effectiveness of ant colony decision tree algorithms by co-learning. Applied Soft Computing 30,

166–178.
Chandrashekar, G., Sahin, F., 2014. A survey on feature selection methods. Computers Electrical Engineering 40, 16–28. URL: https:

//www.sciencedirect.com/science/article/pii/S0045790613003066, doi:https://doi.org/10.1016/j.compeleceng.2013.
11.024. 40th-year commemorative issue.

Dua, D., Graff, C., 2017. UCI machine learning repository. URL: http://archive.ics.uci.edu/ml.
Fu, Z., Golden, B.L., Lele, S., Raghavan, S., Wasil, E., 2006. Diversification for better classification trees. Comput. Oper. Res. 33, 3185–3202.

URL: http://dx.doi.org/10.1016/j.cor.2005.02.035, doi:10.1016/j.cor.2005.02.035.

Karabadji et al.: Preprint submitted to Elsevier Page 20 of 21

http://docs.mosek.com/9.0/toolbox/index.html
http://docs.mosek.com/9.0/toolbox/index.html
https://www.sciencedirect.com/science/article/pii/S0045790613003066
https://www.sciencedirect.com/science/article/pii/S0045790613003066
http://dx.doi.org/https://doi.org/10.1016/j.compeleceng.2013.11.024
http://dx.doi.org/https://doi.org/10.1016/j.compeleceng.2013.11.024
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1016/j.cor.2005.02.035
http://dx.doi.org/10.1016/j.cor.2005.02.035

A Genetic and Graph-Guided Feature Learning Strategy for Improving Decision Tree Construction

Garip, M.T., Lin, J., Reiher, P., Gerla, M., 2019. Shieldnet: An adaptive detection mechanism against vehicular botnets in vanets, in: 2019 IEEE
Vehicular Networking Conference (VNC), IEEE. pp. 1–7.

Garip, M.T., Reiher, P., Gerla, M., 2016. Ghost: Concealing vehicular botnet communication in the vanet control channel, in: 2016 International
Wireless Communications and Mobile Computing Conference (IWCMC), IEEE. pp. 1–6.

Hammami, M., Bechikh, S., Louati, A., Makhlouf, M., Said, L.B., 2020. Feature construction as a bi-level optimization problem. Neural Computing
and Applications 32, 13783–13804.

Karabadji, N.E.I., Khelf, I., Seridi, H., Aridhi, S., Remond, D., Dhifli, W., 2019. A data sampling and attribute selection strategy for improving
decision tree construction. Expert Systems with Applications 129, 84–96.

Karabadji, N.E.I., Korba, A.A., Assi, A., Seridi, H., Aridhi, S., Dhifli, W., 2023. Accuracy and diversity-aware multi-objective approach for random
forest construction. Expert Systems with Applications , 120138.

Karabadji, N.E.I., Seridi, H., Bousetouane, F., Dhifli, W., Aridhi, S., 2017. An evolutionary scheme for decision tree construction. Knowledge-
Based Systems 119, 166 – 177. URL: http://www.sciencedirect.com/science/article/pii/S0950705116305056, doi:https:
//doi.org/10.1016/j.knosys.2016.12.011.

Lashkari, A.H., Draper-Gil, G., Mamun, M.S.I., Ghorbani, A.A., et al., 2017. Characterization of tor traffic using time based features., in: ICISSp,
pp. 253–262.

Liu, C., Lin, B., Lai, J., Miao, D., 2022. An improved decision tree algorithm based on variable precision neighborhood similarity. Information
Sciences 615, 152–166.

Ma, J., Gao, X., 2020a. Designing genetic programming classifiers with feature selection and feature construction. Applied Soft Computing 97,
106826.

Ma, J., Gao, X., 2020b. A filter-based feature construction and feature selection approach for classification using genetic programming. Knowledge-
Based Systems 196, 105806.

Otero, F.E., Freitas, A.A., Johnson, C.G., 2012. Inducing decision trees with an ant colony optimization algorithm. Applied Soft Computing
12, 3615 – 3626. URL: http://www.sciencedirect.com/science/article/pii/S1568494612002864, doi:https://doi.org/10.
1016/j.asoc.2012.05.028.

Quinlan, J.R., 1987. Simplifying decision trees. International journal of man-machine studies 27, 221–234.
Rahal, R., Amara Korba, A., Ghoualmi-Zine, N., Challal, Y., Ghamri-Doudane, M.Y., 2022. Antibotv: A multilevel behaviour-based framework for

botnets detection in vehicular networks. Journal of Network and Systems Management 30, 1–40.
SabbaghGol, H., Saadatfar, H., Khazaiepoor, M., 2024. Evolution of the random subset feature selection algorithm for classification problem.

Knowledge-Based Systems 285, 111352.
Tan, J., Gui, N., Qiu, Z., 2024. Gaefs: Self-supervised graph auto-encoder enhanced feature selection. Knowledge-Based Systems , 111523.
Tran, B., Xue, B., Zhang, M., 2019. Genetic programming for multiple-feature construction on high-dimensional classification. Pattern Recognition

93, 404–417.
Tran, B.N., 2018. Evolutionary computation for feature manipulation in classification on high-dimensional data .
Vouk, B., Guid, M., Robnik-Šikonja, M., 2023. Feature construction using explanations of individual predictions. Engineering Applications of

Artificial Intelligence 120, 105823.
Wen, J., Zhang, J., Zhang, Z., Cui, Z., Cai, X., Chen, J., 2024. Resource-aware multi-criteria vehicle participation for federated learning in internet

of vehicles. Information Sciences , 120344.
Witten, I.H., Frank, E., Hall, M.A., Pal, C.J., DATA, M., 2005. Practical machine learning tools and techniques, in: Data Mining.
Xue, B., Zhang, M., Dai, Y., Browne, W.N., 2013. Pso for feature construction and binary classification, in: Proceedings of the 15th annual conference

on Genetic and evolutionary computation, pp. 137–144.

Karabadji et al.: Preprint submitted to Elsevier Page 21 of 21

http://www.sciencedirect.com/science/article/pii/S0950705116305056
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2016.12.011
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2016.12.011
http://www.sciencedirect.com/science/article/pii/S1568494612002864
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2012.05.028
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2012.05.028

