N
N

N

HAL

open science

Multi-core interference over-estimation reduction by
static scheduling of multi-phase tasks

Rémi Meunier, Thomas Carle, Thierry Monteil

» To cite this version:

Rémi Meunier, Thomas Carle, Thierry Monteil. Multi-core interference over-estimation reduction
by static scheduling of multi-phase tasks. Real-Time Systems, 2024, 10.1007/s11241-024-09427-3 .

hal-04689317

HAL Id: hal-04689317
https://hal.science/hal-04689317

Submitted on 5 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/hal-04689317
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Real-Time Systems
https://doi.org/10.1007/s11241-024-09427-3

™

Check for
updates

Multi-core interference over-estimation reduction by static
scheduling of multi-phase tasks

Rémi Meunier' - Thomas Carle?® - Thierry Monteil®

Accepted: 5 August 2024
© The Author(s) 2024

Abstract

Interference between tasks running on separate cores in multi-core processors is a
major challenge to predictability for real-time systems, and a source of over-esti-
mation of worst-case execution duration bounds. This paper investigates how the
multi-phase task model can be used together with static scheduling algorithms to
improve the precision of the interference analysis. The paper focuses on single-
period task systems (or multi-periodic systems that can be expanded over an hyper-
period). In particular, we propose an Integer Linear Programming (ILP) formulation
of a generic scheduling problem as well as 3 heuristics that we evaluate on synthetic
benchmarks and on 2 realistic applications. We observe that, compared to the classi-
cal 1-phase model, the multi-phase model allows to reduce the effect of interference
on the worst-case makespan of the system by around 9% on average using the ILP
on small systems, and up to 24% on our larger case studies. These results pave the
way for future heuristics and for the adoption of the multi-phase model in multi-core
context.

Keywords Multi-core - WCET - Interference - Static scheduling

< Thomas Carle
thomas.carle @irit.fr

Rémi Meunier
meunierremi85 @gmail.com

Thierry Monteil

thierry.monteil @irit.fr

Randstadt Digital, Toulouse, France

Univ. Toulouse 3 - IRIT, Toulouse, France

3 INSA - IRIT, Toulouse, France

Published online: 05 September 2024 @ Springer

http://orcid.org/0000-0002-1411-1030
http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-024-09427-3&domain=pdf

Real-Time Systems

1 Introduction

Multi-core processors raise several challenges for the design, implementation and vali-
dation of critical real-time systems. One serious issue regards the ability to derive safe
yet precise Worst-Case Execution Time (WCET) bounds for each of the tasks compos-
ing a system. Indeed, traditional WCET analysis for single core processors (AbsInt
2022; Ballabriga et al. 2010) works separately on each task (i.e. in isolation) and
then composes the bounds of all tasks using a Worst-Case Response Time analysis
(WCRT) in which interference between tasks is taken into account. On single core
targets, this interference is usually caused by task preemption, and is dealt with by
computing a penalty for saving/restoring the values of the registers, a Cache-Related
Preemption Delay (CRPD) and the WCET of the interrupt handling routine, that are
added to the preempted task WCET bound. The relative simplicity of this approach
makes it appealing, however additional obstacles must be overcome in order to extend
it to multi-core processors. Indeed, multi-cores are capable of executing multiple
threads in parallel but share some hardware components, in particular the memory that
the threads use to communicate with one another. These shared components generate
additional interference that is hard to characterize precisely at a high level of abstrac-
tion. It results that applying WCRT analysis for systems running on multi-cores with
the traditional task abstraction (one task represented by its WCET, and additionally its
worst-case number of memory accesses) leads to huge timing over-estimations.

In order to deal with these issues, finer-grained abstractions have been developed that
model the tasks execution as a sequence of so-called phases. The first of these abstrac-
tions modelled tasks using 2 or 3 phases (Pellizzoni et al. 2011; Durrieu et al. 2014;
Rouxel et al. 2019; Jati et al. 2021): some phases correspond to memory copies between
the shared memory and a memory local to a core, and others to the purely local execution
of the task. Using this abstraction it is possible to build interference-free schedules or to
account more precisely for the interference in the system. However, this model strongly
restricts the way the code must be written or compiled in order to fit the phases. More
recently, in an attempt to generalize the model and to uplift these restrictions to man-
age legacy code, a multi-phase model was introduced (Carle and Cassé 2021; Degioanni
and Puaut 2022). In this model, each task is represented by a sequence composed of an
arbitrary number of phases that may or may not perform memory accesses. This model
accounts for the time windows in which each memory access can occur, and thus can
cause or be subject to interference with accesses from other tasks. The abstraction (i.e.
the phases) is mapped to the actual code of the tasks using synchronizations, but does
not require the task to be compiled in a particular fashion.

The objective of this paper is to leverage the multi-phase model using dedicated
scheduling algorithms in order to characterize more precisely, and if possible reduce, the
effects of interference in the shared memory. We focus on non-preemptive static sched-
uling algorithms for single-periodic task systems' and restrict our interference analysis to
accesses to the shared memory through a first-come first-served (FCFS) sequential bus.

In this paper, we make the following contributions:

! Although these methods also apply to multi-periodic systems expanded over an hyper-period.

@ Springer

Real-Time Systems

Table 1 List of abbreviations

WCET
WCRT
CRPD
FCFS
ILP
ASAP
DAG
mksp
SDE
IPH
LB

UB

N

U

BN
pos

av

std dev
UAV

Worst-case execution time
Worst-case response time
Cache-related Preeption delays
First-come first-served
Integer linear programming
As soon as possible
Directed acyclic graph
Makespan

Starting date enumeration
Iterative priority scheduling
Lower bound

Upper bound

Normal distribution
Uniform distribution
Bi-Normal distribution
positive

Average

Standard deviation

Unmanned aerial vehicle

e We provide an Integer Linear Programming (ILP) formulation of a generic
multi-core scheduling problem, using the multi-phase model.

e We describe 2 greedy heuristics based on list scheduling: one using the As Soon As
Possible (ASAP) policy, and one that more aggressively exploits the multi-phase

model.

e We introduce a more complex heuristic that adapts the method introduced in

Hanzélek and Sticha (2017) to the multi-phase model.

e We conduct an evaluation campaign, both on synthetic benchmarks and on two
case-study applications: Pagetti et al. (2014) and Nemer et al. (2006).

The paper is organized as follows: Sect. 2 presents the related work and Sect. 3
introduces the formal definitions. Then, Sect. 4 describes multi-core scheduling
techniques adapted to the multi-phase model. Section 5 details an evaluation of our
scheduling techniques, followed by a conclusion in Sect. 6. Table 1 summarizes the

abbreviations that are used throughout the paper.

2 Related work

2.1 Multi-core interference and the multi-phase model

Interference on multi-cores has been a hot topic of research in the real-time com-
munity for years, and although multiple models and methods have been developed,
none of them seems to be entirely satisfying (Maiza et al. 2019).

@ Springer

Real-Time Systems

This paper focuses on the multi-phase model of tasks, which has been formalized
in Rémi et al. (2022) and can be seen as a generalization of the PREM (Pellizzoni
et al. 2011) or AER/REW models (Durrieu et al. 2014; Rouxel et al. 2019). In the
PREM and AER models, tasks are represented as sequences of phases that alternate
between phases that may access the memory, and phases that never access the mem-
ory. In order to obtain tasks that fit this representation, dedicated compilation tech-
niques must be applied, which precludes the use of legacy code. Then the objective
is to schedule the phases of the tasks so that no interference occurs in the system. On
the contrary, the phase sequence in the multi-phase model follows the behavior of
the code (whether it is legacy code, or code that has been specifically compiled like
for PREM and AER). Our objective in this work is not to avoid interference alto-
gether, but rather to tolerate a certain level of interference in the system, and to show
that by leveraging the precision of the multi-phase model, it is possible to limit the
amount of accounted interference in the analysis.

Two main approaches have been developed in order to obtain multi-phase rep-
resentations of tasks. The Time Interest Points (TIPs) approach (Carle and Cassé
2021) has been developed to reconcile the multi-phased task model with legacy
code. In this approach, a multi-phase representation of the tasks is obtained through
static analysis of the binary code of the tasks. As a consequence, no restrictions
are imposed on how the source code must be written or compiled. More recently,
StAMP (Degioanni and Puaut 2022) introduced an approach based on single-entry
single-exit (SESE) sections of code to determine the boundaries of phases at com-
pile time. Then, static analysis is performed to obtain the worst-case duration and
number of accesses of each phase.

Using the multi-phase model, an interference analysis can be performed as part
of a WCRT analysis such as the one in Davis et al. (2018), or as part of a static
scheduling/compiling approach (e.g. de Dinechin et al. 2020; Didier et al. 2019).
Moreover, the analysis can be tuned in order to produce different representations of
the same task (Carle and Cassé 2021), with e.g. a different number of phases.

2.2 Interference-aware scheduling on multi-core processors

Multiple methods construct contention-free schedules using ILP and a PREM or
AER representation of tasks (Becker et al. 2016; Pagetti et al. 2018; Matéjka et al.
2019; Senoussaoui et al. 2022). Iterative heuristics are also introduced in Senous-
saoui et al. (2022) and Mat&jka et al. (2019). A heuristic for PREM tasks that are
already partitioned to the cores is proposed in Senoussaoui et al. (2022). Matéjka
et al. (2019), the authors transform AER/REW tasks into take-give activities to
apply a heuristic from Hanzalek and Sticha (2017). This heuristic assigns priorities
to the tasks of the system and builds a schedule accordingly. The heuristic then iter-
ates, adapting some priorities at each iteration, until it converges towards the best
solution. Schuh et al. (2020) compare different PREM and AER scheduling scenar-
ios with or without interference and show that tolerating interference usually results
in a lower WCRT/makespan than suppressing it altogether.

@ Springer

Real-Time Systems

pi.dur=17 ¢ldur=13 gi.dur=20 pl.dur=15

Cy | 0sloym=s |oflotm=4| ojlpym=3 | ¢} loym=s

0
$p.d=0 ¢pd=17 ¢,-d =30 ¢5.d =50

| | | |

I I I

- ‘
0 17 30 50 65 t

Fig. 1 Example of a task profile before interference analysis, scheduled on core C,

3 Formal model

This section formally describes the multi-phase model following the definitions of
Rémi et al. (2022).

3.1 The multi-phase task model

We model a system T of real-time tasks 7/ (i > 0). Each task ' is represented by its
profile, which is a sequence of phases denoted P’ = {¢/|0 </ < @'} with @' the
number of phases. A phase ¢; is defined by:

o ¢id: its start time.
#i.dur: its worst-case duration in isolation (i.e. without interference).
#i.m: the worst-case number of memory accesses that may be performed within

[¢id, pid + ¢i.durl-

The start time of the task is determined during the construction of the static sched-
ule of the system and corresponds to the start time of ¢,. Then, for each ¢; (I > 0)
the start time is defined by:

¢d=dyd+) ¢ dur = ¢i_,.d + ¢i_.dur 0

0<g<l

Note that this model only reflects the execution behavior and memory access profile
of the task code, not the classical real-time attributes of tasks (e.g. period, deadline).
As such, the model applies naturally to systems in which all tasks have the same
period: the start time of a task represents its start time relatively to the start of each
activation of the system. For multi-periodic task systems, this model applies to task
instances (a.k.a. jobs). In the remainder of the paper, the term task is used indiscrim-
inately to describe either a task in single period systems or a job in multi-periodic
systems (and in particular, two different jobs are modeled as two different tasks).
In the multi-periodic case, we consider all task instances that are released over an
hyperperiod as separate tasks. Task deadlines are not explicitly considered in the
model: as stated in Sect. 4.1, the considered scheduling problem amounts to mini-
mizing the makespan of the task system. Then, if this makespan is small enough to
fit the task deadlines, the system is deemed schedulable. This is a classical problem
for critical control systems specified e.g. with synchronous languages (Halbwachs

@ Springer

Real-Time Systems

C, ‘ ph.m=2 | $im=3 ‘ ¢é.m=0J¢g.m=5 ‘
C, | oym=s | gm=a | pme3 | plmes
(l‘) 1}7 3:O 5}0 6}5 7}6 t

Fig.2 Two tasks 7/ and 7/ scheduled in parallel on cores C, and C, and the penalties resulting from the
interference analysis (' is the same as in Fig. 1)

1992; Carle et al. 2015). For other multi-periodic systems, the proposed sched-
uling heuristics can be applied locally to reduce the makespan of groups of jobs,
and adapted to use the deadlines to select the priority order in which tasks/jobs are
selected to be scheduled. However, the main objective of the paper is not to present
scheduling techniques that directly target the respect of task deadlines, but rather to
demonstrate the capacity of the multi-phase model to mitigate the amount of inter-
ference accounted for during the system construction and timing validation.
Figure 1 shows an example of profile for a task 7/ with 4 phases.

3.2 Consequences of the interference analysis

Once a task system has been either partially or entirely statically scheduled by setting
a d)j.d for each phase of each scheduled task, an interference analysis such as the one
described in de Dinechin et al. (2020) is applied to bound the effects of inter-core con-
tentions in the system. This analysis upper bounds the worst-case effect of the archi-
tectural elements where interference may occur. In the scope of this paper only shared
memory buses and/or simple memory controllers that serve requests in a FCFS/Round-
Robin fashion are considered (in particular, cache coherence mechanisms and shared
cache effects are not considered). This way, each memory access initiated by a core can
be interfered by at most one request of each other core. As a result, each phase that may
suffer from contentions is extended to take into account the potential additional exe-
cution delay and the next phases are postponed accordingly. In order to express these
modifications, new attributes are introduced to the formal model of phases:

® ¢ p>o0is the timing penalty added to qb; to account for potential contentions.
® g.a* is the interference-aware date of 4, i.e. its start date taking into account the
potential contentions in the system.

Note that the computed interference delays for a given task z/ may also postpone
the starting date (I){).d# of some other tasks, because 7’ occupies its core for a longer
time, or because of a data dependency between 7/ and 7/. The (post interference
analysis) start dates of the other phases ¢§ are given by:

@ Springer

Real-Time Systems

Table2 Summary of notations

Notation Definition

G DAG defining task dependencies

E Set of edges (dependency relations) of G

preds(t’) Set of predecessors of z‘

suces(th) Set of successors of 7!

C Set of cores composing the architecture

C, Core with index k

S Schedule

S(Cp) Schedule of core C;,

S(Cy).end End date of schedule of core C;,

qb; Phase j of task 7'

d);d Start date of phase j of task 7, before interference analysis
d)_;..dur Duration of phase j of task 7', before interference analysis
¢j’:.d# Start date of phase j of task 7', after interference analysis
qﬁj’. P Timing penalty added to phase q.');. to bound the interference
b, d End date of 7/ in the presence of interference

4)}’..3/ Number of potential contentions suffered by 4)}’.

47]’..;/,(Number of potential contentions suffered by ¢j’. from C;,
o), True if 7' is mapped to C,

p; True if 7/ and 7/ are mapped to the same core

){;"[True if the intervals covered by qﬁ; and ¢f’ overlap

0, x1 True if ¢} starts before the end of ¢

pd* = gid* + Y (P .dur + ¢ p) = §|_,.d* + §i_, .dur + §_.p)

0<g<l

An important point to note here is that the post interference analysis start times of
the phases must be respected in the implementation, even when previous phases
end earlier than their (extended) worst-case duration, otherwise the assumptions
on which phases may run in parallel would not be respected, and the analysis may
under-estimate the amount of interference in the system. This limits the implemen-
tation of the proposed methods to Time-Triggered solutions. In the same fashion,
preemptions are not considered in the scope of this paper. Supporting them is possi-
ble, but requires the adaptation of Cache-Related Preemption Delays analyses to the
multi-phase model, which has not been done yet.

Figure 2 represents two tasks scheduled on 2 different cores with the results of the
interference analysis (task 7/ has the same profile as in Fig. 1). The orange rectangles
represent the penalty ¢f.p that extends the worst-case duration of the phases. For
example, d)é is scheduled in parallel with two phases % and ¢’1 that perform respec-
tively 2 and 3 accesses in the worst case. ¢f) performs 8 accesses in the worst case.
As a result, the interference analysis considers that in the worst case, 5 accesses of

@ Springer

Real-Time Systems

q,')g are interfered. In the same fashion, the 2 accesses of d)f) (resp. the 3 accesses of
) are interfered in the worst case.

4 Multi-core scheduling

This section discusses several approaches to benefit from the multi-phase represen-
tation of tasks when scheduling tasks on multi-core platforms. Our main objective is
to minimize the makespan of the task system in the presence of interference.

4.1 Problem definition

The following static scheduling problem is targeted: given a set of homogeneous
cores’ connected to a shared memory through a FCFS bus and a system composed
of data-dependent tasks specified as a directed acyclic graph (DAG), schedule the
tasks on the cores in order to minimize the interference-aware makespan of the sys-
tem. This problem instance considers non-preemptive tasks only, and tasks are not
partitioned to the cores prior to the scheduling phase . The notations that compose
the model are summarized in Table 2.

Formally, let C = {C,|0 < k < N,} be a multi-core architecture composed of N,
cores. Dependencies between the tasks of T are specified using a DAG G = (T, E) in
which vertices are the tasks of T and each edge ¢; ; € E between 7' and 7/ indicates that
7! must be completed before 7/ can start. Moreover, preds(th) = {*]e,, € E} denotes the set
of predecessors of 7! and succs(z’) = {z* le;, € E} the set of successors of 7',

Our objective is to build a schedule S of the tasks of 7 on the cores composing C.

For each core C,, the following attributes in S are defined:

e S(C,): the schedule of C, which is a sequence of phases, ordered by their starting
date.
e S(C}).end: the end date of the last phase scheduled on C,.

The makespan of the task system in schedule S is mksp(S) = maxckeC(S(C)-end).

4.2 ILP formulation

We now provide an ILP formulation of the problem. In this formulation we use bold
font to denote the variables of the ILP system, ILP.1 is the objective function and the
other equations numbered ILP.X are the constraints.

We first introduce variable mksp denoting the makespan of the task system. It
appears in the objective function that minimizes the makespan:

2 The proposed heuristics also apply to heterogeneous cores but experiments have not been conducted in
this setting.

@ Springer

Real-Time Systems

X =X =1 X/0=X,=0
¢ Lalal s od |
C, e e
([)g).d# t

Fig.3 Three tasks scheduled on 2 cores

minimize mksp (ILP.1)
We use ¢ipi .d* to denote the end time of 7¢, which is the end date of its last phase:
TN Bt # i i
Vo', d" =@, A+ by dur+ @, P (ILP.2)
The makespan of the system is greater than the end time of all tasks:
i i
V', mksp > ‘l’q,.-'d (ILP.3)
Moreover, each task 7 starts after date 0 and after the end of all its predecessors:

v, ¢id* > 0 (ILP.4)

V7* € preds(c'), ¢i.d* > ¢, .d* (ILP.5)

Following the definition of the start time of a phase in Eq. (2), we can express the
date of each subsequent phase as:

V7' ,V0 < j < @, ¢;°d# = ¢;—1'd# + d)}_l.dur + q);_l.p (ILP.6)

We use boolean variable co;'(to express the mapping of task z': 0)2 = 1if and only if
7! is mapped on C;. Each task is mapped to a unique core so we add the constraints:

vl 2 w;;:l

v (ILP.7)

We also introduce variable pj’: that is equal to 1 if and only if 7/ and 7/ are mapped to

the same core:

P ; j
VT,T,pj Z cok/\a);

0<k<N,

Because of the conjunction A, the above equation is not linear. Therefore, we have to
use a new variable QZ’ = co;c A co;c and add the following equations:

@ Springer

Real-Time Systems

vl o0 <k <N,

Q) <o (ILP.8)

ij j
Q<o (ILP.9)

ij i j
Q' +1>a0) + (D;((ILP.10)
Therefore, the equation becomes:
i iy

Pi=) @ (ILP.11)

0<k<N,

In the following, any other conjunction will be converted to a linear form in the
same way. For clarity reasons, we do not provide the details for the other lineariza-
tions of conjunctions.

Two phases may contend with each other if they are scheduled on different cores
and their execution intervals overlap. We introduce the boolean variable)(;c”’l that is

true if the intervals covered by ‘75; and qﬁ’l‘ overlap:
20 (@, 4" < dldhy v (@, 4 < gfa)
i i ko k gt i
X (¢J’,.d < ¢l+1.d YA (‘I’z d < ¢J‘,+1.d)

The overlapping is illustrated by Fig. 3. Phase d)f) overlaps with d’é but not with ¢g S0
75 = 2o = and g’ = g = 0.

We need to decompose the equivalence relation into several constraints in the ILP
system. That is why we define 6;; ; as:

0:j 1 & " <, A"
so that the equivalence becomes:
Xy © Oij g A Oy (ILP.12)

0 x, 1s defined using the big-M notation and a cancellation variable f;; ;:

Vi, 1,0 <j< ®,0<i< D

1+ ¢]'ﬁ.d# <Pl A+ M1 -6,) (ILP.13)
Pld” > g, d' — M1 =B 1) (ILP.14)

@ Springer

Real-Time Systems

New task
c, \ [] [J10 10 [o [2]

¢ | | (8 8ls 5] o]2
c, \ T 1] 10 5[0]2

& L[] (8/55] o [

c, \ [] [] 10 | o |2

& L[] (8[s][o]2

t

Fig.4 3 different placements for a new task: the numbers within phases indicate their worst-case number
of accesses and the orange rectangles are the additional penalty due to possible interference

Bijigt+0ijiy=1 (ILP.15)

The overlapping of 2 phases is forbidden if their tasks (resp. 7/ and 7¥) are scheduled
on the same core (p;(= 1). Therefore:

%, <1-p, (ILP.16)

In order to compute the time penalty of d)}, we multiply the number of contentions it

may encounter (q);.y) by the cost of one penalty denoted penalty_cost, so we have:
v, 0<j < @, ¢;-P = ¢J’:.y X penalty_cost (ILP.17)
(/J]’:.y is the sum of the contentions that may be caused by tasks on all the cores:

i : i i i
V7,0 <j< @, ¢j-y = Z ¢j'yk (ILP.18)
0<k<N,
with ¢;.yk the number of contentions that qﬁj’: may experience from tasks scheduled

on core k. As we consider a shared memory bus following a FCES policy, ¢J’:.yk is
bounded by qﬁ]‘:.m:

V7,0 <j < @0 <k <N, ¢L.y, = min(gj.m, > ¢l.mx (g A)
TleT 0<g<®!
3)
The term ()(Z’; A a)ﬁc) states that d)}’: receives contentions from ¢f/ if and only if d)f] is
mapped to core k and overlaps with qu’

Finally, to linearize the minimum operator, we use the following equations with
€ {0, 1} guaranteeing that one of the proposed values is taken:

i
Yk
Vi, 7, 0<j<®,0<k<N,

@ Springer

Real-Time Systems

¢;.yk < ¢J’Z.m (ILP.19)
i i iy /
bn = Zm Z@ $jm X (2 A @) (ILP.20)
T'€T 0<g<

i i ij ! i
qu.yk > <Z Z q’)]m X ()(l’q A a)k)) -MXx @, (ILP.21)

TleT 0<g<®!

Py > pm—M(1 -) (ILP.22)

4.3 Heuristics

Computing the penalties directly in the optimization problem is inherently non-lin-
ear. As a consequence, we observe in practice that the ILP resolution time does not
scale when the number of tasks or phases grows. In order to tackle large systems that
cannot be handled by ILP, we designed heuristics. We present three of them in this
section.

In the following algorithms, we use the computeContentions(S) function to com-
pute the values of the q,');:.d# by applying the formulas from Egs. (ILP.17) and (3) on

each phase d); of S.?
4.3.1 Greedy policies

The first scheduling policies that we present are two variants of list scheduling: the
algorithm selects a task from a list of ready tasks, schedules it following the policy,
updates the list of ready tasks, and iterates until all tasks have been scheduled.

As soon as possible scheduling (ASAP) The ASAP policy takes the current partial
schedule (initially empty) and builds as many schedules as there are cores in C by
selecting a task and scheduling it as soon as possible on each of the cores, without
preemption and while respecting task dependencies. Once the ASAP date is deter-
mined for a core, all the phases of the task are scheduled according to Eq. (1). It then
selects the partial schedule that has the lowest makespan and moves on to the next
task. The interference analysis is performed only once all the tasks of the system
have been scheduled. Consequently, this is the simplest and the fastest algorithm of
all the presented heuristics.

Starting date enumeration (SDE) The ASAP strategy is not always the best
choice to minimize the makespan in the presence of interference. For instance,
Fig. 4 shows 3 different ways to schedule a new task (the purple one) on core
C,. At the top, when scheduling the task as soon as possible, the phase with 10
accesses overlaps with 2 other phases in parallel and creates in the worst case

3 In our experiments, we use an efficient Python implementation of this function.

@ Springer

Real-Time Systems

13 (8 +5) contentions on core 0 (depicted in orange). In the schedule below,
we postponed the task start time to the end of the phase with 8 accesses so
the 10-accesses phase may only create 5 contentions, and this choice yields a
reduction of the makespan. In the last schedule at the bottom, the task is post-
poned even more, to the next starting date of a phase in parallel. This results in
no interference at all, yielding the smallest makespan. Following that idea, we
developed the SDE heuristic that attempts to schedule the current task at sev-
eral dates on each of the cores and performs an interference analysis for each
possibility before selecting the one that minimizes the makespan.

Algorithm 1 describes SDE. It takes as inputs the current task to schedule, 7/,
and the current partial schedule S, on which an interference analysis has been
performed. The enumeration of the possible start time for 7 is limited to the interval
[minDate, maxDate]| in which minDate is the earliest possible start time of 7/ due
to precedence constraints, and maxDate is the current makespan of the partial
schedule. For each core C; (Algorithm: 1-line: 4), function parallelDates extracts
the start and end times of phases scheduled on the other cores that fall within the
[minDate, maxDate] interval. Then, 7' is iteratively scheduled at each of these dates
on C, in S (Algorithm: 1-line: 7), and only the result yielding the smallest makespan
(after interference analysis) is kept (Algorithm: 1-line: 9). In the end, 7’ is scheduled
on the core and at the date that yielded the best makespan.

SDE considers candidate dates only for the start of the first phase of the task. The
method could be extended to consider these dates as possible start times for each of
the phases, but the algorithmic complexity would increase accordingly, making the
method impractical.

Algorithm 1 SDE

Require: 77 ;S

1: minDate = magcThepreds(Ti)(ngh.d#)

2: maxDate = mksp(S)

3: bestMakespan, bestSched = +00,S

4: for C}, in C do

5: dates = parallel Dates(S, Cy,, minDate, max Date, %)
6: for d in dates do

7: S" = scheduleTask(S, Cy, %, d)

8: computeContentions(S')

9: if mksp(S') < bestMakespan then
10: bestMakespan = mksp(S')

11: bestSched = S

12: end if

13: end for

14: end for
15: return bestSched

@ Springer

Real-Time Systems

4.3.2 lterative priority scheduling heuristic (IPH)

The IPH, detailed in Algorithm 2, is an adaptation of the main algorithm of
Hanzalek and Stcha (2017). The principle of the original algorithm is to iter-
atively test different combinations of task priorities, called priority vectors,
while converging to the best makespan. The task priorities are to be understood
as the order in which the tasks are selected to be statically scheduled. Basically,
the algorithm maintains an objective value for the desired makespan, as well as
an interval around this objective. At each iteration of the algorithm, the tasks
are scheduled following the current priority vector. The objective and interval
bounds are then updated according to the makespan of the produced schedule:
when the makespan is lower than the objective, it becomes the new objective
for the next iterations and the interval is reset around the new objective. Oth-
erwise, the objective and the lower bound of the interval are increased. Before
the next iteration, the priority vector is modified to try to prevent the tasks that
interfere the most to be in conflict in the next schedule. The algorithm ends
after multiple successive iterations fail to improve the makespan, and the lower
bound of the interval meets the upper bound. At each iteration, when producing
the schedule, the algorithm applies a few optimizations to either speed up the
computations or try to improve the result:

Optimization 1 Using a symmetric instance of the scheduling problem because
scheduling backwards may open scheduling options.

Optimization 2 Implementing the algorithm in parallel so that several priority vec-
tors are tested at the same time by separate threads.

Optimization 3 Using a hash set to store the priority vectors that have already been
tried to avoid repetition.

Optimization 4 Modifying the priority vector using information about conflicting
tasks that prevent each other to be scheduled before the objective.

Optimization 5 De-scheduling and re-scheduling the tasks at the end of the sched-
ule, when the objective is not met.

This algorithm has already been successfully adapted to the AER model in
Matéjka et al. (2019), but our task model is more generic and some assumptions
made in Matéjka et al. (2019) are not applicable here. As a consequence Algo-
rithms 2 and 3 were adapted from Hanzalek and Sticha (2017) to handle the multi-
phase model.

@ Springer

Real-Time Systems

Algorithm 2 TPH

Require: G = (T, FE),C

1: UB, LB, S = init(G,C)

2 Obj = (LB + UB)/2

3: failCount =0

4 Gforward =@

5. Glackward — peyerse(G)

6: prioHashSet = {}

7. init_prio = [UB — ¢}.d% |yricr

8: sQueue = [(GTorward Obj, init_prio)]
9. while (LB < UB) A (sQueue # []) do
10: (G¢, Obj, prio) = sQueue.pop()

11: hash = Hash(eq_class(prio, G%))
12: if hash € prioHashSet then

13: continue

14: end if

15: prioHashSet.add(hash)

16: S = findSchedule(G¢, C, Obj, prio)
17 if mksp(S) < mksp(SP®*!) then
18: Sbest =8

19; if UB > mksp(S) then
20: UB, LB = update(UB, LB, S)
21: end if
22: obj™* =UB — 100
23: priority = [Obj — ¢b.d*]y icr
24: else
25: failCount + +
26: if failCount > log2(|T|) then
27: LB=LB+ (UB—-LB)/4
28: failCount =0
29: end if
30: Obj™" = [min(UB, 1.1 x Obj)]
31: end if
32: prio; = [Obj — prioli]lyrier
33: priog = modPrio(prio,S)
34 Gd, Gc2 — switchOrder(Gc, Gbackward’ Gforward)
35: sQueue.push({G, Obj™v prio; })
36: sQueue.push({G2, Obj™v prioy})

37: end while
38: return Sbest

In Algorithm 2, the objective variable is denoted by Obj. In the initialization,
we build the initial best schedule S$?*' using our ASAP greedy heuristic. Then,

@ Springer

Real-Time Systems

SPest is used to build the initial target interval for the makespan [LB, UB]
(Algorithm: 2-line: 1, LB, UB standing for respectively Lower Bound and Upper
Bound) and Obj is chosen as the median value of this target interval. The initial
values of the bounds do not have a huge impact on the quality of the result
because the interval is re-adjusted throughout the iterations, but setting them
close to a viable objective can save a few initial iterations. In order to speed up
the computations, we implemented and when necessary, adapted, the following
optimizations that were present in the original algorithm of Hanzalek Sécha
2017. Optimization 1 was directly implemented in our heuristic, which is why
we distinguish the two graphs G and GP**vards (Algorithm: 2-line 5) and
the priority vectors on both directions (Algorithm: 2-line 34). Optimization 2
is also implemented directly. We adapted Optimization 3 (Algorithm: 2-line: 6)
to exploit the fact that two different priority vectors may produce the same
scheduling order because of tasks dependencies. For example, if we consider
tasks A, B and C with B and C successors of A, then assigning priorities 3, 2,
1 to respectively A, B and C yields the same scheduling order (A then B then
C) as when assigning priorities 2, 3, 1 because task A must be executed before
B and C has a lower priority than B. Therefore, instead of saving the priority
vectors in the hash set, our algorithm computes and saves an equivalence class
of the priority vectors given the dependencies of the system (i.e. the scheduling
order of the tasks) (Algorithm: 2-line: 11). We also adapted Optimization 4
(Algorithm: 2-line: 33) so that, when there are no conflicting tasks, the
algorithm relies on the amount of contentions to modify the priority vector.
However, relying on contentions in a more systematic way did not yield any
improvement of the results. Finally, Optimization 5 is implemented as part of
the findSchedule function that we describe thereafter.

At each iteration, the algorithm calls function findSchedule (described in Algo-
rithm 3 that we detail later) to build a schedule S from scratch using a task sys-
tem G¢, a vector prio that gives priorities to the tasks, and an objective Obj for the
makespan of the schedule (Algorithm: 2-line: 16). Once S is built, the algorithm
compares its makespan with the makespan of the best schedule found so far: SP'.
If it is inferior, schedule S is saved as the new S$?¢, the UB and LB are updated
(Algorithm: 2-line: 20) in order to lower the makespan objective in the next itera-
tion, and changes are made to the task priorities to reflect the order of the starting
dates of tasks in S (Algorithm: 2-lines: 19-23). If it is superior to Obj however, Obj
is increased in order to give some more slack to the algorithm in the next itera-
tion, and LB is increased as well if the algorithm has failed enough times (Algo-
rithm: 2-lines: 25-30). The algorithm then iterates, until either LB reaches UB or it
runs out of new priority vectors to test.

@ Springer

Real-Time Systems

There are several constants impacting the computation cost of the algorithm that
are defined in an empirical way:

e Algorithm: 2-Line 22: Obj"**", the next objective is set to UB — 100. The value
must not be too ambitious to allow findSchedule to find suitable schedules and
the convergence towards the best priority vectors. As the minimum contention
duration that we applied in our tests is 50 cycles, the number of contentions to
avoid in order to improve the makespan is reasonable and 100 is also an order of
magnitude below the duration of the tasks we scheduled who had a WCET supe-
rior to 1000 cycles (and sometimes superior to 20,000 cycles).

e Algorithm: 2-Line 26: log2(IT1) bounds the number of consecutive attempts of
findSchedule without finding a better schedule than $?** before increasing LB.
This bound must be high enough to let findSchedule reach Obj but is also respon-
sible for stopping the search when it is not possible. The number of tasks in the
system impacts the size of the solution space. Our experiments are composed
of systems ranging from 4 to 329 tasks so the log2 allows enough attempts for
small systems while limiting them for the largest systems.

e Algorithm: 2-Line 30: whenever a failure occurs, the objective is increased by
at least 10% of its value (bounded by the current UB). This value has been kept
from the original algorithm in Hanzélek and Sticha (2017).

One important point here is that the heuristic does not test all possible combinations
of task priorities: at each iteration the current priority vector is modified, and the
resulting vector is used in the next iteration if it has not already been used in a prior
iteration. The way the algorithm modifies the priority vector does not guarantee that
all priority combinations will be explored. In fact the objective of the heuristic is
precisely to converge to a solution without having to explore all the combinations.

@ Springer

Real-Time Systems

Algorithm 3 findSchedule

Require: G¢, C, Obj, prios
1: readyTasks = init RT(G¢)
2: budget = a x |T| > o is tuned according to the size of the task system
3. while (readyTasks # 0) A (budget > 0) do

4: 7% = get Next(readyT asks, prios)

5: d= Tn/(ll’Thepreds(Ti)((]ﬁgh d#)

6: S" = schedule ASAP(S,C, ¢, d)

7 computeContentions(S')

8 if mksp(S’) > Obj then

9: resched, desched, Stemp = unsched(S, d, Obj, %)

10: readyTasks = readyTasks U desched

11: for 7/ in resched do

12: Stemp = schedule ASAP(Stemyp, C, 77, d)

13: budget = budget — 1 > 77 is scheduled again
14: end for

15: S" = schedule ASAP(Siemyp, C, 7%, d)

16: computeContentions(S')

17: end if

18: update RT (readyTasks, %)

19: budget = budget — 1 > accounting for 7

20: end while

21: while readyTasks # () do

22: 7t = getNext(readyTasks, prios)
23: d =mazn epreds(r?) (¢§>h d#)

24: S’ = scheduleASAP(S',C, 1%, d)
25: updateRT (readyTasks, %)

26: end while

27: computeContentions(S')

28: return S’

Algorithm 3 describes the findSchedule function. This function iteratively creates a
schedule S of the tasks of G° on C, using tasks priorities prios and an objective value Obj
for the makespan of S. A set of tasks ready to be scheduled (i.e. whose predecessors have
already been scheduled) is maintained, and at each iteration, the ready task with the highest
priority is selected for scheduling (Algorithm: 3-line: 4). The selected task 7/ is scheduled
following a given policy (in our experiments we used ASAP) and an interference analysis
is performed on the resulting partial schedule S’ (Algorithm: 3-line: 6). Note that the
priority vector does not define the mapping of the tasks so the scheduling policy is
responsible for choosing the cores where tasks are scheduled. If mksp(S') is smaller than
objective Obj, the algorithm updates the set of ready tasks and iterates with the next ready
task (Algorithm: 3-line: 18). If, however, the partial schedule spans more than Obj cycles,
the algorithm is allowed to de-schedule some tasks that are put back in the set of ready
tasks in order to make room for 7 before Obj (line: 9). The de-scheduled tasks are the
tasks that start after the end of the last predecessor of 7/ and before Obj — WCET(z"),
as well as all their (already scheduled) successors. Tasks that start after this date and are
not successors of de-scheduled tasks are not put back in the ready set, but are directly
rescheduled following the ASAP policy, in respect of their potential dependencies, in

@ Springer

Real-Time Systems

order to benefit from the free intervals in the schedule left empty by the de-scheduled
tasks (Algorithm: 3-lines: 11-14). Task 7’ is then scheduled (again, using ASAP in our
experiments) (Algorithm: 3-line: 15). Even if objective Obj is still unmet, the algorithm
then goes on to the next task to schedule, hoping that further de-schedulings in the next
iterations will allow to meet the objective. The de-scheduling of tasks significantly affects
the execution time of the algorithm compared to a greedy solution, and can create an
infinite loop under certain circumstances. In order to prevent it, an exploration budget
(defined in Algorithm: 3-line: 2) guarantees that the main scheduling loop does not iterate
more than a fixed number of times, even though some tasks remain to be scheduled. If the
number of iterations reaches the budget, the algorithm exits the loop and falls back to a
greedy strategy (Algorithm: 3-line: 21) for the tasks that remain to be scheduled. Tuning
the budget value thus allows to trade execution time for precision.

We define a constant a (Algorithm: 3-line 2) that sets the number of rescheduling
operations allowed to reach the objective. We set a = 3 for tasks systems with less
than 26 tasks so that up to 78 tasks can be rescheduled and @ = 1.2 for the others
which allows 394 rescheduling operations for the largest task system.

4.3.3 Merging optimization

In certain situations, the multi-phase model may incur an overestimation of the num-
ber of contentions during the interference analysis. In the example depicted in Fig. 5
(left), the yellow phase may contend with the three phases in parallel. As a result,
the interference analysis counts 3 contentions coming from the yellow phase for
each of these phases, resulting in 9 contentions in total. In practice this is impos-
sible, as the yellow phase only performs 3 accesses in total. In order to reduce this
pessimism, we developed a phase merging algorithm that can be applied on a partial
or complete schedule. This optimization detects local situations in which merging
together multiple phases of a task can reduce the overestimation of the number of
contentions during the interference analysis.

In practice, the optimization looks for phases q,’)]’: (called saturated phases in the
following) that create more than (|C| — 1) X d)j’m contentions to phases in parallel
during the interference analysis. This formula was chosen as another trade-off
between speed and precision. Once a saturated phase is discovered, the algorithm
looks for phases scheduled in parallel and assesses whether or not it would be bene-
ficial to merge them together. Indeed, the local benefits of merging phases (w.r.t. a
given saturated phase) can be outweighed by the effects of the merge on adjacent
tasks. This can be illustrated using Fig. 5:

9 contentions 3 contentions
5 |6 4 15
»

.. [y A -
3 3 3

Fig.5 An example of local overestimation of contentions (Color figure online)

@ Springer

Real-Time Systems

e In the left part of the figure, the maximum number of contentions each phase
may suffer is:

— min(5, x + 3) for the green phase.

— min(6,3) = 3 for the purple phase.

— min(4,3) = 3 for the red phase.

— min(x, 5) for the grey phase.

— min(3,(5 + 6 + 4)) = 3 for the yellow phase.

So if the phases are not merged, the interference analysis counts
9 + min(x, 5) + min(5, x + 3) contentions in total for the two cores.
e On the right part, when the phases are merged, this number is:

— min(15,x + 3) for the blue phase.
— min(x, 15) for the grey phase.
— min(3,15) = 3 for the yellow phase.

So the interference analysis counts min(15, x + 3) + min(x, 15) + 3 contentions
in total.

Therefore, if the value of x is strictly greater than 6, the merge is not globally beneficial.

Algorithm 4 mergeOptimization

Require: 7' ; S; start; end
1: phases = getPhasesIn(S, start, end)
2: idx =0
3. while idx < size(phases) do

¢% = phaseslidz]

»

5 alreadyAttempted = [|

6 while isSaturated(S, ¢) do

7: end = ¢§..d# + qﬁ;.dur + ¢); .p

8 candidates = get PhasesWithin(S, qﬁé-.d#, end)

9 oF, qﬁfﬂ = getMergeable Phases(candidates, already Attempted)

10: if ¢F == null then > no phases left that can be merged together in
candidates

11: break

12: end if

13: alreadyAttempted.push((¢F, ¢f+1))

14: S’ = mergePhases(S, ¢}, ¢},)

15: if mksp(S') < mksp(S) then

16: S=¥¢

17: end if

18: end while

19: ide = idx + 1
20: end while

Algorithm 4 describes the merging optimization. As for the SDE algorithm, com-
puting the contentions several times is necessary to identify the saturated phases and

@ Springer

Real-Time Systems

to assess whether or not a merge is profitable. The algorithm retrieves the list of all
scheduled phases and iterates over it until a saturated phase d’; is found. When a
phase is saturated, the algorithm enters the inner while loop (line 6) to try some
merges. The merges are attempted using candidates, the list of phases in parallel of
¢;, that is retrieved by function getPhasesWithin (line 8). Then, function
getMergeablePhases searches for two phases of candidates that are in the same task,
consecutive and have not been studied before (otherwise they are present in
alreadyAttempted). If no such phases have been found, the inner while is exited with
a break (line 11). Otherwise, the phases are added to the alreadyAttempted list and a
new schedule §' is created with the two phases d)f and ¢;‘+1 merged using function
mergePhases that also recomputes the contentions. If the makespan of S’ is better
than S then the merge is confirmed at line 16.

The ASAP-based greedy heuristic described in Sect. 4.3.1 does not compute the
contentions in the system before the schedule is produced. As a result, the scheduling
decisions are not impacted by potential merges, so it is only useful to apply the merg-
ing optimization once the schedule has been entirely constructed. On the other hand,
the SDE algorithm is interference-aware, so calling the merging optimization at each
scheduling step can influence its decisions. In the remainder of the document, when-
ever the merging optimization is used, it is used after the schedule is produced with the
ASAP policy, and during its construction with the SDE policy. We do not display the
results of the optimization with IPH because it does not improve the trade-off between
the computation speed and its efficiency to reduce the makespan of the schedule.

5 Experimental evaluation

In this section, we present a comparative study of the heuristics and an evaluation
of the multi-phase model. Our evaluations use both synthetic tasks and task systems
from real case studies.

5.1 Synthetic task sets generation

This section presents how the synthetic task sets used in the experiments are gener-
ated. In a nutshell, the task systems are single-periodic and the tasks are released
synchronously. Precedence constraints between tasks are expressed by DAGs whose
vertices represent the tasks of the system and whose edges represent the dependen-
cies between tasks. For a given experiment, a multi-phase profile and an equivalent
single-phase profile are generated for each task, and the task system with multi- and
single-phase representations are scheduled independently. Then a separate inter-
ference analysis is performed on both resulting schedules. In the end the results
obtained for the multi-phase and for the single-phase representations of the same
task system are compared, for each synthetic task system.

@ Springer

Real-Time Systems

Table 3 Description of the tests input parameters

Parameter Description

Number of cores Number of cores in the architecture

Access cost Cost of a memory access in cycles

Penalty factor Multiplier applied to the access cost to compute the interference penalty

Number of phases Average number of phases per task

Temporal shape Policy to generate the duration of the phases

Empty phases Proportion of empty phases (i.e. phases qu s.t. qbf.m = 0) in each profile (%)

Access shape Policy to generate the number of accesses into the phases

Access rate Average number of accesses performed for 10,000 execution cycles

Over-approximation Proportion of additional accesses in the multi-phase representation com-
pared to the single-phase one in %

ov-app Short for over-approximation

Number of tasks Number of tasks to schedule

5.1.1 Generation of synthetic task systems

The first part of the experiments has been conducted on task systems composed of
synthetic multi-phase profiles. Their generation is controlled by a set of input param-
eters presented in Table 3.

The first three parameters characterize the hardware architecture on which the
tasks are scheduled. The penalty factor parameter tunes the cost of contentions as
a multiple of the cost of an access in isolation. Indeed, the memory latency of an
access in the presence of interference can be several times the cost of an access
in isolation due to indirect effects, e.g. in the pipeline (Sebastian and Jan 2020;
Gruin et al. 2023). Setting the penalty factor to 1 is therefore the most optimistic
assumption for an architecture, which usually is an unfavorable assumption for our
experiments. The experiments are conducted with a penalty factor of 1 and 3, which
correspond respectively to an optimistic and a more realistic assumption.*

The number of phases for each task is drawn from a normal law centered around
a target value specified by the “number of phases” parameter. As for the duration of
the phases, a temporal shape parameter specifies the desired generation method:

1. Normal (N): each duration is drawn from a single normal law, with a unique aver-
age value and standard deviation for all the phases of a task. This method tends to
generate little variation in the duration of the phases of a profile. Two examples
of profiles generated with the Normal policy are given in Fig. 6a.

2. Bi-Normal (BN): the durations are drawn from two distinct normal laws that
have a different average value such that there are short and long phases. In
preliminary experiments, the duration ratio between short and long phases did

4 3 times the memory latency corresponds to the upper bound for the timing-compositional SIC core
(Sebastian and Jan 2020)

@ Springer

Real-Time Systems

5000
4000
profile_1 z
QU
@
3000 »
Q
c
o
=
=
=]
2000 £
S
o
profile_0 <
1000
0 10000 20000 30000 40000 o
time (cycles)
(a) Normal duration policy.
5000
4000
profile_1 =
0!
w
o
3000 »
Q
f=4
o
=3
o
=]
2000 <
aQ
0]
profile_0 o
1000

0 5000 10000 15000 20000 25000 30000 35000
time (cycles)

(b) Bi-Normal duration policy.

Fig.6 Examples of profiles generated with the Normal and Bi-Normal duration policies

not seem to influence the results, so the ratio between the centers of both normal
laws is arbitrarily set to 3 in our evaluations. Other preliminary experiments
also suggested that profiles in which long phases and sequences of short phases
alternate perform better than other profile shapes (Rémi et al. 2022). Thus, in BN
generated profiles, a long phase is systematically followed by a short phase, while
a short phase can be followed by a sequence of short phases. Figure 6b shows 2
profiles generated with this policy.

@ Springer

Real-Time Systems

6000

5000

uniform 14 19 11 1 6 3 1 5
4000

3000

(s9]2A2) uoneinp saseyd

normal 5 10 7 2 9 6 10 11 2000

1000

0 2500 5000 7500 10000 12500 15000 17500 20000
time (cycles)

(a) Uniform and normal access shapes coupled with the normal temporal shape.

8000

7000

[}
o
o
o

uniform 21 3 1|13 5 5 5

5000

4000

3000
normal 2 8 22 7 9 1

(s9]242) uoizeanp saseyd

2000

1000

0 2500 5000 7500 10000 12500 15000 17500 20000
time (cycles)

(b) Uniform and normal access shapes coupled with the bi-normal temporal shape.

Fig. 7 Examples of profiles generated with the Uniform (top) and Normal (bottom) access shapes

Moreover, when analyzing real code, phases in which there are no memory accesses
(called empty phases in the remainder of the paper) are expected due to e.g. cache
effects. Thus, the experiments include profiles without empty phases as well as pro-
files with around 20% of empty phases’ to study their influence on the scheduling
results.

The number of accesses in each phase can be generated with 2 different methods:

3 For profiles in which 20% of the phases is not an integer number, we rounded up or down to the closest
integer.

@ Springer

Real-Time Systems

1. Normal (N): for each phase, its access rate is drawn from a unique normal law
centered around the value specified by the access rate input parameter. Then, the
number of accesses is computed by multiplying the drawn access rate for the
phase by its duration. With this generation mode, on average, longer phases tend
to perform more accesses than shorter ones.

2. Uniform (U): the task-wise number of accesses is computed using the access rate
input parameter and the duration of the task, then the accesses are distributed
between the phases using a uniform law, so that all phases have the same prob-
ability to get accesses. This method thus distributes the accesses independently
from the duration of the phases, which leads to a greater variability in the gener-
ated distributions of accesses: some distributions are similar to the ones generated
using the normal law, but compared to the normal law, there is a higher prob-
ability to generate distributions in which smaller phases have a high number of
accesses and longer phases a small number of accesses.

Figure 7 displays examples of N and U distributions of memory accesses in a N tem-
poral shape (Fig. 6a) and in a BN temporal shape (Fig. 6b).

The generation of a profile begins by the generation of the duration of the phases
according to the temporal shape policy. Then, the number of accesses in the phases
is chosen according to the access rate of the task, its WCET and the access shape
policy. Once the duration and accesses of each phase have be chosen, a correction
pass is performed to ensure that for any phase the sum of the duration of its accesses
does not exceed its duration.

In order to assess the efficiency of the multi-phase model compared to single-
phase, the generated multi-phase profiles are converted to their single-phase equiva-
lent by summing the duration and the number of accesses of the phases.

In practice, depending on the analysis method and on the tuning of parameters,
the multi-phase representation of a task may account for more accesses than its
single-phase counterpart, because the phases are unaware of unfeasible paths in the
code. To account for this possible over-estimation of accesses in our synthetic task
profiles, the number of accesses in the single-phase model is reduced according to
an access over-approximation input parameter. In the remainder of the paper, the
terms access over-approximation or access over-estimation designate this overhead
between the number of memory accesses accounted for in the multi-phase model
of a task and in its single-phase counterpart. This way it is also possible to assess
the impact of the access over-approximation level on the quality of the produced
schedules.

5.1.2 Generation of tasks dependencies

Task dependencies are defined in a DAG. Such DAGs are generated as
series—parallel graphs: for each vertex without a successor, we generate either a
fork, resulting in a parallel sub-graph of successors (with a probability of 0.7) or
a sequence of successors (with a probability of 0.3), until the number of generated
vertices is equal to the desired number of tasks for the system. The first vertex is

@ Springer

Real-Time Systems

400
[pos:96.08 %
. av =9.45
350 o A std dev = 7.73
300 i
5,250 H
o
c
)
3200 b
o
w
150 | ‘*HT
B | fffm
i QU
0 ~60 ~40 —20 20 40 60

0
Makespan gain value (%)

Fig. 8 Makespan gain of multi-phase ILP vs single-phase ILP in %

always followed by a parallel sub-graph (to avoid having only sequential tasks at the
start of the schedules). When at least 2 forks have been generated (the second being
a direct or indirect successor of the first), the algorithm can (with a probability of
0.2) generate a new vertex as a successor of all vertices that are currently without a
successor, thus realizing a join in the graph. The probabilities (resp. 0.7, 0.3 and 0.2)
were arbitrarily calibrated to obtain series—parallel graphs with enough parallelism
to allow interference to occur in the system.

5.2 Tests metrics

The two metrics that we considered in the experiments are the makespan of the
schedule in the presence of interference and the total number of contentions that
may appear in the schedule according to the interference analysis.

For each metric m, the notion of gain is defined as the comparison of the value of
m in a given schedule to the value of m in a baseline schedule (the single-phase vari-
ant of the schedule):

gain = (m_value_baseline — m_value_schedule) /m_value_baseline.

Moreover, a test is considered to be positive if gain > 0 for the corresponding task
system, scheduling policy and metric m. In other terms, a positive test means that
the multi-phase instance of the problem yields improved results compared to its sin-
gle-phase counterpart.

5.3 Comparative study using the ILP formulation
The optimization problem is inherently nonlinear due to the interference com-

putation. Consequently, the ILP solver (Gurobi 9.5.1 Gurobi 2022) encountered
scalability issues. Thus, this section only presents the results for experiments

@ Springer

Real-Time Systems

Table 4 Makespan gain results compared to ILP with multi-phase or single-phase

Cores Heuristic Gain vs ILP multi Gain vs ILP single
Share of posi- Average gain (%) Share of posi- Average gain (%)
tive (%) tive (%)

2 IPH 7.31 -3.71 90.51 5.17

SDE 2.70 —5.69 73.77 3.20
+Merge 6.34 —5.05 77.47 3.83
ASAP 2.15 -7.77 63.77 1.11
+Merge 5.15 -6.76 70.50 2.12
4 IPH 1.29 -5.02 88.06 5.82
SDE 1.37 - 577 81.29 5.07
+Merge 3.06 —-543 83.87 5.42
ASAP 0.56 -9.35 64.84 1.50
+Merge 1.69 - 842 70.40 2.42

with 4-6 tasks composed of 4-6 phases each, and whose solving time was infe-
rior to 6 h (a timeout was set in the experiments). We set the cost of a memory
access to 50 cycles in our experiments. The experiments include tasks with an
average access rate of 25, 50 or 75 accesses per 10,000 cycles (corresponding
to 12.5, 25 and 37.5% of the cycles spend in memory accesses), without access
over-approximation (the number of accesses in the single phase variant of a task
is equal to the sum of accesses of the phases in the multi-phase variant), and with
either no empty phases, or with 20% of the phases empty.® When computing the
time penalties due to contentions, the penalty duration is set to either 50 or 150
cycles, system-wide, corresponding to a penalty of 1 or 3 times the duration of a
memory access of 50 cycles.

5.3.1 ILP results

The distribution of the gain values obtained by the multi-phase variants compared to
their single-phase counterparts (on 4236 experiments), scheduled with ILP is repre-
sented in Fig. 8. The extreme values are not represented for readability reasons: the
gain varies from — 66.49 to 69.38% and the average value is 9.45%. In other terms,
we can expect to reduce the system worst-case makespan by around 9% on average
by switching from single to multi-phase representation. Moreover, in more than 96%
of the tests the results of the multi-phase ILP were positive, i.e. at least as good as
the single-phase ILP. The rare cases where multi-phase ILP performs worse than
single-phase ILP can be attributed to the problem described in Sect. 4.3.3. As these
results have been obtained with only small instances of the problem, they do not
allow to draw general conclusions. However, it is worth noting that the gap between

% Following preliminary analyses on the TACLe benchmark suite (Falk 2016), we estimate 20% to be a
reasonable amount of empty phases.

@ Springer

Real-Time Systems

2 cores Il 4 cores [ASAP [SDE = IPH
100 W, =7 T3 SHD
90 oE ml :: ::: 2
80 g i
70
60
50
40
30
20

10

Share of positive tests (%)

Maximum over-approximation (%)

(a) penalty =50 cycles

2 cores Il 4 cores [ASAP [0 SDE == IPH
100

90
80
70
60
50
40
30
20
10

Share of positive tests (%)

10 S 15
Maximum over-approximation (%)

(b) penalty =150 cycles
Fig. 9 Share of positive results in terms of contentions according to the access over-approximation for 2

interference penalty values compared to single-phase IPH

the two models increases when the number of cores goes from 2 to 4, since the
experiments with 2 cores have an average gain of 8.88% while it is 10.85% for the
tests with 4 cores. This is coherent with the fact that the effect of potential conten-
tions increases with the number of cores.

5.3.2 Comparison of ILP and heuristics for multi-phase profiles

Table 4 shows the average gain and the proportion of results where each heuristic
result was at least as good as the ILP solving the multi-phase or single-phase

@ Springer

Real-Time Systems

2 cores Il 4 cores [ASAP [SDE 0 IPH
100

90
80 g :i: 2 > % &

Te
bo
o

60— B 8 5
ol AN % n

Share of positive tests (%)

o o o o o o o X X ° ° o X
s o (<

10 o o B B o o o o o of o o ° X B B o
o o o o o o o ° o of o o ° X X B o
bo o o o o ol o of o o o o X o8 o o o 0 o

0 5 10 15 20 30
Maximum over-approximation (%)

(a) penalty =50 cycles

2 cores HEl 4 cores [ASAP =71 SDE 1 IPH
100

90
80
70
60
50
40
30
20
10

Share of positive tests (%)

10 15
Maximum over-approximation (%)

(b) penalty =150 cycles

Fig. 10 Share of positive results in terms of makespan according to the access over-approximation for 2
interference penalty values compared to single-phase IPH

problem. All the heuristics are on average less than 10% worse than the optimal
multi-phase result and IPH is only at 3.71% on 2 cores and 5% on 4 cores. When
the merging optimization was used, ASAP and SDE were even able to beat the
multi-phase ILP (in respectively 2.5% and 3.3% of the tests) because of the new
profiles generated by the optimization. A version of the ILP with possible merges
would considerably increase its complexity and solving time so it is not proposed.
Moreover, the heuristics applied on multi-phase profiles are at least as good as
the optimal solution for the equivalent 1-phase profiles in at least 63% of the
experiments (up to 90.51% for IPH with 2 cores). Finally, IPH finds the optimal

@ Springer

Real-Time Systems

multi-phase schedule in 7.31 and 1.29% of these (simple) experiments respectively
on 2 and 4 cores.

5.4 Comparative study on larger systems

In this section we study the influence of the parameters on the gain of the multi-
phase model and compare the heuristics on larger task systems. They are composed
of either 20 or 25 tasks,’” with the number of phases drawn from a normal law cen-
tered around 15 or 20. Moreover, several over-approximation values from 0 to 30%
of additional accesses are tested. The other parameters are the same as in the previ-
ous section.

5.4.1 Influence of the target architecture: interference penalty and number of cores

Figure 9 shows the share of experiments with a positive gain in terms of reduction
of the worst-case number of contentions. It shows that SDE is the best heuristics to
reduce the number of contentions, which is expected as it is the only one that makes
decisions based on interference-aware (partial) schedules. In terms of makespan
reduction, Fig. 10 shows that [IPH dominates the other heuristics. This confirms the
results of Schuh et al. (2020): tolerating a certain level of contentions in the system
is more efficient, on average, than systematically postponing the start date of tasks
to avoid interference, when it comes to reducing the makespan. However, when the
penalty for a contention increases from 50 to 150 cycles, SDE improves, achieving
results closer to IPH: as the penalty for each contention increases, postponing the
execution of tasks to reduce the number of contentions becomes more profitable.

We started our experiments using ASAP as the baseline for single-phase as it
was very fast. During the course of the experiments, we realized that [PH, although
designed with multi-phase in mind, was also very efficient to schedule single-phase
task systems, and outperformed ASAP in most cases. We thus decided to compare
our multi-phase results with their single-phase counterparts scheduled with ASAP
and IPH. The average makespan gain is represented by Figs. 11 and 12 respectively
against single-phase ASAP and IPH. The same observations as with the share of
positive results can be made: SDE is the least efficient heuristic when the penalty is
50 cycles but its gain improves as the penalty increases. With a 150 cycles penalty,
the gain of the multi-phase model reaches 15.86% using IPH against single-phase
ASAP, while the maximum is 7.47% against single-phase IPH.

In a nutshell, IPH is the most adapted to reduce the makespan of the task systems
while SDE is the most efficient to reduce contentions. The reason for this is that
SDE tends to take short-term decisions that mainly reduce the worst-case number
of contentions. However, it is sometimes better to accept more contentions locally to
reduce the makespan of the entire system. When the effects of contentions are more
important (i.e. a higher number of cores or a greater interference penalty), avoiding
contentions is more correlated to reducing the makespan of the schedule so SDE
becomes more efficient to reduce the makespan.

7 The reported results of this section combine the experiments with 20 and 25 tasks.

@ Springer

Real-Time Systems

é jg rlilfhujf‘ “Ihﬁﬁr}ilrh”bdiﬁm[b lilrﬁl\{j\ 1‘}“&
LY M

0 5 10 15 20 30
Maximum over-approximation (%)

Fig. 11 Average makespan gain vs ASAP single-phase according to the access over-approximation

1(5) : Penalty = 50 cycles
o g i

T i P°?£'“'ﬁ$f§.5'imm]W

0 5 10 15 20 30
Maximum over-approximation (%)

Average gain makespan vs IPH (%)

Fig. 12 Average makespan gain vs IPH single-phase according to the access over-approximation

5.4.2 Influence of the input parameters

Table 5 shows the share of positive tests for each pair of temporal/access shape.
According to the results, regardless of the temporal shape, the uniform access shape
performs better than the normal shape. In other words it seems that the variation
in phase duration within a profile has a very limited impact on the reduction of the
makespan, and that profiles in which the number of accesses is not correlated to the
length of the phases perform significantly better than those where such a correlation
exists. In practice, it means that the analysis methods that build the profiles should

@ Springer

Real-Time Systems

Table 5 Ma.ke.span gain results Cores (#) Maximum Share of positive tests (gain > 0)
compared to single-phase IPH over-approx
for the different profile shapes (%) " Bi-Normal Normal

Normal Uniform Normal Uniform

2 0 67.73 83.19 68.50 82.17
5 58.14 81.32 61.58 79.83
10 48.26 79.03 56.64 77.43
4 0 78.80 88.46 80.97 89.72
5 64.35 87.53 71.04 86.18
10 50.62 83.46 62.82 83.10

focus on optimizing the way the accesses are grouped rather than the duration of the
phases.

Figure 13 shows the makespan gain of our three heuristics against IPH single-
phase while varying the amount of empty phases (i.e. with no access). All heuristics
perform significantly better when 20% of the tasks execution time is spent in empty
phases, regardless of the value of the penalty, or of the level of over-approximation
of accesses. When the penalty is set to 150 cycles, the difference in gain for SDE
nearly doubles for 0% and 5% overestimation (and more than doubles for 15%). This
demonstrates the crucial aspect of empty phases to improve the makespan of the
scheduled systems.

Table 6 gives the average computation time of the heuristics according to the
number of tasks in the system and the average number of phases. As expected,
ASAP is the fastest of our 3 heuristics. Then SDE is faster than IPH for the systems
composing our benchmark. However, when the workload increases the computation
time increases comparatively more for SDE than for IPH. It is expected that SDE
will be slower than IPH for very large systems.

5.5 Case Studies

In this section, we apply the heuristics on Pagetti et al. (2014), a multi-periodic flight
controller, and Nemer et al. (2006) that is derived from an open-source UAV control
application. The environmental simulation tasks of Rosace are not considered, as
they are not embedded code and their WCET is several orders of magnitude larger
than that of the other tasks.

The tasks have been compiled for ARM targets. We consider a multicore archi-
tecture in which each core has a private L1 LRU data cache and an instruction
scratchpad. The memory latency was set to 50 cycles for non-cached accesses. The
tasks were analyzed with OTAWA (Ballabriga et al. 2010) to extract their Control
Flow Graph (CFG) and perform a cache analysis. Then, the multi-phase profiles of
the tasks were computed using the Time Interest Points (TIPs) method from Carle
and Cassé (2021). Based on the execution traces of a task, the TIPs method creates

@ Springer

Real-Time Systems

H-Wﬁﬂ H-Wﬁﬂ J'H”M'Hﬁ Hhuﬁnwm
§ :g Hh }L Hlﬁ H} »M %'H] tm Hﬁﬁ PlHl 1M

0 5 10 15 20 30
Maximum over-approximation (%)

Fig. 13 Average makespan gain vs IPH single-phase according to the presence of empty phases

Table 6 Average computation

time for the different heuristics Tasks (#) ggases per task Average computation time (s)
ASAP SDE IPH
20 15 <1 55 334
20 <1 112 499
25 15 <1 88 596
20 <1 172 911
All tests <1 105 574

short phases that correspond to the memory accesses, and then merges overlapping
and adjacent phases. In order to tune the obtained profile, the user specifies a § value
that indicates the expected minimal duration of the phases in the profile.

Some of the original tasks of Papabench were split to reduce the complexity of
the analysis. Then, as the systems are multi-periodic applications, the task system
was converted into a DAG of single-period tasks over one hyperperiod following the
methodology of Carle et al. (2015) but without using release dates for the jobs (i.e.
with a synchronous release). The resulting DAG is composed of 77 tasks for Rosace
and 329 tasks for Papabench. Statistics about the profiles are provided by Table 7
(empty dur is the proportion of execution time guaranteed without access). As
expected, as § diminishes, the number of phases increases, reaching up to 14.4 (resp.
27.38) phase per task on average for Rosace (resp. for Papabench). The number of
synchronizations required to implement these profiles remains under 2 per phase on
average for Rosace, and reaches 3 per phase in the worst case for Papabench, which
remains acceptable. The over-approximation also increases but remains low (less
than 2% for Rosace and 8% for Papabench), while the percentage of time spent in

@ Springer

Real-Time Systems

Table 7 Statistics of Rosace and Papabench profiles

1) Rosace Papabench
Sync (#) Phases (#) ov-app (%) Empty dur Sync (#) Phases (#) ov-app (%) Empty dur
(%) (%)
1000 384 294 0.00 0.00 5622 2755 4.01 9.54
500 561 531 0.00 17.96 12,937 4788 4.73 22.87
200 1020 1110 1.22 28.55 24,891 9009 7.45 35.65

empty phases increases fast, and reaches up to 28% (resp. 35%) for Rosace (resp.
Papabench).

Then IPH, SDE and ASAP were used to schedule the DAGs on 2, 3 or 4 cores
and we applied interference analyses on the schedules with a penalty of 50 and 150
cycles.

The results presented in Tables 8 and 9 show that the gain tends to increase when
the phases are smaller (i.e. when 6 is lower). Following our previous observations,
this can be the result of the increased proportion of time spent in empty phases, and
of a better distribution of accesses among phases. The multi-phase model globally
yields better results than the 1-phase model, with a makespan gain up to 16.31%
for Papabench (IPH on 2 cores with 6 = 500 cycles and a penalty of 150 cycles)
and 24.00% for Rosace (SDE on 4 cores with § = 200 cycles and a penalty of 150
cycles). For Papabench, IPH always performs the best improvements, ranging
from 7 to 16% compared to the 1-phase ASAP and between 4 and 11% compared
to the 1-phase IPH. When the penalty is 50 cycles, SDE is the worst heuristic and
its makespan is often higher than if the tasks are represented with the single-phase
model (i.e. gain < 0). However, with a 150 cycles penalty per contention, SDE is
more efficient than ASAP with a gain ranging from nearly 7 to 13% for the makes-
pan. For Rosace, SDE is more efficient, as the gain is always positive and often close
to ASAP with 50 cycles of penalty, and it is even the best heuristic when the penalty
is 150 cycles.

The two tables also display the gain in terms of contentions. For Papabench (resp.
Rosace), this gain ranges from 6.92 to 64.36% (resp. 2.42-55.80%) compared to
1-phase ASAP scheduling. This means that on top of reducing the makespan of the
computed schedules, our heuristics, coupled with the multi-phase model, are able to
significantly improve the timing predictability of the scheduled applications because
there is less variability in the number of contentions that may occur in the system
(i.e. the maximum interference scenario is closer to the average case scenario). SDE
is the best heuristic to reduce contentions, even when it obtains negative makespan
gains, which is coherent with what we observed with the synthetic systems.

With 6 = 1000 on 2 cores, the time required to schedule Papabench (resp. Rosace)
with ASAP was 1 min (resp. less than 1 s) while it took nearly 8 h when applying
SDE (resp. 43 s) and 6 h (resp. 3 min) to run IPH with up to 31 threads (resp. 19)
computing a schedule at a time. However, as IPH is an iterative heuristic, it is able
to find the best result or at least a satisfying result within the early iterations. For
Papabench the schedule was found in less than 3 h.

@ Springer

Real-Time Systems

Table 8 Results of heuristics to schedule Papabench tasks with TIPs profile

nb o Penalty = 50 cycles Penalty = 150 cycles
Cores Gain makespan (%) Gain conten- Gain makespan Gain cont. (%)
— tions (%) (%)
vs ASAP vsIPH vs ASAP vs ASAP vsIPH vs ASAP
ASAP 2 1000 7.17 —-0.64 832 9.15 337 17.58
500 8.31 0.58 18.37 10.90 523 2572
200 9.07 141 2471 11.93 633 28.96
3 1000 4.81 1.18 14.18 6.13 1.60 7.32
500 6.37 2.88 2235 7.94 349 17775
200 6.96 341 23.68 9.00 4.61 13.18
4 1000 4.66 125 19.85 5.13 141 1396
500 6.24 2.88 25.62 797 436 18.16
200 6.84 351 2743 9.01 544 19.61
SDE + merge 2 1000 —2.36 — 1098 47.13 9.94 421 57.06
500 0.96 —7.38 54.73 13.61 811 64.70
200 0.75 —-7.61 4059 12.85 731 62.83
3 1000 —5.05 —-9.06 30.50 7.44 298 59.58
500 -1.39 —-526 37.88 12.03 779 64.45
200 -1.02 —4.86 38.46 9.88 553 68.35
4 1000 —4.72 —8.48 3638 7.18 353 65.11
500 -—1.61 —525 40.04 11.15 7.66 65.61
200 —-0.57 —4.17 38.90 9.83 628 67.17
IPH 2 1000 12.86 5.52 14.25 13.02 749 2528
500 14.18 6.95 25.85 16.31 10.99 35.08
200 1497 7.81 31.29 16.12 10.79 38.56
3 1000 8.88 5.56 3097 10.96 6.67 38.59
500 9.98 736 39.56 14.91 10.80 37.37
200 9.59 6.18 35.28 14.51 10.38 49.37
4 1000 7.80 4.28 4253 11.62 8.15 4251
500 9.42 6.26 44.13 13.83 10.44 47.20
200 9.63 6.65 45.61 14.52 11.16 47.74

6 Conclusion

We presented static scheduling methods to reduce the worst-case makespan of multi-
core real-time applications, using the multi-phase model. We proposed an ILP for-
mulation of the problem and then 3 heuristics to overcome the scalability issues of
the ILP. The experimental section assesses the heuristics based on optimal solutions
provided by the ILP, and by comparing them to the 1-phase model on larger syn-
thetic task sets. Finally, the heuristics have been applied on 2 realistic applications.
The results of the ILP for small systems show that one can expect a reduction of
around 9% on average when switching from the single to the multi-phase model. On
our case studies, our heuristics manage to improve the makespan by up to 16% for
Papabench and 24% for Rosace, compared to their single-phase version scheduled

@ Springer

Real-Time Systems

Table 9 Results of heuristics to schedule Rosace tasks with TIPs profile

nb o Penalty = 50 cycles Penalty = 150 cycles
cores Gain makespan Gain contentions ~ Gain makespan Gain cont. (%)
(%) (%) (%)
vs ASAP vsIPH vs ASAP vs ASAP vsIPH vs ASAP
ASAP 2 1000 2.42 0.76 9.03 231 1.28 3.80
500 3.26 1.10 13.82 5.86 487 11.83
200 4.90 277 22.35 9.15 819 1893
3 1000 4.71 —-0.04 242 5.01 2.83 3.98
500 6.96 232 979 6.48 433 7.12
200 8.71 4.16 14.28 8.65 6.56 9.88
4 1000 11.18 317 594 13.23 0.83 9.70
500 13.65 5.86 11.59 14.89 273 1322
200 15.78 818 17.15 16.80 492 16.76
SDE + merge 2 1000 0.90 —1.32 15.82 10.75 9.81 39.66
500 3.78 1.63 31.20 13.28 12.36 55.20
200 2.85 0.67 37.11 17.04 16.17 50.69
3 1000 1.11 -3.82 10.79 9.39 7.31 51.99
500 5.17 0.44 23.82 12.34 1032 44.12
200 7.64 3.03 26.23 17.55 15.65 44.12
4 1000 7.37 —-0.99 14.58 20.36 8.98 55.80
500 13.87 6.09 20.88 20.54 9.19 3548
200 15.54 7.92 2631 24.00 13.14 40.11
IPH 2 1000 4.26 212 7.10 4.87 3.87 10.21
500 5.70 3.59 14.32 9.20 8.24 21.86
200 7.22 5.14 21.48 11.79 10.86 2528
3 1000 6.64 1.98 3.71 5.19 3.01 34.67
500 9.05 452 10.54 8.95 6.86 2495
200 10.64 6.18 17.09 11.32 9.28 2749
4 1000 14.68 6.98 0.27 15.56 3.50 23.46
500 17.35 9.90 7.27 17.82 6.08 45.18
200 19.04 11.73 9.90 19.69 8.21 48.58

with ASAP (11 and 15% compared to single-phase IPH). These experiments show
the potential that the multi-phase model yields when properly exploited by schedul-
ing techniques. In future works, we are going to investigate to which extent these
results can be generalized to on-line schedulers and preemptive systems.

Acknowledgements This work was supported by a grant overseen by the French National Research
Agency (ANR) as part of the MeSCAIliNe (ANR-21-CE25-0012) project. Experiments of Sect. 5 pre-
sented in this paper were carried out using the Grid’5000 testbed, supported by a scientific interest group
hosted by Inria and including CNRS, RENATER and several Universities as well as other organizations

(see https://www.grid5000.1r).

Funding Open access funding provided by Université Toulouse III - Paul Sabatier.

@ Springer

https://www.grid5000.fr

Real-Time Systems

Data Availability Not applicable.

Declarations
Conflict of interest The authors have not disclosed any competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abslnt (2022) Ait. https://www.absint.com/ait/index.htm

Ballabriga C, Cassé H, Rochange C, Sainrat P (2010) OTAWA: an open toolbox for adaptive WCET anal-
ysis. In: Min SL, Pettit R, Puschner P, Ungerer T (eds) 8th IFIP WG 10.2 International workshop
on software technologies for embedded and ubiquitous systems (SEUS). Software technologies for
embedded and ubiquitous systems, vol LNCS-6399, Waidhofen/Ybbs, Austria, Springer, pp 35-46

Becker M, Dasari D, Nikolic B, Akesson B, Nélis V, Nolte T (2016) Contention-free execution of auto-
motive applications on a clustered many-core platform. In: 2016 28th Euromicro conference on real-
time systems (ECRTS), pp 14-24

Carle T, Cassé H (2021) Static extraction of memory access profiles for multi-core interference analy-
sis of real-time tasks. In: Hochberger C, Bauer L, Pionteck T (eds) Architecture of computing sys-
tems—34th international conference, ARCS 2021, virtual event, June 7-8, 2021, proceedings, vol
12800. Lecture Notes in Computer Science. Springer, Berlin, pp 19-34

Carle T, Dumitru P-B, Sorel Y, Lesens D (2015) From dataflow specification to multiprocessor parti-
tioned time-triggered real-time implementation. Leibniz Trans Embed Syst 2(2):01:1-01:30

Davis RI, Altmeyer S, Leandro IS, Maiza C, Nélis V, Reineke J (2018) An extensible framework for mul-
ticore response time analysis. Real Time Syst 54(3):607-661

de Dinechin MD, Schuh M, Moy M, Maiza C (2020) Scaling up the memory interference analysis for
hard real-time many-core systems. In: 2020 Design, automation & test in Europe conference & exhi-
bition, DATE 2020, Grenoble, France, March 9-13, 2020. IEEE, pp 330-333

Degioanni T, Puaut I (2022) StAMP: Static analysis of memory access profiles for real-time tasks. In:
Ballabriga C (ed) 20th International workshop on worst-case execution time analysis (WCET 2022).
Open access series in informatics (OASIcs), vol. 103, Dagstuhl. Schloss Dagstuhl - Leibniz-Zen-
trum fiir Informatik, Germany, pp 1:1-1:13

Didier K, Potop-Butucaru D, Iooss G, Cohen A, Souyris J, Baufreton P, Graillat A (2019) Correct-by-
construction parallelization of hard real-time avionics applications on off-the-shelf predictable hard-
ware. ACM Trans Archit Code Optim 16(3):24:1-24:27

Durrieu G, Faugere M, Girbal S, Graciaerez D, Pagetti C, Puffitsch W (2014) Predictable flight manage-
ment system implementation on a multicore processor. In: ERTS’ 14

Falk H et al (2016) TACLeBench: A benchmark collection to support worst-case execution time research.
In: Schoeberl M (ed) 16th International Workshop on worst-case execution time analysis (WCET
2016). OpenAccess Series in Informatics (OASIcs), Dagstuhl. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, Germany, pp 2:1-2:10

Gruin A, Carle T, Rochange C, Cassé H, Sainrat P (2023) Minotaur: A timing predictable RISC-V core
featuring speculative execution. IEEE Trans Comput 72(1):183-195

Gurobi Optimization (2022) LLC. Gurobi optimizer reference manual. https://www.gurobi.com

Hahn S, Reineke J (2020) Design and analysis of SIC: a provably timing-predictable pipelined processor
core. Real Time Syst 56(2):207-245

Halbwachs N (1992) Synchronous programming of reactive systems, vol 215. Springer, Berlin

@ Springer

http://creativecommons.org/licenses/by/4.0/
https://www.absint.com/ait/index.htm
https://www.gurobi.com

Real-Time Systems

Hanzélek Z, §$\mathring{ {\rm u}}$cha P (2017) Time symmetry of resource constrained project sched-
uling with general temporal constraints and take-give resources. Ann Oper Res 248(1-2):209-237

Jati A, Claudi M, Aftab RS, Geoffrey N, Eduardo T (2021) Bus-contention aware schedulability analysis
for the 3-phase task model with partitioned scheduling. In: Audrey Q, Iain B, Giuseppe L (eds)
RTNS’2021: 29th International conference on real-time networks and systems, Nantes, France,
April 7-9, 2021. ACM, pp 123-133

Maiza C, Rihani H, Juan MR, Goossens J, Altmeyer S, Davis RI (2019) A survey of timing verification
techniques for multi-core real-time systems. ACM Comput Surv 52(3):56:1-56:38

Matéjka J, Forsberg B, Sojka M, §$\mathring{{\rm u}}$cha P, Benini L, Marongiu A, Hanzalek Z
(2019) Combining PREM compilation and static scheduling for high-performance and predictable
MPSoC execution. Parallel Comput 85:27-44

Meunier R, Carle T, Monteil T (2022) Correctness and efficiency criteria for the multi-phase task model.
In: Maggio M (ed) 34th Euromicro conference on real-time systems (ECRTS 2022). Leibniz Inter-
national Proceedings in Informatics (LIPIcs), Dagstuhl, vol 231 Schloss Dagstuhl - Leibniz-Zen-
trum fiir Informatik, Germany, pp 9:1-9:21

Nemer F, Cassé H, Sainrat P, Bahsoun J-P, De Michiel M (2006) PapaBench: a free real-time benchmark.
In: 6th International workshop on worst-case execution time analysis (WCET’06)

Pagetti C, Saussié D, Gratia R, Noulard E, Siron P (2014) The ROSACE case study: from simulink specifica-
tion to multi/many-core execution. In: 20th IEEE real-time and embedded technology and applications
symposium, RTAS 2014, Berlin, Germany, April 15-17, 2014. IEEE Computer Society, pp 309-318

Pagetti C, Forget J, Falk H, Oehlert D, Luppold A (2018) Automated generation of time-predictable exe-
cutables on multicore. In: Proceedings of the 26th international conference on real-time networks
and systems, RTNS’18, New York, NY, USA, Association for Computing Machinery, pp 104-113

Pellizzoni R, Betti E, Bak S, Yao G, Criswell J, Caccamo M, Kegley R (2011) A predictable execution model
for cots-based embedded systems. In: 17th IEEE real-time and embedded technology and applica-
tions symposium, RTAS 2011, Chicago, Illinois, USA, 11-14 April 2011. IEEE Computer Society, pp
269-279

Rouxel B, Skalistis S, Derrien S, Puaut I (2019) Hiding communication delays in contention-free execu-
tion for spm-based multi-core architectures. In: Quinton S (ed) 31st Euromicro conference on real-
time systems, ECRTS 2019, July 9-12, 2019, Stuttgart, Germany. LIPIcs, vol 133. Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik, pp 25:1-25:24

Schuh M, Maiza C, Goossens J, Raymond P, de Dinechin BD (2020) A study of predictable execution
models implementation for industrial data-flow applications on a multi-core platform with shared
banked memory. In: 41st IEEE real-time systems symposium, RTSS 2020, Houston, TX, USA,
December 1-4, 2020. IEEE, pp 283-295

Senoussaoui I, Zahaf H-E, Lipari G, Benhaoua KM (2022) Contention-free scheduling of PREM tasks on
partitioned multicore platforms. In: 2022 IEEE 27th international conference on emerging technolo-
gies and factory automation (ETFA), pp 1-8

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Rémi Meunier is a research engineer at Randstadt Digital. He
obtained his PhD on the timing predictability of embedded real-time
systems running on multi-core platforms in 2023.

@ Springer

Real-Time Systems

Thomas Carle is a lecturer at IRIT-Université Toulouse 3. His
research focus is on the timing predictability of embedded real-time
systems, especially in parallel processors (multi/many-cores, GPUs),
through the combination of hardware design, compilation, static
analysis and static scheduling techniques.

Thierry Monteil is professor in computer science at INSA — Univer-
sity of Toulouse and researcher at IRIT. He has worked on parallel
computing, scheduling, cloud resources management, autonomic
middleware and Internet of Things architecture. He represents CNRS
at OneM2M standardisation consortium and at Eclipse foundation.
He has created the OM2M project and leads the OM2M eclipse open
source project.

@ Springer

	Multi-core interference over-estimation reduction by static scheduling of multi-phase tasks
	Abstract
	1 Introduction
	2 Related work
	2.1 Multi-core interference and the multi-phase model
	2.2 Interference-aware scheduling on multi-core processors

	3 Formal model
	3.1 The multi-phase task model
	3.2 Consequences of the interference analysis

	4 Multi-core scheduling
	4.1 Problem definition
	4.2 ILP formulation
	4.3 Heuristics
	4.3.1 Greedy policies
	4.3.2 Iterative priority scheduling heuristic (IPH)
	4.3.3 Merging optimization

	5 Experimental evaluation
	5.1 Synthetic task sets generation
	5.1.1 Generation of synthetic task systems
	5.1.2 Generation of tasks dependencies

	5.2 Tests metrics
	5.3 Comparative study using the ILP formulation
	5.3.1 ILP results
	5.3.2 Comparison of ILP and heuristics for multi-phase profiles

	5.4 Comparative study on larger systems
	5.4.1 Influence of the target architecture: interference penalty and number of cores
	5.4.2 Influence of the input parameters

	5.5 Case Studies

	6 Conclusion
	Acknowledgements
	References

