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Abstract: On a global scale, wetlands are suffering from a steady decline in surface area and envi-

ronmental quality. Protecting them is essential and requires a careful spatialisation of their natural 

habitats. Traditionally, in our study area, species discrimination for floristic mapping has been 

achieved through on-site field inventories, but this approach is very time-consuming in these diffi-

cult-to-access environments. Usually, the resulting maps are also not spatially exhaustive and are 

not frequently updated. In this paper, we propose to establish a complete map of the study area 

using remote sensors and set up a long-term and regular observatory of environmental changes to 

monitor the evolution of a major French wetland. This methodology combines three dataset acqui-

sition technologies, airborne hyperspectral and WorldView-3 multispectral images, supplemented 

by LiDAR images, which we compared to evaluate the difference in performances. To do so, we 

applied the Random Forest supervised classification methods using ground reference areas and 

compared the out-of-bag score (OOB score) as well as the matrix of confusion resulting from each 

dataset. Thirteen habitats were discriminated at level 4 of the European Nature Information System 

(EUNIS) typology, at a spatial resolution of around 1.2 m. We first show that a multispectral image 

with 19 variables produces results which are almost as good as those produced by a hyperspectral 

image with 58 variables. The experiment with different features also demonstrates that the use of 

four bands derived from LiDAR datasets can improve the quality of the classification. Invasive alien 

species Ludwigia grandiflora and Crassula helmsii were also detected without error which is very in-

teresting when applied to these endangered environments. Therefore, since WV-3 images provide 

very good results and are easier to acquire than airborne hyperspectral data, we propose to use 

them going forward for the regular observation of the Brière marshes habitat we initiated. 

Keywords: remote sensing; wetlands; Eunis habitat classification; invasive alien species; 

WorldView-3; Brière marshes; hyperspectral; Random Forest 

 

1. Introduction 

Wetlands are among the most productive environments on our planet, playing a vital 

role in the ecosystem. Their functions and values are now widely recognised [1]: wetlands 

act as carbon sinks [2]; regulate flooding [3]; improve water quality [4]; and play a major 

role in the landscape by providing unique habitats for a wide variety of plant and animal 

species [5]. 

Worldwide, 3.4 million square kilometres of freshwater wetlands disappeared be-

tween the years 1700 and 2020, mainly due to conversion to arable land [6]. This loss is 

now being amplified by the acceleration of global climate change: rising air temperatures, 

increased evapotranspiration, and lower winter precipitation [7]. Added to this is the 
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degradation of water quality through eutrophication and the threat of saltwater intrusion 

[5]. These disturbances are already causing, and will continue to cause in the future, nu-

merous changes in the specific composition of these environments. To monitor and un-

derstand these changes, it is essential to have accurate, spatially distributed, and up-to-

date information on the species habitats identified by the vegetation specific to wetlands.  

Traditionally, species discrimination for floristic mapping is carried out using field 

inventories [8,9]. Although very accurate, these methods are extremely demanding in 

terms of human and technical resources, very time-consuming, and almost impracticable 

for large-scale studies requiring frequent data collection [10,11]. Many wetlands are lo-

cated in remote areas that are logistically difficult to access and where travelling is often 

hampered. These factors explain why maps are often not updated for a long time after 

they have been drawn up. 

Remote sensing appears to be an appropriate means of mapping wetland habitats. 

The possibility of repeated acquisitions allows researchers to detect changes over time, 

and the digital data resulting from these classifications can be integrated into a geographic 

information system (GIS) [12,13]. 

Airborne hyperspectral methods are widely used to discriminate and map wetland 

vegetation at the species level [8,14,15]. However, their high cost and the difficulty of set-

ting up overflights, where necessary, have led researchers to turn to multispectral satellite 

remote sensing images to map these environments [16–18]. They have the advantage of 

being cheaper in terms of manpower and material resources, and they are easier and 

quicker to obtain. In addition, Light Detection And Ranging (LiDAR) data are used to help 

discriminate between species on the basis of their height or the deformation of the return 

wave produced by their structure [19,20].  

In France, major heritage wetlands are protected by various mechanisms such as the 

Natural Zone of Interest for Ecology, Flora and Fauna (ZNIEFF), Natura 2000 sites, and 

regional natural parks. However, they are still declining. As a result, the characterisation 

and monitoring of these environments have been identified as priority elements of Euro-

pean and regional action programs initiated by local stakeholders [21,22].  

The mapping data available for the study area (see Section 2.1 below) are not spatially 

exhaustive and show a simplification of the habitat mosaics. Some of them have been 

drawn up entirely on the basis of field surveys between 2017 and 2019 and were time-

consuming and people-intensive. Others have not been updated since the 1980s, which 

means that changes cannot be monitored on a regular basis.  

Consequently, the objectives of this study are (1) to draw up an accurate map of the 

study area habitats by comparing the performance between an airborne hyperspectral im-

age coupled with five LiDAR variables and a multispectral scene from the WorldView-3 

satellite (due to its high spatial resolution particularly suitable for classifying wetlands) 

with one LiDAR variable, and (2) to propose a strategy for setting up a long-term moni-

toring observatory that will enable the mapping to be updated on a regular basis in the 

future in order to quantify changes. 

2. Materials and Methods 

2.1. Study Area 

The Natura 2000 site FR5212008 “Grande Brière, Marais de Donges et du Brivet” in 

Loire-Atlantique is composed of a series of marshy depressions and alluvial marshes lo-

cated between the Loire estuary to the south and the Vilaine to the north. The site is located 

within the Brière regional natural park (PnrB) and covers 19,754 ha (Figure 1). For the 

purposes of the study, a sector at 1.79 m NGF (general levelling of France), corresponding 

to the maximum flood level, was traced using a digital terrain model from the LiDAR 

dataset acquired for the study. The territory of the park boasts an exceptional natural her-

itage. However, it is threatened by a number of pressure points, including the 
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proliferation of invasive exotic species, changes in management methods, the degradation 

of water bodies, and the effects of climate change [23]. 

 

Figure 1. Location of the natural regional Park of Brière and the coverage for the two types of remote 

sensing images used in the study. 

2.2. Data Acquisition 

In order to guarantee the implementation of spatial monitoring of the Brière in the 

future, a hyperspectral airborne image and a WorldView-3 satellite image with very high 

spatial resolution (1.24 m) (Table 1) were acquired in early summer 2023 (23 June for 

WorldView-3 image and 13 July for hyperspectral data). This time period was the best 

compromise for the development of most of the plant communities of the site and made 

it possible to compensate for the prolonged flooding of some areas of marshland. This 

choice was complicated by the presence of peripheral plant groups whose phenology was 

already advanced. 

The hyperspectral data were acquired using hyperspectral sensors (Hyspex Mjolnir 

VS-620 camera from Norsk Elektro Optikk, Skedsmokorset, Norway) from OSUNA (Ob-

servatoire des Sciences de l’Univers Nantes Atlantique) on a plane belonging to GEOFIT-

expert (a firm of surveyors).  

The WorldView-3 image was ordered from European Space Imaging (EUSI). This 

image is particularly suitable for classifying land and water features because it is the most 

spatially and spectrally precise satellite constellation. In multispectral mode, the bands 

provide a clear picture of vegetation properties [24]. As this is a test image, its surface area 

is smaller than that of the hyperspectral images, and it does not cover the entire study area 

(Figure 1). 

In addition, LiDAR data were acquired on 09 October 2022 by Titan DW600 cameras 

from Teledyne Optech Incorporated, Vaughan, Ontario, Canada, for the Nantes-Rennes 

LiDAR platform from OSUNA and OSUR (Observatoire des Sciences de l’Univers de 

Rennes) on a plane belonging to GEOFIT-expert. 

This equipment consists of a topo-bathymetric laser with a wavelength in the green 

region (channel C3: 532 nm) and a topographic laser with a wavelength in the near infra-

red (channel C2: 1064 nm) region. For this study, only the topographic informationwas 

acquired in order to obtain information on the microtopography of the marsh and the 

structure of the vegetation. This is called fullwaveform (FWF), meaning that the entire 

return signal is recorded by the sensor. 

The complete characteristics of the sensors are shown in Table 1. 
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Table 1. Technical specifications of the HySpex Mjolnir VS-620 (VNIR V-1240 and SWIR S-620) hy-

perspectral sensors, the WorldView-110 camera (sensor mounted on the WorldView-3 satellite), and 

the Titan DW600 LiDAR sensor. 

 
HySpex 

Mjolnir V-1240 

HySpex Mjolnir 

S-620 

WorldView-110 

Camera 
 Titan DW 600 

Sensor CCD Si MCT (Hg Cd Te) / Channel (nm) C2: 1064 C3: 535 

Pixels 1240 620 / Laseraperture (mrad) C2: 0.35 C3: 0.7 

Channels 160 256 8 Operational altitude (m) 1300 

Spectral range (nm) 410–990 970-2500 400–1040 Laser shot frequency (kHz) 100 

Spectral resolution 

(nm) 
3.0 5.1 / Scan frequency (Hz) 70 

Sampling per chan-

nel (nm) 
3.6 6.0 / Field of view (°) 20 

Field of view (°) 20 20 / Vertical accuracy (cm) 5–10 

Altitude above 

ground (m) 
3500 3500 617,000 

Waveform feedback record-

ing (Go/s) 

1 per nanosec-

ond 

Spatial resolution 

(m) 
0.94 1.89 1.24 Roll compensation on 

2.3. Image Pre-Processing 

The airborne hyperspectral image is pre-processed in a combined atmospheric and 

geometric processing chain with the ATCOR4 [25] and PARGE [26] applications.  

The WorldView-3 image is ordered with the “map ready ortho” option and can be 

used directly without radiometric calibration or orthorectification. Both images are 

masked using a NIR band threshold value, which can distinguish between pixels on land 

and water to make classification easier.  

2.4. Field Data Sampling 

Field sampling should represent the variability of all communities present in the 

Natura 2000 area [27,28]. Since we are using the EUNIS typology, the EUNIS guide from 

the French Biodiversity Agency recommends “paying attention to mosaic habitats, those 

that are very degraded or in transitional states” [29]. 

Reasoned choice (non-random) sampling and the definition of a “laboratory” itiner-

ary are generally practised [30]. We selected 74 ground reference areas (Regions of Inter-

est, ROIs) on the basis of the visual interpretation of the WorldView-3 image positioned 

in areas that are a priori physically and floristically homogeneous, taking into account the 

full range of textural and spectral variability of the image and preferably along access 

roads or canals in order to optimise travel times. In the case of fragmented habitats (dis-

tributed around the territory in small areas), several replicates of the same colour and 

texture are selected. Similarly, in the case of very heterogeneous environments, other plots 

of the same type are selected in order to include all the stages of development and evolu-

tion of the same plant formation.  

For each type of area to be sampled, we defined the extent of the ROIs to be greater 

than several times the size of the pixels in the image (at least 3 pixels × 3 pixels). This 

ensures that the plot is representative of the environment under consideration and not 

accidental or relict, so that the classification algorithms can learn from it correctly. This 

procedure has sometimes been difficult to implement because of the spatial distribution 

of certain small habitats (for example, some lawns do not form continuous grass beds). 

These points were then recorded on a smartphone in the MerginMap mobile appli-

cation [31] by the MerginMap QGis plugin [32] on QGis 3.28 software [33], so that the 

areas to be surveyed could be easily visualised once in the field. 
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The surveys corresponding to the points were carried out over the same period as the 

airborne hyperspectral and WolrdView-3 data acquisition (in 3 sessions on 26 June and 4–

5 July) in order to avoid the rapid change in phenology in these environments [8].  

Once on the field, the specific composition is determined, as well as the dominant 

character of each species. When possible, and if the vegetation is no more than 2 metres 

high, several vertical photos are taken of the survey to confirm the coverage at a later date 

by another observer if necessary, including one wide-angle shot of the context to keep a 

record of the reality on the field and better understand the results of the classifications (for 

example, confusion between similar habitat classes). The centre of the field survey was 

marked by a white stick placed vertically with a known height (1.10 m), allowing the 

height to be estimated at a later date if necessary. The GPS coordinates of the survey are 

taken using a Trimble Geo 7X differential GPS and Trimble TerraSync Professional Soft-

ware 5.70 [34]. Considering the species it contains, each survey is associated with a level 3 

or 4 of the EUNIS (European Nature Information System) typology. EUNIS has a hierar-

chical typology system, divided into 6 levels, from the most general to the most detailed. 

It consists of a letter (level 1) to which a number is added as you go down to the finest 

levels of species, up to 5 numbers (level 6). A table of results is drawn up for each of them 

(Table 2). 

Table 2. Example of a survey form completed for each ROI in the field. 

Surveyor 
GPS Point 

Number 
Date Species/Type of Habitat 

EUNIS 

Code 

Pictures 

Numbers 
Height/Comments 

Thomas 

Lafitte 
7 

26 June 

2023 

Mixed sedge meadow vegetation: Carex 

elata dominant, Reed canary-grass, ly-

simachia, iris appended 

D5.21 
292-293-

294 

Late flooding, 50 cm, wa-

ter between the carex 

Thomas 

Lafitte 
15 4 July 2023 Pure reedbed with Phragmites australis C3.21 

469-470-

471 
2.30–2.50 m 

Ten months apart, with no significant changes in plant composition in these buffered 

environments, we decided to use other botanical surveys conducted in the same period in 

summer 2022 based on the NGI (National Geographic Institute) BD Ortho IRC (Orthopho-

tographic Database in Infra-Red Colours) of 2020’s textural features. These surveys were 

primarily carried out to gain a better understanding of the terrain and the dominant spe-

cies, but they could be added to the pool of ROIs acquired in 2023 if the latter was insuffi-

cient for some habitats.  

In order to avoid incorporating too much variability in the reference polygons (water 

holes and small shrubs), their shape was sometimes reworked using a GIS and others were 

eliminated because they were too close to a contact zone or were too small in area, thus 

rigorously reducing the number of ROIs to 95, distributed as follows over the study area 

(Figure 2) and by habitat type (Table 3). 
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Figure 2. Location of the 95 ROIs overlaid on the WorldView-3 image in false-colour composition 

(Red channel: band 6; Green channel: band 5; Blue channel: band 4). 

The WV-3 image was acquired two weeks before the HS. In order to save time and 

ensure that phenology was not too far advanced, the ROIs were defined on the basis of 

WV-3. Given the poor weather that year, and the fact that the overflight had already been 

delayed, it was important not to compromise the use of WV-3. Once the hyperspectral 

flight had been successfully completed, we were able to start the performance compari-

sons. Since WV-3 did not cover the entire area delimited at 1.79 m and the ROIs had al-

ready been characterised, we checked that there were no new shapes and colours (and 

therefore new habitats) in the sectors of HS not covered by WV-3. If in doubt, they were 

visited. However, in order to compare the two images on an equal basis, and not to pro-

vide additional or different training plots for the HS, we decided to keep only the ground 

reference data that were common to both images, i.e., that of the smaller scene, WV-3. This 

explains why there are no ROIs on the right side of the study area. 

Table 3. Distribution of the 95 ROIs divided into each class of habitats. 

Class of Habitats 
Number of 

ROIs 

Upper saltmarshes 5 

Common reed ([Phragmites]) beds 11 

Reed canary-grass ([Phalaris]) beds 15 

Euro-Siberian perennial amphibious communities 3 

Beds of large [Carex] species 10 

Closed non-Mediterranean dry acid and neutral grassland 5 

Atlantic and sub-Atlantic humid meadows 7 

Flood swards and related communities 6 

Purple moorgrass ([Molinia]) meadows and related communities 4 

Willow carr and fen scrub 4 

Atlantic pedunculate oak—birch woods 5 

Crassula 10 
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Ludwigia 10 

2.5. Classification Method 

2.5.1. Variables’ Calculation 

Spectral indices commonly used in vegetation mapping were used, adapted to the 

bands of each type of image. Details of the indices and bibliographical references used are 

given in Table 4. The hyperspectral image includes bands in the SWIR, enabling the calcu-

lation of various indices. This capability allows for comparing the performance of an im-

age with extensive spectral information against a simpler multispectral image. 

Table 4. List of the indices calculated for the study. WV-3: WorldView-3 bands; HS: hyperspectral 

bands. 

Dataset Index Description Formula Reference 

WV-3, 

HS 
EVI Enhanced Vegetation Index 

2.5 ×(NIR − R)/((NIR + 6 × R − 7.5 × 

B) + 1) 
[35] 

WV-3, 

HS 
NDVI Normalised Difference Vegetation Index (NIR − R)/(NIR + R) [36] 

WV-3, 

HS 
MTCI MERIS Terrestrial Chlorophyll Index (RE2 − RE1)/(RE1 − R) [37] 

WV-3 CRE Chlorophyll Red-Edge index ((NIR / RE1)^−1) [38] 

WV-3 MCARI 
Modified chlorophyll absorption in re-

flectance index 

[(RE1 − R) − 0.2 (RE1 − G)] × (RE1 − 

R) 
[39] 

WV-3 GNDVI 
Green Normalised Difference Vegetation 

Index 
(NIR − G)/(NIR + G) [40] 

WV-3 PSSRa Pigment Specific Simple Ratio NIR/R [41] 

WV-3 S2REP Sentinel-2 red-edge position 
705 + 35 × ((((NIR + R)/2) − 

RE1)/(RE2 − RE1)) 
[42] 

WV-3 IReCI Inverted Red-Edge Chlorophyll Index (NIR − R)/(RE1/RE2) [42] 

WV-3 SAVI Soil Adjusted Vegetation Index 
((NIR − R)/(NIR + R + 0.428)) × (1 + 

0.428) 
[43] 

HS NGLI Normalised Green Leaves Index (R555 − R501)/(R555 + R501) [44] 

HS IdGL Index Green Leaves (2 × R555)/(R501 + R602) − 1 [44] 

HS NDGL 
Normalised Difference Green Leaves In-

dex 
(R922 − R773)/(R922 + R773) [44] 

HS ND ChlaI Normalised Difference Chl-a Index (R642 − R675)/(R642 + R675) [44] 

HS 
Leaves wa-

ter 
/ (R921 − R976) (R921 + R976)  [20] 

HS NDWI Normalised Difference Water Index (NIR-SWIR1)/NIR + SWIR1) [45] 

HS 
TND Cellu-

lose 

Triple Normalised Difference (2 bands) of 

Cellulose 

(R1082 − R1214 + R1274 − R1334 + R1695 − 

R1773) 

Personal communi-

cation 

HS 
Ids Water 

VG 
Indices with 3 vegetation water bands (–R1003 + 2 × R1082 − R121) 

Personal communi-

cation 

B, G, R, RE1, RE2, NIR, and SWIR1 represent the blue, green, red, red-edge 1, red-edge 2, near in-

frared, and short-wave infrared 1 spectral bands, respectively. 

Spectral Angle Mapping (SAM) calculations are performed on the mean spectral sig-

nature of the ground reference areas (ROIs) of each European Nature Information System 

typology (EUNIS) habitat with the hyperspectral image bands in the VNIR and SWIR be-

ing used as additional variables. 

Using the LiDAR data, we produced a Digital Surface Model (DSM), a Digital Terrain 

Model (DTM), and a Digital Height Model (DHM) by the subtraction of both. With the 
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full-waveform signal, we calculated the derived normalised centred cumulative FWF 

(dNCCFWF) [46] and extracted the intensities at ranges of −1 m, 0.75 m, and +1 m, values 

that are characteristic of the waveforms of herbaceous vegetation, with the −1 value also 

making it possible to reject the effects of slopes [19]. 

Table 5 summarises the variables used in each case. 

Table 5. Summary of variables used to classify the WV3 and hyperspectral images. 

 Spectral Bands Spectral Indices Additional Variables LiDAR Dataset Total Variables 

WorldView3 

Coastal Blue, 

Blue, Green, Yel-

low, Red, Red 

edge, Near-IR1, 

Near-IR2 

EVI; NDVI; MTCI; 

CRE; MCARI; 

GNDVI; PSSRa; 

S2REP; IReCI; SAVI 

/ DHM 19 variables 

Hyperspec-

tral 

/ 

None of them 

are used as is 

EVI; NDVI; MTCI; 

NGLI; IdGL; NDGL; 

IdsCellulose; 

NDChlaI; Ids Water 

VG; TND Cellulose; 

Ids Cellulose0; 

NDWI; Eau feuilles 

Spectral angle mapping in 

VNIR and SWIR 

DHM; DTM; 

dNCCFWF 
58 variables  

2.5.2. Classification Algorithm 

The classification method used is the “Random Forest” algorithm [47], a supervised 

classification machine learning algorithm. It was performed with R software (version 

3.6.2) (R Development Core Team 2024), using the “randomforest” package [48] and the 

“caret” package [49]. Various studies have demonstrated its ability to produce accurate 

vegetation type mappings [50–52]. In the RF model, the training data are randomly sam-

pled with replacements, generating “bootstrap” samples. Each “forest” decision tree is 

built on an “in bag” fraction of the data, which is used to train the algorithm. For each 

pixel in the remaining fraction (“out of bag”), its class can be predicted by all the decision 

trees, making it possible to evaluate the final result (OOB score). The OOB score shows 

the error rate of the trees on the individuals left “out of bag” by the model, the aim being 

to obtain the lowest possible OOB (for the complete description of the Random Forest 

model and the OOB score, see Belgiu and Drăguţ, 2016 [53]). 

For the tuning of the model, two parameters can be adjusted: “Ntree” that determines 

the number of decision trees to be generated (Ntree is fixed with the build of a plot with 

x-axis = number of trees from 0 to 1000) and the y-axis is the error rate; and “Mtry” that 

sets the number of variables to be randomly selected for each split at each branch of the 

trees (Mtry =sqrt (p), where p is number of variables). 

For our analyses, the relevant parameters were Ntree = 300 and Mtry= 7 for the HS 

and Mtry = 4 for the WV-3 image (due to difference in variable numbers). 

Confusion matrices were produced to complement the OOB score of the Random 

Forest classifier. A confusion matrix is a table showing the observed data in rows and the 

data predicted by the algorithm in columns. The diagonal shows the number of individu-

als with a good classification, i.e., individuals whose prediction matches the observed 

data. The other values correspond to the individuals misclassified by the algorithm. 

The diagram below summarises the overall classification approach (Figure 3). 
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Figure 3. Methodology for classifying airborne hyperspectral and WV-3 multispectral images. 

3. Results 

3.1. Variables Importance 

The contribution of each variable (spectral bands and vegetation indices) to the accu-

racy of the RF classification is based on the Mean Decrease Gini (MDG). All the variables 

are ranked in ascending order according to their importance [48] (Figure 4). 

 

 
(a) (b) 

Figure 4. Average contribution of each variable to RF accuracy. The points represent the Mean De-

crease Gini value, indicative of the importance of each variable (a) for the 19-variable WorldView-3 

image and (b) for the 58-variable hyperspectral image (only the first 29 are shown because the con-

tributions of the following are close to zero). 

For the WV-3 image, the DHM variable leads the Mean Decrease Gini. The next four 

most important variables are bands from the image and spectral indices, as follows in 

order of importance: the blue band, the IRECI, the GNDVI, and the yellow band.  
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For the hyperspectral image, the DHM is also the most discriminating variable. The 

four most important variables are all derived from LiDAR: dNCCFWF −1.0 m, dNCCFWF 

0.75 m, and the DSM. The first vegetation index (MTCI) only came fifth. 

During a first Random Forest classification test on the WV-3 image with only 8 VNIR 

bands and 10 indices, the OOB was 13.17% (Figure 5). In order to improve the OOB, we 

decided to add the DHM variable, which was the most discriminating variable for the 

hyperspectral image. It was not included in the first test because we wanted to make the 

classification as simple as possible with only the WV-3 variables. This information on the 

height of the vegetation reduced the OOB to 4.01% (Figure 5). The confusion matrices be-

low show the classes improved by DHM. The table shows the observed data in rows and 

the data predicted by the algorithm in columns. The diagonal shows the number of indi-

viduals with a good classification, i.e., individuals for whom the prediction of the algo-

rithm’s prediction matches the observed data. The other values correspond to the individ-

uals misclassified by the algorithm. 

  
(a) (b) 

Figure 5. (a) WorldView-3 classification confusion matrix (a) for the 8 VNIR bands and 10 indices; 

(b) for the 8 VNIR bands and 10 indices, with the addition of the DHM. 

In addition to a substantial improvement in all classes, there was a clear improvement 

in the Phragmites reedbed class (C3.21), which fell from a class error of 0.49 to 0.14. The 

flood swards class (C3.44) remains the worst classified, even with the DHM (0.38 com-

pared with 0.32 class error). The invasive exotic species of Ludwigia sp. and Crassula helmsii 

have no poorly classified pixels. This can be explained by the very dense mat-like appear-

ance of these species, which cannot be confused with any other habitat. 

3.2. Up-to-Date Mapping of Habitats 

The classification methods applied enabled us to identify 11 species habitats at level 

4 of the EUNIS typology (Table 6). In addition to these classic wetland vegetation commu-

nities, it is possible to detect two invasive alien plant species of particular concern in the 

Brière: the Australian swamp stonecrop (Crassula helmsii Kirk) and the Uruguayan prim-

rose willow (Ludwigia grandiflora (Michx.) Greuter & Burdet). The classification results are 

shown in Figure 6 and pictures of some characteristic habitats are shown on Figure 7. 

Table 6. Code and name of mapped habitats according to the EUNIS typology. 

EUNIS Code (Level 4) EUNIS Name 

A2.52 Upper saltmarshes 

C3.21 Common reed ([Phragmites]) beds 

C3.26 Reed canary-grass ([Phalaris]) beds 

C3.41 Euro-Siberian perennial amphibious communities 

D5.21 Beds of large [Carex] species 

E1.7 Closed non-Mediterranean dry acid and neutral grassland 

E3.41 Atlantic and sub-Atlantic humid meadows 
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E3.44 Flood swards and related communities 

E3.51 Purple moorgrass ([Molinia]) meadows and related communities 

F9.2 Willow carr and fen scrub 

G1.81 Atlantic pedunculate oak—birch woods 

The Eunis typology does not include an additional level for habitats E1.7 and F9.2.  

They are therefore considered to be at the same level as the other habitats, i.e., level 

4.  

 

Figure 6. Habitat classification obtained (a) from the hyperspectral image and (b) from the 

WorldView-3 image. The size of the WV-3 image has been reduced because this was a test phase. 

Arrows and numbers on (a) correspond to Figure 7  pictures numbers. 
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The overall classification accuracy OOB is 4.01% for the Worldview-3 image and 

0.56% for the hyperspectral image.  

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 7. Pictures of some characteristic habitats of the Brière marshes. (a) Reed canary-grass 

([Phalaris]) beds—Eunis C.26; (b) beds of large [Carex] species—Eunis D5.21; (c) Atlantic and sub-

Atlantic humid meadows—Eunis E3.41; (d) Willow carr and fen scrub (along a channel)—Eunis 

F9.2; (e) Crassula helmsii beds; (f) Ludwigia sp. beds. 

4. Discussion 

4.1. Mapping the Distribution of the Habitats 
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The initial aim of this study was to establish an up-to-date map of the habitats of the 

Brière marshes, using remote sensing, in order to monitor and quantify the changes taking 

place in this complex ecosystem. The mapping method used for this study differs from 

the traditional approaches used in the area up to now, which consist of scouring the area 

in selected sectors, as this is very time-consuming and requires a lot of technical and hu-

man resources in the field. In this case, there is no need, as 95 targeted points of interest 

can be used to carry out the classification, eliminating the need for time-consuming sur-

veys and making it possible to get into areas that are difficult to access. This is all the more 

interesting for alien invasive species because, until now, inventories were carried out by 

annual field surveys. Moreover, in this case, our method makes it possible to detect pri-

mary clumps of colonisation within very dense plots where access on foot is impossible. 

Compared with other studies that used WorldView images to map habitats, we are 

working here on a very large surface area, similar to other studies which have nevertheless 

managed to discriminate fewer habitats [54,55]. However, it should be remembered that 

our mapping does not show the small herbaceous patrimony species that are sentinels of 

changes in the quality of the environment (for example in Brière, Damasonium alisma Mill. 

or Caropsis verticillato-inundata (Thore) Rauschert). This is not possible with a spatial reso-

lution of around one metre. Nevertheless, it is more effective to focus on the responses of 

dominant species to global change, due to their structuring role in terms of abundance 

and their impact on communities [56]. Furthermore, from a change modelling perspective, 

studying a community through its dominant species can enable predictions to be made 

on larger spatial or temporal scales [57,58].  

The resolution of less than 2 metres of hyperspectral or multispectral WorldView-3 

image mapping is better for monitoring wetlands than most satellite data. Some studies 

have attempted to use Sentinel-2 images at 10 metre [59] or Landsat at 20 metre spatial 

resolutions [60], but all agree that this makes it difficult to monitor and identify wetland 

habitats, which are often narrow and small in area [12,55].  

4.2. Long-Term Monitoring Strategy 

The second main objective was to set up a long-term monitoring observatory. The 

performance comparisons show that the use of a multispectral satellite image accompa-

nied by a single height variable derived from LiDAR (DHM) provides results of compa-

rable quality to that of a 416-channel hyperspectral image completed by numerous indices 

and several LiDAR variables. Given the greater ease with which the Wordlview-3 image 

can be controlled, this would appear to be a very promising way forward for the observa-

tory. Moreover, WV-3 satellite images can be easily ordered (all you have to do is provide 

an Area Of Interest in shape format and indicate the dates you wish to acquire it) and are 

less expensive than a hyperspectral aerial survey (34 USD/km² for panchromatic and 

eight-band collection WorldView-3 versus 80 USD/km2 for the hyperspectral combined 

with full waveform LiDAR). 

For traditional habitats with slower rates of change, such as sedge meadows, reed-

beds, wet meadows, and amphibious turfs, with wetlands being buffered [61], it would 

seem that mapping updated every 10 years would be sufficient, given the rates of change 

observed in the study area from aerial archives. In this case, it will be necessary to order a 

new WorldView-3 image, update and complete the ROIs because the specific composition 

may have changed, and apply the classification methods developed in this article. How-

ever, careful thought needs to be given to the optimum acquisition date, as not all habitats 

can be visible in a single image. In wetlands, this is all the more difficult to determine as 

vegetation in edge areas floods more quickly than topographically low-lying vegetation 

with a delayed phenology. For this study, the choice of acquisition period is the result of 

a compromise in order to test the mapping of as many groups as possible. In the future, 

to avoid the peripheral areas of the habitats in the heart of the marshes being too far ad-

vanced, an image should be taken at the beginning of July. However, the date will have to 

be adapted each year, as there is considerable inter-annual variability in rainfall and 
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therefore in the lowering of water levels. If the aim is to monitor grassland habitats in 

particular, the images should be taken from the end of May to avoid mowing.  

For the fast-growing species, such as alien exotic species, the tests carried out for the 

detection of Ludwigia grandiflora and Crassula helmsii are extremely conclusive and confirm 

the relevance of monitoring these fast-growing species each year by ordering a WV-3 im-

age. If the objective is to study their growth dynamics and mutual competition, two ac-

quisition dates should be considered, one at the beginning and one at the end of the sum-

mer. This is demonstrated by the replacement of clumpsof Ludwigia , which grow earlier, 

by later-growing Crassula, between the WV3 image on June 23 and the hyperspectral da-

taset on July 12. It would be interesting to acquire an image later in the vegetative season, 

at the optimum development of the two species towards the end of August, with water 

levels at their lowest. In fact, during the pre-processing applied to the images, the water 

surfaces were eliminated. As a result, we could no longer detect the cuttings known to be 

present in open water and on the edges of canals. This late summer image could also be 

used to detect traditional habitats that appear after flooding, such as Oxybasis rubra for-

mations, not mapped in this study. 

For those which were not yet present in the area in 2023 (other invasive exotic species 

may arrive via the ballast water of liners in the Loire estuary) or are too small to be iden-

tified, we will need to ensure in the next images acquired that there are no new textures 

or colours on the image which we will need to characterise and sample. 

We have shown that the Digital Height Model was a highly discriminative variable 

for the Random Forest classification. In the context of this study, this was derived from 

aerial surveys. In France, the National Geographic Institute (IGN) is currently carrying 

out a national LiDAR coverage campaign. In the future, the aim would be to use this pub-

lic LiDAR data, doing away with the need for aerial acquisition.  

5. Conclusions 

Monitoring wetlands using maps is a complex approach. These maps have not al-

ways been sufficiently accurate to detect changes due to the great diversity of vegetation 

forms found in these environments and the presence of ecotonal zones with steep envi-

ronmental gradients [2]. Nevertheless, multispectral satellite tracking appears to be a sat-

isfactory approach in terms of ease of implementation, processing, and cost. Although its 

performance is lower than that of hyperspectral data for some plant formations, it is still 

very encouraging for the regular monitoring of traditional wetland habitats and the study 

of the dynamics of invasive alien species. 

The remote sensing mapping we carried out and describe in this article is the first 

spatially exhaustive mapping based on 13 EUNIS level 4 habitats in the study area. It co-

vers the entire wetland, at a spatial resolution of less than 2 metres. In order to better 

separate the vegetation classes, we coupled spectral data with LiDAR vegetation structure 

information in the variables used for the Random Forest model. 

With a view of setting up a long-term observatory to detect changes in vegetation 

cover, we propose a standardised method to update maps, based on the multispectral ap-

proach. However, the methods proposed here are being developed using current technol-

ogies and it is possible that in the years to come, with multispectral satellites providing a 

spatial resolution of a few tens of 10 cm, this will be outdated. Climate change could also 

disrupt the rate at which maps need to be revised [7]. 
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