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Abstract

This paper focuses on studying a model for molecular motors responsible
for the bending of the axoneme in the flagella of microorganisms. The model
is a coupled system of partial differential equations inspired by [16, 18, 6],
incorporating two rows of molecular motors between microtubules filaments.
Existence and uniqueness of a solution is proved, together with the presence
of a supercritical Hopf bifurcation. Additionally, numerical simulations
are provided to illustrate the theoretical results. A brief study on the
generalization to N-rows is also included.

1 Introduction
Cilia and flagella are active slender organelles employed by eukaryotic cells to
swim through viscous fluid [27]. They exploit hydrodynamic friction to induce
self-propulsion and show a characteristic non-reciprocal periodic motion in
their dynamics [9, 10]. This enables them to move without relying on inertial
forces, i.e., at a low Reynolds number [22]. Pioneering works ( [20, 11, 26, 3, 4, 5])
established that some form of internal activity along the flagellum is necessary
in order to have sustained oscillations.
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This internal activity is present in all cilia and flagella due to their common
internal structure, the axoneme. The axoneme consists of nine pairs of protofila-
ments called microtubules. It is an active structure due to the molecular motors
located between neighboring microtubule pairs. These molecular motors are
attached to one microtubule pair and walk along the adjacent pair, creating
local sliding between contiguous microtubule pairs. This mechanism, which is
fueled by the conversion of chemical energy (ATP) into mechanical work, creates
bending along the filament [25].

The three-dimensional structure of the axoneme can be modeled as two
planar filaments, with motors attached to the top filament exerting force on the
fixed bottom filament ([6],[16],[17]). Since we are interested in the emergence
of mesoscopic order in the axoneme from the uncoordinated activity of many
independent molecular motors, we consider a portion of the filaments of arc-
length of the order of 10ℓ, where ℓ is a sub-micron length scale defined by the
periodic microtubule structure (specifically, the typical inter-dynein spacing is
24 nm, see [13]). Over this length scale, the filaments can be considered as rigid.

Throughout this paper, we will call the one-row model the system composed
of a single row of motors between two filaments. In this work, we extend the
one-row model by introducing a second row of molecular motors, as in Figure
1(b). We call this new framework, which symmetrizes the previous model, the
two-row model. We also present a more comprehensive N -row model, where
N corresponds to the number of motor rows.

To study the two-row model, we generalize the stochastic model proposed
in [16]. Each motor is anchored to one of two filament pairs, pair 1 or pair
2, and has two identical heads, e.g. head A and head B, each of them being
either bound or unbound to the opposite filament. The motor has two different
chemical states, state 1, where head A is bound and head B is unbound, or state
2, where the opposite holds. In this model, both heads cannot be unbound (or
bound) at the same time. Between the pair of filaments, passive elastic and
viscous elements resist the motion; they are modeled by the positive constants k
and η, respectively.

Each state i = 1, 2 is defined by its potential energy Wi(ξ) at position ξ ∈ R.
The transition rates, ωi(ξ) = ωij(ξ) with i, j = 1, 2 and i ̸= j, represent the
probability per unit time for a motor to switch between state i to state j. Moreover,
since the filament is a periodic structure, Wi and ωi are periodic functions with
period ℓ. As ATP provides the energy for the motor to change states, the
transition rates depend on its concentration Ω. A detailed explanation of this is
available in [15].

In the limit of an infinite system of motors, we introduce Pi(ξ, t) as the
probability density that a motor anchored to tubule pair i is in state 1 at position
ξ and time t. To obtain the probability density that a motor anchored to tubule
pair i is in state 2, one must compute 1/ℓ− Pi. The shift between the moving
and the non-moving filament is measured by x(t), with velocity v(t) = d

dtx(t).
Let P (ξ, t) = P1(ξ, t) and Q(ξ, t) = P2(ξ + x(t), t). Then, we obtain (see
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(a)

(b)

Figure 1: (a) Cross section of the partial axoneme with two opposite microtubule pairs.
(b) Side view of the partial axoneme with two opposite microtubule pairs.

section 2) the following system of equations, for ξ ∈ [0, ℓ] and t > 0:



∂P

∂t
(ξ, t) + v(t)

∂P

∂ξ
(ξ, t) = −(ω1(ξ) + ω2(ξ))P (ξ, t) +

ω2(ξ)

ℓ
,

∂Q

∂t
(ξ, t)− v(t)

∂Q

∂ξ
(ξ, t) = −(ω1(ξ) + ω2(ξ))Q(ξ, t) +

ω2(ξ)

ℓ
,

v(t) =
1

2η

 ℓ∫
0

(P (ξ, t)−Q(ξ, t))∂ξ∆W (ξ)dξ − 2kx(t)

 ,

P (0, t) = P (ℓ, t), Q(0, t) = Q(ℓ, t),

(1)

where ωi = ωi(ξ; Ω) and ∆W (ξ) = W2(ξ) −W1(ξ) are ℓ-periodic. As one can
see in Figure 1(b), pair 0 and pair 2 are the same and they are both fixed.

The goal of this paper is twofold. On the one hand, we rigorously prove
an existence and uniqueness result for the solution of (1). Furthermore, we
show the existence of a Hopf bifurcation for that same system when reasonable
formulas are taken for potentials Wi and transition rates ωi, depending on the
ATP concentration via Ω.

Moreover, we provide the reader with numerical simulations of (1), where an
upwind scheme is employed to solve both transport equations. The numerical
method is then extended to the more realistic N -row model.

Before stating the theoretical results, we point out that we assume (see
[6, 12]),

ω1(ξ; Ω) + ω2(ξ; Ω) = a0(Ω), (2)
where a0(Ω) > 0. Let us define C1

#([0, ℓ]) as the set of restrictions to [0, ℓ] of C1

and periodic functions over R, then the first theorem reads as follows:
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Theorem 1.1 (Existence and uniqueness). Let us fix ℓ > 0. Assume ω1(ξ; Ω) and
ω2(ξ; Ω) as in (2). Moreover, assume ω2 and ∆W to be at least C1

#([0, ℓ]). If the initial
data P (ξ, 0) and Q(ξ, 0) are C1

#([0, ℓ]) and x(0) = 0, then the system of equations (1),
admits a unique solution P, Q ∈ C1([0, ℓ]× R+), with ξ 7→ P (ξ, ·) and ξ 7→ Q(ξ, ·)
in C1

#([0, ℓ]), and x ∈ C1(R+).

For the second result we chose ∆W (ξ) = U cos

(
2πξ

ℓ

)
, as in [6]. Moreover,

since the two motor heads are identical, then ω2(ξ) = ω1(ξ + ℓ/2). Taking the
transition rates’ periodicity into account, we use the following Fourier expansion

ω2(ξ; Ω) =
a0(Ω)

2
+

∑
n=2k+1, k≥0

(
an(Ω) cos

2nπξ

ℓ
+ bn(Ω) sin

2nπξ

ℓ

)
, (3)

with an(Ω) and bn(Ω) real coefficients.

Theorem 1.2 (Hopf bifurcation). In addition to the hypothesis above, assume that
a0(Ω) = a00Ω

α0 , a1(Ω) = a01Ω
α1 , b1(Ω) = b01Ω

α1 for a01, b01 ∈ R and α0, α1, a
0
0,Ω ∈

R+. Furthermore, let us define

τ(Ω) := −1

4
(2a00Ω

α0 +
ζℓ

π
+ 2λ

a01
a00ℓ

Ωα1−α0), (4)

with ζ = 2πk/ηℓ and λ = 2π2U/ηℓ. Suppose there exists Ω0 ∈ R+ such that
τ(Ω0) = 0 and τ ′(Ω0) > 0, then the solutions P (ξ, t; Ω), Q(ξ, t; Ω) and x(t; Ω) of the
system (1) show a super-critical Hopf bifurcation in time near the bifurcation value Ω0

and near the fixed point

(Peq(ξ; Ω), Qeq(ξ; Ω), xeq(Ω)) =

(
ω2(ξ; Ω)

a0(Ω)l
,
ω2(ξ; Ω)

a0(Ω)l
, 0

)
.

In particular, the fixed point is asymptotically stable for Ω < Ω0, and unstable for
Ω > Ω0. Moreover there exists an asymptotically stable periodic orbit for Ω > Ω0 with
radius

ρ =

√
− (Ω− Ω0)τ ′(Ω0)

τ̃
+ o

(√
Ω− Ω0

)
, (5)

where τ̃ = −3πζ

4ℓ

(
πa00Ω

α0
0 + ℓζ

πa00Ω
α0
0 + 2ℓζ

)
, τ̃ < 0.

The methods introduced to prove the theorems can be also used to demon-
strate similar results for the one-row model, and might prove useful to consider
the general N -row structure.

The next section presents the two-row model and proves Theorems 1.1 and
1.2, with numerical simulations confirming these results. The final section
explores new questions by extending the model to an N -row structure.
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2 The two-row model

2.1 Motivation
In this section we focus on the two-row model, from both theoretical and
numerical perspectives.

The two-row model serves the purpose of symmetrizing the one-row model.
In the one-row model [16], even without any external force, the moving fil-
aments experiences a non-zero equilibrium displacement x(t) = xeq, which
disrupts axonemal symmetry and causes bending at rest. Jülicher and Camalet
mentioned this issue in [6], solving it by choosing symmetrical potentials, as in
our case, and symmetrical transition rates, namely |ωi(ξ+ l/2)| = |ωi(−ξ+ l/2)|,
with ξ ∈ [0, ℓ]. Instead, in this work, we model non-symmetrical transition rates
and introduce a second row of molecular motors, producing a zero equilibrium
xeq = 0 at rest.

The two-row model is a simplified version of the axoneme that acts like
its two-dimensional projection ([24, 7]), forming a cylinder with only two mi-
crotubule pairs linked by two motor rows, as shown in Figure 1(a). Moreover,
this model is a first step to the N -row model presented in section 3, where N
corresponds to the quantity of motor rows.

Despite lacking additional sliding regulation components, the model demon-
strates that dyneins can synchronize and self-regulate to create alternating
sliding on both sides of the axoneme. This matches, in particular, with the
curvature regulation hypothesis called steady dynein loading [2, 14, 30] in which
axonemal curvature is created without any inhibition mechanism transmitted
along the system.

2.2 Model structure
We now derive in detail the system (1), which is depicted in Figure 1(b). We
consider three pairs of filaments, numbered from 0 to 2. The pairs 0 and 2
are identical, and fixed, while the central pair 1, may move. We call x(t) its
displacement, and v(t) = d

dtx(t) its velocity. We define P1(ξ, t) and P2(ξ, t) as
the probabilities for the motors to be in state one at position ξ and time t, when
attached to the pair 1 (bottom row) or to the pair 2 (top row), respectively. We
assume that the sum of the transition rates is uniform, as in (2), and obtain two
transport equations for ξ ∈ [0, ℓ] and t > 0:

∂P1

∂t
(ξ, t) + v(t)

∂P1

∂ξ
(ξ, t) = −a0(Ω)P1(ξ, t) +

ω2(ξ; Ω)

ℓ
,

∂P2

∂t
(ξ, t) = −a0(Ω)P2(ξ, t) +

ω2(ξ − x(t); Ω)

ℓ
.

(6)
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Additionally, the force balance equation on the central filament reads:

fext − 2ηv − 2kx+ fmot = 0, (7)

where fext is the external force applied on the central filament, and fmot is the
active force exerted by the motors, which is given by

fmot(t) =

ℓ∫
0

(P1(ξ, t)∂ξ∆W (ξ)− P2(ξ, t)∂ξ∆W (ξ − x(t)))dξ. (8)

Here, kx and ηv represent the elastic and viscous resistances, respectively. For
the purpose of our work, we do not consider any external forcing, which means
fext = 0. Let P (ξ, t) = P1(ξ, t) and Q(ξ, t) = P2(ξ + x(t), t). Then, (6) becomes

∂P

∂t
(ξ, t) + v(t)

∂P

∂ξ
(ξ, t) = −a0(Ω)P (ξ, t) +

ω2(ξ)

ℓ
,

∂Q

∂t
(ξ, t)− v(t)

∂Q

∂ξ
(ξ, t) = −a0(Ω)Q(ξ, t) +

ω2(ξ)

ℓ
.

(9)

The periodicity of P1 and P2, enables us to rewrite the motor force as

fmot(t) =

ℓ∫
0

(P (ξ, t)−Q(ξ, t))∂ξ∆W (ξ)dξ ,

and obtain, from (7),

v(t) = ẋ(t) =
1

2η

 ℓ∫
0

(P (ξ, t)−Q(ξ, t))∂ξ∆W (ξ)dξ − 2kx(t)

 . (10)

Finally, we recover the system of equations (1), which will then be studied
both theoretically and numerically, before generalizing it to an arbitrary number
of layers N .

2.3 Proof of Theorem 1.1 (existence and uniqueness)
The proof follows a classical scheme in two steps: we first show local existence
of the solution in time, and then extend it to R+.

Step 1: local existence. Let T > 0 be a time to be chosen afterwards and define

the map ψ : C0([0, T ]) → C0([0, T ]) as ψ[x(·)](t) =
∫ t

0

F [x(·)](s) ds, where

F [x(·)](s) = 1

2η

ℓ∫
0

(Px(ξ, s)−Qx(ξ, s))∂ξ∆W (ξ)dξ − k

η
x(s), (11)
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and the functions Px(ξ, t) and Qx(ξ, t) are defined as the solutions of (9) and
v(t) = ẋ(t). Notice that Px and Qx are explicitly given in their integral form by

Px(ξ, t) = e−a0tP (ξ−x(t)+x(0), 0)+ e−a0t

ℓ

∫ t

0

ea0sω2(ξ+x(s)−x(t)) ds, (12)

and

Qx(ξ, t) = e−a0tQ(ξ+x(t)−x(0), 0)+ e−a0t

ℓ

∫ t

0

ea0sω2(ξ−x(s)+x(t)) ds, (13)

which remain well-defined when x is only in C0([0, T ]).
Notice that (x̃, Px̃, Qx̃) is a solution of the system (9, 10) if and only if x̃(t)

is a fixed point of ψ, i.e. ψ[x̃(·)] = x̃(·). In order to proceed, we prove that
ψ : C0([0, T ]) → C0([0, T ]) is a strict contraction for T sufficiently small.

Let us take two functions x1 and x2 in C0([0, T ]), with x1(0) = x2(0) = 0
and with the corresponding Px1 , Qx1 and Px2 , Qx2 defined by the integral
formulations (12, 13). The initial conditions are identical Px1(ξ, 0) = Px2(ξ, 0) =
P (ξ) and Qx1

(ξ, 0) = Qx2
(ξ, 0) = Q(ξ). We want to estimate the quantity

ψ[x1(·)](t)− ψ[x2(·)](t) =
∫ t

0

F [x1(·)](s)− F [x2(·)](s) ds. (14)

Using (11), we get

F [x1(·)](s)− F [x2(·)](s) =
1

2η

( ℓ∫
0

(
Px1(ξ, s)− Px2(ξ, s)

−
(
Qx1

(ξ, s)−Qx2
(ξ, s)

))
∂ξ∆W (ξ)dξ

)
− k

η
(x1(s)− x2(s)).

(15)

Now, we have from (12)

Px1
(ξ, t)− Px2

(ξ, t) = e−a0t(Px1
(ξ − x1(t), 0)− Px2

(ξ − x2(t), 0))

+
e−a0t

ℓ

∫ t

0

ea0s(ω2(ξ + x1(s)− x1(t))− ω2(ξ + x2(s)− x2(t)) ds.

(16)

We have the estimate

∥Px1
(t, ξ)− Px2

(t, ξ)∥L∞
t L∞

ξ

≤ ∥∂ξP∥L∞
ξ
∥x1(t)− x2(t)∥L∞

t

+
1

ℓ

∥∥∥∥∫ t

0

ea0(s−t)∥∂ξω2∥L∞
ξ
|x1(s)− x1(t)− x2(s) + x2(t))| ds

∥∥∥∥
L∞

t

≤
(
∥∂ξP∥L∞

ξ
+

2

a0ℓ
∥∂ξω2∥L∞

ξ

)
∥x1(t)− x2(t)∥L∞

t
,

7



The same goes for the difference Qx1(ξ, t)−Qx2(ξ, t), and we deduce

∥Px1(t, ξ)−Px2(t, ξ)−Qx1(t, ξ)+Qx2(t, ξ)∥L∞
t L∞

ξ
≤ C1∥x1(t)−x2(t)∥L∞

t
. (17)

with C1 = 4max
{
∥∂ξQ∥L∞

ξ
, ∥∂ξP∥L∞

ξ
, 2
a0ℓ

∥∂ξω2∥L∞
ξ

}
.

We now deduce from (15)

∥F [x1(·)]− F [x2(·)]∥L∞
t

≤
(
C1ℓ

2η
∥∂ξ∆W∥L∞

ξ
+
k

η

)
∥x1(t)− x2(t)∥L∞

t
, (18)

and obtain
∥ψ[x1(·)]− ψ[x2(·)]∥L∞

t
≤ C2T∥x1 − x2∥L∞

t
, (19)

with C2 = C1ℓ
2η ∥∂ξ∆W∥L∞

ξ
+ k/η.

Taking T = 1
2C2

, this proves that ψ is a contraction, as claimed. Then, there
exists a unique fixed point x̃(·) ∈ C0([0, T ]) which satisfies (10).

Step 2: global solutions. The previous construction can be extended as long as
Px and Qx remain bounded in C1([0, ℓ]) with respect to ξ and in L∞(R+) with
respect to t, as shown by the formulas for C1 and C2. But from (12, 13) we have

∥Px(·, t)∥C1
ξ
≤ e−a0t∥P∥C1

ξ
+ (1− e−a0t)

1

a0ℓ
∥ω2∥C1

ξ
,

which shows that

∥Px∥C1
ξ ,L

∞
t

≤ max

(
∥P∥C1

ξ
,

1

a0ℓ
∥ω2∥C1

ξ

)
,

and the same goes for Qx. We thus obtain that there is a unique global solution
(x, Px, Qx) to (9, 10) for all time t ≥ 0.

In fact, x ∈ C1(R+) and Px, Qx ∈ C1
#([0, ℓ] × R+), with ξ 7→ P (ξ, ·) and

ξ 7→ Q(ξ, ·) in C1
#([0, ℓ]), as shown by the following bootstrap argument: From

equations (12, 13), we know that Px and Qx are continuous in time, which
enables us to deduce that F [x(·)] ∈ C0(R+). Therefore, ψ[x(·)] ∈ C1(R+). But,
since x = ψ[x(·)], we deduce that x ∈ C1(R+). Re-using equations (12, 13), we
may then deduce that Px and Qx are in fact C1 in time (and they actually have
the minimal regularity of the initial conditions P, Q and of ω2).

2.4 Proof of Theorem 1.2 (Hopf bifurcation)
The functions ξ 7→ P (ξ, t) and ξ 7→ Q(ξ, t) are periodic with period l, and they
can be then expanded in Fourier series

P (ξ, t) =
p0(t)

2
+
∑
n>0

(
pcn(t) cos

2nπξ

ℓ
+ psn(t) sin

2nπξ

ℓ

)
,

Q(ξ, t) =
q0(t)

2
+
∑
n>0

(
qcn(t) cos

2nπξ

ℓ
+ qsn(t) sin

2nπξ

ℓ

)
.

(20)
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We insert this expansion and the one for the transition rates (3) into the system
(1). By matching same order terms, we get an infinite number of ordinary
differential equations for the coefficients of P and Q. Namely, for n = 0 we get
two decoupled equations for p0 and q0:

ṗ0(t) = −a0(Ω)p0(t) + a0(Ω)/2ℓ, q̇0(t) = −a0(Ω)q0(t) + a0(Ω)/2ℓ. (21)

For n ̸= 0 we obtain:
ṗcn(t) +

2πn
ℓ v(t)psn(t) = −a0(Ω)pcn(t) + an(Ω)/ℓ ,

ṗsn(t)− 2πn
ℓ v(t)pcn(t) = −a0(Ω)psn(t) + bn(Ω)/ℓ ,

q̇cn(t)− 2πn
ℓ v(t)qsn(t) = −a0(Ω)qcn(t) + an(Ω)/ℓ ,

q̇sn(t) +
2πn
ℓ v(t)qcn(t) = −a0(Ω)qsn(t) + bn(Ω)/ℓ ,

(22)

together with the force balance equation

2ηẋ(t) + 2kx(t) + πU(ps1 − qs1) = 0 . (23)

Note that the coupling between the probabilities evolution and the force equi-
librium equation takes place only for the first order coefficients. We are going
to prove the existence of a Hopf bifurcation by treating order n = 0 first, then
n = 1 and lastly n > 1. Combining all three results will complete the proof.

Step 1. Zeroth order coefficients. It is clear that (21) gives

p0(t) = e−a0t

(
p0(0)−

1

2l

)
+

1

2ℓ
, q0(t) = e−a0t

(
q0(0)−

1

2l

)
+

1

2ℓ
,

and both converge to 1
2ℓ exponentially fast.

Step 2. First order coefficients. We now prove the onset of oscillatory patterns
for the first order coefficients pc,s1 (t), qc,s1 (t), and for the position x(t).

From (22) and (23) we obtain a first-order five-dimensional ODE:

ṗc1 = −a0(Ω)pc1 +
(
ζx+

λ

2
(ps1 − qs1)

)
ps1 +

a1(Ω)

ℓ
,

ṗs1 = −a0(Ω)ps1 −
(
ζx+

λ

2
(ps1 − qs1)

)
pc1 +

b1(Ω)

ℓ
,

q̇c1 = −a0(Ω)qc1 −
(
ζx+

λ

2
(ps1 − qs1)

)
qs1 +

a1(Ω)

ℓ
,

q̇s1 = −a0(Ω)qs1 +
(
ζx+

λ

2
(ps1 − qs1)

)
qc1 +

b1(Ω)

ℓ
,

ẋ = − ℓ

2π

(
ζx+

λ

2
(ps1 − qs1)

)
,

(24)

where ζ = 2πk/ηℓ and λ = 2π2U/ηℓ.
We linearize the system around its equilibrium pointpeq(Ω) = (pc1,eq(Ω), p

s
1,eq(Ω), q

c
1,eq(Ω), q

s
1,eq(Ω), xeq(Ω)),

where

pc1,eq = qc1,eq =
a1(Ω)

a0(Ω)ℓ
, ps1,eq = qs1,eq =

b1(Ω)

a0(Ω)ℓ
, xeq = 0 .
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We observe that the Jacobian matrix has five eigenvalues: three of them are equal
to−a0(Ω) < 0while the other two are of the form τ(Ω)± 1

2
√
π

√
−2ζℓa0(Ω) + π τ2(Ω) ,

where τ(Ω) is given by (4). Since, by hypothesis, there exists a real and positive
Ω = Ω0 such that τ(Ω0) = 0, then −2ζℓa0(Ω0) + π τ2(Ω0) < 0, and we deduce
that the pair of complex eigenvalues can be written as τ(Ω)± iω(Ω) where

ω(Ω) := − 1

2
√
π

√
2ζℓa0(Ω)− π τ2(Ω), (25)

and they cross the imaginary axis at Ω = Ω0.
In the following proposition, we are going to study the non-linear behavior

of the vector field solution to (24) by exploiting the center manifold theorem; the
orbit structure near the fixed point and Ω0 is determined by the restriction of the
non linear system to the center manifold. In particular, system (24) restricted
to the center manifold will show a super-critical Hopf bifurcation near peq(Ω0)
and Ω0.

Proposition 2.1 (First order coefficients). With the hypothesis of Theorem 1.2, the
non-linear system (24) has a supercritical Hopf bifurcation near (peq(Ω0),Ω0).

Proof. Change of variables.
In the first part of the proof we restrict the dynamical system to the center
manifold. To compute the latter, we bring the system to a more suitable
formulation.

Let us first transform the fixed point of (24) to the origin. We define the new
variables as

δpc1 = pc1 − pc1,eq, δp
s
1 = ps1 − ps1,eq, δq

c
1 = qc1 − qc1,eq, δq

s
1 = qs1 − qs1,eq.

We then use the following linear and invertible change of variables

r = a1

b1
δpc1 + δps1, s = a1

b1
δqc1 + δqs1, z = 1

2 (δp
s
1 + δqs1), y = 1

2 (δp
s
1 − δqs1),

and shorten the notation by taking X = (r, s, z)T , and Y = (y, x)T to transform
the system (24) into

d

dt

(
X
Y

)
= M(Ω)

(
X
Y

)
+

(
G(X,Y )
F (X,Y )

)
, (26)

where
M(Ω) =

(
B(Ω) 0
0 A(Ω)

)
is a block diagonal matrix. Since we assumed that a0(Ω) = a00Ω

α0 , a1(Ω) =
a01Ω

α1 , b1(Ω) = b01Ω
α1 for a01 ∈ R and α0, α1, a

0
0,Ω ∈ R+, then for the linear part

we have

B(Ω) = −a00Ωα0Id3,3 , A(Ω) =

 −a00Ωα0 − λ
ℓ
a0
1

a0
0
Ωα1−α0 −a0

1

a0
0

ζ
ℓΩ

α1−α0

− λℓ
2π − ζℓ

2π

 ,

(27)
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and the non linear part is defined as

G(X,Y ) = (ζx+ λy)



a01
b01

(y + z) +
b01
a01

(−r + y + z)

a01
b01

(y − z) +
b01
a01

(s+ y − z)

− b01
a01

(r − s− 2y)

2


,

and

F (X,Y ) = (ζx+ λy)

 − b01
a01

(r + s− 2z)

2
0

 . (28)

Computation of the center manifold.
The center manifold can then be computed by using standard techniques

(see [29], Chapter 20, Section 2). We start by rewriting the system in such a way
that Ω0 is moved to the origin through the change of variable δΩ = Ω− Ω0. As
it is classical, we treat δΩ as a variable of the system. This means that we add
the equation ˙δΩ = 0 to the dynamical system and that the non linear part of the
system includes all the products δΩ r, δΩ s, δΩ z etc.

Since the terms in the matrix M are nonlinear in Ω, we expand them as

(Ω0 + δΩ)α = Ωα
0 + c(α) δΩ +O(δΩ 2), (29)

where c(α) = αΩα−1
0 .

We insert the expansion (29) into the system (26), neglecting terms of order
two in δΩ and getting

d

dt

 X
Y
δΩ

 = M(Ω0)

 X
Y
0

+

 g(X,Y, δΩ)
f(X,Y, δΩ)

0

 , (30)

with
g(X,Y, δΩ) = −a00c(α0)δΩX +G(X,Y )

and

f(X,Y, δΩ) = −


(
a00c(α0)y +

λ

ℓ

a01
a00
c(α1 − α0)

)
δΩ y +

ζ

ℓ
c(α1 − α0)δΩx

0

+F (X,Y ).

We can define a center manifold as

W c(0) = {(X,Y, δΩ) : X = h(Y, δΩ), |Y | < ε, |δΩ | < ε̄,h(0, 0) = 0, ∇h(0, 0) = 0},

for ε and ε̄ sufficiently small and h = (h1, h2, h3) smooth enough.
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In order for h to be the center manifold for the system (30), the graph of
h(Y, δΩ) has to be invariant under the dynamics generated by (30). Hence, by
plugging h into the system and compute its derivative, we get the following
quasilinear differential equation

∇Y h · (A(Ω0)Y + f(h, Y, δΩ)) = B(Ω0)h+ g(h, Y, δΩ). (31)

The solution h(Y, δΩ) of (31) can be approximated with a power series
expansion up to any desired degree of accuracy. In our case we expand them up
to order two defining

hi(Y, δΩ) := ai1y
2+ai2yx+ai3yδΩ+ai4x

2+ai5xδΩ+ai6δΩ
2+O(Y 3, δΩ 3). (32)

To completely determine (locally) the center manifold, we have to compute the
coefficients aij knowing that the functions defined in (32) must solve (31). For
the detailed computations, we refer the reader to Appendix 4.

Restricted to the center manifold, the original system (26) has the following
form:

d

dt
Y = A(Ω)Y + f(h(Y ), Y ) +O(Y 3, δΩ 3) . (33)

A complete formula for f(h(Y ), Y )) in terms of Y = (y, x)T follows from
our computations and reads

f(h(Y ), Y ) = 2πa00ℓ(λy + ζx)
(
πa01Ω

α1−α0
0

(
λ2y2 + ζ2x2

)
+ ζa00ℓ(πa

0
0Ω

α0
0 − ζℓ)yx

)(
2πa01λΩ

α1−α0
0 + ζa00ℓ

2
) (

2πa01λΩ
α1−α0
0 + a00ℓ(πa

0
0Ω

α0
0 − ζℓ)

)
0

 .

Observe that τ(Ω)± iω(Ω) is the pair of conjugated eigenvalues of A(Ω) and
therefore we are in the hypothesis of the existence of a Hopf bifurcation for a
two-dimensional system.

Normal form.
The next step is to bring system (33) into its normal form, from which we

deduce the type of Hopf bifurcation that the system is attaining.
In order to proceed, we apply a further change of coordinates, such that A(Ω)

is transformed to its real Jordan form. Namely, we define the transformation
matrix

P =

(
P11 P12

1 0

)
,

where
P11 =

π

λℓ

(
a01λΩ

α1−α0
0

a00ℓ
+ a00Ω

α0
0

)
− ζ

2λ

and

P12 = − 1

λℓ

√
πζℓ

(
a00Ω

α0
0 − a01λΩ

α1−α0
0

a00ℓ

)
−
(
πa01λΩ

α1−α0
0

a00ℓ
+ πa00Ω

α0
0

)2

− ζ2ℓ2

4
.
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The matrix P defines the new coordinates Y = PỸ thanks to which equation
(33) can be expressed in its normal form

d

dt
Ỹ =

(
τ(Ω) −ω(Ω)
ω(Ω) τ(Ω)

)
Ỹ + P−1f(h(PỸ ),PỸ ) +O(Y 3, δΩ 3). (34)

To compute key properties of the system, such as the amplitude of the limit
cycles, we change coordinates to the polar ones Ỹ T = ρ(sin(θ), cos(θ)), and get{

ρ̇(t) = τ ′(Ω0)δΩρ(t) + τ̃ ρ3(t) +O(δΩ2ρ, δΩρ3),

θ̇(t) = ω(Ω0) + ω′(Ω0)δΩ+ ω̃ρ2(t) +O(δΩ2, δΩρ2).
, (35)

that is the normal form of (33) in polar coordinates around Ω0.
The non linear part P−1f(h(PỸ ),PỸ ) determines the constants τ̃ and ω̃. The

first one is involved in the expression for the limit cycle amplitude, and we
compute it using a well know formula (see [29], Chapter 20, Section 2). We
obtain

τ̃ = −3πζ

4ℓ

(
πa00Ω

α0
0 + ℓζ

πa00Ω
α0
0 + 2ℓζ

)
Since τ̃ is negative and

τ ′(Ω0) = −1

2

(
a01λα1 − α0Ω

α1−α0−1

a00ℓ
+ α0a

0
0Ω

α0−1

)
,

is positive by hypothesis, the reduced system (33), and hence, the whole system
(26), shows a supercritical Hopf bifurcation near the bifurcation parameter Ω0.

In particular, for Ω sufficiently near and greater then Ω0 there exists an
asymptotically stable periodic orbit with radius as in (5). This finishes the proof
of Proposition 2.1

Step 3. Higher order terms. Lastly, we are going to prove that, after large
times, the solutions of (22) pc,sn (t) and qc,sn (t), with n > 1 are periodic with the
same period as x(t). We remark again that, since the dynamics of x (23) is
independent of pcn, psn, qcn, qsn for n > 1, we may assume that x(t) is given and
periodic, and split the system into pairs of coupled equations as stated in the
following Proposition.

Proposition 2.2 (Higher order coefficients). For n > 1 consider the infinite system
of four equations:

ṗcn(t) +
2πn

ℓ
ẋpsn(t) = −a0(Ω)pcn(t) + an(Ω)/ℓ,

ṗsn(t)−
2πn

ℓ
ẋpcn(t) = −a0(Ω)psn(t) + bn(Ω)/ℓ.

(36)

and 
q̇cn(t)−

2πn

ℓ
ẋqsn(t) = −a0(Ω)qcn(t) + an(Ω)/ℓ,

q̇sn(t) +
2πn

ℓ
ẋqcn(t) = −a0(Ω)qsn(t) + bn(Ω)/ℓ.

(37)
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Suppose that, for t ≥ 0, the function t 7→ x(t) is periodic of period T . Then, the
solutions to the systems (36) and (37) may have two behaviors: they either converge in
time to periodic solutions of the same period T if n is odd, or they go to zero for large
times when n is even.

Proof. We introduce zn = pcn + ipsn. The first two equations of (36) then become:

żn +

(
a0(Ω)−

2inπ

ℓ
ẋ

)
zn = cn (38)

where cn =
an(Ω) + ibn(Ω)

ℓ
is constant. We thus deduce the following expres-

sion for zn(t)

zn(t) = cn

t∫
0

e
−

t∫
u

(a0(Ω)−iv̄(s))ds
du+ zn(0)e

−
t∫
0

(a0(Ω)−iv̄(s))ds
, (39)

where v̄ = 2nπ
ℓ ẋ.

Let us first notice that the second term, zn(0)e
−

t∫
0

(a0(Ω)−iv̄(s))ds
goes to zero

when t goes to infinity. This, together with the fact that an = bn = 0 if n is even
(see (3)), gives cn = 0 and the solutions pc,sn go to zero for large times when n is
even.

Let us now focus on the case where n is odd. We want to prove that, when
v̄ is periodic of period T , zn converges towards a T -periodic solution after a
transitory regime. We again notice that the second term of (39) converges to 0,
and the result will follow by studying only the first term.

We thus denote by z̃n(t) =
t∫
0

e
−

t∫
u

(a0−iv̄(s))ds
du, and compute

z̃n(T + t)− z̃n(t) =
t+T∫
0

e
−

t+T∫
u

(a0−iv̄(s))ds
du−

t∫
0

e
−

t∫
u

(a0−iv̄(s))ds
du

=

T∫
0

e
−

t+T∫
u

(a0−iv̄(s))ds
du+

t+T∫
T

e
−

t+T∫
u

(a0−iv̄(s))ds
du

−
t∫
0

e
−

t∫
u

(a0−iv̄(s))ds
du .

(40)

Using the fact that v̄ is T -periodic, the last two terms cancel and we obtain

z̃n(T + t)− z̃n(t) =

T∫
0

e
−

t+T∫
u

(a0−iv̄(s))ds
du

= e−(t+T )a0

T∫
0

e
ua0+

t+T∫
u

iv̄(s)ds
du
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which goes to 0 when t goes to infinity.
We therefore proved that zn converges to a T -periodic function. The same

result holds for (qcn, qsn) solution to (37).

Finally, if we have initial conditions that are close to the equilibrium point
of system (1), and an amount of ATP Ω, which is close to Ω0, we know exactly
how the solution of the system evolves in time. The first order coefficients
of (20) go quickly to the constant term 1/l, the first order coefficients starts to
oscillate in a limit cycle, and the higher order terms either go to zero or have
the same patterns as pc,s1 and qc,s1 with same period of oscillation. Globally, the
solution of (1), shows a supercritical Hopf-bifurcation in time, close enough to
the parameter Ω0.
Remark 2.1. We remark that, up until the computation of the center manifold, the
coefficients a0, a1 and b1 may remain general: there is no need for the power laws
to obtain three negative eigenvalues and two complex eigenvalues in system
(24). To facilitate the application of center manifold techniques, we have opted
to explicitly express the dependence of a0, a1, and b1 on Ω. The selection of
power laws is somewhat intuitive, as it extends previous findings ([6],[12]) and
proves to be advantageous for our analysis.

2.5 Numerical method
We now describe the numerical scheme used throughout the remaining of the
paper.

It is used here to compute the solution to the two-row model (1), but can
easily be extended to N -row models, for N > 2 or restricted to the 1-row model.

We write a first-order upwind scheme for the densities P and Q where, after
each step, we update the velocity v. Let us take ∆x such that ℓ = J∆x for J ∈ N∗,
and ∆t the time step. We define Pn

j := P (j∆x, n∆t) and Qn
j := Q(j∆x, n∆t)

for n ≥ 1 and 1 ≤ j ≤ J . Being ℓ-periodic, we may extend Pn
j for all j ∈ Z by

setting Pn
j+J = Pn

j for all j ∈ Z and all n ∈ N; the same can be done for Qn
j . At a

fixed time step t = n∆t, n ≥ 1, the velocity vn of the central tubule pair being

15



known, we compute, for j ∈ Z

Sn
j = −a0Pn

j + ω2(j∆x)/ℓ,

Tn
j = −a0Qn

j + ω2(j∆x)/ℓ,

Pn+1
j =


(
1− vn

∆t

∆x

)
+ vn

∆t

∆x
Pn
j−1 +∆tSn

j , if vn > 0,(
1 + vn

∆t

∆x

)
− vn

∆t

∆x
Pn
j+1 +∆tSn

j , if vn < 0,

Qn+1
j =


(
1 + vn

∆t

∆x

)
− vn

∆t

∆x
Qn

j−1 +∆tTn
j , if vn > 0,(

1− vn
∆t

∆x

)
+ vn

∆t

∆x
Qn

j+1 +∆tTn
j , if vn < 0,

(41)

and (xn+1, vn+1) are ηvn+1 = ∆x
J∑

j=1

((
Pn+1
j −Qn+1

j

)
∂ξ∆W (j∆x)

)
− kxn,

xn+1 = xn + vn+1∆t.

(42)

Notice that, in (41), only one of the two updates is used for all j. Moreover, due
to the stability of the upwind scheme, we need to check at each iteration that∣∣∣∣vn ∆t

∆x

∣∣∣∣ < 1.

2.5.1 Conditions on α0 and α1

Table 1: Values of the parameters used in numerical simulations.

Parameter Value
ℓ 10nm

kBT 4.2668 · 10−3 nN · nm
η 1.0 · 10−7 kg/s
k 9.5 · 10−5 kg/s2

U 10kBT
a00 1.0 · 103 s−1

Ω0 15kBT

In order to implement the numerical simulations, we have to characterize
ω1 and ω2 by fixing their coefficients. We first set the values for a00 and Ω0.
For simplicity, we impose that an = bn = 0 for n > 1 since, as observed in
Theorem 1.2, they have no significant influence over the system’s oscillations.
We now want to find some a01, α0, α1, that verify τ(Ω0) = 0 from equation (4)
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and τ ′(Ω0) > 0. Starting with α0 and α1, we search for sufficient conditions
such that τ ′(Ω0) > 0. This inequality reads

1

2
a00α0Ω

α0−1
0 − (α0 − α1)

λa01
2a00ℓ

Ωα1−α0−1
0 < 0,

Substituting a01 into it we get

a00(2α0 − α1)Ω
α0
0 + (α0 − α1)

ℓζ

2π
< 0. (43)

The condition (43) is fulfilled with different choices for α0, α1. A particularly
simple solution that we will use hereafter is α0 = 1/2 and α1 = 1. Then, to
recover a01 = a01(Ω0), we solve τ(Ω0) = 0, from equation (4), which leads to

a01 = − a00ℓ

2πλ
Ωα0−α1

0 (2a00Ω
α0
0 π + ℓζ). (44)

Finally, using the parameter values presented in Table 1, we compute a01 at the
instability and get a01(Ω0) = −56.4588 s−1.

2.6 Numerical simulations
Motivated by the previous computations, all simulations are carried out defining
∆W (ξ) = U cos(2πξ/ℓ), a0(Ω) = a00

√
Ω, a1(Ω) = b1(Ω) = a01Ω and an(Ω) =

bn(Ω) = 0, if n > 1, with α0 = 1/2 and α1 = 1. It is fundamental to notice that
the choice to define b1 ̸= 0, makes the transition rates not-symmetric, as in [12].

All parameters values used for all simulations are shown in Table 1, match-
ing F. Jülicher’s [6]. We have taken for kBT the value at 36◦C (human body
temperature).

As shown in Figure 2, the behavior of the two-row model with respect to
the ATP concentration is comparable with the one for the one-row model. When
the ATP concentration Ω is lower than Ω0, the central pair does not move from
its zero equilibrium position. On the contrary, when the ATP concentration is
high enough, we observe an oscillatory displacement between microtubules and
in the probabilities.

The main difference between the one-row model and the two-row one
concerns the equilibrium position around which the solution x(t) oscillates, as
expected. This is clearly illustrated in Figure 2(b), where the displacement takes
place around zero. In this case, the equilibrium position does not create any
curvature, meaning it has the potential to bend equally in both directions.

The simulations for the one-row model where carried out using the same
upwind numerical scheme. In this case there is only one probability density
P (ξ, t). It is linked to the only moving filament, whose displacement is defined
as x(t). We used the same notation as the literature, see [6] for example.
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(a)

(b)

(c)

(d)

Figure 2: Two-row model ((a),(b)) and one-row model ((c),(d)): (a) Probability density
P1(ξ, t) of the top layer of being in state 1 over time in a periodicity cell, in steady-state
regime. The probability density P2(ξ, t) of the bottom layer of being in state 1 is similar
to P1(ξ, t). (b) Relative tubule shift x over time. (c) Probability density P (ξ, t) of the
moving layer in the one-row model. (d) Relative tubule shift x over time in the one-row
model.

2.6.1 Illustrating Theorem 1.2

In the following section, we are going to test the results of Theorem 1.2 against
numerical simulations of the original partial differential equations system (1)
and its first order approximation as the ordinary differential equations system
(24).
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All constants are chosen as described in Table 1, and in Section 2.5.1. The
parameter δ indicates the relative distance from the instability Ω0; therefore, the
point where the simulations is performed is Ω0(1 + δ).

Motivated by the previous computations, we numerically solve the ODE (24)
and the PDE (1) for Ω = Ω0(1 + δ) with δ > 0, focusing on the amplitude of
oscillations for the displacement.

To determine the numerical amplitude for both the ODE and the PDE, we
calculate the difference between the maximum and minimum values of the
solution after some time t̄, when the numerical solution has reached its limit
cycle. This difference is then divided by two.

We then compare the numerical amplitude with the theoretical amplitude
defined by (5). For our choice of parameters and neglecting higher-order terms,
the theoretical amplitude simplifies to:

ρ(Ω) =

√√√√δ
ℓ2

6π2

(
πa00Ω

1/2
0 + 2ℓζ

πa00Ω
1/2
0 + ℓζ

)
. (45)

In Figure 3, simulations only start after δ = 0.05. This is related to the fact
that the closer we are to Ω0, the slower the solution enters into its limit cycle.
For this reason, we should have taken a time t̄ = t(δ) after which evaluating
the amplitude of x(t). In this case, when δ goes to zero, t̄(δ) → ∞. In the
simulations this was not reasonable, so we chose a time t̄ independently from δ,
but large enough so that the solution enters in its steady-state regime for all δs.

In Figure 3(a), we observe the amplitude of x(t) computed with the PDE, the
ODE, and the analytical result (45). As expected, the last loses its prediction
capability the more we go away from the instability; and subsequently, the
relative error between the truncated formula (5) and the one measured from the
PDE increases, as we can see in Figure 3(b). This is due to the contribution of the
non linear terms, which play a role in determining the amplitude of oscillations
even when the system is close to Ω0.

2.6.2 Comment on the amplitude

The expansion (5) of the amplitude ρ can also be adapted to the ODE formulation
of the one-row model. In Figure 4, the two-row model does not only center
the equilibrium point for the oscillations around zero, but it also influences
important physical quantities such as the amplitude of oscillations.
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(a)

(b)

Figure 3: Two-row model. (a) Displacement amplitude vs. relative distance to instability:
the red curve shows the amplitude from the ODE (24), the black curve from the PDE (1)
and the theoretical amplitude from (45) in blue. (b) Relative error results between the
theoretical amplitude and the ODE (in red), and the theoretical amplitude and the PDE
(in black).

Figure 4: Theoretical amplitude for the 2-row model computed with formula (5) in black
and its equivalent for the 1-row model, in red, against the distance from instability δ.

3 Towards modeling the axoneme: N-layer model
with fixed extremities

Starting from two rows of molecular motors, we extend the model from section
2 to N ≥ 2 rows of molecular motors, without any explicit form of inhibition in
the system.
The system is then composed of N + 1 microtubule doublets on the outside,
arranged in a circle, and no central pair. All filaments have the same polarity,
meaning that between two microtubule pairs, motors move towards the base.
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To take the bridge of an axoneme into account (as shown in Figure 5) in our

Figure 5: Simplified axoneme with 9 microtubule doublets and no central pair [31]. Note
the presence of a bridge between pairs 5 and 6.

N -layer model, filament pairs 0 and N are considered to be the same pair. They
have no shift between each other, as shown in the split view Figure 6. Moreover,
all microtubule pairs are assumed inextensible, rigid and at a constant distance
from each other. They are held together by elastic and viscous elements that
do not permit infinite sliding between them. We look at molecular motors in a
periodicity cell of an N -axoneme, of length ℓ.

Figure 6: Motors and tubule shift in the N -row model (here the horizontal axis x shows
absolute tubule displacement instead of motor position ξ in a periodicity cell).

3.1 Full mathematical model
For i ∈ {0, . . . , N}, we denote by Xi the horizontal shift of the i-th tubule, as
shown in Figure 6. We measure displacement with respect to the 0-th filament:
X0 = XN = 0. For 1 ≤ i ≤ N , we introduce ∆i = Xi − Xi−1, the relative
displacement between filaments i and i− 1. It follows that

∑N
i=1 ∆i(t) = 0. The

shifting speed of the i-th filament is defined by Vi = Ẋi − Ẋi−1 = ∆̇i, and we
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have
N∑
i=1

Vi =

N∑
i=1

∆̇i(t) = 0. (46)

Once again, the variable ξ ∈ [0, ℓ] represents the local variable along one
pair, as in the two-row model. We denote by Qi(ξ, t) the density of molecular
motors at position ξ and time t attached to the i-th filament and who are in state
1, walking on the (i− 1)-th filament.

As for the two-row model, in section 2, (Qi, ∆i) are solution to, for ξ ∈ [0, ℓ]
and t > 0

∂tQj(ξ, t) = −(ω1(ξ −∆j(t), t) + ω2(ξ −∆j(t)))Qj(ξ, t)

+ ω2(ξ −∆j(t)))/ℓ, for j ∈ {1, . . . , N},

η(Vi(t)− Vi+1(t)) =

ℓ∫
0

(Qi(ξ, t)∂ξ∆W (ξ)−Qi+1(ξ, t)∂ξ∆W (ξ −∆i(t)))dξ

− k(∆i(t)−∆i+1(t)), for i ∈ {1, . . . , N − 1}.
(47)

Where the first equation is a transport equation for the motors probability
density. Shifting speed is measured by looking at the current filament, as well
as the one above. We thus obtain the second equation in system (47) by writing
the force balance on the i-th filament with the motors and springs around it. We
then have N − 1 force-balance equations that determine the filaments’ motion,
in which we impose the external forces to be zero.

Following again section 2, for j ∈ {1, . . . , N}, t > 0 and ξ ∈ [0, ℓ], we
define Pj as Pj(ξ, t) = Qj(ξ +∆j(t), t). We then observe that ∂tPj(ξ +∆j , t) =
Vj(t)∂ξQj(ξ, t) + ∂tQj(ξ, t), and we finally obtain the system at any t > 0 and
ξ ∈ [0, ℓ]

∂tPj + Vj∂ξPj = −(ω1 + ω2)Pj + ω2/ℓ, for j ∈ {1, . . . , N},

η(Vi − Vi+1) =

ℓ∫
0

(Pi − Pi+1)∂ξ∆W − k(∆i −∆i+1), for i ∈ {1, . . . , N − 1},

N∑
i=1

∆̇i(t) = 0 and Ẋn = 0.

(48)
Like in previous models, the equilibrium state is, for all 1 ≤ i ≤ N − 1 and
1 ≤ j ≤ N 

Vi = 0,
Xi = 0,

Pj = P 0 =
ω2

ℓ(ω1 + ω2)
.
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3.2 Theoretical considerations
In this situation we want to investigate the existence of a Hopf bifurcation in
time, as it was done with the two-row model. To do so, we consider a linearized
system arising from the N -row model (48), in order to have a general idea of the
system’s dynamics, as in (20). We expand in Fourier series P1, . . . , PN and treat
order by order the Fourier coefficients of the probabilities. For the first order
coefficients, we obtain a 3N − 1 dimensional ODE system with unknowns:

pc,sj , j = 1, . . . , N, Xk, k = 1, . . . , N − 1.

We then perform some linear change of variables, similarly to (2.4), in order to
write the Jacobian of the system as a block matrix. The first block is a N + 1
diagonal matrix with real and negative entries −a0(Ω). The rest of the linearized
system is defined by the following equations(

q̇k
ẇk

)
=

(
− 2π2

ℓη Upe − a0 − 2π
ℓη kpe

−πU/η −k/η

)(
qk
wk

)
(49)

for k = 1, . . . , N − 1, where pe = a1/(a0ℓ), qk = psk − psk+1 for k = 1, . . . , N − 1,
and  w1

...
wN−1

 =


2 −1
−1 2 −1

. . .
−1 2 −1

−1 2


 X1

...
XN−1

 . (50)

It follows that the Jacobian has N + 1 real and negative eigenvalues −a0(Ω),
and N − 1 identical pairs of complex and conjugated ones µk(Ω) for k =
1, . . . , N − 1 which come from (49). We observe that µk(Ω) = τ(Ω) + iω(Ω),
with τ and ω defined as in Theorem 1.2 by equations (4) and (25). Then, if
there exists Ω = Ω0 such that τ(Ω0) = 0 and τ ′(Ω0) > 0, the eigenvalues cross
the imaginary axis all at the same bifurcation parameter. Thus, there is a
suggestion of a bifurcation in the dynamics at Ω0, indicated by the linear part of
the complete dynamical system. We will not investigate the theoretical aspects
of this model further in this paper, as the Central Manifold Theorem used in
previous section, does not apply to such systems. However, as shown in the next
section, numerical simulations still suggest a potential pattern in the oscillations
and hint that there is indeed a bifurcation.

3.3 Numerical results
In this section, the N -layer model is tested for N = 8, to match the 8 motor rows
of an axoneme with a bridge and nine microtubule doublets, as in Figure 5. We
use the same parameter values as for the previous systems, as specified in Table
1. The initial conditions are such that Pi(t = 0) = P 0 for all i, and we destabilize
the Xis randomly in [−x0, x0], where x0 = 0.01nm.
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Using the same notations as before, i.e. Ω = (1 + δ)Ω0, we measure distance
the to the bifurcation point Ω0 using δ.

(a)

(b)

(c)

Figure 7: N -row model (N = 8). Relative tubule displacement (in nm) with respect to
time (in seconds) for random initial conditions (a) before bifurcation point, for δ = −0.1
(Ω = 0.9Ω0) and (b) and (c) after bifurcation point , for δ = 0.1 (Ω = 1.1Ω0), for two
iterations of random initial conditions.

Figure 7(a) shows the absence of oscillations before instability (Ω = 0.9Ω0),
exactly as expected. Even though the system is put out of equilibrium by the
initial conditions, since some tubule shifts are nonzero, they all quickly go back
to zero and stop moving.

In Figure 7(b), we look at the system past the instability point, for Ω = 1.1Ω0.
Here, the system clearly reaches a steady-state oscillating regime after a short
amount of time. All oscillations also remain centered in zero. As expected from
the linear study in section 3.2, all ∆is have the same amplitude and oscillation
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frequency, but their phase difference varies depending on initial conditions.
In the particular case shown in Figure 7(b), one group of tubule pairs is
synchronized with pair 7, and the other group with pair 8. In fact, when looking
at all layers separately, one can see that odd layers (respectively even layers)
oscillate in sync. The other possible outcome when running the simulation with
random initial conditions was groups {1, 2, 7, 8} and {3, 4, 5, 6} oscillating
together, as shown in Figure 7(c). This influence of the initial conditions is
understandable since there is no external force taking the whole axonemal
structure and filament into account, resulting in limited coupling between layers
at this level. The layers thus tend to keep their original phase difference. The
synchronization shown in Figure 7(c) was predicted by Howard et al. [13], and
proves the importance of having a bridge around which the system alternates
between positive and negative displacement. In the general case, since there is
no theory behind the bifurcation of this system of 3N − 1 equations, formally
understanding the coupling between phase difference and initial conditions
remains an open question.

A similar problem has recently been numerically studied in Kuramoto
oscillators [1]. The Kuramoto model is fairly different from ours, as each oscillator
has its own velocity, whereas all of our layers have one common velocity value.
Our system of equations cannot thus be easily reduced to a Kuramoto model, but
the behaviors of the two systems in terms of synchronization and dependence
on initial conditions are very much alike. Some first steps, only modelling
individual motors along a single row, have been presented in [8].

4 Conclusion and outlook
In this paper, we presented a new model for the axoneme, the cytoskeleton of cilia
and flagella, focusing on the presence of spontaneous oscillations and potential
synchronization of microtubule doublets under varying ATP concentrations.
We called this model N -row model, where N represents the number of rows
of motors walking between two microtubule doublets that are arranged in
a circular configuration. Molecular motors are put into motion thanks to a
chemical reaction involving ATP, thus inducing microtubule sliding. This
specific structural arrangement results in all microtubule doublets having a
zero equilibrium position. The dynamic is governed by N transport equations,
coming from a stochastic two-state model, and N − 1 force balance equations,
collectively forming a PDE system with 2N−1 equations. We analyzed this model
using both theoretical methods and numerical simulations. Our first studies
focused on the N = 2 configuration, revealing the existence and uniqueness
of the displacement solution. Moreover, under sufficient chemical energy, the
middle microtubule doublet exhibits spontaneous oscillations, corresponding
to the existence of a super-critical Hopf-bifurcation in the dynamical system.
Theoretical results are corroborated by numerical simulations. Subsequently,
we conduct numerical analysis of the N -row model, focusing particularly on the
caseN = 8. Here too, we observe that the system starts to oscillate once the ATP
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concentration surpasses a critical threshold. Remarkably, under appropriate
initial conditions, we note the emergence of two out-of-phase groups among
the microtubules, oscillating around the zero position with opposite shifting
directions.

The first result on our model can be appreciated starting from the N = 2
case. The cylindrical structure answers the problem of the axonemal sym-
metrization proposed in [6], previously solved by choosing symmetric transition
rates. Instead, in of this paper, asymmetric transition rates have been used
all along. More in general, even in the N -row model, we observed that the
equilibrium displacement with null external force was zero, independently from
the potentials and the transition rates. This means that the desired symmetry of
the axoneme is always preserved: at equilibrium, with no external forces, each
microtubule has the same role and there is no initial shifting in the structure.
We underline that this is made possible in our model without imposing specific
symmetry for the potentials.

From a more theoretical point of view, both Theorem 1.1 (well-posedness)
and Theorem 1.2 (existence of a Hopf bifurcation) give a complete mathematical
description on the two-row model. The same results can be proven for the
one-row model as well, formalizing the work done in [12]. With the N -row
model with fixed extremes, we set up a framework that is useful to gain insights
on the microscopic structure of the axoneme. In particular, we comment on the
specific case N = 8, which is the closest representation of the real axoneme in
terms of number of microtubule doublets. With the aid of the numerical scheme
presented in the two-row model section, we observed the onset of oscillations at
a critical value of ATP. To perturb the system we tried several random initial
conditions. We then noticed that imposing an opposite shift on each half of the
model immediately led to robust and realistic patterns, potentially leading to
planar flagellar beating patterns, as discussed in [19].

A natural extension to our work would be to take into account the presence
of the central microtubule pair and, therefore, of the radial spokes coming
from outer doublets towards the axonemal center. Moreover, this model can
be thought of as a building block that, coupled with mechanics of an elastic
flagellum, gives the feedback that generates oscillatory patterns following in
the footsteps of [7, 21] and [28] for the planar case and of [23] for the three
dimensional case.
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A Center manifold computation
In practice, equation (31) is a system of three equations. With the first equation
below we aim to find the coefficients a1j , with j = 1, . . . , 6

(2a11y + a12x+ a13δΩ )

(
−a00Ω

α0
0 y − λ

ℓ

a01
a00

Ωα1−α0
0 y − a01

a00

ζ

ℓ
Ωα1−α0

0 x

−a00c(α0)δΩ y − λ

ℓ

a01
a00
c(α1 − α0)δΩ y − ζ

ℓ
c(α1 − α0)δΩ x

− b01(r + s− 2z)

2a01
(ζx+ λy)

)
+ (a12y + 2a14x+ a15δΩ )(−βℓ

2π
y − αℓ

2π
x)

+ a00Ω
α0
0 h1 + a00c(α0)δΩ h1

− (ζx+ λy)

(
(a01)

2(y + z) + (b01)
2(−r + y + z)

a01b
0
1

)
= 0.

Since we only need terms x, y and δΩ up to order two, we get rid of all the third
order terms, getting

(2a11y + a12x+ a13δΩ )

(
−a00Ω

α0
0 y − λ

ℓ

a01
a00

Ωα1−α0
0 y − a01

a00

ζ

ℓ
Ωα1−α0

0 x

)
+ (a12y + 2a14x+ a15δΩ )(−βℓ

2π
y − αℓ

2π
x)

+ a00Ω
α0
0 h1 − (ζx+ λy)

(
(a01)

2y + (b01)
2y

a01b
0
1

)
= 0.

(51)

We then proceed by matching the terms x, y and δΩ with same order, and
solve the resulting system of equations for a1j . Notice we could have kept only
the zero order term in the Taylor expansion, since all the higher order terms
disappear during this approximation.

We do the same for the second and third equation, solving for the power
series of h2 and h3.

For i = 1, 2, we obtain

ai1 = −
2π2λ2a00ℓ

(
(a01)

2 + (b01)
2
)
Ωα1−α0

0

b01
(
2πa01λΩ

α1−α0
0 + ζa00ℓ

2
) (

2πa01λΩ
α1−α0
0 + a00ℓ(πa

0
0Ω

α0
0 − ζℓ)

)
ai2 =

2πζ(a00)
2ℓ2
(
(a01)

2 + (b01)
2
)
(ζl − πa00Ω

α0
0 )

a01b
0
1

(
2πa01λΩ

α1−α0
0 + ζa00ℓ

2
) (

2πa01λΩ
α1−α0
0 + a00ℓ(πa

0
0Ω

α0
0 − ζℓ)

)
ai3 = 0, ai4 = −

2π2ζ2a00ℓ
(
(a01)

2 + (b01)
2
)
Ωα1−α0

0

b01
(
2πa01λΩ

α1−α0
0 + ζa00ℓ

2
) (

2πa01λΩ
α1−α0
0 + a00ℓ(πa

0
0Ω

α0
0 − ζℓ)

)
ai5 = 0, ai6 = 0.
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For i = 3 we get

a31 = − 2π2λ2a00b
0
1ℓΩ

α1−α0
0(

2πa01λΩ
α1−α0
0 + ζa00ℓ

2
) (

2πa01λΩ
α1−α0
0 + a00ℓ(πa

0
0Ω

α0
0 − ζℓ)

)
a32 =

2πζc2b01ℓ
2(πa00Ω

α0
0 − ζℓ)

a01
(
2πa01λΩ

α1−α0
0 + ζa00ℓ

2
) (

2πa01λΩ
α1−α0
0 + cℓ(πa00Ω

α0
0 − ζℓ)

)
a33 = 0, a34 = − 2π2ζ2a00b

0
1ℓΩ

α1−α0
0(

2πa01λΩ
α1−α0
0 + ζa00ℓ

2
) (

2πa01λΩ
α1−α0
0 + a00ℓ(πa

0
0Ω

α0
0 − ζℓ)

)
a35 = 0, a36 = 0.
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