
HAL Id: hal-04689228
https://hal.science/hal-04689228

Submitted on 5 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Phoenix: Hash-and-Sign with Aborts from Lattice
Gadgets

Corentin Jeudy, Adeline Roux-Langlois, Olivier Sanders

To cite this version:
Corentin Jeudy, Adeline Roux-Langlois, Olivier Sanders. Phoenix: Hash-and-Sign with Aborts from
Lattice Gadgets. PQCrypto 2024 - 15th International Conference on Post-Quantum Cryptography,
Jun 2024, Oxford, United Kingdom. pp.265 - 299, �10.1007/978-3-031-62743-9_9�. �hal-04689228�

https://hal.science/hal-04689228
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Phoenix: Hash-and-Sign with Aborts
from Lattice Gadgets

Corentin Jeudy1,2 , Adeline Roux-Langlois3 , and Olivier Sanders1

corentin.jeudy@orange.com, adeline.roux-langlois@cnrs.fr,
olivier.sanders@orange.com

1 Orange Labs, Applied Crypto Group, Cesson-Sévigné, France
2 Univ Rennes, CNRS, IRISA, Rennes, France

3 Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, France

Abstract. Preimage sampling is a fundamental tool in lattice-based
cryptography, and its performance directly impacts that of the cryp-
tographic mechanisms relying on it. In 2012, Micciancio and Peikert
proposed a new way of generating trapdoors (and an associated preim-
age sampling procedure) with very interesting features. Unfortunately, in
some applications such as digital signatures, the performance may not be
as competitive as other approaches like Fiat-Shamir with Aborts. In an
effort to improve preimage sampling for Micciancio-Peikert (MP) trap-
doors, Lyubashevsky and Wichs (LW) introduced a new sampler which
leverages rejection sampling but suffers from strong parameter require-
ments that hampered performance. As a consequence it seemed to be
restricted to theoretical applications and has not been, to our knowl-
edge, considered for real-world applications.
Our first contribution is to revisit the LW sampler by proposing an im-
proved analysis which yields much more compact parameters. This leads
to gains on the preimage size of about 60% over the LW sampler, and
up to 25% compared to the original MP sampling technique. It thus
sheds a new light on the LW sampler, opening promising perspectives
for the efficiency of advanced lattice-based constructions relying on such
mechanisms. To provide further improvements, we show that it perfectly
combines with the approximate trapdoors approach by Chen, Genise and
Mukherjee, but with a smaller preimage error.
Building upon those results, we introduce a hash-and-sign signature
scheme called Phoenix. The scheme is based on the M-LWE and M-SIS
assumptions and features attractive public key and signature sizes which
are even smaller than those of the most recent gadget-based construction
Eagle of Yu, Jia and Wang (Crypto’23). Moreover, Phoenix is designed
to support a broad variety of distributions (uniform, spherical Gaussian,
etc) which can facilitate implementation, in particular in constrained
environments.

Keywords: Lattice-Based Cryptography · Trapdoors · Preimage Sam-
pling · Signature

An extended abstract of this work appeared at PQCrypto 2024 which can be accessed
at https://doi.org/10.1007/978-3-031-62743-9_9. This is the full version.

https://orcid.org/0000-0003-2869-3833
https://orcid.org/0000-0003-0617-9606
https://orcid.org/0000-0003-1283-7257
mailto:corentin.jeudy@orange.com
mailto:adeline.roux-langlois@cnrs.fr
mailto:olivier.sanders@orange.com
https://doi.org/10.1007/978-3-031-62743-9_9

1 Introduction

Lattice-based cryptography has proven to be a relatively stable and exten-
sively studied candidate to provide post-quantum secure primitives, and has now
shifted towards proposing concretely efficient constructions. The NIST standard-
ization [NISa] perfectly reflects this trend as they recently released the first round
of standards, which is dominated by lattice schemes [BDK+18,DKL+18,PFH+20],
and are moving to practical deployment discussions. Although they provide a
first set of solutions for initiating the post-quantum transition, NIST recently
called for additional digital signatures [NISb]. The lattice-based candidates to
this new competition, along with some recent publications, e.g., [YJW23], show
that there is still room for improvement in this area in terms of optimizing
bandwidth, ease of implementation, side-channel protection, etc.

If we set aside schemes designed with very specific applications in mind,
e.g., [LNP22,BLNS23,JRS23a], lattice-based signature schemes usually follow
one of two main paradigms. The first one, called the hash-and-sign paradigm, was
instantiated by Gentry, Peikert and Vaikuntanathan [GPV08] (later abbreviated
GPV) with lattice preimage sampleable trapdoor functions. In such schemes, the
signing key consists of a trapdoor for a publicly computable function which allows
one to efficiently find short preimages. Signatures are then preimages of seem-
ingly random (and possibly message-dependent) syndromes. Only the signer is
able to compute such preimages, but everyone is able to compute the image to
ensure they represent valid signatures. Several schemes rely on variants of the
above, e.g., [GPV08,MP12,DM14,DLP14], and were successfully pushed towards
concrete practicality [PFH+20,EFG+22,YJW23] using an additional assump-
tion. Trapdoor preimage sampleable functions also represent the most widely
used building block in the design of more advanced forms of signatures such as
group signatures [dPLS18,LNPS21], blind signatures [AKSY22,dPK22,BLNS23],
signatures with efficient protocols [LLM+16,JRS23a], etc. In their general use,
trapdoor preimage sampling can however be quite computationally intensive, and
most solutions are designed to only support Gaussian-distributed preimages.

An alternative, called the Fiat-Shamir with Aborts (FSwA) paradigm, was
proposed by Lyubashevsky [Lyu12], building signatures on Schnorr-like proofs
made non-interactive with the Fiat-Shamir transform. This framework avoids
the use of trapdoors, and uses rejection sampling to control the distribution
of signatures while making them independent of the signing key. Even though
most applications yield Gaussian-distributed signatures, it is possible to tweak
the rejection sampling step to get other distributions that can be more suitable
depending on the context. Efficient instantiations of this signature paradigm
were proposed, such as qTESLA [ABB+20] and Dilithium [DKL+18].

Interestingly, in [LW15], Lyubashevsky and Wichs show that these two ap-
proaches may be combined in the case of Micciancio-Peikert trapdoors [MP12].

2

1.1 Micciancio-Peikert Sampler

In [MP12], Micciancio and Peikert propose a preimage sampling algorithm (later
called MP sampler) for matrices AH = [A|HG−AR], where R constitutes the
trapdoor. More precisely, A is a uniform matrix in Rd×2d

q , H is a tag matrix in
GLd(Rq), G ∈ Rd×kd (with k = logb q) is the base-b gadget matrix, and R is a
short matrix over the ring R, e.g., power-of-two cyclotomic ring. Their algorithm
uses the knowledge of R to sample v ∈ R(2+k)d according to a spherical discrete
Gaussian of parameter s such that AHv = u mod q for an input syndrome u.
The technique first relies on the observation that if z is a Gaussian with width
sG such that HGz = u, then the vector v′ = [(Rz)T |zT]T is a valid candidate.
This naive approach leaks information on the trapdoor R, which is why the
authors perturb this solution v′ into v = p+ v′, for some suitable perturbation
vector p, while adjusting z to verify HGz = u−AHp. By carefully choosing the
covariance of the Gaussian p, one can indeed ensure that v follows a spherical
Gaussian distribution of width s, which in turn does not leak information on the
trapdoor.

Although the approach above perfectly fulfils the security expectations of
preimage sampling, it remains unsatisfactory in a number of aspects. First, the
information on R in v′ = [(Rz)T |zT]T that needs to be hidden only affects the
first component. One would expect to only have to perturb the first part to
ensure security. Additionally, the sampler is quite rigid as it requires sampling
perturbations p from highly non-spherical Gaussian, and is limited to Gaussian
preimages.

1.2 Lyubashevsky-Wichs Sampler

To address these problems, Lyubashevsky and Wichs [LW15] break the sym-
metry between v1 = p1 + Rz and v2 = p2 + z by setting p = [pT

1 |0]T and
z = G−1(u − Ap1) where G−1(·) is the base-b decomposition. Directly out-
putting v1 = p1+Rz and v2 = z again leaks information on R because of v1 and
they thus need to adjust this approach. By identifying Ap1, z and v1 with (re-
spectively) the commitment, the challenge and the response of a zero-knowledge
proof of knowledge of R, this problem is very similar to the one of Fiat-Shamir
signatures in [Lyu12]. They then resort to the same workaround, namely re-
jection sampling: before outputting v1 = p1 + Rz and v2 = z, one performs
rejection sampling on v1 to make its distribution independent of R and z. We
later refer to this sampling method as the LW sampler.

However, to thoroughly show that the preimages do not leak information on
R, they provide a simulation result which suffers from parameter constraints that
make it less efficient than the MP sampler in terms of preimage size. More con-
cretely, they show that the output distribution of the preimages is statistically
close to a distribution that does not depend on the trapdoor R for an arbitrary
(potentially adversarial) syndrome u. Because they deal with an arbitrary u,
nothing can be assumed about its distribution which in turn places strong re-
strictions on the parameters to compensate. Indeed, in their result, they need to

3

assume that Av1 (and Ap1) is statistically close to uniform requiring the pa-
rameters to be large enough to use a regularity lemma. This requirement in turn
prevents them from using a computational instantiation of MP trapdoors. Since
computational MP trapdoors lead to much smaller preimages, they are usually
more compact than the ones generated by the LW sampler. Concretely, the size
of a GPV signature [GPV08] with the LW sampler are about 80 − 90% larger
than the ones using the MP sampler, as described in Section 4. This looks like
a paradox as one would intuitively expect the method from [LW15] to combine
the best of trapdoor-based signatures and Fiat-Shamir with aborts signatures.

1.3 Our Contributions

The goal of our paper is to revisit the LW approach [LW15] so as to achieve its
full potential. Our first result is a reassessment of the original security analysis
showing that we can significantly alleviate the requirements identified in [LW15],
at least in the most common applications of preimage sampling. It entails im-
portant gains in performance of around 60%, resulting in shorter preimages than
the one obtained with the original MP method [MP12] by 25%, thus solving the
apparent paradox mentioned above.

In a second step, we leverage the works on approximate trapdoors initiated by
Chen, Genise and Mukherjee [CGM19] to further reduce the size of the preim-
ages. Our approach allows to reduce the sampling error, thus yielding either
higher security guarantees or better compactness.

Finally, we illustrate the potential of the sampler by designing a hash-and-
sign signature scheme, which we call Phoenix. The latter showcases interesting
features including small keys and signatures, but also an implementation-friendly
design that in particular supports a variety of signature distributions.

We now give more details on these contributions. For the sake of genericity,
the contributions in this paper are described over structured lattices but we note
that they also apply to standard ones.

Contribution 1: Re-assessing the Lyubashevsky-Wichs Sampler. Our
first contribution is a more specific analysis of the LW sampler to get rid of
the restrictive requirements mentioned above and thus obtain more compact
preimages. Intuitively, our new analysis stems from the observation that the
initial assumption of [LW15], namely the fact that the syndrome can be fully
controlled by the adversary, is too strong in general. Indeed, in many common
situations, the syndrome follows a prescribed distribution, which can be lever-
aged to simulate preimages in the proof.

For GPV signatures [GPV08] for example, the syndrome u is the hash output
of the message H(m) where H is modelled as a random oracle. This means that
the syndromes we expect are uniformly distributed and cannot be controlled by
the adversary. This allows us to remove this constraint on Av1 being statistically
close to uniform, as we can, at a high level, use the randomness of u to achieve
the same conclusion. As we show in our paper, removing this constraint removes

4

the need for a large perturbation (either in norm or dimension) and thus leads to
improved performances. In the meantime, our result avoids placing restrictions
on the underlying algebraic ring R nor the working modulus q, making it suitable
for a larger variety of settings and applications.

Compared to the original Micciancio-Peikert sampler, the size of v1 increases,
but v2 is now in base b which is much smaller (even minimal when b = 2 for
example). Concretely, the total bit-size of v for a GPV signature built upon
our improved simulation result is reduced by respectively 60% compared to the
original4 LW sampler, and by 25% compared to the MP sampling method. The
estimates are detailed in Tables 4.1, 4.2 and 4.3. Along with these estimates,
we also analyze the impact of the gadget base b. We show that the intuition
of increasing b to reduce the signature size, that was true for the MP sampler
(as well as the original LW sampler), should be re-assessed when the sampler
changes. More precisely, we explain why the MP sampler and the previous version
of the LW sampler perform better with higher bases, and why our new analysis
and parameter constraints show that the base leading to the smallest signatures
is b = 2.

Contribution 2: Leveraging Approximate Trapdoors. At this stage, we
have shown that the revisited LW sampler can outperform the MP one but the
resulting signature size is still far from competitive compared to, e.g., the future
NIST standard Dilithium [DKL+18]. To fully reinstate LW samplers, we thus
need to find other means of reducing this size.

As the LW approach inherently leads to signatures where most elements are
very small (since ∥v2∥∞ < b), the remaining target to improve performance is
essentially the dimension of those signatures. Thanks to our new analysis above,
we have already managed to reduce the one of A, and hence of v1. When it comes
to v2, the situation is more complex as the dimension seems to be dictated by the
one of the gadget matrix G. Fortunately, a study initiated by Chen, Genise and
Mukherjee [CGM19] improved the performance of gadget-based constructions
through the notion of approximate trapdoors. The idea is to drop the low-order
gadget entries and only consider a partial gadget GH = Id ⊗ gT

H with gH =
[bℓ| . . . |bk−1]T . It not only reduces the dimension of v2 (and hence the number
of elements in the signature), but it also reduces the public and secret key sizes.
Additionally, having a secret key R with fewer columns allows us to reduce
∥Rz∥2 which defines the quality of our sampler, thus reducing the size of v1 as
well.

The removed low-order entries however introduce an error on the preimage
which must be taken into account in the security assessment. Intuitively, the
more entries are dropped, the larger the error, and in turn the less secure it
gets. Reducing the error is thus critical as it leads to better security, or enables
to drop more entries to further improve performance. In this regard, we note
that our revisited LW sampler lends itself well to approximate trapdoors since
4 By “original”, we mean the LW sampler with the parameters resulting from the

original analysis in [LW15].

5

v2 is binary and not gaussian. This leads to a sampling error that is smaller
than the one from [CGM19] and (almost) as small as that of the recent gadget
construction of Yu, Jia and Wang [YJW23].

Contribution 3: Phoenix, a New Hash-and-Sign Scheme. Plugging the
previous contributions in the GPV framework leads to a new hash-and-sign
signature scheme, which we call Phoenix, which allows to assess the benefits
of the LW sampler for concrete applications. The performances of Phoenix are
summarized in Table 1.1.

One of the most surprising features of Phoenix is arguably its relatively
small signatures sizes |sig|. Given the initial performance of the LW sampler,
this was clearly unexpected. An interesting byproduct of having an extremely
short v2 is also that we can apply public key compression as is done in e.g.
Dilithium [DKL+18]. This cuts the public key size |pk| in half at almost no
cost on the security, allowing us to reach smaller public keys than [YJW23] as
well. We give a detailed comparison with the other M-LWE-based signatures
Dilithium [DKL+18], Haetae [CCD+23], Raccoon [dPEK+], Eagle [YJW23]
and G+G [DPS23] in Section 6.4 and Table 6.2.

NIST-II NIST-III NIST-V

|sk| |pk| |sig| |sk| |pk| |sig| |sk| |pk| |sig|
512 1184 2190 648 1490 2897 972 2219 4468

Table 1.1. Performance in bytes of Phoenix for NIST-II, NIST-III and NIST-V security.

Finally, the scheme also benefits from interesting features due to the na-
ture of the LW sampler. The latter can be instantiated with a variety of dis-
tributions that are more suited for easy and secure implementations. In par-
ticular, Phoenix only involves spherical Gaussians over R which removes the
need for complex Gaussian samplers as in previous hash-and-sign schemes (FFO
sampler for [PFH+20], hybrid sampler for [EFG+22], perturbation samplers
for [CGM19,YJW23]). This makes Phoenix easier to protect against side-channel
attacks. We also provide a version of Phoenix which uses uniform distributions
over hypercubes to avoid floating points altogether, as described in Appendix B.

Our scheme thus combines the benefits of Fiat-Shamir with Aborts schemes
and of hash-and-sign schemes, as was originally expected from the LW sampler.
This work shows that said sampler is not only of theoretical interest but may
have concrete applications that could benefit from its nice performance and
implementation features.

1.4 Organization

We start by recalling some notations and standard notions in Section 2. Then,
we provide our new preimage sampling analysis in Section 3, and discuss its

6

performance with respect to the gadget base b in Section 4. We provide in Sec-
tion 5 an approximate version of the sampler and propose Phoenix as a concrete
hash-and-sign signature based on the latter in Section 6. Certain missing proofs
are deferred to the full version [JRS23b] due to space limitations.

2 Preliminaries

In this paper, for two integers a ≤ b, we define [a, b] = {k ∈ Z : a ≤ k ≤ b}.
When a = 1, we simply use [b] instead of [1, b]. Further, q is a positive integer,
and we define Zq = Z/qZ. We may identify the latter with the set of representa-
tives (−q/2, q/2] ∩ Z = [−⌊(q − 1)/2⌋, ⌈(q − 1)/2⌉]. Vectors are written in bold
lowercase letters a and matrices in bold uppercase letters A. The transpose of
a matrix A is denoted by AT . The identity matrix of dimension d is denoted by
Id. We use ∥·∥p to denote the ℓp norm of Rd, i.e., ∥a∥p = (

∑
i∈[d]|ai|

p
)1/p for any

positive integer p, and ∥a∥∞ = maxi∈[d]|ai|. We also define the spectral norm of
a matrix A by ∥A∥2 = maxx̸=0∥Ax∥2/∥x∥2.

2.1 Lattices

A full-rank lattice L of rank d is a discrete subgroup of (Rd,+). The dual lattice
of L is defined by L∗ = {x ∈ SpanR(L) : ∀y ∈ L,xTy ∈ Z}. For d,m, q positive
integers, we consider the family of q-ary lattices {L⊥

q (A);A ∈ Zd×m
q }, where

L⊥
q (A) = {x ∈ Zm : Ax = 0 mod qZ}. For any A ∈ Zd×m

q and u ∈ Zd
q , we

define Lu
q (A) = {x ∈ Zm : Ax = u mod qZ} which is a coset of L⊥

q (A).

2.2 Probabilities

For a finite set S, we define U(S) to be the uniform probability distribution over
S. We use x ←↩ P to describe the action of sampling x ∈ S according to the
probability distribution P . In contrast, we use x ∼ P to mean that the ran-
dom variable x follows P . The statistical distance between two discrete distribu-
tions P,Q over a countable set S is defined as ∆(P,Q) = 1

2

∑
x∈S |P (x)−Q(x)|.

Later, Ds,Dt denote arbitrary distributions called source and target distribu-
tions respectively. Let P,Q be two discrete distributions such that the support
of P , denoted by S is a subset of that of Q. The Rényi divergence of order
a ∈ (1,+∞] from P to Q is defined by

RDa(P∥Q) =

(∑
x∈S

P (x)a

Q(x)a−1

) 1
a−1

.

We also use the smooth Rényi divergence from P to Q, parameterized by ε ≥ 0,
defined in [DFPS22] as

RDε
∞(P∥Q) = inf{M > 0 : Px∼P [M ·Q(x) ≥ P (x)] ≥ 1− ε}.

7

It essentially allows one to use the infinite-order Rényi divergence and its prop-
erties, while discarding a fraction ε of the problematic points. In particular, we
can now define the divergence even when Supp(P) ̸⊆ Supp(Q) as it allows for
discarding the points in Supp(P) \ Supp(Q) that would lead to an undefined
quantity for RD∞(P∥Q). We insist that it is a different notion and thus does
not have the exact same properties. In particular, it is not log-positive in the
sense that RDε

∞(P∥Q) is not always above 1. We refer to [DFPS22] for more
details on this notion and its implications in rejection sampling.

For a center c ∈ Rd and positive definite S ∈ Rd×d, we define the Gaussian
function ρ√S,c : x ∈ Rd 7→ exp(−π(x − c)TS−1(x − c)). For a countable set
A ⊆ Rd, we define the discrete Gaussian distribution DA,

√
S,c of support A,

covariance S and center c by its density DA,
√
S,c : x ∈ A 7→ ρ√S,c(x)/ρ

√
S,c(A),

where ρ√S,c(A) =
∑

x∈A ρ√S,c(x). When c = 0, we omit it from the notations.
When S = s2Id, we use s as subscript instead of

√
S. As coined by Micciancio and

Regev [MR07], we define the smoothing parameter of a lattice L, parameterized
by ε > 0, by ηε(L) = inf{s > 0 : ρ1/s(L∗) ≤ 1 + ε}.

We also give the standard tail bounds for the discrete Gaussian distribution
from [Ban93,Pei08]. Notice that when c = 0, the smoothing requirement s ≥
ηε(L) in the following is not needed.

Lemma 2.1 ([Ban93, Lem. 1.5][Pei08, Cor. 5.3]). Let L ⊂ Rd be a lattice
of rank d, and s > 0. It holds that for c ≥ 1, Px∼DL,s

[∥x∥2 > cs
√
d/2π] <

(c
√
ee−c2/2)d. Additionally, for t ≥ 0, we have Px∼DL,s

[∥x∥∞ > ts/
√
2π] <

2de−t2/2.

Finally, we give the rejection sampling results from [DFPS22, Lem. 2.2, Lem.
4.1], which we slightly specify to our context.

Lemma 2.2 (Adapted from [DFPS22, Lem. 2.2, Lem. 4.1]). Let d,m
be positive integers. Let Ds,Dt,Dr,Dz be distributions on Rd,Rd,Rd×m,Rm re-
spectively. Let R be drawn from Dr. Then, let Y ⊆ Rd be the support of the
distribution of R ·Dz. We assume they are such that Supp(Dt) ⊆ Supp(D+Rz

s)
for all Rz ∈ Y , where D+Rz

s is the distribution corresponding to sampling
p from Ds and outputting p + Rz. Let M > 1 and ε ∈ [0, 1/2] such that
maxRz∈Y RDε

∞(Dt∥D+Rz
s) ≤M . We then define two distributions

P1

Sample z ←↩ Dz, p ←↩ Ds and set v ← p + Rz. Then sample a continuous
u ←↩ U([0, 1]). If u > min(1,Dt(v)/(M · Ds(p))), restart, otherwise output
(v, z).

P2
Sample z ←↩ Dz, v ←↩ Dt. Then sample a continuous u ←↩ U([0, 1]). If u >
1/M , restart, otherwise output (v, z).

Then, ∆(P1,P2) ≤ ε and for all a ∈ (1,+∞], RDa(P1∥P2) ≤ 1/(1− ε)a/(a−1).

To perform rejection sampling in the Gaussian case, we use the following
bound on the smooth Rényi divergence between shifted Gaussians.

8

Lemma 2.3 ([DFPS22, Lem. C.2]). Let d be a positive integer, y in Rd, ε ∈
(0, 1), and s > 0. Then, RDε

∞(DZd,s∥DZd,s,y) ≤ exp(π
∥y∥2

2

s2 + 2
∥y∥2

s

√
π ln ε−1).

For M > 1, the bound is less than M if s > ∥y∥2·
√
π

lnM (
√
ln ε−1 + lnM+

√
ln ε−1).

2.3 Algebraic Number Theory

We now give the necessary background in algebraic number theory. A number
field K = Q(ζ) is an extension field of Q of finite degree n obtained by adjoining
an algebraic number ζ. The unique monic polynomial f ∈ Q[X] of smallest
degree that vanishes at ζ is called the minimal polynomial of K. Its degree is
the degree of K. The set of algebraic integers in K defines a ring R called the
ring of integers of K, sometimes denoted by OK . We also define Rq = R/qR
for any modulus q ≥ 2. Although most of our result apply to general number
fields, the rest of the paper focuses on cyclotomic fields. For ν ̸≡ 2 mod 4, the
cyclotomic field of conductor ν is K = Q(ζν) where ζν is a primitive ν-th root
of unity. Its degree is n = φ(ν), where φ is the Euler totient function, and
its ring of integers is R = Z[ζν] ∼= Z[X]/⟨Φν⟩ where Φν is the ν-th cyclotomic
polynomial. A particularly popular case is when ν = 2µ+1, which we call power-
of-two cyclotomic field, as it results in n = 2µ and Φν = Xn + 1.
Embeddings. Field and ring elements can be naturally embedded into Rn by
their coefficient vector when seen as polynomials in ζ or X. We call τ the coeffi-
cient embedding of R, i.e., for all r =

∑
i∈[0,n−1] riζ

i ∈ R, τ(r) = [r0| . . . |rn−1]
T .

One can extend τ to vectors of Rd by concatenating the coefficient embeddings of
each vector entry. For an integer η, we define Sη = τ−1([−η, η]n) We also define
the usual norms ∥·∥p over R by ∥r∥p := ∥τ(r)∥p. The conjugate of an element r

is defined by r∗ = r(ζ−1) =
∑

i∈[0,n−1] riζ
−i. For a matrix R = [ri,j] ∈ Rd×k,

R∗ = [r∗j,i] ∈ Rk×d.
Multiplication Matrices. For all r, s ∈ R, τ(rs) = Mτ (r)τ(s), where Mτ (r) is
the multiplication matrix of Rn×n associated to r with respect to τ . In the field of
minimal polynomial f = Xn+

∑
i∈[0,n−1] fiX

i, we have Mτ (r) =
∑

i∈[0,n−1] riC
i

where

C =

0 0 −f0
−f1

−fn−1

In−1

We naturally extend Mτ to matrices A = [ai,j]i,j ∈ Rd×m entrywise by Mτ (A) =
[Mτ (ai,j)]i,j ∈ Rnd×nm. It also holds that Mτ (A

∗) = Mτ (A)T . Then, we define
∥A∥2 as ∥Mτ (A)∥2.
Lattices. For any A ∈ Rd×m

q , we define L⊥
q (A) = {x ∈ Rm : Ax = 0 mod qR}.

For any u ∈ Rd
q , we similarly define Lu

q (A) = {x ∈ Rm : Ax = u mod qR}.
Gaussians. For a positive definite matrix S ∈ Rnd×nd, we define the discrete
Gaussian distribution over Rd by τ−1(Dτ(Rd),

√
S), which we denote by DRd,

√
S.

9

Since τ(Rd) = Znd in cyclotomic fields, the distribution corresponds to sampling
an integer vector according to DZnd,

√
S which thus defines a vector of Rd via τ−1.

2.4 Hardness Assumptions

We now recall the relevant hardness assumptions for our work, namely the (resp.
Inhomogeneous) Module Short Integer Solution M-SIS (resp. M-ISIS) and Module
Learning With Errors M-LWE problems [LS15]. We consider the problems in
their Hermite Normal Form, i.e., we specify the identity in the M-SIS and M-ISIS
matrix, and we use the same distribution for the M-LWE secret and error. We
also consider a version of M-ISIS and M-SIS which imposes an infinity norm
constraint on the solution for our signature scheme Phoenix.

Definition 2.1 (M-ISIS and M-SIS). Let K be a number field of degree n
and R its ring of integers. Let d,m, q be positive integers and β, β∞ > 0 with
m > d. The Module Inhomogeneous Short Integer Solution problem in Hermite
Normal Form M-ISISn,d,m,q,β,β∞ asks to find x ∈ Lu

q ([Id|A′]) such that ∥x∥2 ≤ β

and ∥x∥∞ ≤ β∞, given A′ ←↩ U(Rd×m−d
q) and u ←↩ U(Rd

q). When u = 0 we
call it M-SIS and expect x to be non-zero as well. When only considering the
Euclidean norm, we remove the subscript β∞.

The advantage of a probabilistic polynomial-time (PPT) adversary A against
M-ISISn,d,m,q,β,β∞ is defined by

AdvM-ISIS[A] = P
[
x ∈ Lu

q ([Id|A′]) ∧ ∥x∥2 ≤ β ∧ ∥x∥∞ ≤ β∞ : x← A(A′,u)
]
,

where the probability is over the randomness of (A′,u) and the random coins
of A. When the parameters are clear from the context, we define the hardness
bound as εM-ISIS = supA PPT AdvM-ISIS[A]. We define these quantities similarly
for M-SIS. We now present the M-LWE problem in its variant with multiple
secrets which we use throughout the paper.

Definition 2.2 (M-LWE). Let K be a number field of degree n and R its ring
of integers. Let d,m, k, q be positive integers and Dr a distribution on R. The
decision Module Learning With Errors problem M-LWEk

n,d,m,q,Dr
asks to dis-

tinguish between the following distributions: (1) (A′, [Im|A′]R mod qR), where
A′ ∼ U(Rm×d

q) and R ∼ Dd+m×k
r , and (2) (A′,B), where A′ ∼ U(Rm×d

q) and
B ∼ U(Rm×k

q). The search variant asks to find R given a sample from (1).

The advantage of a probabilistic polynomial-time (PPT) adversary A against
decision M-LWEk

n,d,m,q,Dr
is defined by

AdvM-LWE[A] = |P [A(A′, [Im|A′]R) = 1]− P [A(A′,B) = 1]|,

When the parameters are clear from the context, we define the hardness bound
as εM-LWE = supA PPT AdvM-LWE[A]. Additionally, a standard hybrid argument
shows that M-LWEk

n,d,m,q,Dr
is at least as hard as M-LWE1

n,d,m,q,Dr
at the ex-

pense of a loss factor k in the reduction. The same holds for the search variant.

10

3 Revisiting Trapdoor Sampling

We here focus on the trapdoor preimage sampling procedure proposed by Lyuba-
shevsky and Wichs [LW15] for Micciancio-Peikert trapdoors [MP12] (which we
late abbreviate MP trapdoors). We start by recalling the structure of MP trap-
doors and describe the LW sampler from [LW15] which suffers from very re-
strictive constraints on the parameters, as explained in Section 1. We provide
an improved analysis of the LW sampler which gets rid of those parameter con-
straints, leading to a performance improvement of about 60% over the sampler
analysis from [LW15], and of around 25% over the MP sampler. Our result places
however moderate constraints on the applications, albeit easily met in practice
as we discuss.

3.1 Micciancio-Peikert Preimage Sampling

The notion of trapdoors introduced by Micciancio and Peikert [MP12] is very
versatile and has been extensively used in cryptographic constructions, including
many advanced lattice-based primitives. These trapdoors involve matrices AH

of the form
AH = [A|HG−AR] mod qR ∈ Rd×d(2+k)

q ,

where H ∈ Rd×d
q is an invertible tag matrix, G ∈ Rd×dk a primitive gadget

matrix, and R ∈ R2d×dk a short matrix corresponding to the trapdoor. In what
follows, we consider the gadget matrix of [MP12] in base b ≥ 2, i.e., G = Id ⊗
[1|b| . . . |bk−1] ∈ Zd×dk ⊆ Rd×dk where5 k = ⌈logb(⌈(q − 1)/2⌉+ 1)⌉, but any
other gadget matrix would work, as long as it enables to easily compute short
preimages.

The sampling algorithm relies on the link between such matrices AH and the
gadget matrix G, that is

AH

[
R
Idk

]
= HG mod qR.

Thence, if z is a short vector in Lu
q (HG), then v = [(Rz)T |zT]T is a short

vector in Lu
q (AH), i.e., verifying AHv = u mod qR, that is v is a preimage

of u by AH. Unfortunately, v leaks information about the trapdoor R which
is undesirable in cryptographic applications as R usually corresponds to the
long-term secret key. To circumvent this issue, the authors use the Gaussian
convolution theorem [Pei10, Thm. 3.1] to perturb v in order to make the final
samples independent of R. In more details, they sample a (highly) non-spherical
Gaussian perturbation p = [pT

1 |pT
2]

T ∼ DRd(2+k),
√
S with

S = Mτ

(
s2Id(2+k) − s2G

[
RR∗ R
R∗ Idk

])
,

5 See Remark 3.2 for details on the definition of k.

11

and then compensate this perturbation by sampling z ∼ DLx
q (G),sG with x =

H−1(u−AHp) mod qR. The output sample is then v′ = [(p1+Rz)T |(p2+z)T]T .
By the convolution theorem, v′ is statistically close to a Gaussian distribution
over Lu

q (AH) with parameter s, which no longer depends on R.
Therefore, from the security standpoint, the approach above perfectly ad-

dresses the problem of preimage sampling for cryptographic applications. How-
ever, if we reconsider the unperturbed vector v = [(Rz)T |zT]T , we note that
the convolution is now applied to both parts in the same way. This does not
seem optimal as the bottom section of v is independent of R and as Rz is al-
ways larger than z. Unfortunately, this seems inherent to the approach stated in
[Pei10, Sec. 1.3] which only considers covariance matrices of the form s2I − S1

for some covariance matrix S1. Ideally, we would like to select a perturbation
that only affects the top component, typically

p =

[
p1

0

]
∼ DRd(2+k),

√
S, with S = Mτ

([
s2I2d − s2GRR∗ 0

0 0

])
.

However, when sampling z and outputting p + [RT |Idk]T z, we end up with a
joint probability of covariance (up to applying Mτ)[

s2I2d − s2GRR∗ 0
0 0

]
+ s2G

[
RR∗ R
R∗ Idk

]
=

[
s2I2d s2GR
s2GR∗ s2GIdk

]
,

which again leaks information about R. This highlights the need to hide both
Rz and z to rely on the convolution technique. Intuitively, the first component
v1 = p1 +Rz can be seen as a Gaussian distribution with a secret center Rz.
Looking at its marginal distribution, one could use standard techniques to hide
this secret center, namely convolution when z is Gaussian or noise flooding (based
on either the statistical distance or the Rényi divergence) if z is non-Gaussian.
However, giving v2 = z provides side information on this secret center which
explains why z also has to be perturbed for the convolution technique to be
meaningful. We therefore need a middle way between this efficient, but insecure,
approach and the one from [MP12] that does not seem optimal for the type of
asymmetric vectors we have to perturb.

From the implementation standpoint, the MP approach also leads to some
specific problems. It indeed requires the sampling of a perturbation vector p from
a (highly) non-spherical Gaussian distribution. Such a perturbation sampling is
rather costly and represents the most part of the computation time of preimage
sampling. The gadget sampling step (sampling z←↩ DLx

q (G),sG) also requires the
sampling of non-spherical Gaussian perturbations when q is not a power of the
gadget base b. The latter case has been considered in several works [GM18,ZY22]
which show how to leverage specific structures in the basis of L⊥

q (G) to enable
more efficient sampling over L⊥

q (G). Unfortunately, this does not work for the
perturbation p and the covariance matrix S we consider because R is random.
Another downside is that this convolution method is seemingly limited to Gaus-
sian distributions, which limits the possible preimage distributions.

12

3.2 A More Flexible Preimage Sampler

To circumvent these shortcomings, Lyubashevsky and Wichs [LW15] proposed
a more flexible preimage sampling procedure which only perturbs the top part.

3.2.1 Description. The approach from [LW15] can be seen as combining the
features of tag-friendly gadget-based preimage sampling with rejection sampling
that is extensively used in Fiat-Shamir with Aborts (FSwA) signatures. Let
G−1(·) be the entry-wise base-b decomposition of vectors of Rd

q . As we explain
below in Remark 3.2, we consider a centered representation of Zq which results
in a signed base-b decomposition. Hence, G−1 maps to vectors of Sdk

b−1. The
intuition is to sample a perturbation p1 ∈ Rm from a source distribution Ds.
Further, instead of using Gaussian G-sampling, we simply use G−1 and obtain
v2 = G−1(H−1(u−Ap1)). Then, we can define v1 = p1+Rv2 so that the rela-
tion AHv = u is verified, and apply rejection sampling to make v1 independent
of Rv2 and in turn R. This setting is reminiscent of lattice-based zero-knowledge
arguments or Lyubashevsky’s signature scheme [Lyu12], where R is the witness,
p1 is the mask, Ap1 is a commitment to the mask, v2 is the challenge, and v1

is the response to the challenge. We slightly modify the presentation of the sam-
pler from [LW15] by taking the matrix A in Hermite Normal Form. Concretely,
throughout the rest of the paper, A = [Id|A′] for a matrix A′ of dimension
d× (m− d).

Algorithm 3.1: SamplePreRej(R;A′,H,u,Ds,Dt)

Input (offline phase): Matrix A′ ∈ R
d×(m−d)
q , Source distribution Ds over Rm.

Input (online phase): Trapdoor R ∈ Rm×dk, Tag H ∈ GLd(Rq), Syndrome u ∈ Rd
q ,

Target distribution Dt over Rm such that rejection sampling can be performed with
respect to the source distribution Ds.

Offline phase
1. p1 ←↩ Ds.
2. w← [Id|A′]p1 mod qR.

Online phase
3. x← H−1(u−w) mod qR. ▷ Syndrome correction
4. v2 ← G−1(x) ∈ Sdk

b−1. ▷ Deterministic
5. v1 ← p1 +Rv2.
6. Sample a continuous u←↩ U([0, 1]).
7. if u > min

(
1, Dt(v1)

M·Ds(p1)

)
then go back to 1. ▷ Rejection

Output: v =

[
v1

v2

]
.

3.2.2 Current Limitations. At first glance, the approach from [LW15] seems
to fully achieve what we wanted to do in Section 3.1, namely to completely break
the symmetry between v1 and v2 to reduce the size of v2. However, in practice,
the choice of parameters and suitable distributions Ds,Dt is conditioned by the

13

security requirements coming from the simulation result of [LW15, Thm. 3.1].
Unfortunately, the latter is too restrictive in most cases, which explains why it
does not lead to improvements on the preimage size, as we explain below.

Concretely, in [LW15, Thm. 3.1], it is shown that the output distribution of
SamplePreRej is statistically close to some ideal distribution that does not depend
on the trapdoor R for an arbitrary (potentially adversarial) syndrome u. It
means that a preimage v of u can be simulated without resorting to the trapdoor
R, and thus does not leak information on R. There are however some challenges
to overcome in order to prove this result. The first one is to identify this ideal
distribution that must additionally be close to the one of actual preimages. If
we focus on the v2 component of these preimages, we indeed note that the
SamplePreRej algorithm above generates them as G−1(H−1(u−w)) where w =
Ap1. If w is non-uniform, then so is H−1(u−w), which makes the distribution
of v2 complex to define when u is arbitrary.

It therefore seems necessary to assume that Ap1 is close to uniform, but at
this stage one could still wonder whether a computational argument is sufficient.
Unfortunately we here face a second challenge which is due to the very nature
of the perturbation p1. Indeed, p1 does not only affect the syndrome (through
Ap1) but also the preimage as it is eventually added to its upper component to
form v1. In a computational argument, one would end up with an intermediate
game where Ap1 would be replaced by some random vector r, but then how to
generate v1? The syndrome would indeed be u + r, which seems impossible to
invert without resorting to the trapdoor since the reduction does not control u.

This is why the authors of [LW15] need to assume that Ap1 is statistically
close to uniform requiring p1 to have a high entropy in order to use a regularity
lemma, which in turn leads to large parameters (either in the dimension m of p1,
or in the size of its entries). This in particular prevents them from using a (much
more efficient) computational instantiation of MP trapdoors where m = 2d. This
results in significant performance losses which cancel out the benefits of having
smaller v2. In addition, regularity lemmas generally require the modulus q to
be prime and with low splitting in the ring R, which may be undesirable for
concrete applications.

We give concrete parameter and performance estimates in Table 4.2 following
the original result and parameter selection from [LW15, Sec 3.2] in the Gaussian
case, i.e., when Ds = Dt = DRm,s is a spherical discrete Gaussian of width s.
Their simulation result leads to choosing m = dk = d⌈logb q⌉ and s = α · (b −
1)
√
ndk(

√
ndk +

√
ndk + t), for a constant factor α ≈ 8. Overall it yields a

signature of around 20 KB whereas the original MP sampler yields signature of
approximately 10.2 KB.

3.3 Improved Simulatability of Preimages.

We now explain how to get rid of these requirements when the syndrome fol-
lows a prescribed uniform distribution. This is for example the case for GPV
signatures [GPV08], where the syndrome u is the hash output H(m) of the mes-
sage m, where H is modelled as a random oracle. With this assumption, we can

14

drastically change the proof strategy. Indeed, we first note that we no longer
have to study the distribution of v conditioned on some arbitrary u as we can
now consider the joint distribution of v and u. Put differently, we can now ma-
nipulate these two vectors as long as their joint distribution is correct, which
offers a lot more flexibility in the proof. In particular, this allows to circumvent
the challenges faced in the proof of [LW15] because we can now leverage the
randomness of u to compensate the one introduced by the computational as-
sumption. More precisely, this allows us to specify the expected distribution of
v2 as H−1(u −Ap1) is now uniform because u is uniform and independent of
Ap1.

This alleviates the restriction on Ap1 being statistically uniform, while still
being able to simulate the pairs (v,u) without resorting to the trapdoor R.
Note that p1 still needs to have a sufficient entropy so as to hide Rv2, which is
given by the rejection sampling condition. This trapdoor-independence property
of the preimages is necessary for cryptographic applications, e.g., signatures, as
an adversary can usually have access to many such preimages (and syndromes)
for a single key. As a consequence, we no longer need a large perturbation (either
in norm or dimension), which leads to improved performances, as illustrated by
the tables in Section 4.

We provide our new simulation result in Theorem 3.1, which we instantiate
for Gaussian distributions in Corollary 3.1.

Theorem 3.1. Let K be a number field, and R its ring of integers. Let d, q, b be
positive integers with b ≥ 2, and let k = ⌈logb(⌈(q − 1)/2⌉+ 1)⌉. Let Dr,Ds,Dt

be three distributions over R2d×dk, R2d and R2d respectively. Let A′ ∼ U(Rd×d
q),

R ∼ Dr, H ∈ GLd(Rq) and A = [Id|A′] ∈ Rd×2d
q . Then, let Y ⊆ R2d be the

support of the distribution of R ·G−1(U(Rd
q)). Let M > 1, ε ∈ [0, 1/2] such that

maxRv2∈Y RDε
∞(Dt∥D+Rv2

s) ≤M . We then define two distributions

P1
u←↩ U(Rd

q), and v← SamplePreRej(R;A′,H,u,Ds,Dt).
Output: (v,u).

P2

1. v1 ←↩ Dt, v2 ←↩ G−1(U(Rd
q)).

2. v← [vT
1 |vT

2]
T .

3. u← [A|HG−AR]v mod qR.
4. With probability 1− 1/M go back to 1.

Output: (v,u).

Then, ∆(P1,P2) ≤ ε and for all a ∈ (1,+∞], RDa(P1∥P2) ≤ 1/(1− ε)a/(a−1).

Proof. We define the following hybrid distributions from H1 to H5, where H1 =
P1 and H5 = P2.

H1

u ←↩ U(Rd
q), p1 ←↩ Ds, x′ ← u − Ap1 mod qR, v2 ← G−1(H−1x′), v1 ←

p1 +Rv2. Then u←↩ U([0, 1]) and restart if u > min(1,Dt(v1)/(M ·Ds(p1))).
Otherwise define v← [vT

1 |vT
2]

T .
Output: (v,u).

15

H2

x′ ←↩ U(Rd
q), p1 ←↩ Ds, u ← x′ + Ap1 mod qR, v2 ← G−1(H−1x′), v1 ←

p1 +Rv2. Then u←↩ U([0, 1]) and restart if u > min(1,Dt(v1)/(M ·Ds(p1))).
Otherwise define v← [vT

1 |vT
2]

T .
Output: (v,u).

H3

v2 ←↩ G−1(U(Rd
q)), x′ ← HGv2 mod qR, p1 ←↩ Ds, u ← x′ + Ap1 mod qR,

v1 ← p1 + Rv2. Then u ←↩ U([0, 1]) and restart if u > min(1,Dt(v1)/(M ·
Ds(p1))). Otherwise define v← [vT

1 |vT
2]

T .
Output: (v,u).

H4

v2 ←↩ G−1(U(Rd
q)), p1 ←↩ Ds, v1 ← p1 +Rv2, v← [vT

1 |vT
2]

T , u← [A|HG−
AR]v mod qR. Then u ←↩ U([0, 1]) and restart if u > min(1,Dt(v1)/(M ·
Ds(p1))). If not go to output.
Output: (v,u).

H5

v2 ←↩ G−1(U(Rd
q)), v1 ←↩ Dt, v ← [vT

1 |vT
2]

T , u ← [A|HG −AR]v mod qR.
Then u←↩ U([0, 1]) and restart if u > 1/M . If not go to output.
Output: (v,u).

Let us now show that these distributions are statistically close to each other.
H1 - H2: Here we just change the sampling order of u and x′. In H2 the vector
x′ is uniform and independent of Ap1 implying that u is also uniform, as in H1.
Hence H1 and H2 are identically distributed.
H2 - H3: We now change the way x′ is generated. Notice that, for correctness,
once x′ is fixed then so is v2 and vice-versa. In H2, since H is in GLd(Rq),
H−1x′ also follows the uniform distribution over Rd

q . As a result, v2 follows
exactly G−1(U(Rd

q)) as in H3. Also, x′ is coherently set in H3. Indeed, in H2,
we have HGv2 = H(H−1x′) mod qR = x′ mod qR. Thence, H2 and H3 are
identically distributed as well.
H3 - H4: H4 is merely a re-writing of H3. Indeed, in H3, x′ only acts as an
intermediate vector to define u. Defining R′ = [RT |Im2

]T , we have [A|HG −
AR]R′ = HG mod qR. In H3, this yields

u = HGv2 +Ap1 mod qR = [A|HG−AR]R′v2 +Ap1 mod qR

= [A|HG−AR]v mod qR,

as v = [pT
1 |0]T +R′v2. Again, H3 and H4 are identical.

H4 - H5: We now change the way v1 is generated by using the rejection sampling
result. In H4, Rv2 is distributed according to R ·G−1(U(Rd

q)) with support Y
as defined in the theorem statement. By our assumptions on Y , Ds, Dt, the
rejection sampling result from Lemma 2.2 yields that

∆((v1,v2)H4
, (v1,v2)H5

) ≤ ε and RDa((v1,v2)H4
∥(v1,v2)H5

) ≤ 1

(1− ε)
a

a−1
,

for all a > 1. By the data processing inequality of the statistical distance and
Rényi divergence, it holds

∆(H4,H5) ≤ ε and RDa(H4∥H5) ≤
1

(1− ε)
a

a−1
.

16

Since H1 = P1 and H5 = P2, combining the above gives the result.

Theorem 3.1 also provides the simulation in Rényi divergence because, as
noted for example in [Pre17], it usually leads to tighter constructions. One can
indeed take a much larger ε for (almost) the same security guarantees, which in
turn relaxes the constraints on other parameters.

Because our new analysis does not require any regularity result to argue that
Ap1 is statistically uniform, we do not need to place any restrictions on the
modulus q, nor the field K. Typically, regularity lemmas in the module setting
are usually restricted to monogenic fields and/or to prime modulus with low
splitting, i.e., such that the ideal qR factors into a small number of distinct
prime ideals. Our simulation avoids these constraints altogether. Additionally,
the result specifies to the integers by choosing the field K = Q, and thus the
ring R = Z, of degree n = 1.

Remark 3.1. Our proof strategy would still work if the syndrome u is statistically
uniform and not necessarily a hash output. This is for example the case in the
recent signature with efficient protocols of [JRS23a] where they simulate one
signature query v along with the public key syndrome u.

Remark 3.2. Note that when working with centered modular arithmetic, the
gadget needs to invert possibly negative elements. For w ∈ (−q/2, q/2] ∩ Z, the
gadget inversion thus takes the base-b decomposition of |w| and multiplies all
coefficients by the sign of w. Additionally, the elements have magnitude at most
⌈(q − 1)/2⌉ and not q−1. The base-b decomposition thus requires k entries where
bk − 1 ≥ ⌈(q − 1)/2⌉ which indeed leads to k = ⌈logb(⌈(q − 1)/2⌉+ 1)⌉ instead
of k = ⌈logb q⌉. This almost never differs for large bases and moduli except for
rare corner cases, but when b = 2 for example this saves one dimension in the
gadget length and thus d columns for R.

3.3.1 Gaussian Instantiation. We instantiate Theorem 3.1 with a Gaus-
sian distribution on v1 for a fair comparison with previous results. We thus
choose Dr = U(S2d×dk

1) for the trapdoor distribution, and we select Ds =
Dt = DR2d,s for the source and target distributions. For convenience, we write
SamplePreRej(R;A′,H,u, s) instead of specifying Ds and Dt.

In order to set s, we need to derive a bound T on ∥Rv2∥2 to use Lemma 2.3.
For that, we bound it by ∥R∥2∥v2∥2, and apply the standard bound ∥R∥2 ≤√
2nd +

√
ndk + t =: B. We simply note that as the matrix is structured, this

bound, which could be proven by [Ver12] in the unstructured case, is only verified
empirically as in several works using lattice gadgets, e.g., [BEP+21,LNP22]. To
thoroughly match the conditions of the rejection sampling, we need to enforce
this spectral bound on ∥R∥2 before the sampling procedure. Since R represents
the secret key, this bound should be enforced during key generation6. As it
6 It is also the case for the original MP sampler as it may happen (albeit with negligible

probability) that the sampler fails if R has norm larger than the bound used to set
the Gaussian width s.

17

is verified with non-negligible probability, typically overwhelming or constant
depending on t, this only discards a small fraction of all the possible keys. Note
that such rejections based on the quality of keys has become quite common
in other lattice designs, e.g., [PFH+20,EFG+22]. We therefore actually apply
Theorem 3.1 on Dr = “U(S2d×dk

1) conditioned on ∥R∥2 ≤ B”. We then choose a
repetition rate M > 1 and a loss ε, which both define the minimal slack α > 0 so
that s = αT . This leads to the following corollary, which will be more convenient
to use later.

Corollary 3.1. Let R be the power-of-two cyclotomic ring of degree n. Let
d, q, b be positive integers with b ≥ 2, and define the gadget dimension k =
⌈logb(⌈(q − 1)/2⌉+ 1)⌉. Let t > 0, and T = (b − 1)

√
ndk(

√
2nd +

√
ndk + t).

Let M > 1, ε ∈ (0, 1/2] and define α =
√
π

lnM (
√
ln ε−1 + lnM +

√
ln ε−1). Fi-

nally s = αT . Let A′ ∼ U(Rd×d
q), R ∼ U(S2d×dk

1) conditioned on ∥R∥2 ≤√
2nd +

√
ndk + t, and H ∈ GLd(Rq). We define P1 and P2 the same way as

in Theorem 3.1 but where Ds,Dt are replaced with DR2d,s. Then, it holds that
∆(P1,P2) ≤ ε and RDa(P1∥P2) ≤ 1/(1− ε)a/(a−1) for all a ∈ (1,+∞].

Proof. We simply have to verify that the smooth Rényi divergence condition
of Theorem 3.1 holds. In our context, we restrict the matrices R to have a
bounded spectral norm. Following the notations of Theorem 3.1, the distribution
Dr consists in sampling R from U(S2d×dk

1) such that ∥R∥2 ≤ B, where B =√
2nd +

√
ndk + t. The set Y is the support of R ·G−1(U(Rd

q)). Hence, for all
Rv2 in Y , we have ∥Rv2∥2 ≤ ∥R∥2∥v2∥2 ≤ B · (b− 1)

√
ndk = T . We note that

since Y ⊂ R2d, we have D+Rv2

R2d,s
= DR2d,s,Rv2

for all Rv2 ∈ Y . Using Lemma 2.3,
it thus holds that

RDε
∞(DR2d,s∥D+Rv2

R2d,s
) ≤ exp

(
π
∥Rv2∥22

s2
+ 2
∥Rv2∥2

s

√
π ln ε−1

)

≤ exp

(
π
T 2

s2
+ 2

T

s

√
π ln ε−1

)
≤M,

where the last inequality follows from the fact that s =
√
π

lnM (
√
ln ε−1 + lnM +√

ln ε−1) · T . Thence, maxRv2∈Y RDε
∞(DR2d,s∥D+Rv2

R2d,s
) ≤M . Theorem 3.1 then

yields the result.

In this specific instantiation of [LW15] and Theorem 3.1 with Gaussian dis-
tributions, we only reach widths s which are larger than the ones from [MP12].
Indeed, in the latter, v1 was distributed according to a discrete Gaussian of
width s = Θ(b∥R∥2) = Θ(b(

√
2nd +

√
ndk)), while here we obtain a width

s = Θ(b
√
ndk(

√
2nd+

√
ndk)). However, in the meantime, we drastically reduce

the size of v2, which largely compensate for the increase in size of v1 for typical
parameters, as shown in Section 4.

18

4 Optimal Gadget Base and Sampler Performances

In the computational instantiation of MP trapdoors, the gadget base b is an im-
portant parameter to optimize over. Since the base defines the length of the gad-
get matrix dk = d⌈logb(⌈(q − 1)/2⌉+ 1)⌉, choosing a larger base results in lower
dimensional vectors, at the expense of a larger norm. As the norm only impacts
the bitsize logarithmically while the dimension impacts it linearly, one could
think that the optimal choice for b is around √q, thus resulting in k = 2, smaller
preimages and in turn smaller signatures. The goal of this section is to show
that the optimal base actually depends on the preimage sampler. We illustrate
our discussion with the instructive example of GPV signatures [GPV08]. Other
applications would need a similar assessment. We compare signatures gener-
ated using the original sampler of [MP12] (thereafter called MP signatures) with
those generated using the original sampler (recalled in Algorithm 3.1) of [LW15]
(called LW signatures) and those resulting from our new simulation result in
Corollary 3.1 (later called LW∗ signatures). In the process, we demonstrate in-
teresting improvement factors on the size of preimages resulting from our new
analysis. This represents a step towards concrete practicality of constructions
based on MP trapdoors.

GPV Signature. We briefly describe the signature framework from [GPV08]
with MP trapdoors. The secret key R is drawn from U(Sm×dk

1), and the pub-
lic key is composed of A = [Id|A′] ∈ Rd×m

q and B = AR mod qR. As de-
scribed before, the signature of a message m ∈ {0, 1}∗ consists of a short preim-
age v = [vT

1 |vT
2]

T ∈ Rm+dk satisfying [A|G − B]v = H(m) mod qR. Since
the matrix A has Id as its first block, we can use similar tricks as for exam-
ple [PFH+20,EFG+22,ETWY22] to reduce the signature size. The GPV signa-
ture now consists of (v1,2,v2), where v1 = [vT

1,1|vT
1,2]

T , because v1,1 is deter-
mined by the verification equation as v1,1 = H(m)−A′v1,2−(G−B)v2 mod qR.
Below, the signature size is thus computed as |sig| = |v1,2| + |v2|. The bitsize
of Gaussian vectors is estimated by the entropy bound, which can be achieved
using the rANS encoding as discussed in [ETWY22]. More precisely, for a dis-
crete Gaussian vector of dimension N and width s, the entropy bound is close
to N/2 · (1 + log2 s

2) = N(1/2 + log2 s).

Choosing the Gadget Base. The main difficulty when determining the op-
timal base for a given sampler is that b impacts both the bitsize evaluation of
the signature and the hardness of the underlying computational assumptions.
As the latter in turn affects the parameters (and hence the bitsize), this may
lead to some counterintuitive situations.

For a given base, the minimal Gaussian parameter needed for MP signatures
v is7 s ≈ α1b∥R∥2, with α1 linked to the randomized rounding parameter and
7 For ease of exposition, we simplify the formulas in this paragraph but we stress that

the final estimates in Tables 4.1, 4.2 and 4.3 are computed with the exact parameter
settings.

19

where ∥R∥2 can be bounded heuristically by
√
2nd+

√
ndk+ t for a slack t ≈ 7

which thus depends on b as
√

1/ ln(b). The bitsize of a signature is thus

|sigMP| ≈ nd(1/2 + log2(α1b∥R∥2)) + nd logb(q)(1/2 + log2(α1b∥R∥2)). (1)

For the sampler from Algorithm 3.1, the Gaussian parameter for v1 is given by
s ≈ α2b∥R∥2

√
ndk where α2 defines the repetition rate M . As mentioned in

Section 3.2.2, the dimension m for LW signatures is chosen to be m = dk instead
of m = 2d for LW∗ signatures. The corresponding bitsizes are thus given by

|sigLW| ≈ nd(logb(q)− 1)(1/2 + log2(α2b∥R∥2
√
ndk)) + nd log2 q (2)

|sigLW∗ | ≈ nd(1/2 + log2(α2b∥R∥2
√
ndk)) + nd log2 q. (3)

We already see that the size of v2, for both LW and LW∗, is nd log2 q, indepen-
dently of the choice of b. This is because we can equivalently send x ∈ Rd

q instead
of v2 = G−1(x). For those two schemes, the dependency in b thence only comes
from the first component v1,2.

In the case of LW∗, the situation is simple according to equation 3: the bitsize
increases with b despite the 1/ ln(b) dependency due to k, which pleads for a small
base b, i.e., b = 2. Conversely, the bitsize of LW signatures essentially benefits
from large bases b. The same holds true for MP signatures. In the latter two
cases, the optimal base therefore seems to be b =

⌈√
q
⌉

if we consider this sole
metric.

We must now evaluate the impact of the base b on the on the underlying
computational assumptions. We indeed recall that, in the security proof, one
needs to simulate signatures and program the random oracle responses accord-
ingly. To do so, we use the simulation result from Corollary 3.1 (or its equivalent
for the original sampling procedure for MP signatures). After that, we simu-
late the public key and we thus need to consider parameters that ensure the
M-LWEn,d,d,q,U(S1) problem is hard. The security proof is then concluded by a
reduction to M-SISn,d,d(2+k),q,β where β ≥ ∥v − v∗∥2 for two preimages v,v∗. It
yields β = 2s

√
nd(2 + k) for MP signatures, β = 2

√
ndk(s2 + (b− 1)2) for LW

signatures, and β = 2
√
nd(2s2 + k(b− 1)2) for LW∗ signatures.

For MP signatures, the bound β is dominated by the bottom part v2 as
k ≥ 2. It thus makes sense to increase b in order to reduce the dimension of dk
and thus have balanced contributions of v1 and v2 to the M-SIS bound β. On the
contrary, for LW∗ signatures, v1 and v2 have essentially the same dimension but
the specificity of this sampler leads to a strong asymmetry between them. This re-
balances the contributions of v1 and v2 in the bound β which is actually already
dominated by the former for b = 2. In this case, increasing b will only enlarge
the gap between the contributions of v1 and v2 to the M-SIS bound and thus
decrease the security. In parallel, using too large bases such as b =

√
q impacts

the M-SIS bound too drastically, as noted in e.g. [CGM19], and parameters need
to be increased to compensate the security accordingly. In particular, one has to
ensure that the infinity norm of the M-SIS solution is smaller than q to avoid
trivial solutions.

20

Estimates. This intricate situation is reflected by the estimated performance
of a GPV signature that we describe below, for different samplers and parameter
constraints. We aim to achieve λ = 128 bits of security for the GPV signature
using the security assessment methodology described in A. For all the estimates,
we fix when necessary the randomized rounding factor r = 5, the spectral norm
slack t = 7, Q = 240 as the maximal number of emitted signatures per key. We
then choose the repetition rate M ≈ 11 which leads to α ≈ 8 for ε = 1/Q. We
then find the appropriate rank d and modulus q to achieve the security target
while minimizing the signature size.

To highlight the importance of the gadget base, we give the performance of
MP, LW and LW∗ signatures for several choices of bases. The estimates are given
in Tables 4.1, 4.2, and 4.3. The values of λM-LWE and λM-SIS correspond to the
reached security of M-LWEn,m−d,d,q,U(S1) and M-SISn,d,m+dk,q,β respectively.
When the base is said to be q1/k, we actually consider b =

⌈
q1/k

⌉
to have an

integer base for which the gadget dimension is dk. The rows with the value of b
giving the smallest size (for n = 256) are highlighted in the tables. The goal of
Tables 4.1, 4.2, and 4.3 is to highlight the role of b according to each sampler.
Different trade-offs in the parameter selection (e.g., changing n) are likely to be
possible but we believe they will not change the overall trend.

λM-LWE λM-SIS q d s |v1,2| |v2| |sigMP|
b = 2 239 146 ≈ 215.2 5 2596 1.85 27.75 29.60

b = 4 233 150 ≈ 215.6 5 3461 1.92 15.32 17.24

b = q1/5 216 147 ≈ 216.8 5 7661 2.09 10.47 12.56

b = q1/3 181 131 ≈ 219.7 5 56804 2.54 7.64 10.18

b = q1/2 194 154 ≈ 226.7 7 6616938 5.07 10.13 15.20

Table 4.1. Parameter and size estimates of MP signatures using different bases b. The
sizes are expressed in KB. The ring degree is n = 256.

These estimates show that the choice of the base is far from anecdotal, with a
3-4 ratio for the signature size between the best option and the worst one. They
also show that there is no generic choice as b = 2 is optimal in our case (LW∗)
whereas it corresponds to the worst case for both MP and LW. When plugged
into other signature designs [DM14,BFRS18,dPLS18,BEP+21,LNPS21,LNP22],
the conclusions may differ as the relative contributions of v1 and v2 to the M-SIS
bound may evolve compared to the case of GPV signature.

Besides this sole consideration of optimal base, these tables clearly show the
benefits of the LW∗ sampler as it yields signatures that are about 60% smaller
than those produced with the LW sampler and 25% smaller when compared with
the MP sampler. It thus shows that one can indeed leverage rejection sampling

21

λM-LWE λM-SIS q d s |v1,2| |v2| |sigLW|
b = 2 > 1000 131 ≈ 223.6 6 572109 80.96 4.50 86.46

b = 4 > 1000 130 ≈ 223.8 6 901768 41.83 4.50 46.33

b = q1/5 597 130 ≈ 227.3 6 5586865 17.19 5.25 22.44

b = q1/3 428 133 ≈ 230.6 7 105308864 11.88 6.78 18.66

b = q1/2 161 138 ≈ 240.5 9 96061795597 10.40 11.53 21.93

Table 4.2. Parameter and size estimates of LW signatures (with the parameter con-
straints of [LW15]). The sizes are expressed in KB. The ring degree is n = 256. The
parameter selection is dictated by the regularity condition of [LW15], which explains
the high M-LWE hardness only reported here for completeness.
We also note that we extrapolated the result of [LW15] which is only presented for
b = 2. In particular, the parameters we give for b = q1/3 and b = q1/2 do not perfectly
meet the regularity condition from their paper, namely ndk log2 s > 3nd log2 q + 4λ.
For low values of k, one would need to increase s but it would also lead to increasing
q to compensate the security loss.

λM-LWE λM-SIS q d s |v1,2| |v2| |sigLW∗ |
b = 2 195 157 ≈ 222.5 6 362140 3.56 4.31 7.87

b = 4 188 151 ≈ 223.2 6 645772 3.71 4.50 8.21

b = q1/5 167 134 ≈ 225.6 6 3576993 4.18 4.87 9.05

b = q1/3 167 137 ≈ 230.3 7 90206170 5.89 6.78 12.67

b = q1/2 162 138 ≈ 240.3 9 90202905475 10.37 11.53 21.90

Table 4.3. Parameter and size estimates of LW∗ signatures (this work) using different
bases b. The sizes are expressed in KB. The ring degree is n = 256.

to improve MP sampling, which solves the apparent paradox of the original LW
sampler.

5 Approximate Rejection Sampler

In sections 3 and 4, we revisited the original LW sampler, showing that it could
outperform the MP sampler thanks to our new analysis. However, when plugged
into the GPV framework, one still ends up with signature sizes that are much
larger than the state-of-the-art.

Fortunately, a study initiated by Chen, Genise and Mukherjee [CGM19] im-
proves the performance of gadget-based constructions through the notion of
approximate trapdoors. The idea is to drop the low-order gadget entries and
only consider a partial gadget GH = Id ⊗ gT

H , with gH = [bℓ| . . . |bk−1]T , which
reduces the signature dimension and the number of columns in the trapdoor R.
Obviously, this introduces an error in the preimage which depends on ℓ but also

22

on the specificities of the sampler. In [CGM19], which is based on the MP sam-
pler, the authors generate normally (see Section 3.1) z ∼ DLx

q (G),sG for the full
gadget matrix G and some appropriate vector x and then drop the component
zL of z corresponding to GL = Id⊗gT

L , with gL = [1| . . . |bℓ−1]T . This leads to a
Gaussian error e = GLzL whose infinity norm is likely to be larger than bℓ − 1,
which does not seem optimal.

Conversely, in the case of the LW∗ sampler, z is exactly G−1(w) for some
syndrome w. Put differently, z is simply the signed base-b decomposition of
w. Applying the approximate trapdoor approach in our case then essentially
consists in discarding the lower-order entries zL of this decomposition, which
leads to an error e = GLzL, with ∥e∥∞ < bℓ. Actually, we show afterwards
that this error is (almost) uniform over a subset of Sbℓ−1, which also improves
the bound on ∥e∥2. This smaller error, having a behaviour similar to the one
in [YJW23], allows for dropping more entries than in [CGM19], leading to better
performance. In our scheme in Section 6, we can in particular drop ℓ = k − 1
entries, yielding a gadget of length 1 as in [YJW23].

The formal description of our approximate sampler is provided in Algo-
rithm 5.1.

Algorithm 5.1: Approx.SamplePreRej(R;A′,u,Ds,Dt)

Input: Trapdoor R ∈ R2d×d(k−ℓ), Matrix A′ ∈ Rd×d
q , Syndrome u ∈ Rd

q , Source
and target distributions Ds and Dt over R2d such that rejection sampling can be
performed.
1. p1 ←↩ Ds.
2. w← u− [Id|A′]p1 mod qR. ▷ Syndrome correction
3. z← G−1(w) ∈ Sdk

b−1. ▷ Deterministic.

4. Parse z into zL ∈ Sdℓ
b−1 and zH ∈ S

d(k−ℓ)
b−1 so that Gz = GLzL +GHzH .

5. v′
1 ← p1 +RzH .

6. u←↩ U([0, 1]) ▷ Continuous
7. if u > min(1,Dt(v

′
1)/(MDs(p1))), go back to 1.

8. else v1 ← v′
1 +

[
GLzL

0

]
9. v2 ← zH

Output: v =

[
v1

v2

]
.

Lemma 5.1 (Correctness). For all A′ ∈ Rd×d
q , R ∈ R2d×(k−ℓ)d, u ∈ Rd

q ,
Ds,Dt, and v← Approx.SamplePreRej(R,A′,u,Ds,Dt), it holds that the preim-
age verifies v ∈ Lu

q ([Id|A′|GH − B]), where GH = Id ⊗ [bℓ| . . . |bk−1] and
B = [Id|A′]R mod qR.

Proof. We indeed have

[Id|A′|GH −B]v = [Id|A′](p1 +RzH) +GLzL + (GH −B)zH

= (u−w) +BzH +GLzL + (GH −B)zH mod qR

= (u−Gz) +GLzL +GHzH mod qR

= u mod qR.

23

We also need to adapt the Theorem 3.1 on the simulatability of preimages.
The proof is very similar to that of the exact version of the sampler but is
included for completeness. We slightly abuse notations and denote by G−1

H (resp.
G−1

L) the map that from w computes z = G−1(w) and outputs the vector zH
(resp. zL) defined above. We nevertheless recall that GLG

−1
L (w) = w only holds

for some vectors w and not in general. We also note that G−1
H (Rd

q) ⊂ S
d(k−ℓ)
b−1

but equality does not hold simply by a counting argument.

Theorem 5.1. Let K be a number field and R its ring of integers. Let d, q, b
be positive integers with b ≥ 2. We define k = ⌈logb(⌈(q − 1)/2⌉+ 1)⌉ and let
ℓ ∈ [0, k− 1]. Let Dr,Ds,Dt be three distributions over R2d×d(k−ℓ), R2d and R2d

respectively. Let A′ ∼ U(Rd×d
q), R ∼ Dr and A = [Id|A′] ∈ Rd×2d

q . Then, let
Y ⊆ R2d be the support of the distribution of R ·G−1

H (U(Rd
q)). Let M > 1, ε ∈

[0, 1/2] such that maxRzH∈Y RDε
∞(Dt∥D+RzH

s) ≤ M . We also define the error
distribution De = GLG

−1
L (U(Rd

q)) over Sd
bℓ−1. We then define two distributions

P1
u←↩ U(Rd

q), and v← Approx.SamplePreRej(R;A′,u,Ds,Dt).
Output: (v,u).

P2

1. v′
1 ←↩ Dt, v2 ←↩ G−1

H (U(Rd
q)), e←↩ De.

2. v← [v′
1
T + [eT |0]|vT

2]
T .

3. u← [A|GH −AR]v mod qR.
4. With probability 1− 1/M go back to 1.

Output: (v,u).

Then, ∆(P0,P1) ≤ ε and for all a ∈ (1,+∞], RDa(P0∥P1) ≤ 1/(1− ε)a/(a−1).

Proof. We define the following hybrid distributions from H1 to H6, where H1 =
P1 and H6 = P2.

H1

u←↩ U(Rd
q), p1 ←↩ Ds, w← u−Ap1 mod qR, z← G−1(w), v′

1 ← p1 +RzH .
Then u←↩ U([0, 1]) and restart if u > min(1,Dt(v

′
1)/(M ·Ds(p1))). Otherwise

define v← [v′
1
T + [(GLzL)

T |0]|zTH]T .
Output: (v,u).

H2

w←↩ U(Rd
q), p1 ←↩ Ds, u← w+Ap1 mod qR, z← G−1(w), v′

1 ← p1+RzH .
Then u←↩ U([0, 1]) and restart if u > min(1,Dt(v

′
1)/(M ·Ds(p1))). Otherwise

define v← [v′
1
T + [(GLzL)

T |0]|zTH]T .
Output: (v,u).

H3

z←↩ G−1(U(Rd
q)), w ← Gz mod qR, p1 ←↩ Ds, u← w +Ap1 mod qR, v′

1 ←
p1 +RzH . Then u←↩ U([0, 1]) and restart if u > min(1,Dt(v

′
1)/(M ·Ds(p1))).

Otherwise define v← [v′
1
T + [(GLzL)

T |0]|zTH]T .
Output: (v,u).

24

H4

e ←↩ De, zH ← G−1
H (U(Rd

q)), w ← e + GHzH mod qR, p1 ←↩ Ds, u ←
w + Ap1 mod qR, v′

1 ← p1 + RzH . Then u ←↩ U([0, 1]) and restart if u >
min(1,Dt(v

′
1)/(M ·Ds(p1))). Otherwise define v← [v′

1
T + [eT |0]|zTH]T .

Output: (v,u).

H5

e ←↩ De, zH ← G−1
H (U(Rd

q)), p1 ←↩ Ds, v′
1 ← p1 +RzH . Then u ←↩ U([0, 1])

and restart if u > min(1,Dt(v
′
1)/(M · Ds(p1))). Otherwise define v ← [v′

1
T +

[eT |0]|zTH]T , and u← [A|GH −AR]v mod qR.
Output: (v,u).

H6

e ←↩ De, zH ← G−1
H (U(Rd

q)), v′
1 ←↩ Dt. Then u ←↩ U([0, 1]) and restart if

u > 1 − 1/M . Otherwise define v ← [v′
1
T + [eT |0]|zTH]T , and u ← [A|GH −

AR]v mod qR.
Output: (v,u).

Let us now show that these distributions are statistically close to each other.
H1 - H2: Here we just change the sampling order of u and w. In H2 the vector
w is uniform and independent of Ap1 implying that u is also uniform, as in H1.
Hence H1 and H2 are identically distributed.
H2 - H3: We now change the way w is generated. Notice that, for correctness,
once w is fixed then so is z and vice-versa. In H2, w is uniform over Rd

q which
means that z follows exactly G−1(U(Rd

q)) as in H3. Also, w is coherently set in
H3. Thence, H2 and H3 are identically distributed as well.
H3 - H4: H4 simply separates the sampling of low-order and high-order parts
compared to H3. When z is drawn from G−1(U(Rd

q)), the corresponding zL and
zH are independent. So zH ∼ G−1

H (U(Rd
q)) and zL ∼ G−1

L (U(Rd
q)). As such,

zH is identically distributed in H4 as in H3 by definition of G−1
H which samples

a whole vector and drops the low-order entries. Since zL is not directly used
but only as e = GLzL, and because zL ∼ G−1

L (U(Rd
q)) in both H3 and H4, it

holds that e ∼ GLG
−1
L (U(Rd

q)) = De in both hybrids. The way zL is sampled,
recomposing the low-order entries gives e ∈ Sd

γ where γ =
∑ℓ−1

i=0(b−1)bi = bℓ−1,
as desired. This shows that H3 and H4 are identically distributed.
H4 - H5: H5 is merely a re-writing of H4. Indeed, in H5, w only acts as an
intermediate vector to define u. Defining R′ = [RT |Im2

]T , we have [A|GH −
AR]R′ = GH mod qR. In H4, this yields

u = GHzH + e+Ap1 mod qR = [A|GH −AR]R′zH +Ap1 + e mod qR

= [A|GH −AR]v mod qR,

as v = [pT
1 + [eT |0]|0]T +R′zH . Again, H4 and H5 are identical.

H5 - H6: We now change the way v′
1 is generated by using the rejection sampling

result. In H5, RzH is distributed according to R ·G−1
H (U(Rd

q)) with support Y
as defined in the theorem statement. By our assumptions on Y , Ds, Dt, the
rejection sampling result from Lemma 2.2 yields that

∆((v′
1, zH)H5

, (v′
1, zH)H6

) ≤ ε and RDa((v
′
1, zH)H5

∥(v′
1, zH)H6

) ≤ 1

(1− ε)
a

a−1
,

25

for all a > 1. By the data processing inequality of the statistical distance and
Rényi divergence, it holds

∆(H5,H6) ≤ ε and RDa(H5∥H6) ≤
1

(1− ε)
a

a−1
.

Since H1 = P1 and H6 = P2, combining the above gives the result.

The study carried in Section 4 leads to the same conclusions for the ap-
proximate samplers, although the analysis is slightly more complex as one can
optimize over the number of dropped entries ℓ as well. Because the sampling
error e is smaller in our case, we can drop more entries and thus increase the
performance gap between the approximate MP sampler and ours. In particular,
we observe an improvement in the signature size of around 30 − 35% over the
former, for the same estimation methodology as Section 4. The signature sizes
are now more attractive, but we push the performance in Section 6 by providing
a new hash-and-sign scheme based on our approach.

6 A New Hash-and-Sign Scheme: Phoenix

In our quest to test the limits of the LW sampler, we plug our approximate
LW∗ sampler described above in the GPV framework to build a new signature
scheme which we call Phoenix. The optimal base for our approximate sampler is
also b = 2 and we thus we express everything in base 2 directly. Also, we choose
the modulus to be q = 2k+1−1 so that the representatives of Zq are taken in the
centered interval [−(q−1)/2, (q−1)/2] = [−(2k−1), 2k−1]. The resulting gadget
dimension is ⌈log2(⌈(q − 1)/2⌉+ 1)⌉ = k. We start by presenting in Section 6.1
the public key compression technique we apply for Phoenix, before giving the full
description of the scheme in Section 6.2. We then detail the security analysis in
Section 6.3 and give concrete instantiations in Section 6.4.

6.1 Adding Public Key Compression

The approximate sampler already enables a significant compression of both the
public key and the signature. However, in the context of hash-and-sign signa-
tures following the GPV framework, the public key8 is B = [Id|A′]R mod qR ∈
R

d×d(k−ℓ)
q which remains quite large for typical parameters. Fortunately, the

features of our sampler allow us to use standard techniques for public key com-
pression, like the one used in [DKL+18,DSH21] for example. As this is a standard
trick, we only sketch the idea and explain the impact it has on the construction.

Let ℓ′ be a positive integer in [0, k − 1]. Once the public key B has been
generated, we interpret it in R as a matrix over S(q−1)/2. We then write it
as B = BL + BH to separate the low-order and high-order bits, with BL ∈
S
d×d(k−ℓ)

2ℓ′−1
and BH ∈ 2ℓ

′
S
d×d(k−ℓ)
γ for γ =

⌊
2−ℓ′ q−1

2

⌋
= 2k−ℓ′ − 1. The public

8 The other public key matrix A′ is generated using a public seed of 256 bits.

26

key now only consists of the matrix BH (or 2−ℓ′BH) which can be stored using
nd2(k − ℓ)(1 + k − ℓ′) bits, thus saving ℓ′ bits per coefficients.

The discarded low-order bits then introduce a new error epk = BLv2 = BLzH
in the signature. This error can be combined with the sampling error e during
preimage sampling.

The reason why this compression technique is particularly interesting in our
situation, as opposed to Eagle [YJW23] for example, is because zH is ternary
and not Gaussian. As such, the error epk remains moderate compared to e if
ℓ′ ≤ ℓ, as detailed below.

6.2 Description

We give an instantiation of Phoenix based on discrete Gaussian distributions.
We also defer in AppendixB another version of the scheme using only uniform
distributions.

Algorithm 6.1: Phoenix.Setup
Input: Security parameter λ.
1. Choose positive integers d, k.
2. q ← 2k+1 − 1.
3. Choose ℓ, ℓ′ ∈ [0, k − 1].
4. G = Id ⊗ [1 · · · 2k−1] ∈ Rd×dk

q .
5. GH = Id ⊗ [2ℓ · · · 2k−1] ∈ R

d×d(k−ℓ)
q .

6. GL = Id ⊗ [1 · · · 2ℓ−1] ∈ Rd×dℓ
q .

7. ε← 1/4Q ▷ Rejection sampling loss
8. Choose M > 1. ▷ Repetition rate
9. α←

√
π

lnM
(
√
ln ε−1 + lnM +

√
ln ε−1). ▷ Rejection sampling slack

10. s← α
√

nd(k − ℓ)(
√
2nd+

√
nd(k − ℓ)). ▷ Gaussian width

11. A′ ←↩ U(Rd×d
q).

Output: pp = (A′;G,GL,GH ;λ, n, q, d, k, ℓ, s,M).

Algorithm 6.2: Phoenix.KeyGen
Input: Public parameters pp as in Algorithm 6.1.
1. R←↩ U(S

2d×d(k−ℓ)
1) such that ∥R∥2 ≤

√
2nd+

√
nd(k − ℓ).

2. B← [Id|A′]R mod qR ∈ R
d×d(k−ℓ)
q

3. Parse B as BL +BH with BL ∈ S
d×d(k−ℓ)

2ℓ
′−1

and BH ∈ 2ℓ
′
S

d×d(k−ℓ)

2k−ℓ′−1
.

Output: pk = BH , and sk = R. ▷ pp stored with pk for simplicity

Algorithm 6.3: Phoenix.Sign
Input: Secret key sk, Message m ∈ {0, 1}∗, Public key pk.
1. salt←↩ U({0, 1}320).
2. (ṽ1,v2)← Approx.SamplePreRej(R;A′,H(m, salt), s). ▷ Algorithm 5.1
3. epk ← (([Id|A′]R mod qR)−BH)v2. ▷ Recomputing BL, and BLzH

4. Parse ṽ1 as [ṽ1,1
T |vT

1,2]
T with ṽ1,1,v1,2 ∈ Rd.

5. v1,1 ← ṽ1,1 − epk.
6. γ1 ← (∥v1,1∥2 ≤ B1,1) ∧ (∥v1,2∥2 ≤ B1,2).
7. γ2 ← (∥v1,1∥∞ ≤ B∞

1,1) ∧ (∥v1,2∥∞ ≤ B∞
1,2) ∧ (∥v2∥∞ ≤ 1).

8. if γ1 ∧ γ2 = 0, restart.
Output: sig = (salt,v1,2,v2).

27

Algorithm 6.4: Phoenix.Verify
Input: Public key pk, Message m ∈ {0, 1}∗, Signature sig.
1. v1,1 ← H(m, salt)−A′v1,2 − (GH −BH)v2 mod qR ∈ Rd.
2. γ1 ← (∥v1,1∥2 ≤ B1,1) ∧ (∥v1,2∥2 ≤ B1,2).
3. γ2 ← (∥v1,1∥∞ ≤ B∞

1,1) ∧ (∥v1,2∥∞ ≤ B∞
1,2) ∧ (∥v2∥∞ ≤ 1).

Output: γ1 ∧ γ2. ▷ 1 if valid, 0 otherwise

Preimage error distribution. Let us define a modified error distribution D+
e

where we sample e ←↩ De and output e+ corresponding to e but where the
coefficient embeddings of e+ are the magnitude of that of e. We observe that
D+

e is almost the uniform distribution over τ−1({0, . . . , 2ℓ−1}nd) because of the
form of q. This means that the Euclidean norm of e will be distributed the same
way as that of e+. The variance of U({0, . . . , 2ℓ − 1}) is exactly (22ℓ − 1)/12
and the norm can be bounded on average by

√
(2ℓ − 1))(2ℓ+1 − 1)/6

√
nd by the

central limit theorem.

Verification bounds. We now explain how the verification bounds are set.
First, the ones on v1,2 are simply taken from Lemma 2.1 by adjusting the slack
to avoid too many repetitions. As such we set B1,2 = 1.048 · s

√
nd/2π and

B∞
1,2 =

⌊
4.6s/

√
2π
⌋
.

Choosing appropriate bounds is more complex for v1,1 because the value
recovered by the verifier is v′

1,1+e−epk which contains the error terms. Bounding
each term separately overshoots the actual norm of v1,1. We thus give a more
fine-grained analysis based on the following observations. We first notice that
the coefficients of epk = BLv2 behave in a similar fashion to the drift of lazy
random walks with adaptive steps whose magnitude are at most 2ℓ

′ − 1, up to
a slack factor µ depending on the conductor of the cyclotomic field9. As such,
we can approach the bounds on v1,1 − epk by the Gaussian tail bound with the
appropriate variance. Then, ∥e∥2 can be evaluated as described above which also
behaves like the Gaussian tail bound, and ∥e∥∞ is very likely to be close to the
worst-case bound 2ℓ − 1. Using these Gaussian approximations, we set

B1,1 = 1.04

√
s2

2π
+

(2ℓ − 1)(2ℓ+1 − 1)

6
+ µ2

2ℓ′(2ℓ′ − 1)

6

nd(k − ℓ)

2

√
nd

B∞
1,1 =

⌊
3.8 ·

√
s2

2π
+ µ2

2ℓ′(2ℓ′ − 1)

6

nd(k − ℓ)

2

⌋
+ (2ℓ − 1).

which are verified empirically and only entail a small degradation of the average
number of repetition M . The term in nd(k− ℓ)/2 stems from the contribution of
epk, and naturally comes from average number of steps in the lazy random walk
due to the Hamming weight of τ(v2). As a result, choosing ℓ′ ≈ ℓ would not be
9 This slack comes from the multiplication Mτ (BL)τ(v2) in the coefficient embedding.

Later we choose 3-smooth conductors yielding µ =
√
2, and µ = 1 for power-of-two

conductors.

28

optimal because it would essentially make epk larger than e as epk grows faster
with ℓ′ than e does with ℓ. For common parameters (see Section 6.4), where ℓ
is close to k10, choosing ℓ′ ≈ (k + 1)/2 seems to be the best option as it halves
the public key size while incurring (almost) no security loss. This is because for
such parameters epk is overpowered by the preimage error e.

Remark 6.1. Phoenix shares with [ETWY22] the goal of moving the bulk of
the preimage in v1,1 which is not transmitted. Our treatment is howbeit very
different from the twisted norm approach of the latter work. This gives further
evidence of the benefits of the asymmetry in concrete lattice-based cryptography.

6.3 Security Analysis

Our scheme follows the GPV framework. One can thus use the simulation result
of Theorem 5.1 adapted to Phoenix, which we provide here.

Corollary 6.1. Let d, k be positive integers, define q = 2k+1 − 1 and let ℓ ∈
[0, k−1]. Let T =

√
nd(k − ℓ)(

√
2nd+

√
nd(k − ℓ)). Let M > 1, ε ∈ (0, 1/2] and

define α =
√
π

lnM (
√
ln ε−1 + lnM +

√
ln ε−1). Finally s = αT . Let A′ ∼ U(Rd×d

q),
R ∼ U(S

2d×d(k−ℓ)
1) conditioned on ∥R∥2 ≤

√
2nd +

√
nd(k − ℓ). We define P1

and P2 the same way as in Theorem 5.1 but where Ds,Dt are replaced with
DR2d,s. Then, it holds that ∆(P1,P2) ≤ ε and RDa(P1∥P2) ≤ 1/(1 − ε)a/(a−1)

for all a ∈ (1,+∞].

Proof. We simply have to verify that the smooth Rényi divergence condition
of Theorem 5.1 holds. In our context, we restrict the matrices R to have a
bounded spectral norm. Following the notations of Theorem 5.1, the distribution
Dr consists in sampling R from U(S

2d×d(k−ℓ)
1) such that ∥R∥2 ≤ B, where

B =
√
2nd+

√
nd(k − ℓ). The set Y is the support of R ·G−1

H (U(Rd
q)). Hence,

for all RzH in Y , we have ∥RzH∥2 ≤ ∥R∥2∥zH∥2 ≤ B ·
√
nd(k − ℓ) = T . We

note that since Y ⊂ R2d, we have D+RzH

R2d,s
= DR2d,s,RzH

for all RzH ∈ Y . Using
Lemma 2.3, it thus holds that

RDε
∞(DR2d,s∥D+RzH

R2d,s
) ≤ exp

(
π
∥RzH∥22

s2
+ 2
∥RzH∥2

s

√
π ln ε−1

)

≤ exp

(
π
T 2

s2
+ 2

T

s

√
π ln ε−1

)
≤M,

where the last inequality follows from the fact that s =
√
π

lnM (
√
ln ε−1 + lnM +√

ln ε−1) ·T . Thence, maxRzH∈Y RDε
∞(DR2d,s∥D+RzH

R2d,s
) ≤M . Theorem 5.1 then

yields the result.
10 Choosing ℓ = k − 2 or ℓ = k − 1 is possible as opposed to the approach in [CGM19]

because e is smaller by a factor of
√
3ω(

√
log2 nd).

29

We can now formally state the strong EUF-CMA security of Phoenix for
uncompressed public key and then discuss the slight differences stemming from
key compression. Compared to the original GPV security result [GPV08], we
note that we rely on a version of M-SIS which adds a norm check in the in-
finity norm of the candidate solutions. Nevertheless, as it still follows the GPV
framework [GPV08], it is also secure in the QROM [BDF+11].

Theorem 6.1 ([GPV08] adapted). Phoenix is strongly EUF-CMA-secure in
the random oracle model under M-LWEn,d,d,q,U(S1) and M-SISn,d,d(2+k−ℓ),q,β,β∞ ,

where β = 2
√

B2
1,1 +B2

1,2 + nd(k − ℓ) and β∞ = 2max(B∞
1,1, B

∞
1,2, 1) = 2B∞

1,1.
More precisely, the advantage of A attacking the unforgeability of Phoenix is
bounded by

Adv[A] ≲
(

1

1− ε

)Q

(εM-SIS + d(k − ℓ)εM-LWE).

As our scheme features key compression, we can use the M-LWE assumption
in the security reduction but the public key will not be uniform over Rq but only
over the high-order bits. This would give a skewed M-SIS assumption over the
instance [Id|A′|GH −BH] where the third block only has high-order bits. Since
solving M-SIS involves discarding columns as described in AppendixA to find
an optimal subdimension between nd and 2nd, this skewed assumption could
be estimated by M-SISn,d,2d,q,β′,β′

∞
where the bounds are set by taking v2 = 0.

In all cases, this will not affect our concrete parameters that we directly derive
from the M-ISIS instance corresponding to our signature, as explained below.

6.4 Concrete Parameters

We now suggest parameter sets to instantiate Phoenix in Table 6.1. Although our
scheme is presented over modules of rank d, working over rings offers better key
compression. We thus give parameters in the ring setting. As all our tools hold
for general number fields, we can use cyclotomic fields of composite conductors.
This has been done in Mitaka [EFG+22] to achieve fine-grained security levels
where they consider 3-smooth conductors. In this case, it incurs a loss of

√
2 in

the quality of our sampler similarly to [EFG+22] due to the spectral bound on
R, which we take into account in our parameter selection. An alternative would
be to choose a power-of-two cyclotomic ring of smaller degree and a larger rank
d so that nd matches the dimension we suggest, the parameters scaling with nd.
Although it would deteriorate the key sizes, it can be acceptable in applications
where the public key is not sent often.

The concrete security is assessed as described in AppendixA. At a high-
level, the key recovery is evaluated via the M-LWE assumption. The complex-
ity of the forgery is lower-bounded by Theorem 6.1. However, it is best ap-
proximated via the inhomogeneous variant M-ISIS as is done in most hash-
and-sign schemes [PFH+20,EFG+22,YJW23]. We follow the same approach and
estimate it using the Approx-CVP attack carried by the nearest-colattice algo-
rithm [EK20]. We see that the forgery security for Phoenix-III, estimated through

30

M-ISIS in Euclidean norm, falls a few bits short of NIST-III level. Our estimate is
however rather pessimistic because we discard the infinity norm bound and the
asymmetry between v1,1 and v1,2. Our cryptanalysis thus underestimates the
actual complexity of the forgery. As pointed out in AppendixA, we believe that
a thorough cryptanalysis would place the cost of the forgery above the NIST-III
requirement, and also yield a better security for Phoenix-II and Phoenix-V. We
however leave this cryptanalysis for future work.

Phoenix-II Phoenix-III Phoenix-V

Security NIST-II NIST-III NIST-V
Conductor 211 2435 2336

n 1024 1296 1944
d 1 1 1

(k, ℓ, ℓ′) (16,15,8) (17,16,9) (18,17,10)
q 217 − 1 218 − 1 219 − 1

(M, ε, α) (20, 2−66, 8.13) (20, 2−66, 8.13) (20, 2−66, 8.13)
s 20105 35986 53978

B1,1 688341.2 1541069.0 3705333.9
B1,2 268983.0 541623.4 995025.8
B∞

1,1 64537 127114 238760
B∞

1,2 36895 66037 99056

|sk| (B) 512 648 972
|pk| (B) 1184 1490 2219
|sig| (B) 2190 2897 4468

Key Recovery (C/Q) 162/143 203/179 312/275
Forgery (C/Q) 125/110 161/142 257/226

Table 6.1. Suggested parameter sets for Phoenix. Sizes are in bytes. The public key
includes 32 bytes for the seed that expands to A′. The size of Gaussian vectors
is estimated by the entropy bound which can be achieved via the rANS encoding
(see [ETWY22]). The bit security is the estimated core-SVP hardness (classical C,
quantum Q).

Table 6.2 details the performance and the security levels of Phoenix and the
main M-LWE-based signature schemes, namely Dilithium [DKL+18], Haetae [CCD+23],
Raccoon [dPEK+], Eagle [YJW23], and G+G [DPS23]. We nevertheless stress
that comparing these schemes directly has some limits as all of them, except Ea-
gle, follows the Fiat-Shamir approach which is fundamentally different from the
hash-and-sign one. Our goal here is not to discuss in depth the comparative ad-
vantages of each approach but we note that the current state-of-the-art tends to
show that schemes based on Fiat-Shamir are easier to implement as they support
“simple” distributions, such as the uniform or the spherical Gaussian ones, but
they rely on rewinding/forking lemma techniques which makes security in the
QROM harder to prove, at least for the proposed parameters [KLS18,JMW23].
On the contrary, security of hash-and-sign constructions in the QROM is bet-
ter understood [BDF+11] but these constructions require distributions that are

31

harder to implement. In this regard, Phoenix illustrates the benefits of the LW∗

sampler as it combines the nice features of these two approaches and thus con-
stitutes an interesting alternative for those that do not want to choose between
them.

We also note for completeness that other hash-and-sign schemes based on
NTRU such as Falcon [PFH+20], Mitaka [EFG+22], or Robin [YJW23] usu-
ally achieve a smaller bandwidth (signature + public key) than the schemes
from Table 6.2, but at the expense of an extra assumption. Designs based on
M-LWE may be preferred to those based on NTRU in specific use cases, e.g.,
with stretched parameters. Such schemes also carry a certain complexity of im-
plementation due to complex Gaussian samplers (FFO sampler for [PFH+20],
hybrid sampler for [EFG+22], perturbation samplers for [YJW23], mask sampler
for [DPS23]).

|sk| (B) |pk| (B) |sig| (B) λ (C/Q)

Dilithium-2 2544 1312 2420 121/110
Haetae-120 1376 992 1463 97/85

Raccoon-128 14800 2256 11524 133/114
G+G-120 480⋆ 1472 1677 121/106
Phoenix-II 512 1184 2190 125/110

Dilithium-3 4016 1952 3293 176/159
Haetae-180 2080 1472 2337 149/131

Raccoon-192 18840 3160 14554 193/166
Eagle-1024 512⋆ 1952 3052 176/160
G+G-180 640⋆ 1952 2143 178/156
Phoenix-III 648 1490 2897 161/142

Dilithium-5 4880 2592 4595 252/229
Haetae-260 2720 2080 2908 214/188

Raccoon-256 26016 4064 20330 284/243
G+G-260 768⋆ 2336 2804 219/193
Phoenix-V 972 2219 4468 257/226

Table 6.2. Security (strong EUF-CMA versions, randomized signing) and performance
comparisons between Dilithium [DKL+18], Haetae [CCD+23], Raccoon [dPEK+], Ea-
gle [YJW23], G+G [DPS23] and Phoenix. ⋆ Does not include the Gaussian perturba-
tion sampling material.

Conclusion

Introduced in 2015, the LW sampler is an intriguing tool that combines ideas
from different lattice techniques such as rejection sampling and MP trapdoors.
When considered as an abstract tool, it suffers from a high complexity stemming
from the need to assume the worst case in the security analysis. In this work, we
completely revisited this sampler by showing that one can considerably alleviate

32

the requirements placed on it when plugged in concrete constructions such as
digital signatures. In the latter case, it not only results in much better parameters
(compared to the original paper [LW15]) but also in an interesting middle way
between Fiat-Shamir and hash-and-sign approaches. It indeed borrows the nice
features of both approaches and can thus be seen as an interesting alternative
that has been overlooked so far. Beyond the sole digital signature use-case, we
hope that our work will incite to investigate other practical applications of the
LW sampler that could benefit from its unique characteristics.

Acknowledgments. This work has received a French government support man-
aged by the National Research Agency in the ASTRID program, under the na-
tional project AMIRAL with reference ANR-21-ASTR-0016, and in the MobiS5
project with reference ANR-18-CE-39-0019-02 MobiS5. We warmly thank Vadim
Lyubashevsky for helpful discussions on the Lyubashevsky-Wichs sampler, as
well Nicholas Genise for interesting discussions on approximate trapdoors. We
also thank David Pointcheval for his insight on the use of the forking lemma,
and Katharina Boudgoust for her constructive feedback on the use of Gaussians
in aggregate signatures.

References

ABB+20. E. Alkim, P. S. L. M. Barreto, N. Bindel, J. Krämer, P. Longa, and J. E. Ri-
cardini. The Lattice-Based Digital Signature Scheme qTESLA. In ACNS,
2020.

AKSY22. S. Agrawal, E. Kirshanova, D. Stehlé, and A. Yadav. Practical, Round-
Optimal Lattice-Based Blind Signatures. In CCS, 2022.

APS15. M. R. Albrecht, R. Player, and S. Scott. On the Concrete Hardness of
Learning With Errors. J. Math. Cryptol., 2015.

Ban93. W. Banaszczyk. New Bounds in Some Transference Theorems in the Ge-
ometry of Numbers. Math. Ann., 1993.

BDF+11. D. Boneh, Ö. Dagdelen, M. Fischlin, A. Lehmann, C. Schaffner, and
M. Zhandry. Random Oracles in a Quantum World. In ASIACRYPT,
2011.

BDK+18. J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé. CRYSTALS - Kyber: A CCA-Secure
Module-Lattice-Based KEM. In EuroS&P, 2018.

BEP+21. P. Bert, G. Eberhart, L. Prabel, A. Roux-Langlois, and M. Sabt. Implemen-
tation of Lattice Trapdoors on Modules and Applications. In PQCrypto,
2021.

BFRS18. P. Bert, P.-A. Fouque, A. Roux-Langlois, and M. Sabt. Practical Imple-
mentation of Ring-SIS/LWE Based Signature and IBE. In PQCrypto, 2018.

BGLS03. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and Verifiably
Encrypted Signatures from Bilinear Maps. In EUROCRYPT, 2003.

BGP22. K. Boudgoust, E. Gachon, and A. Pellet-Mary. Some Easy Instances of
Ideal-SVP and Implications on the Partial Vandermonde Knapsack Prob-
lem. In CRYPTO, 2022.

33

BJRW23. K. Boudgoust, C. Jeudy, A. Roux-Langlois, and W. Wen. On the Hardness
of Module Learning with Errors with Short Distributions. J. Cryptol., 2023.

BLNS23. W. Beullens, V. Lyubashevsky, N. K. Nguyen, and G. Seiler. Lattice-Based
Blind Signatures: Short, Efficient, and Round-Optimal. IACR Cryptol.
ePrint Arch., page 77, 2023.

BN06. M. Bellare and G. Neven. Multi-signatures in the Plain Public-Key Model
and a General Forking Lemma. In CCS, 2006.

BNN07. M. Bellare, C. Namprempre, and G. Neven. Unrestricted Aggregate Sig-
natures. In ICALP, 2007.

BR21. K. Boudgoust and A. Roux-Langlois. Non-Interactive Half Aggregate Sig-
natures Based on Module Lattices - A First Attempt. IACR Cryptol. ePrint
Arch., page 263, 2021.

BTT22. C. Boschini, A. Takahashi, and M. Tibouchi. MuSig-L: Lattice-Based
Multi-signature with Single-Round Online Phase. In CRYPTO, 2022.

CCD+23. J. H. Cheon, H. Choe, J. Devevey, T. Güneysu, D. Hong, M. Krausz,
G. Land, M. Möller, D. Stehlé, and M. Yi. HAETAE: Shorter Lattice-
Based Fiat-Shamir Signatures. IACR Cryptol. ePrint Arch., page 624,
2023.

CGM19. Y. Chen, N. Genise, and P. Mukherjee. Approximate Trapdoors for Lattices
and Smaller Hash-and-Sign Signatures. In ASIACRYPT, 2019.

Che13. Y. Chen. Réduction de Réseau et Sécurité Concrète du Chiffrement Com-
plètement Homomorphe. PhD thesis, Paris 7, 2013.

DEP23. L. Ducas, T. Espitau, and E. W. Postlethwaite. Finding Short Integer
Solutions When the Modulus Is Small. In CRYPTO, 2023.

DFPS22. J. Devevey, O. Fawzi, A. Passelègue, and D. Stehlé. On Rejection Sampling
in Lyubashevsky’s Signature Scheme. In ASIACRYPT, 2022.

DHSS20. Y. Doröz, J. Hoffstein, J. H. Silverman, and B. Sunar. MMSAT: A Scheme
for Multimessage Multiuser Signature Aggregation. IACR Cryptol. ePrint
Arch., page 520, 2020.

DKL+18. L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler,
and D. Stehlé. CRYSTALS-Dilithium: A Lattice-Based Digital Signature
Scheme. TCHES, 2018.

DLP14. L. Ducas, V. Lyubashevsky, and T. Prest. Efficient Identity-Based Encryp-
tion over NTRU Lattices. In ASIACRYPT, 2014.

DM14. L. Ducas and D. Micciancio. Improved Short Lattice Signatures in the
Standard Model. In CRYPTO, 2014.

DORS08. Y. Dodis, R. Ostrovsky, L. Reyzin, and A. D. Smith. Fuzzy Extractors:
How to Generate Strong Keys from Biometrics and Other Noisy Data.
SIAM J. Comput., 2008.

dPEK+. R. del Pino, T. Espitau, S. Katsumata, M. Maller, F. Mouhartem, T. Prest,
M. Rossi, and M.-J. Saarinen. Raccoon: A Side-Channel Secure Signature
Scheme.

dPK22. R. del Pino and S. Katsumata. A New Framework for More Efficient
Round-Optimal Lattice-Based (Partially) Blind Signature via Trapdoor
Sampling. In CRYPTO, 2022.

dPLS18. R. del Pino, V. Lyubashevsky, and G. Seiler. Lattice-Based Group Sig-
natures and Zero-Knowledge Proofs of Automorphism Stability. In CCS,
2018.

DPS23. J. Devevey, A. Passelègue, and D. Stehlé. G+G: A Fiat-Shamir Lattice
Signature Based on Convolved Gaussians. ASIACRYPT, 2023.

34

DSH21. A. Le Dévéhat, H. Shizuya, and S. Hasegawa. On the Higher-Bit Version of
Approximate Inhomogeneous Short Integer Solution Problem. In CANS,
2021.

EFG+22. T. Espitau, P.-A. Fouque, F. Gérard, M. Rossi, A. Takahashi, M. Tibouchi,
A. Wallet, and Y. Yu. Mitaka: A Simpler, Parallelizable, Maskable Variant
of Falcon. In EUROCRYPT, 2022.

EK20. T. Espitau and P. Kirchner. The Nearest-Colattice Algorithm: Time-
Approxmation Tradeoff for Approx-CVP. In ANTS XIV, 2020.

ETWY22. T. Espitau, M. Tibouchi, A. Wallet, and Y. Yu. Shorter Hash-and-Sign
Lattice-Based Signatures. In CRYPTO, 2022.

GM18. Nicholas Genise and Daniele Micciancio. Faster Gaussian Sampling for
Trapdoor Lattices with Arbitrary Modulus. In EUROCRYPT, 2018.

GMPW20. N. Genise, D. Micciancio, C. Peikert, and M. Walter. Improved Discrete
Gaussian and Subgaussian Analysis for Lattice Cryptography. In PKC,
2020.

GPV08. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for Hard Lattices
and New Cryptographic Constructions. In STOC, 2008.

HKW15. S. Hohenberger, V. Koppula, and B. Waters. Universal Signature Aggre-
gators. In EUROCRYPT, 2015.

HW18. S. Hohenberger and B. Waters. Synchronized Aggregate Signatures from
the RSA Assumption. In EUROCRYPT, 2018.

JMW23. K. Jackson, C. Miller, and D. Wang. Evaluating the Security of
CRYSTALS-Dilithium in the Quantum Random Oracle Model. IACR
Cryptol. ePrint Arch., page 1968, 2023.

JRS23a. C. Jeudy, A. Roux-Langlois, and O. Sanders. Lattice Signature with Ef-
ficient Protocols, Application to Anonymous Credentials. In CRYPTO,
2023.

JRS23b. C. Jeudy, A. Roux-Langlois, and O. Sanders. Phoenix: Hash-and-Sign with
Aborts from Lattice Gadgets. IACR Cryptol. ePrint Arch., page 446, 2023.

KLS18. E. Kiltz, V. Lyubashevsky, and C. Schaffner. A Concrete Treatment of
Fiat-Shamir Signatures in the Quantum Random-Oracle Mode. In EURO-
CRYPT, 2018.

LLM+16. B. Libert, S. Ling, F. Mouhartem, K. Nguyen, and H. Wang. Signature
Schemes with Efficient Protocols and Dynamic Group Signatures from Lat-
tice Assumptions. In ASIACRYPT, 2016.

LNP22. V. Lyubashevsky, N. K. Nguyen, and M. Plançon. Lattice-Based Zero-
Knowledge Proofs and Applications: Shorter, Simpler, and More General.
CRYPTO, 2022.

LNPS21. V. Lyubashevsky, N. K. Nguyen, M. Plançon, and G. Seiler. Shorter
Lattice-Based Group Signatures via "Almost Free" Encryption and Other
Optimizations. In ASIACRYPT, 2021.

LS15. A. Langlois and D. Stehlé. Worst-case to Average-case Reductions for
Module Lattices. DCC, 2015.

LW15. V. Lyubashevsky and D. Wichs. Simple Lattice Trapdoor Sampling from
a Broad Class of Distributions. In PKC, 2015.

Lyu12. V. Lyubashevsky. Lattice Signatures without Trapdoors. In EURO-
CRYPT, 2012.

MP12. D. Micciancio and C. Peikert. Trapdoors for Lattices: Simpler, Tighter,
Faster, Smaller. In EUROCRYPT, 2012.

MP13. D. Micciancio and C. Peikert. Hardness of SIS and LWE with Small Pa-
rameters. In CRYPTO, 2013.

35

MR07. D. Micciancio and O. Regev. Worst-Case to Average-Case Reductions
Based on Gaussian Measures. SIAM J. Comput., 2007.

MW16. D. Micciancio and M. Walter. Practical, Predictable Lattice Basis Reduc-
tion. In EUROCRYPT, 2016.

NISa. NIST. Post-Quantum Cryptography Standardization. https:
//csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Post-Quantum-Cryptography-Standardization.

NISb. NIST. Post-Quantum Cryptography: Standardization of Additional Digi-
tal Signature Schemes. https://csrc.nist.gov/Projects/pqc-dig-sig/
standardization.

Pei08. C. Peikert. Limits on the Hardness of Lattice Problems in lp Norms.
Comput. Complex., 2008.

Pei10. C. Peikert. An Efficient and Parallel Gaussian Sampler for Lattices. In
CRYPTO, 2010.

PFH+20. T. Prest, P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky,
T. Pornin, T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang. FAL-
CON. Tech. rep., 2020. Available at https://csrc.nist.gov/Projects/
post-quantum-cryptography/selected-algorithms-2022.

PR06. C. Peikert and A. Rosen. Efficient Collision-Resistant Hashing from Worst-
Case Assumptions on Cyclic Lattices. In TCC, 2006.

Pre17. T. Prest. Sharper Bounds in Lattice-Based Cryptography Using the Rényi
Divergence. In ASIACRYPT, 2017.

RS13. M. Rückert and D. Schröder. Aggregate and Verifiably Encrypted Signa-
tures from Multilinear Maps Without Random Oracles. IACR Cryptol.
ePrint Arch., page 20, 2013.

TS23. T. Tomita and J. Shikata. Compact Signature Aggregation from Module-
Lattices. IACR Cryptol. ePrint Arch., page 471, 2023.

Ver12. R. Vershynin. Introduction to the Non-Asymptotic Analysis of Random
Matrices. In Compressed Sensing. 2012.

YJW23. Y. Yu, H. Jia, and X. Wang. Compact Lattice Gadget and Its Applications
to Hash-and-Sign Signatures. In CRYPTO, 2023.

ZY22. S. Zhang and Y. Yu. Towards a Simpler Lattice Gadget Toolkit. In PKC,
2022.

36

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/pqc-dig-sig/standardization
https://csrc.nist.gov/Projects/pqc-dig-sig/standardization
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

A Concrete Security Analysis

In this section we recall the methodology we use to estimate the bit security of
the forgery and key recovery attacks in Section 4 and for Phoenix in Section 6.4.
All our estimates use the Core-SVP model where the cost of the attack is given
by the cost of running once the self-dual BKZ lattice reduction [MW16] with
block size B. The cost is then modeled by the best known cost for lattice sieving,
i.e., 20.292B for the classical security and 20.257B for the quantum security.

Under the Gaussian Heuristic and the Geometric Series Assumption, the BKZ
algorithm with blocksize B would find a vector v in a N -dimensional lattice L
with ∥v∥2 ≤ δNB Vol(L)1/N , where

δB ≈

(
(πB)

1
B B

2πe

) 1
2(B−1)

, (4)

by [Che13].

A.1 Key Recovery: M-LWE

In all the schemes derived from the samplers in Section 4, the public key is
given by A′ ∈ Rd×m1−d

q and B = [Id|A′]R mod qR and the secret key by R ∼
U(Sm1×m2

1). Except for the LW signature, all our schemes use m1 = 2d. Key
recovery thus corresponds to an instance of search M-LWEn,d,m1−d,q,U(S1) with
m2 uniform ternary secrets. We use the lattice estimator [APS15] on the instance
LWEnd,n(m1−d),q,U({−1,0,1}) to determine the minimal BKZ block size B among
all the evaluated attacks. We discard the structure of the underlying ring and
simply extend the dimensions by the ring degree n by considering the matrix
Mτ (A

′). To account for the m2 secrets, we consider the final cost to be that of
running m2 times BKZ which gives a cost of m22

νB for ν ∈ {0.292, 0.257}.
In the case of Phoenix, we apply public key compression which means that

the adversary only has access to the high-order bits of B. At a high-level, the
key recovery consists in solving d(k− ℓ) instances of M-LWE to recover R from
BH mod q. Since BH contains less information on R than the full matrix B =
[Id|A′]R mod qR, we lower bound the complexity of key recovery by assessing
the cost of recovering R given B as described above.

A.2 Forgery: M-SIS or M-ISIS

The complexity of the forgery can be estimated either by the security proof
which relies on the M-SIS assumption, or by the M-ISIS assumption. In Sec-
tion 4, we use the former approach on the M-SISn,d,m,q,β,β∞ assumption where
the infinity norm β∞ < q is discarded except for ensuring that q-vectors are
not solutions. For Phoenix, we aim for a tighter security assessment using the
M-ISISn,d,m,q,β′,β′

∞
assumption. Both approaches are detailed below.

37

A.2.1 Solving M-SIS. To estimate the security of M-SISn,d,m,q,β,β∞ , we
find the cost of finding v ∈ L⊥

q ([Id|A′|B′]) such that ∥v∥2 ≤ β and ∥v∥∞ ≤ β∞,
given A′ ∼ U(Rd×m1−d

q) and B′ ∼ U(Rd×m2
q) (with m = m1 +m2). We again

look at the unstructured problem SISnd,nm,q,β,β∞ . For that, we first check that
min(β, β∞) < q to avoid trivial solutions. Then, a standard optimization consists
in finding a solution in a lattice of smaller dimension nd ≤ m∗ ≤ nm and
completing the solution with zeros. We then use BKZ in block size B such that

β ≥ min
nd≤m∗≤nm

δm
∗

B qnd/m
∗
.

More precisely, for a fixed β, we find m∗ that maximizes δB = β1/m∗
q−nd/m∗2

and then use Equation (4) to determine the corresponding block size B.

A.2.2 Direct Forgery: M-ISIS. In Phoenix, we estimate the forgery security
via the M-ISIS assumption. A forgery consists of a vector v = [vT

1,1|vT
1,2|vT

2]
T

such that [Id|A′|GH − BH]v = u mod qR for a seemingly random and non-
adversarial syndrome u = H(salt,m). Since the adversary must provide the
salt as part of the signature, the best strategy is to select an arbitrary message
and salt, compute u = H(salt,m) and find v. Additionally, as v2 has very
strict bounds (ternary), it is unlikely to have such small coefficients for v2 by
solving M-ISIS on ([Id|A′|GH − BH],u), unless they are set to zero. To hope
for a valid forgery, one would thus fix a value for v2 ∈ S

d(k−ℓ)
1 and solve the

M-ISIS instance ([Id|A′],u′ = u − (GH − BH)v2) with norm bounds set from
the signature verification from Algorithm 6.4. Setting v2 = 0 would discard
these columns which is done in the concrete attack below anyway. Due to the
asymmetry of our preimages, the solution returned by the adversary should
also have a specific form. In particular v1,1,v1,2 are bounded both in Euclidean
and infinity norms. This makes the fine-grained cryptanalysis difficult as current
lattice reduction algorithms focus mostly on the Euclidean norm. Our approach is
therefore once again to underestimate the actual cost of the attack by discarding
the infinity norm and also the asymmetry of the solution. We believe that a
thorough cryptanalysis would show that the forgery is more complex than the
approach we describe here. More precisely, we simply evaluate the complexity of
finding v1 such that [Id|A′]v1 = u′ mod q and ∥v1∥2 ≤ β =

√
B2

1,1 +B2
1,2. We

note that if β is close to or larger than q
√
nd/12, this M-ISIS instance becomes

trivial but not the forgery because of our infinity norm checks.
If β < q

√
nd/12, a solution can be found using the Approximate CVP attack

using the nearest-colattice algorithm of Espitau and Kirchner [EK20]. Given
(Mτ ([Id|A′]), τ(u′)) ∈ ZN×D

q × ZN
q , where N = nd and D = 2nd, the algorithm

can compute a solution within Euclidean norm β with BKZ of block size B such
that

β ≥ min
k∗≤D−N

δD−k∗

B qN/(D−k∗).

Again, for a fixed β, we find k∗ which maximizes δB = β1/(D−k∗)q−N/(D−k∗)2

and use Equation (4) to determine the block size B.

38

Although our modulus is not particularly small with respect to the dimension
and the M-ISIS bound, we also ran the estimator recently proposed by Ducas,
Espitau and Postlethwaite [DEP23] as a sanity check to make sure it does not
lead to a more efficient attack than the previously described approach. Their
tool unfortunately suffers from large memory requirements when computing the
intersection of the hypercube and ball if the parameters are too large. We also
leave this cryptanalysis to future work. The preimage and key compression can
easily be reduced, and as a result the M-ISIS bound, to avoid these vulnerable
parameter regimes at the expense of slightly larger signatures and/or keys. For
example, if one were to take more conservative to achieve a smaller ratio β/q,
we could still get signatures of 2412 bytes and a public key of 2592 bytes. Nev-
ertheless, we again insist on the fact that our scheme also places infinity norm
bounds which may invalidate the attack or make it much more complex.

B Uniform Version of Phoenix

We describe a version of the Phoenix signature scheme where we instantiate the
distribution of signatures with uniform distributions instead of Gaussians. Al-
though it suffers from larger signature sizes, it has the advantage of requiring no
floating point arithmetic whatsoever. Additionally, the rejection step is deter-
ministic which makes the scheme even easier to implement. Although it follows
the hash-and-sign paradigm in the GPV framework, the resulting scheme has
many similarities with the Dilithium signature scheme [DKL+18]. As such, fur-
ther optimizations to Dilithium could also be applied to our scheme to heighten
its efficiency.

B.1 Bounds and Uniform Approximate Rejection Sampler

For completeness, we give the modified sampler tailored for uniform distribu-
tions. As for Phoenix, we choose q = 2k+1 − 1, and the gadget decomposition is
centered. The error distribution coming from dropping low-order bits is exactly
the same as that of Phoenix, and so is the key compression error

Algorithm B.1: Approx.SamplePreRej(R;A′,u, γ, B)

Input: Trapdoor R ∈ R2d×d(k−ℓ), Matrix A′ ∈ Rd×d
q , Syndrome u ∈ Rd

q , Mask
bound γ > 0, Secret bound B > 0.
1. p1 ←↩ U(S2d

γ).
2. w← u− [Id|A′]p1 mod qR. ▷ Syndrome correction
3. z← G−1(w) ∈ Sdk

1 .
4. Parse z into zL ∈ Sdℓ

1 and zH ∈ S
d(k−ℓ)
1 so that Gz = GLzL +GHzH .

5. v′
1 ← p1 +RzH .

6. if ∥v′
1∥∞ > γ −B, go back to 1.

7. else v1 ← v′
1 +

[
GLzL

0

]
8. v2 ← zH

Output: v =

[
v1

v2

]
.

39

We can once again adapt Theorem 5.1 to ensure the simulatability of preim-
ages. We state it in the following corollary for completeness.

Corollary B.1. Let d, k, ℓ, q be positive integers such that q = 2k − 1 and ℓ ∈
[0, k − 1]. Let A′ ∼ U(Rd×d

q) and R ∼ U(S
2d×d(k−ℓ)
1). Then, we let B be a

bound on ∥RzH∥∞ and M > 1 be the average repetition rate. We define γ =⌈
B ·M1/2nd/(M1/2nd − 1)− 1/2

⌉
. We define P1 and P2 the same way as in

Theorem 5.1 but where Ds = U(S2d
γ) and Dt = U(S2d

γ−B). Then, it holds that P1

and P2 are identical.

B.2 The Signature Scheme

Algorithm B.2: Setup
Input: Security parameter λ.
1. Choose positive integers d, k.
2. q ← 2k+1 − 1.
3. Choose ℓ, ℓ′ ∈ [0, k − 1].
4. G = Id ⊗ [1 · · · 2k−1] ∈ Rd×dk

q .
5. GH = Id ⊗ [2ℓ · · · 2k−1] ∈ R

d×d(k−ℓ)
q .

6. GL = Id ⊗ [1 · · · 2ℓ−1] ∈ Rd×dℓ
q .

7. Fix B a bound on ∥RzH∥∞.
8. Choose M > 1. ▷ Repetition rate

9. γ ←
⌈
B ·M1/2nd/(M1/2nd − 1)− 1/2

⌉
10. A′ ←↩ U(Rd×d

q).
Output: pp = (A′;G,GL,GH ;λ, n, q, d, k, ℓ, B, γ,M).

Algorithm B.3: KeyGen
Input: Public parameters pp as in Algorithm B.2.
1. R←↩ U(S

2d×d(k−ℓ)
1).

2. B← [Id|A′]R mod qR ∈ R
d×d(k−ℓ)
q

3. Parse B as BL +BH with BL ∈ S
d×d(k−ℓ)

2ℓ
′−1

and BH ∈ 2ℓ
′
S

d×d(d−ℓ)

2k−ℓ′−1
.

Output: pk = BH , and sk = R. ▷ pp stored with pk for simplicity

Algorithm B.4: Sign
Input: Secret key sk, Message m ∈ {0, 1}∗, Public key pk.
1. salt←↩ U({0, 1}320).
2. (v1,v2)← Approx.SamplePreRej(R;A′,H(m, salt), s). ▷ Algorithm B.1
3. epk ← (([Id|A′]R mod qR)−BH)v2.
4. Parse ṽ1 as [ṽ1,1

T |vT
1,2]

T with ṽ1,1,v1,2 ∈ Rd.
5. v1,1 ← ṽ1,1 − epk.
6. γ1 ← (∥v1,1∥∞ ≤ B∞

1,1) ∧ (∥v1,2∥∞ ≤ B∞
1,2) ∧ (∥v2∥∞ ≤ 1).

7. if γ1 = 0, restart.
Output: sig = (salt,v1,2,v2).

Algorithm B.5: Verify
Input: Public key pk, Message m ∈ {0, 1}∗, Signature sig.
1. v1,1 ← H(m, salt)−A′v1,2 − (GH −BH)v2 mod qR ∈ Rd.
2. γ1 ← (∥v1,1∥∞ ≤ B∞

1,1) ∧ (∥v1,2∥∞ ≤ B∞
1,2) ∧ (∥v2∥∞ ≤ 1).

Output: γ1. ▷ 1 if valid, 0 otherwise

40

The verification bounds are simply set as

B∞
1,1 = γ −B + 2ℓ − 1 +

⌊
3.8µ

√
2ℓ′(2ℓ′ − 1)

6

nd(k − ℓ)

2

⌋
B∞

1,2 = γ −B.

The bound B can be derived by studying the distribution of RzH . In particular,
one can obtain a much tighter bound than the trivial nd(k − ℓ) that is still
verified with overwhelming probability. Consider the power-of-two cyclotomics
case and that d = k − ℓ = 1. Then, RzH = [r1z|r2z]T is a vector of R2, where
ri ∼ U(S1) and z almost follows the centered binomial distribution. This is
because each coefficient of z corresponds to the high order bits of some |u|
for u uniform in [−(q − 1)/2, (q − 1)/2], mutiplied by the sign of u. As we
have τ(riz) = Mτ (ri)τ(z) the i-th coefficient is given by

∑
j ±ri,jizj . Because

U([−1, 1]) is centered, ±ri,ji follows the same distribution, and thus ±ri,jizj
follows a centered binomial distribution of parameter 2/3 which we call B1,2/3.
That is 0 with probability 2/3 and ±1 each with probability 1/6. We can then use
Chernoff bound using the cumulant generating function K(·) of B1,2/3 defined by
K(t) = ln(E[exp(tB1,2/3)]) = ln(2/3+1/3 cosh(t)) for t ∈ R. The Chernoff bound
gives P[|

∑
j ±ri,jizj | ≥ B] ≤ 2−λα(B,n,λ) where α(B,n, λ) = log2 e

λ+1 supt≥0(tB −
nK(t)). Then, the union bound gives P[∥RzH∥∞ ≥ B] ≤ 2n · 2−λα(B,n,λ). For
a fixed λ, n, we can then solve for B so that the probability is at most 2−λ.
For composite conductors, one also has to account for the slack µ. In practice
we observe that B can even be slightly smaller than what the Chernoff bound
gives. It could theoretically be enforced by rejecting the v2 (and thus the p1)
that make Rv2 larger than B.

B.2.1 Security and Parameters. This scheme once again follows the GPV
framework and thus inherit the same security analysis. As the simulation result
of Corollary B.1 is a bit different and since the verification only involves the
infinity norm, we give the security reduction result for completeness. We note
that the version of M-SIS here only performs infinity norm checks. That is,
we look for a non-zero vector x in L⊥

q (A) such that ∥x∥∞ ≤ β∞. When key
compression is applied, the M-SIS assumption is also skewed as for Phoenix due
to the block GH −BH

Theorem B.1 ([GPV08] adapted). The signature scheme of Section B.2 is
strongly EUF-CMA-secure in the random oracle model under M-LWEn,d,d,q,U(S1)

and M-SISn,d,d(2+k−ℓ),q,β∞ , where β∞ = 2max(B∞
1,1, B

∞
1,2, 1) = 2B∞

1,1. More pre-
cisely, the advantage of A attacking the unforgeability is bounded by Adv[A] ≤
εM-SIS + d(k − ℓ)εM-LWE.

Just like Phoenix, we perform the forgery security assessment and parameter
selection by looking at the M-ISIS instance that the scheme describes. We use
the same methodology from Appendix A on the same M-ISIS instance but with
a Euclidean bound specific to this scheme. As we deal with uniform elements,

41

we can evaluate the expected bounds and thus derive the M-ISIS norm bound
from them. We essentially use the same observation based on the Gaussian ap-
proximation to derive the M-ISIS bound in Euclidean norm. In the case of v′

1,1

(before adding the errors) and v1,2, they follow centered uniform distribution
with bounds γ − B. As a result, they can be bounded with high probability by√
(γ −B)(γ −B + 1)/3

√
nd ≈ (γ − B)

√
nd/3. Then, just like in Phoenix, the

sampling error e = GLzL can be bounded by
√

(2ℓ − 1))(2ℓ+1 − 1)/6
√
nd ≈

2ℓ
√
nd/3. Finally, the key compression error epk can be bounded in Euclidean

norm by
√
2ℓ′(2ℓ′ − 1)/3 · nd(k − ℓ)/2

√
nd. To be thorough so as to rely on this

M-ISIS assumption, we would need to set Euclidean norm checks in the signing
and verification process. Concretely, we would set

B1,1 = 1.04

√
(γ −B)(γ −B + 1)

3
+

(2ℓ − 1)(2ℓ+1 − 1)

6
+ µ2

2ℓ′(2ℓ′ − 1)

6

nd(k − ℓ)

2

√
nd

B1,2 = 1.04

√
(γ −B)(γ −B + 1)

3

√
nd,

and then define the M-ISIS bound β =
√
B2

1,1 +B2
1,2. As for Phoenix, the bound

provided by these formulas are verified empirically.
We now suggest parameter sets to instantiate this version in Table B.1. The

public key is reasonable compared to prior constructions but it suffers from
slightly larger signatures than Phoenix. This is to be balanced with the com-
putational benefits of this variant. Additionally, we have not tried to optimize
further this version as it is conceptually close to Dilithium [DKL+18]. Future
optimizations could consist in re-using tricks from the latter and subsequent im-
provements to optimize this scheme. It may help further compress the signature
size and public key or heighten security. Additionally, a thorough cryptanalysis
is required to have a precise estimate of the security as our analysis does not
consider the infinity norm at the moment.

42

Security I− III

Conductor 211 2932

n 1024 1536
d 1 1

(k, ℓ, ℓ′) (19,18,11) (20,19,11)
q 220 − 1 221 − 1

(M,B) (20, 131) (20, 186)
γ 89622 190071

B∞
1,1 423507 838659

B∞
1,2 89491 189885

B1,1 5359390.0 13189833.4
B1,2 1719509.1 4468500.5

|sk| (B) 512 768
|pk| (B) 1184 1952
|sig| (B) 2600 4072

Key Recovery (C/Q) 134/122 211/191
Forgery (C/Q) 105/96 171/155

Table B.1. Suggested parameter sets for the scheme with uniform distribution. Sizes
are in bytes. The bit security is the estimated core-SVP hardness (classical C, quantum
Q).

C Application: Lattice-Based Aggregate Signature

As another application of how we can leverage the asymmetry of the preimage
resulting from our new analysis, we construct the first lattice-based aggregate
signature that supports public aggregation and that is more efficient than the
naive concatenation of individual signatures. It in particular shows that the LW
sampler from Algorithm 3.1 improved as described in Section 3.2 can lead to
new signature designs. Note that in this section, we again focus on the exact
version of the LW sampler and thus compare the aggregate signature to the
results of Section 4. The aggregate signature scheme is directly based on the
GPV framework, but with some necessary tweaks in order to be secure. It fully
leverages the asymmetry between v1 and v2.

An aggregate signature is a regular signature scheme completed by a mecha-
nism AggSign taking the public keys pki of N users as well as pairs of message-
signature (mi, sigi) from each user, and compresses all the sigi into a single
signature sigagg. A second mechanism AggVerify is appended to verify that sigagg
is a valid aggregate signature on the messages mi under the keys pki, but without
requiring the individual sigi. One of the key features is that the aggregation is
public and non-interactive, meaning it does not require the signers’ secret keys
nor does it need them to interact to produce sigagg. A basic efficiency require-
ment is that the size of sigagg should be lower than the concatenation of the sigi,
the latter being the simplest form of aggregate signature.

Such primitives were first introduced by Boneh et al. [BGLS03], which has
led to several efficient constructions on classical groups, such as for example

43

the works in [BGLS03,BNN07,RS13,HKW15,HW18]. Post-quantum construc-
tions were however unknown until the first attempt of Döroz et al. [DHSS20].
This lattice-based proposal turned out to be either less efficient than the trivial
concatenation of signatures, or prone to attacks due to their compression tech-
nique as pointed out by Boudgoust and Roux-Langlois [BR21]. Additionally,
their construction was based on a non-standard assumption called the Partial
Fourier Recovery problem for which the hardness confidence is limited due to
recent results by Boudgoust, Gachon and Pellet-Mary [BGP22]. Boudgoust and
Roux-Langlois also proposed in [BR21] an aggregate signature based on module
lattices following the FSwA signature paradigm. Again, it turned out that the
peculiarities of aggregate signature security led to sigagg being larger than the
concatenation.

In this section, we construct the first lattice-based aggregate signature with
public aggregation that achieves relevant compression compared to the con-
catenation of individual signatures. Our scheme stems from the GPV signa-
ture [GPV08] instantiated with MP trapdoors [MP12], and the LW sampler
from [LW15] in our improved parameter setting as a key element. At a high
level, each user has a key pair (ski, pki) = (Ri,Bi = ARi), where the matrix
A is common to every signer. To sign a message mi, user i samples a short
preimage vi = [vT

1,i|vT
2,i]

T of H(mi) using our new method, where H is modeled
as a random oracle. At this stage, it is tempting to simply add the first compo-
nents v1,i of each signature and concatenate the (very short) second ones v2,i.
This would be correct, but the resulting scheme is completely insecure as we will
explain. We then resort to a technique generally used to circumvent rogue-key
attacks to ensure security, but with some necessary tweaks.

Concretely, to aggregate the vi, one first obtains small random weights ei
and computes sigagg = (v1 =

∑
i eiv1,i, (v2,i)i). While this technique seems

classical, we note that it is not as straightforward to generate suitable ei as
one might think at first glance. Indeed, generating ei as the output of a single
hash function does not seem sufficient to prove security, even in the random
oracle model. This problem, which does not arise in classical cyclic groups, was
already faced by the authors of [BR21] who circumvented it by weakening the
security model. We show that we can avoid this by resorting to two random
oracles Hf ,He to generate the weights ei so as to deal with the peculiarities of
the forking lemma. Concretely, we first compute f = Hf ({Bj ,v2,j ,mj}1≤j≤N),
and then ei = He(f, i) ∈ C for all i, where C is the set of ternary polynomials
with fixed Hamming weight. To verify, one can then recompute the weights ei
and check that Av1 +

∑
i ei(G − Bi)v2,i =

∑
i eiH(mi). We thus manage to

prove security according to the conventional model for aggregate signatures at
the cost of only one additional hashing.

We only achieve partial aggregation because of the fact that v2,i faces the
matrix Bi which differs for every user. As a result, we need to transmit all
the individual v2,i, thus yielding a size linear in N . However, because our new
preimage sampling algorithm minimizes the size of the v2,i’s, it amortizes this
linear dependency, enough to have relevant compression compared to the naive

44

concatenation. In particular, we obtain aggregate signatures that are up to 15%
smaller than the concatenation for N ranging from 5 to 2000 which is a range
coherent with real-life applications, such as certificate chains, blockchains or
batch software updates for example.

We note that a work related to ours was very recently proposed online by
Tomita and Shikata [TS23] which follows a different and generic approach based
on batch arguments for NP relations and performing a proof of the individual
signatures’ verification. Additionally, no efficiency assessment is given beyond an
asymptotic behavior, while our approach gives concrete estimates and does not
rely on any proof system.

We start by giving the necessary preliminaries in Section C.1. Then, we recall
the definition of aggregate signature schemes in Section C.2, before presenting
our construction in Section C.3. Then, we prove the security of our scheme in
the aggregate chosen-key model coined by Boneh et al. [BGLS03] in Section C.4.
Finally, we dedicate Section C.5 to discussing the performance of our scheme.

C.1 Additional Preliminaries

The Hermitian of a matrix A is denoted by AH . We call Vol L the volume of a
lattice L. For x a discrete random variable over a set S, we define its min-entropy
as H∞(x) = − log2(maxx′∈S Px[x = x′]). We recall the following result stating
that DL,s,c carries a good amount of entropy when s is sufficiently large. A
similar result is given in [PR06, Lem. 2.10], but we give a tighter bound directly
resulting from Poisson’s summation formula. We give the proof for completeness.

Lemma C.1. Let L ⊂ Rd be a lattice of rank d. For any ε > 0, s ≥ ηε(L),
and c ∈ Rd, it holds that H∞(DL,s,c) ≥ d log2 s − log2(Vol L) + log2(1 − ε). In
particular, when L = Zd and ε ≤ 1/2, it yields H∞(DZd,s) ≥ d log2 s− 1.

Proof. Let L ⊂ Rd be a lattice of rank d, ε > 0, s ≥ ηε(L) and c ∈ Rd. We look
at ρs,c(L). By the Poisson summation formula, it holds that

ρs,c(L) = sd(Vol L)−1
∑
x∈L∗

e−i·2πxT cρ1/s(x).

Yet, it holds that
∣∣∣∑x∈L∗ e−i·2πxT cρ1/s(x)− 1

∣∣∣ ≤ ρ1/s(L∗ \ {0}) ≤ ε, as s ≥
ηε(L). Since the sum is a positive real, it yields that the latter is bounded below
by 1− ε. Thence,

ρs,c(L) ≥ sd(Vol L)−1(1− ε).

Since ρs,c(x) ≤ 1 for all x ∈ L, we have that H∞(DL,s,c) ≥ log2 ρs,c(L), which
gives the desired inequality. When L = Zd and ε ≤ 1/2, we have Vol L = 1 and
log2(1− ε) ≥ −1, which yields the claim.

C.1.1 Algebraic Number Theory. Another way to embed R (or its fraction
field K) is the canonical embedding, which we denote by σ. More precisely, K

45

has exactly n field homomorphisms σ1, . . . , σn from K to C which are character-
ized by the fact that each σi maps ζ to one of the distinct roots αi of the minimal
polynomial of ζ. The canonical embedding of K is then the ring homomorphism
σ(·) = [σ1(·)| . . . |σn(·)]T from K to Cn (with entry-wise addition and multiplica-
tion of vectors). The canonical and coefficient embeddings are linked linearly by
the Vandermonde matrix V of the αi, i.e., σ(·) = Vτ(·) with V = [αj−1

i]i,j∈[n].
We note that since the αi are the n-th roots of −1, they all have magnitude
1. Additionally, in this power-of-two cyclotomic ring, P = V/

√
n is a unitary

matrix, i.e., PHP = In.
Similarly to the coefficient embedding, we can define a multiplication matrix

map in the canonical embedding. More precisely, we have σ(rs) = Mσ(r)σ(s)
where Mσ(r) = diag(σ1(r), . . . , σn(r)) ∈ Cn×n. The link between σ and τ implies
that Mτ (·) = V−1Mσ(·)V = PHMσ(·)P.

One result which we need for our aggregate signature is that the weighted
sum of discrete Gaussian vectors over R is also a discrete Gaussian. The result
is due to [MP13, Thm. 3.3] which was adapted to the ring setting in [BTT22,
Lem. 2.7]. The latter is however formulated with constraints in the canonical
embedding σ with respect to the rescaled norm ∥σ(·)∥2/

√
n, yielding the same

distribution as Gaussians in the coefficient embedding. The proof is exactly the
same but we adapt the lemma statement to use the coefficient embedding in the
constraints instead. This just relies on the fact that in power-of-two cyclotomic
fields, we have

∥∥√zz∗∥∥ = ∥σ(z)∥2/
√
n (= ∥τ(z)∥2) and Mτ (

∑
i∈[N] ziz

∗
i · s2) =∑

i∈[N] s
2Mτ (zi)Mτ (zi)

T , where the left-hand side of the equations are the no-
tations from [BTT22].

Lemma C.2 (Adapted from [BTT22, Lem. 2.7]). Let d and N be positive
integers. Let e1, . . . , eN be arbitrary elements of R, and s > 0 such that s ≥√
2ηδ(Znd) ·maxj∈[N]∥τ(ej)∥2 for a negligible δ. Then it holds that

∆

∑
i∈[N]

eiDRd,s,DLe,
√
S

 ≤ negl(λ),

where S = Id ⊗
∑

i∈[N] s
2Mτ (ei)Mτ (ei)

T and Le =
∑

i∈[N] eiR
d is a submodule

of Rd.

C.1.2 General Forking Lemma. We give here the general forking lemma
from Bellare and Neven [BN06] in Lemma C.3 and the forking algorithm FB in
Algorithm C.1. We later need this result to prove the security of our aggregate
signature scheme in Section C.4.

Lemma C.3 ([BN06, Lem. 1]). Let Qe be a positive integer and C a set of size
at least 2. Let B be a randomized algorithm that on input x, h1, . . . , hQe

returns
a pair consisting of an integer in {0, . . . , Qe} and a second element referred to
as a side output. Let IG be a randomized algorithm that we call input generator.

46

We define the accepting probability as

acc = P[j ≥ 1 : x← IG;h1, . . . , hQe ←↩ U(C); (j, out)← B(x, h1, . . . , hQe)].

The forking algorithm FB associated to B takes as input x and is described in
Algorithm C.1. We define the probability

frk = P[b = 1 : x← IG; (b, out, out′)← FB(x)].

Then, it holds that acc ≤ Qe/|C|+
√
Qe · frk

Algorithm C.1: Forking FB

On input x, proceed as follows.
1. Pick random coins ρ for B
2. h1, . . . , hQe ←↩ U(C)
3. (j, out)← B(x, h1, . . . , hQe ; ρ)
4. if j = 0, return (0,⊥,⊥)
5. h′

j , . . . , h
′
Qe
←↩ U(C)

6. (j′, out′)← B(x, h1, . . . , hj−1, h
′
j , . . . , h

′
Qe

; ρ)
7. if (j = j′) ∧ (hj ̸= h′

j), return (1, out, out′)
8. else return (0,⊥,⊥).

C.2 Aggregate Signature Schemes

An aggregate signature is a regular signature scheme {KeyGen,Sign,Verify} which
also enables public aggregation of different signatures on different messages and
under different signing keys. The regular signature is thus completed with two
algorithms AggSign and AggVerify. The former takes as input a sequence of
messages (mi)i∈[N], of public keys (pki)i∈[N] and of signatures (sigi)i∈[N] of said
messages under the corresponding keys, and outputs a single signature sigagg. The
AggVerify algorithm then takes the same inputs except that it gets sigagg instead
of the individual signatures, and returns 1 if the aggregate signature is valid
and 0 otherwise. An aggregate signature scheme is expected to be correct, i.e.,
honestly generated signatures and aggregate signatures verify using Verify and
AggVerify respectively, and secure in a security model introduced by [BGLS03]
which we recall in Section C.4.

The goal of aggregate signatures is to perform batch verification of several
independent signatures, albeit sharing the same public parameters. The naive
solution is to define sigagg as the concatenation of the (sigi)i∈[N] and perform
verification individually but the resulting construction is meaningless, except
perhaps to show that aggregate signatures trivially exist. In practice, we are
therefore interested in aggregate signature schemes that perform better than the
naive concatenation.

As explained above, several aggregate signatures gathering such features have
been proposed in the classical setting, but it was yet open to propose a post-
quantum construction. A first attempt over lattices was proposed by Döroz
et al. [DHSS20], but had major drawbacks either in performance (MMSA) or

47

security (MMSAT/MMSATK), and was based on a non-standard assumption
called Vandermonde-SIS (or Partial Fourier Recovery). Boudgoust and Roux-
Langlois [BR21] then proposed another lattice-based aggregate signature based
on the FSwA paradigm, which unfortunately ended up being larger than the
trivial concatenation. One explanation of this lack of compression is the half ag-
gregation and the peculiarities of aggregate signatures which in the end make the
parameters slightly worse than for the standalone signature. In particular, FSwA
signatures are composed of two parts (sig1, sig2) and only one of them can be
aggregated, i.e., the aggregate signature is of the form sigagg = (sig1, (sig2,i)i∈[N])
where (sig1,i, sig2,i)i∈[N] are the signatures to be aggregated. Unfortunately, one
needs larger parameters to prove the security of the aggregate signature scheme.
As a result the size of the non-aggregated part sig2,i becomes larger than the size
of a full FSwA signature with the smaller parameters. Hence, sigagg is always
larger than the concatenation of standalone signatures in the case of [BR21],
regardless of the value of N .

We now present a lattice-based aggregate signature scheme that supports
public aggregation, whose security is proven in the aggregate chosen-key model
based on standard (module) lattice assumptions, and that performs better than
the naive solution. This answers positively to the open problem left by Boudgoust
and Roux-Langlois in [BR21], and provides, to the best of our knowledge, the
first post-quantum aggregate signature combining all such features.

C.3 Our Construction

Our aggregate signature scheme is based on the GPV hash-and-sign frame-
work [GPV08], with MP trapdoors [MP12] and the LW preimage sampling al-
gorithm [LW15] with our new parameter analysis presented in Section 3. We
present our scheme over module lattices.

As explained in Section 4, the combination of the GPV signature and MP
trapdoors produces signatures sig = v on messages m by sampling the preimage
v of H(m) by [A|G −AR] mod qR. The function H is modeled by a random
oracle, the matrix A is part of the public key, while R is a short matrix consti-
tuting the secret key. The matrix B = AR is also part of the public key. For
different users, each user i would have a set of keys pki = (Ai,Bi = AiRi)
and ski = Ri. An intuitive way of aggregating signatures sigi is to sum them,
but this becomes tricky when the public matrices involved in verification, i.e.,
[Ai|G − Bi], are all different. We can however force all the Ai to be the same
matrix A for all i, making sure A is honestly generated, i.e., without embedding
an illicit trapdoor. This can for example be done by setting A as the hash of
some public parameters. Each user would thus share the same A and would have
their own public key Bi = ARi. Hence, by summing the verification equations,
we would obtain A ·

∑
i∈[N] v1,i +

∑
i∈[N](G − Bi)v2,i =

∑
i∈[N]H(mi). The

aggregate signature could then be (
∑

i v1,i, (v2,i)i), meaning we would only be
aggregating the v1,i and providing the individual v2,i.

As in the previous attempts [DHSS20,BR21], it seems difficult to achieve
full aggregation due to the fact that v2,i faces Bi, which must differ for every

48

user. As a result, the bit size of the first half
∑

i v1,i would grow logarithmi-
cally with N , while that of the second half (v2,i)i would grow linearly with
N . Similarly to FSwA signatures, as described in Section C.2, if the increased
complexity of aggregate signature security results in v2,i being larger that a full
standalone signature (v1,v2), the aggregate signature scheme would be vacuous.
Fortunately, based on our new assessment, the preimage sampler recalled in Sec-
tion 3.2 moves the bulk of the signatures in the v1,i while minimizing the size of
v2,i which makes the concatenation of the v2,i minimal. It therefore amortizes
the linear cost of the aggregate signature, and each v2,i in the aggregate signa-
ture stays sufficiently below the size of a full LW∗ signature to allow for relevant
compression.

Unfortunately, this aggregate signature is not secure as it is. Indeed, user j
can produce a forged aggregate signature on behalf of the set of users 1, . . . , N
as follows:

1. Select a set of messages mi, for i ∈ [N].
2. Select v2,i, for i ̸= j, distributed as in a normal signature.
3. Compute v2,j such that Gv2,j = −

∑
i̸=j(G−Bi)v2,i +

∑
i∈[N]H(mi).

4. Set v1 = Rjv2,j .

The resulting aggregate signature (v1, (v2,i)i) is indeed valid on (mi)i under
public keys (Bi)i since

A · v1 +
∑
i∈[N]

(G−Bi)v2,i = A · v1 + (G−Bj)v2,j +
∑
i ̸=j

(G−Bi)v2,i

= Gv2,j +
∑
i ̸=j

(G−Bi)v2,i

=
∑
i∈[N]

H(mi).

Intuitively, the problem stems from the fact that the rogue signer is able to
compute its own signature after seeing/selecting the other components. It can
thus use its own trapdoor to select a preimage that will cancel all these compo-
nents. To solve this problem, we rely on a countermeasure reminiscent of the one
used against rogue key attacks. We tweak the verification equation with small
random weights ei that deterministically depend on the full set {(mi,v2,i,Bi)}i.
This therefore forces the adversary to commit to each v2,i before seeing the ver-
ification equation it must satisfy, which thwarts the previous attack.

However, if we follow the standard approach where ei ← H(B1,v2,1,m1, . . . ,
BN ,v2,N ,mN , i) for some hash function H, we will end up with the same prob-
lem as in [BR21]: we could only ensure unforgeability for the last signature (the
one generated under public key BN). This has led the authors in [BR21] to use
a specific security model, where the challenge key must necessarily be the last
one, but the real-world security assurances provided by this model are question-
able. Informally, the problem is related to the forking lemma: at some point
in the security proof we need to rewind and change the weight ej associated

49

with the challenge public key Bj . However, the proof works only if ej is the last
weight to be queried to the random oracle, hence the restriction in the model
of [BR21]. Otherwise, the adversary could change the other weights after the
rewinding, which would completely invalidate the proof strategy. Here, we stress
that one cannot simply run the simulation several times until this event (ej is
the last queried weight) happens because j is known to the adversary (it is the
index corresponding to the challenge public key). Therefore, an adversary could
systematically initiate its queries with ej , leading this probabilistic approach to
fail.

We show that we can circumvent this issue at almost no cost by generating
the small elements ei in two steps. Concretely, we first compute f as the out-
put of hash function Hf taking as input {Bj ,v2,j ,mj}j . The output space is
denoted by F but there are no restrictions on it because f is then fed to another
random oracle. The only constraint is that |F | must be exponential in the secu-
rity parameter to avoid simple guessing or collision-finding attacks. Then, each
ei is generated as the output of another hash function He run on (f, i). Here, the
output of the random oracle shall be small polynomials. We typically use ternary
polynomials ei with fixed Hamming weight, i.e., in C = {e ∈ S1 : ∥e∥1 = w}.
Intuitively, resorting to two successive random oracles Hf ,He enables the sim-
ulation to anticipate the weight queries and, more importantly, to control their
order. This way, we can rely on the forking lemma without placing any contrived
restrictions on the model, at the cost of only one hash evaluation for the whole
aggregate signature.

The sampler from [LW15] given in Algorithm 3.1 can be instantiated so
that it samples the v1,i close to a Gaussian distribution, which is the object of
Corollary 3.1. Although [LW15] can be used for a broader class of distributions
such as uniform over a hypercube, the properties of Gaussian distributions lead
to tighter verification bounds and in turn a smaller M-SIS bounds and thus
smaller parameters. More precisely, the weighted sum v1 =

∑
i∈[N] eiv1,i follows

a Gaussian distribution by Lemma C.2, and the tail bound thus gives ∥v1∥2 ≤
w ·
√
N ·s
√
2nd. For other distribution, one would use the triangle inequality and

get ∥v1∥2 ≤
∑

i∈[N]∥ei∥1∥v1,i∥2 ≤ w ·N ·B where B would be the norm bound
on each v1,i for a single signature. The dependency in N is therefore optimized
in the case of Gaussian distributions.

Finally, as in Section 4, we can consider the matrix A in Hermite Nor-
mal Form, i.e., A = [Id|A′] with A′ ∼ U(Rd×d

q). If each v1,i is parsed as
[vT

1,1,i|vT
1,2,i]

T with v1,1,i,v1,2,i ∈ Rd, this allows us to only aggregate the v1,2,i

as v1,2 =
∑

i∈[N] eiv1,2,i. The other part, i.e., v1,1 =
∑

i∈[N] eiv1,1,i can be
recovered during verification as

v1,1 =
∑
i∈[N]

eiH(mi)−A′v1,2 −
∑
i∈[N]

ei(G−Bi)v2,i.

Although this does not have a tremendous impact on the aggregate signature
size when N is large, as the bulk of it is due to the concatenation of the v2,i, it

50

leads to a more compact signature and gives a fair comparison with concatenated
LW∗ signatures.

The Scheme. In what follows, we work over the 2n-th cyclotomic ring denoted
by R for n a power of two, as defined in Section 2.3. Although we have seen that
the optimal base for the sampler from [LW15] seems to be b = 2, we present
the scheme for an arbitrary b to be more general. The aggregate signature is
described by Algorithms C.2 to C.7. We present it in the stateful version but
it can be made stateless by using salts as usual. The only caveat is that the
salts cannot be aggregated. As it remains far below the size of v2, it would be
acceptable. Below, we let c′ be a slack which implicitly depends on 2nd and λ.
It is set so that the tail bound from Lemma 2.1 with c = c′

√
2π is verified with

probability 1− 2−4λ. For n = 256, d = 7, λ = 128, we have c′ ≈ 0.53.
Algorithm C.2: Setup

Input: Security parameter λ, Maximal number of signers N .
1. Choose positive integers d, q, w, b.
2. C ← {e ∈ S1 : ∥e∥1 = w}. ▷ Hash space for weights, such that |C| ≥ 22λ

3. k ← ⌈logb(⌈(q − 1)/2⌉+ 1)⌉.
4. G = Id ⊗ [1 · · · bk−1] ∈ Rd×dk

q . ▷ Gadget matrix

5. t←
√

λ/(π log2 e). ▷ t ≈ 5.4

6. ε← 1/Q ▷ Rejection sampling loss
7. Choose M > 1. ▷ Repetition rate
8. α←

√
π

lnM
(
√
ln ε−1 + lnM +

√
ln ε−1). ▷ Rejection sampling slack

9. s← max(α(b− 1)
√
ndk(

√
2nd+

√
ndk + t),

√
2wηδ(Z2nd)). ▷ Width

10. A′ ←↩ U(Rd×d
q).

Output: pp = (A′;G;λ,N, n, q, d, b, k, w, s,M).

Algorithm C.3: KeyGen
Input: Public parameters pp as in Algorithm C.2.
1. R←↩ U(S2d×dk

1) such that ∥R∥2 ≤
√
2nd+

√
ndk + t.

2. B← [Id|A′]R mod qR ∈ Rd×dk
q

Output: pk = B, and sk = R. ▷ pp stored with pk for simplicity

Algorithm C.4: Sign
Input: Secret key sk, Message m ∈ {0, 1}∗, Public key pk.
1. if (m,v) is stored then look-up v
2. else v← SamplePre(R;A′, Id,H(m), s). ▷ Algorithm 3.1
3. Store v. Parse v as [vT

1,1|vT
1,2|vT

2]
T with v1,1,v1,2 ∈ Rd and v2 ∈ Rdk.

Output: sig = (v1,2,v2).

Algorithm C.5: Verify
Input: Public key pk, Message m ∈ {0, 1}∗, Signature sig.
1. v1,1 ← H(m)−A′v1,2 − (G−B)v2 ∈ Rd

2. v1 ← [vT
1,1|vT

1,2]
T ∈ R2d.

3. γ ← (∥v1∥2 ≤ c′s
√
2nd) ∧ (∥v2∥∞ ≤ b− 1)

Output: γ. ▷ γ = 1 if valid, 0 otherwise

51

Algorithm C.6: AggSign
Input: Public keys (Bi)i∈[N], Signatures (v1,2,i,v2,i)i∈[N], Messages (mi)i∈[N]

1. f ← Hf (B1,v2,1,m1, . . . ,BN ,v2,N ,mN) ∈ F ▷ |F | ≥ |C| ≥ 22λ

2. ∀i ∈ [N], ei ← He(f, i) ∈ C.
3. v1,2 ←

∑
i∈[N] eiv1,2,i.

Output: sigagg = (v1,2, (v2,i)i∈[N]).

Algorithm C.7: AggVerify
Input: Public keys (Bi)i∈[N], Aggregate Signature (v1,2, (v2,i)i∈[N]), Mes-
sages (mi)i∈[N]

1. f ← Hf (B1,v2,1,m1, . . . ,BN ,v2,N ,mN) ∈ F
2. ∀i ∈ [N], ei ← He(f, i) ∈ C.
3. v1,1 ←

∑
i∈[N] eiH(mi)−A′v1,2 −

∑
i∈[N] ei(G−Bi)v2,i

4. v1 ← [vT
1,1|vT

1,2]
T ∈ R2d.

5. γ1 ← (∥v1∥2 ≤ c′ws
√
N · 2nd).

6. γ2 ← (∀i ∈ [N], ∥v2,i∥∞ ≤ b− 1)
Output: γ1 ∧ γ2. ▷ 1 if valid, 0 otherwise

We give prove the correctness of our scheme in the following theorem.

Theorem C.1 (Correctness). The aggregate signature scheme (Setup, Key-
Gen, Sign, Verify, AggSign, AggVerify) described in Section C.3 is correct. For-
mally, for all security parameters λ and number of signers N , the following hold.

Single signature correctness. For all pp ← Setup(1λ, N), for all (pk, sk) ←
KeyGen(pp), for all m ∈ {0, 1}∗,

P[Verify(pk,m,Sign(sk,m; pk)) ̸= 1] <
2−4λ

1− ε
= negl(λ).

Aggregate signature correctness. For all pp← Setup(1λ, N), for all i ∈ [N]
and for all (pki, ski)← KeyGen(pp), mi ∈ {0, 1}∗, sigi ← Sign(ski,mi; pki),

P[E] <
(
2−4λ + negl(λ)

)
· 1

(1− ε)N
= negl(λ),

where E = {AggVerify(PK,AggSign(PK,SIG,M),M) ̸= 1}, and PK =
(pki)i∈[N], SIG = (sigi)i∈[N] and M = (mi)i∈[N].

Proof. We first look at the single signature correctness. Let pp← Setup(1λ, N),
(B,R) ← KeyGen(pp), m ∈ {0, 1}∗, and (v1,2,v2) ← Sign(R,m;B). We recon-
struct v1,1 ← H(m)−A′v1,2 − (G−B)v2 and v1 = [vT

1,1|vT
1,2]

T . It thus holds
that [vT

1 |vT
2]

T was obtained using SamplePre. Using the parameters of Algo-
rithm C.2, Corollary 3.1 gives that RD∞(v1∥DR2d,s) ≤ 1/(1− ε) obtained when
a = +∞. By the probability preservation, we have

Pv1
[∥v1∥2 > c′s

√
2nd] ≤ Pv′

1∼D
R2d,s

[∥v′
1∥2 > c′s

√
2nd] ·RD∞(v1∥DR2d,s)

≤ 2−4λ

1− ε
,

52

where the last inequality holds by Lemma 2.1 and definition of c′. Additionally,
by construction it holds that v2 ∈ Sdk

b−1. We then get

P[Verify(B,m,v) = 1] ≥ 1− 2−4λ

1− ε
= 1− negl(λ).

Let us now investigate the correctness of our aggregate signature. Let pp←
Setup(1λ, N), and for all i ∈ [N] let (pki, ski) ← KeyGen(pp), mi ∈ {0, 1}∗,
sigi ← Sign(ski,mi; pki). Let sigagg ← AggSign(PK,SIG,M) and parse it as
(v1,2, (v2,i)i∈[N]). From the single signature correctness above, we directly have
that γ2 = 1, namely that v2,i ∈ Sdk

b−1 for all i ∈ [N].
We reconstruct v1,1 ←

∑
i∈[N] eiH(mi)−A′v1,2−

∑
i∈[N] ei(G−B)v2,i and

v1 = [vT
1,1|vT

1,2]
T . Since the signatures were honestly generated, it holds that

v1 =
∑

i∈[N] eiv1,i where [vT
1,i|vT

2,i]
T was obtained using SamplePre.

We now look at the norm bound on v1. The idea is that v1 behaves as a
discrete Gaussian over a lattice that depends on the weights ei and its covariance
depends on the size of the ei. Using the Gaussian tail bound of Lemma 2.1 yields
the correct bound. We now give more details. First, since v1 is a weighted sum
of discrete Gaussian vectors, Lemma C.2 yields

∆(
∑
i∈[N]

eiDR2d,s,D∑
i∈[N] eiR

2d,
√
S) ≤ negl(λ),

where S = I2d⊗
∑

i∈[N] s
2Mτ (ei)Mτ (ei)

T , as long as the Gaussian width verifies
s ≥

√
2ηδ(Z2nd) · maxi∈[N]∥τ(ei)∥2. Since the τ(ei) are ternary vectors with

Hamming weight w, we have ∥τ(ei)∥2 =
√
w The condition thus becomes s ≥√

2wηδ(Z2nd), which is encompassed by our parameter choice. Then, using the
fact that each ei has weight w ̸= 0, it holds that ei ̸= 0 in the field K and in
turn that all the Mτ (ei) are invertible. As a result, the final covariance matrix
S is positive definite. Using [GMPW20, Lem. 2.3], we obtain that

D∑
i∈[N] eiR

2d,
√
S =
√
SD√

S
−1 ∑

i∈[N] eiR
2d,1

,

and we can therefore apply Lemma 2.1 and get

Pv1∼D∑
i eiR

2d,
√

S

[
∥v1∥2 > c′

∥∥∥√S∥∥∥
2

√
2nd

]
= Px∼D√

S−1 ∑
i eiR

2d,1

[∥∥∥√Sx∥∥∥
2
> c′

∥∥∥√S∥∥∥
2

√
2nd

]
≤ Px∼D√

S−1 ∑
i eiR

2d,1

[
∥x∥2 > c′

√
2nd

]
≤ 2−4λ,

where the first inequality follows by inclusion of events. We now only need to
bound

∥∥∥√S∥∥∥
2
. The latter corresponds to

√
λmax(S) which itself equals

√
λmax(S′)

53

with S′ = s2
∑

i∈[N] Mτ (ei)Mτ (ei)
T , and where λmax denotes the largest eigen-

value. Recalling from Section 2.3 that Mτ = PHMσP with P a unitary matrix,
we get

S′ = s2PHdiag

∑
i∈[N]

|σ1(ei)|2, . . . ,
∑
i∈[N]

|σn(ei)|2
P,

where the σi are the individual field embeddings. It thus proves that

λmax(S
′) = s2 max

k∈[n]

∑
i∈[N]

|σk(ei)|2.

For all (k, i), we have |σk(ei)| ≤ ∥σ(ei)∥∞ = ∥Mσ(ei)∥2 = ∥Mτ (ei)∥2, where
the first equality is due to the diagonal form of Mσ, and the last equality is
due to [BJRW23, Lem. 2.3]. Due to the specific form of Mτ (ei) as described in
Section 2.3, it holds by e.g. [BJRW23, Lem. 2.2] that ∥Mτ (ei)∥ ≤ ∥τ(ei)∥1 = w.
As a result, we obtain λmax(S

′) ≤ s2Nw2. Combining the rejection sampling,
the multiplicativity of the Rényi divergence, the weighted sum of Gaussians, the
tail bound and the spectral bound on λmax(S), it proves that

Pv1
[∥v1∥2 > c′ws

√
N · 2nd]

≤ P(v1,i)i∼D
R2d,s

[∥∥∥∥∥∑
i

eiv1,i

∥∥∥∥∥
2

> c′ws
√
N · 2nd

]
· 1

(1− ε)N

≤
(
Pv1∼D∑

i eiR
2d,

√
S
[∥v1∥2 > c′ws

√
N · 2nd] + negl(λ)

)
· 1

(1− ε)N

≤
(
2−4λ + negl(λ)

)
· 1

(1− ε)N

thus proving that γ1 = 1 except with negligible probability, as ε = 1/Q, N ≪ Q
and N = poly(λ). It then yields

P[AggVerify(PK,M, sigagg) = 1] ≥ 1−
(
2−4λ + negl(λ)

)
· 1

(1− ε)N

= 1− negl(λ),

concluding the proof.

C.4 Security

The aggregate chosen-key security model introduced by Boneh et al. [BGLS03]
captures the idea that an adversary cannot produce an aggregate signature on
behalf of N users, even if it colludes with (at most) N−1 of them. The adversary
is given a challenge public key pk and the ability to query signatures on this key,
and is asked to produce N − 1 keys pki as well as an aggregate signature sigagg
that verifies with these N public keys. We formally define this model by a game
between an adversary A and a challenger B in three stages.

54

Setup Stage. B runs Setup and KeyGen to obtain pp, pk, and sk. It then gives
pp and pk to A.

Query Stage. A queries signatures on at most Q messages m(1), . . . ,m(Q),
which are answered by B returning sig(i) ← Sign(sk,m(i); pk).

Forgery Stage. A eventually provides a forgery ((pki)i∈[N], (mi)i∈[N], sigagg).

The adversary wins the game if (1) there exists an i∗ ∈ [N] such that pki∗ = pk,
(2) for all i ∈ [Q], mi∗ ̸= m(i), and (3) AggVerify((pki)i∈[N], sigagg, (mi)i∈[N]) =
1. The adversary’s advantage is defined as Adv[A] = P[A wins], where the prob-
ability is over all the random coins. We say that the aggregate signature scheme
is secure in the aggregate chosen-key model if for all probabilistic polynomial
time (PPT) adversary A, Adv[A] is negligible in the security parameter λ.

We note that in [BGLS03], the challenge key is set to be pk1. In the context
of their construction in bilinear groups, this can be assumed without loss of gen-
erality because the order of the signatures that are aggregated does not matter.
In our case, each (half) signature v1,i is multiplied by a weight ei = He(f, i)
which depends on the position i and also the order of the signatures because
of f = Hf (B1,v2,1,m1, . . . ,BN ,v2,N ,mN). These weights are necessary in the
lattice setting to avoid the attack we described in Section C.3. As a result, in the
security proof, the challenger has to guess the position i∗ of the challenge key in
order to exploit the forgery to break the underlying computational assumption.

Theorem C.2 (Security). The aggregate signature scheme (Setup, KeyGen,
Sign, Verify, AggSign, AggVerify) described in Section C.3 is secure in the ag-
gregate chosen-key model under the M-SIS and M-LWE assumptions. More for-
mally, for any PPT adversary A against the aggregate chosen-key security, it
holds that

Adv[A] ≤ N

(1− 1/Q)Q
·
(
εM-LWE +

Qe

|C|
+
√

QeεM-SIS

)
+ negl(λ) = negl(λ),

where εM-LWE is the hardness bounds of M-LWEdk
n,d,d,q,U(S1), and εM-SIS is that

of M-SISn,d,d(2+k),q,β with β =
√

(2w(
√
N + 1)c′s

√
2nd)2 + (4w(b− 1)

√
ndk)2.

Proof. We proceed by a sequence of games that we prove indistinguishable from
the aggregate chosen-key game. In the final game, we use the general forking
lemma in order to deduce a solution of M-SIS. We first denote by Q the maximal
number of signature queries, and by Qe the maximal number of queries to He.

Game G0. We change the original aggregate chosen-key game by programming
the random oracles in a certain way. The challenger B starts by sampling i+ ←↩
U([N]), which later acts as a guess on the position of the challenge key in the
forgery. B is also provided with some random inputs hj ←↩ U(C) for all j ∈ [Qe].
Additionally, B keeps four tables Ts, Tf , Te, Tm that will be used to store the
corresponding queries, and which are all empty at the outset of the game. Finally,
it further stores an index je, initially set to 0.
Setup. B computes pp← Setup(1λ) and (B,R) = (pk, sk)← KeyGen(pp). It then
sends pp, pk to A.

55

Queries to H. On input m ∈ {0, 1}∗ given by A, B first checks whether m is
already stored in Tm. If so, it directly outputs the u from Tm corresponding to
m. If not, it samples u←↩ U(Rd

q), stores (m,u) in Tm and sends u to A.

Queries to Hf . On input (Bi,v2,i,mi)i∈[N] given by A, B first checks whether
it already appears in Tf . If so, it directly outputs the f in Tf corresponding to
the input. If not, it samples f ←↩ U(F), stores ((Bi,v2,i,mi)i∈[N], f) in Tf and
sends f to A. Additionally, for all i ∈ [N] \ {i+}, B samples ei ←↩ U(C) and
stores (f, i, ei) in Te.

Queries to He. On input (f, i) given by A, B first checks whether it already
appears in Te. If so, it outputs the ei from Te corresponding to (f, i). If (f, i)
does not appear in Te, then either f does not appear in Tf or i = i+. Without
loss of generality, we can assume that f has previously been obtained by a query
to Hf , and therefore we necessarily have i = i+. Then, B increments je to je+1
and sends hje to A. It also stores (f, i+, hje) in Te. Notice that He(f, i

+) is
therefore set after all the other He(f, i) for i ̸= i+.

Signature queries. On input m, B first checks if m appears in Ts. If so, it out-
puts the v from Ts corresponding to m. If not, it proceeds as follows. B checks
if m is in Tm. If not, it samples u ←↩ U(Rd

q) and stores (m,u) in Tm. Other-
wise, it gets the corresponding syndrome u. Then, it runs the legitimate signing
algorithm Sign with sk, pk, pp by just replacing H(m) by u, namely sampling
v = (v1,1,v1,2,v2)← SamplePre(R;A′, Id,u, s). It then stores (m,v) in Ts and
sends (v1,2,v2) to A.

Forgery. Eventually, A outputs ((pki)i∈[N], (mi)i∈[N], sigagg) to B such that there
exists i∗ ∈ [N] satisfying pki∗ = pk, that mi∗ was not part of the signing
queries, and such that AggVerify((pki)i∈[N], sigagg, (mi)i∈[N]) = 1. If these con-
ditions are not met, then B outputs (0,⊥). From now on, we assume that these
conditions are met, which happens with probability Adv[A] as everything is
correctly distributed. Then, if i∗ ̸= i+, then B also outputs (0,⊥). Since i+

is completely independent of the view of A as all the random oracle queries
are identical as in the standard game, this happens with probability 1/N . If
f = Hf ((pki,v2,i,mi)i∈[N]) was not queried, then A would have had to guess
the correct value of f to obtain the weights ei, and thus the signature would
verify with probability at most 1/|F |. Noting that 1/|F | = negl(λ), it would
entail a negligible advantage for A. So we assume that f has been queried.
Similarly, if He(f, i

+) was not queried, then the probability that AggVerify
passes is at most 1/|C| as A would have had to guess the value of ei+ . Since
1/|C| = negl(λ), then such an adversary A would have a negligible advantage.
So we further assume, without loss of generality that He(f, i

+) was queried and
is equal to some hj for some counter index j. Then, B outputs (j, out) with
out = ((pki)i∈[N], (mi)i∈[N], sigagg, (He(f, i))i∈[N])). Further, we let pk denote
the probability that B does not output (0,⊥) in game Gk. Here, we have

p0 =
1

N
Adv[A]. (5)

56

Game G1. This game is identical to game G0 except in the way signatures are
generated. Instead, B simulates signatures without resorting to sk by using the
simulator from Corollary 3.1. We thus change the way queries to H and signing
queries are handled.
Queries to H. On input m ∈ {0, 1}∗ given by A, B first checks whether m is
already stored in Tm. If so, it directly outputs the u from Tm corresponding to m.
If not, it samples v1 ←↩ DR2d,s, v2 ←↩ G−1(U(Rd

q)), sets v = [vT
1 |vT

2]
T ∈ Rd(2+k)

and computes u = [Id|A′|G−B]v mod qR. It rejects such a v,u with probability
1− 1/M and repeats the procedure until v,u is kept. Then, B stores (m,u) in
Tm and (m,v) in Ts. It then sends u to A.
Signature queries. On input m ∈ {0, 1}∗ given by A, B first checks whether m
is already stored in Ts. If so, it directly outputs the v from Ts corresponding to
m. If not, it means that H was never queried on m. In this case, B performs the
query to H(m) on its own as above and fills Tm with (m,u) and Ts with (m,v).
It then sends v to A.

The simulation result of [LW15, Thm. 3.1] which we overhauled in Theo-
rem 3.1 applies to the Gaussian case as stated in Corollary 3.1, yielding for
a = +∞

p0 ≤ p1 ·RD∞(P1∥P2)
Q ≤ p1

(1− 1/Q)Q
. (6)

Game G2. Since sk is no longer used in game G1, we define G2 to be identical
to G1 except in the setup stage.
Setup. B computes pp← Setup(1λ) and samples B′ ←↩ U(Rd×dk

q). It then com-
putes B← G−B′ and sets pk← B. It then sends pp, pk to A.

Since B′ is uniform, then so is B. By the M-LWEdk
n,d,d,q,U(S1) assumption,

[Id|A′]R mod qR in game G1 is εM-LWE-indistinguishable from B in game G2.
As a result, it holds that

|p1 − p2| ≤ εM-LWE. (7)

Forking. We now aim at bounding p2, using the general forking lemma recalled
in Lemma C.3. We use the forking algorithm FB of Algorithm C.1 around B
and we will invoke Lemma C.3. The input generator IG is defined by outputting
A = [Id|A′|B′] where [A′|B′]←↩ U(R

d×d(1+k)
q) and pp honestly generated (where

A′ is the same matrix as the one in pp). For clarity, we denote by A the matrix
[Id|A′]. We call acc the accepting probability of B, i.e., acc = p2, and frk the
forking probability from Lemma C.3. Hence, with probability frk, the two calls to
B, and in turn A (which are both oblivious to the fact they are being rewound),
return (j, out) and (j′, out′) with j = j′ ̸= 0 and hj ̸= h′

j . The output of FB is
in this case (1, out, out′). We now use out, out′ to construct a solution to M-SIS
on the matrix A.

By definition of the forking, we have that the random coins are the same up
to the forking index j. As a result, (f, i+) = (f ′, i+) and ei+ = hj ̸= h′

j = e′i+ .
Because f = f ′, this implies that pki = pk′i, v2,i = v′

2,i and mi = m′
i for all

i ∈ [N]. Additionally, due to the fact that ei+ is set before all the ei in the

57

queries to He, we have that ei = e′i for all i ̸= i+. Then, since sigagg and sig′agg
both verify, by definition of the reconstructed vectors v1,1,v

′
1,1 in Algorithm C.7

and v1,v
′
1, we have

Av1 +
∑
i∈[N]

ei(G−Bi)v2,i =
∑
i∈[N]

eiH(mi) mod qR

Av′
1 +

∑
i∈[N]

e′i(G−B′
i)v

′
2,i =

∑
i∈[N]

e′iH(m′
i) mod qR,

such that ∥v1∥2, ∥v′
1∥2 ≤ ws

√
N · 2nd. We call ∆e = ei+ − e′i+ . With the prior

observations, combining the above equations gives

A(v1 − v′
1) +∆e · (G−B)v2,i+ = ∆e · H(mi+) mod qR

We note that mi+ was not queried for a signature, but it must have been queried
to H (otherwise A would have had a negligible advantage to begin with). Hence,
Ts contains an entry (mi+ ,v

′′) where v′′ was generated as in game G2. Then,
v′′ verifies Av′′

1 + (G−B)v′′
2 = H(mi+) mod qR. We then obtain

A(v1 − v′
1 −∆e · v′′

1) +∆e · (G−B)(v2,i+ − v′′
2) = 0 mod qR,

which can be written Ax = 0 mod qR for

x =

[
v1 − v′

1
∆e · v2,i+

]
−∆e · v′′ ∈ Rd(2+k).

The adversary A does not know v′′ but only Av′′ mod qR which takes 2nd log2 q

possible values. By [DORS08, Lem. 2.2], the entropy of v′′ given Av′′ mod qR
is at least H∞(v′′) − nd log2 q. Since v′′ is sampled by the simulator, it holds
that v′′

1 ∼ DR2d,s and v′′
2 ∼ G−1(U(Rd

q)). As a result, H∞(v′′) = H∞(DR2d,s) +
nd log2 q. Then, by Lemma C.1, we have that H∞(DR2d,s) ≥ 2nd log2 s − 1 as
s ≥ ηδ(Z2nd) for some negligible δ > 0. We thus obtain that the entropy of v′′

given Av′′ mod qR is at least 2nd log2 s − 1 ≫ 4λ, and then that x = 0 only
with negligible probability. Finally, we have

∥x∥2 ≤
√
(∥v1∥2 + ∥v′

1∥2 + ∥∆e∥1∥v′′
1∥2)2 + (∥∆e∥1 · (

∥∥v2,i+
∥∥
2
+ ∥v′′

2∥2))2

≤
√
(2w · (

√
N + 1) · c′s

√
2nd)2 + (2w · 2(b− 1)

√
ndk)2

= β,

except with probability 2−4λ that is due to Lemma 2.1 and the definition of c′.
Therefore, x is a solution to M-SISn,d,d(2+k),q,β except with negligible probability.
Since we assumed that the hardness bound of the latter was εM-SIS, it thus hold
that

frk ≤ εM-SIS + negl(4λ) (8)

58

Combining Equation (8) with the result from the general forking lemma, we get

p2 = acc ≤ Qe

|C|
+
√

Qe(εM-SIS + negl(4λ)).

We can assume without loss of generality that Qe ≤ 2λ, and recalling that C
is chosen so that |C| ≥ 22λ, it holds Qe/|C| = negl(λ). Combined with Equa-
tions (5), (6), and (7), we get

Adv[A] ≤ N

(1− 1/Q)Q
·
(
εM-LWE +

Qe

|C|
+
√
QeεM-SIS

)
+ negl(λ),

as claimed. When εM-LWE and εM-SIS are negligible in λ and 3λ respectively, the
bound is indeed negligible as N

(1−1/Q)Q
≤ 4N = poly(λ) whenever Q ≥ 2.

C.5 Performance Evaluation

We now evaluate the performance of our aggregate signature compared to the
naive concatenation. For that we define the compression rate as

compression rate = max

(
0, 100 ·

(
1− |sigagg|
|concatenation|

))
%.

However, to obtain a fair comparison, we cannot simply compare the concate-
nation of signatures produced by Algorithm C.4 with the aggregate signature
output by Algorithm C.6. Indeed, in the case of a mere concatenation, the pa-
rameters used in Algorithm C.4 would not be optimal, one would instead use
those for single GPV signatures, as described in Section 4. We thus compare
below the size of an aggregate signature with the concatenation of signatures
generated with better parameters, tailored to the single signature use-case. Con-
cretely, although we use the same ring R = Z[x]/⟨xn + 1⟩, where n = 256, we
select the optimal parameters from Table 4.3, that is q ≈ 222.5, d = 6, b = 2,
s ≈ 362140 for single signatures, leading to signature size of |sigLW∗ | = 64461 bits
≈ 7.87 kb. Hence, the concatenation of N signatures results in a naive aggregate
signature of |concatenation| = N · |sigLW∗ | = N · 64461 bits.

We estimate the aggregate signature size for different values of N ranging
from N = 10 to N = 2000. The bit-size of the aggregate signature is given by

|sigagg| = nd(1/2 + log2(ws
√
N)) +N · nd⌈log2 q⌉.

The parameters of our scheme are set according to Setup (Algorithm C.2) with
Q = 240, where q, d and b are selected to guarantee sufficient security for the un-
derlying M-SISn,d,d(2+k),q,β and M-LWEdk

n,d,d,q,U(S1) problems aiming for λ = 128
using the methodology from Section A, while minimizing the aggregate signature
size. Since the parameters increase with N (typically the bound β), the values
of q and d will naturally depend on N accordingly. Hence, when N increases
the modulus q and rank d need to be increased to preserve the security of the

59

scheme, which results in lower compression rates. The higher N gets, the more
we would have to increase q and d, and we thus expect that passed a certain
threshold N the concatenation would become better than our aggregate signa-
ture. Nevertheless, in practical use cases of aggregate signatures the number of
signers stays in the low hundreds which in our case offer up to 10% compression
rate compared to the naive concatenation, as shown in Table C.1.

N 5 10 50 100 500 1000 2000

N · |sigLW∗ | 39.3 78.7 393.4 786.9 3934.4 7868.8 15737.6

(d, q) (6, 222.5) (6, 222.5) (6, 222.5) (6, 222.5) (6, 222.5) (6, 222.5) (6, 222.5)

|sigagg| 38.5 71.4 345.1 706.1 3615.8 7444.0 15319.1

(d, q) (7, 229.7) (7, 230) (7, 230.99) (7, 231.6) (7, 232.7) (7, 233.6) (7, 234.99)

Comp. Rate 2.26% 9.29% 12.29% 10.26% 8.10% 5.39% 2.66%

Table C.1. Comparison estimates of our aggregate signature and the concatenation
of LW signatures over module lattices. Sizes of N · |sigLW∗ | and |sigagg| are expressed
in KB. All the parameters are chosen for an M-SIS and M-LWE security of at least
λ = 128 bits in the Core-SVP model.

60

	Phoenix: Hash-and-Sign with Aborts from Lattice Gadgets
	1 Introduction
	1.1 Micciancio-Peikert Sampler
	1.2 Lyubashevsky-Wichs Sampler
	1.3 Our Contributions
	1.4 Organization

	2 Preliminaries
	2.1 Lattices
	2.2 Probabilities
	2.3 Algebraic Number Theory
	2.4 Hardness Assumptions

	3 Revisiting Trapdoor Sampling
	3.1 Micciancio-Peikert Preimage Sampling
	3.2 A More Flexible Preimage Sampler
	3.2.1 Description.
	3.2.2 Current Limitations.

	3.3 Improved Simulatability of Preimages.
	3.3.1 Gaussian Instantiation.

	4 Optimal Gadget Base and Sampler Performances
	5 Approximate Rejection Sampler
	6 A New Hash-and-Sign Scheme: Phoenix
	6.1 Adding Public Key Compression
	6.2 Description
	6.3 Security Analysis
	6.4 Concrete Parameters

	A Concrete Security Analysis
	A.1 Key Recovery: M-LWE
	A.2 Forgery: M-SIS or M-ISIS
	A.2.1 Solving M-SIS.
	A.2.2 Direct Forgery: M-ISIS.

	B Uniform Version of Phoenix
	B.1 Bounds and Uniform Approximate Rejection Sampler
	B.2 The Signature Scheme
	B.2.1 Security and Parameters.

	C Application: Lattice-Based Aggregate Signature
	C.1 Additional Preliminaries
	C.1.1 Algebraic Number Theory.
	C.1.2 General Forking Lemma.

	C.2 Aggregate Signature Schemes
	C.3 Our Construction
	C.4 Security
	C.5 Performance Evaluation

