
HAL Id: hal-04689199
https://hal.science/hal-04689199v1

Submitted on 4 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A rule-based multiscale model of hepatic stellate cell
plasticity: Critical role of the inactivation loop in

fibrosis progression
Matthieu Bouguéon, Vincent Legagneux, Octave Hazard, Jeremy Bomo, Anne

Siegel, Jerome Feret, Nathalie Théret

To cite this version:
Matthieu Bouguéon, Vincent Legagneux, Octave Hazard, Jeremy Bomo, Anne Siegel, et al.. A rule-
based multiscale model of hepatic stellate cell plasticity: Critical role of the inactivation loop in fibrosis
progression. PLoS Computational Biology, 2024, 20 (7), pp.e1011858. �10.1371/journal.pcbi.1011858�.
�hal-04689199�

https://hal.science/hal-04689199v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


RESEARCH ARTICLE

A rule-based multiscale model of hepatic

stellate cell plasticity: Critical role of the

inactivation loop in fibrosis progression
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Abstract

Hepatic stellate cells (HSC) are the source of extracellular matrix (ECM) whose overproduc-

tion leads to fibrosis, a condition that impairs liver functions in chronic liver diseases. Under-

standing the dynamics of HSCs will provide insights needed to develop new therapeutic

approaches. Few models of hepatic fibrosis have been proposed, and none of them include

the heterogeneity of HSC phenotypes recently highlighted by single-cell RNA sequencing

analyses. Here, we developed rule-based models to study HSC dynamics during fibrosis

progression and reversion. We used the Kappa graph rewriting language, for which we used

tokens and counters to overcome temporal explosion. HSCs are modeled as agents that

present seven physiological cellular states and that interact with (TGFβ1) molecules which

regulate HSC activation and the secretion of type I collagen, the main component of the

ECM. Simulation studies revealed the critical role of the HSC inactivation process during

fibrosis progression and reversion. While inactivation allows elimination of activated HSCs

during reversion steps, reactivation loops of inactivated HSCs (iHSCs) are required to sus-

tain fibrosis. Furthermore, we demonstrated the model’s sensitivity to (TGFβ1) parameters,

suggesting its adaptability to a variety of pathophysiological conditions for which levels of

(TGFβ1) production associated with the inflammatory response differ. Using new experi-

mental data from a mouse model of CCl4-induced liver fibrosis, we validated the predicted

ECM dynamics. Our model also predicts the accumulation of iHSCs during chronic liver dis-

ease. By analyzing RNA sequencing data from patients with non-alcoholic steatohepatitis

(NASH) associated with liver fibrosis, we confirmed this accumulation, identifying iHSCs as

novel markers of fibrosis progression. Overall, our study provides the first model of HSC

dynamics in chronic liver disease that can be used to explore the regulatory role of iHSCs in

liver homeostasis. Moreover, our model can also be generalized to fibroblasts during repair

and fibrosis in other tissues.
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Author summary

Chronic liver diseases (CLDs) are associated with the development of fibrosis which is

characterized by an abnormal deposition of extracellular matrix (ECM) leading to severe

liver dysfunction. Hepatic stellate cells (HSCs) are key players in liver fibrosis driving

ECM remodeling. However numerous biological processes are involved including HSC

activation, proliferation, differentiation and inactivation and novel computational model-

ing is necessary to integrate such complex dynamics. Here, we used the Kappa graph

rewriting language to develop the first rule-based model describing the HSCs dynamics

during liver fibrosis and its reversion. Simulation analyses enabled us to demonstrate the

critical role of the HSC inactivation loop in the development of liver fibrosis, and to iden-

tify inactivated HSCs as potential new markers of fibrosis progression.

Introduction

Liver fibrosis is an excessive wound healing response induced by chronic injuries, mainly

caused by viral hepatitis (HCV, HBV), alcohol abuse and non-alcoholic steatohepatitis

(NASH). Fibrosis is characterized by an accumulation of extracellular matrix (ECM) which

increases the stiffness of tissues, leading to severe liver dysfunction. The final stage of fibrosis,

cirrhosis, leads to complications such as ascites, variceal hemorrhage, encephalopathy and

hepatocellular carcinoma, and is associated with a high mortality rate worldwide [1]. Activa-

tion of hepatic stellate cells (HSCs) is the main process underlying hepatic fibrosis [2]. In a

normal liver, HSCs are quiescent, store vitamin A and are located in the Disse space between

hepatocytes and endothelial cells that delineate sinusoids. Upon liver injury, HSCs are acti-

vated and transdifferentiate into ECM-secreting myofibroblasts (MFB) that contribute to tis-

sue repair. In chronic liver disease, the inflammatory signal persists, leading to sustained HSC

activation, ECM accumulation and fibrosis [2–4]. Importantly, reversibility or regression of

liver fibrosis after elimination of the inflammatory agent has been observed in experimental

models and clinical studies [5, 6]. This phenomenon is associated with the elimination of myo-

fibroblasts, involving processes of apoptosis, senescence and inactivation, but the contribution

of each of these mechanisms to the repair/fibrosis balance remains unclear.

Understanding the behavior of HSCs during liver injuries requires multiscale modeling

approaches. Such approaches have been widely developed for modeling biological processes

[7] and diseases [8, 9]. Because fibrosis is a pathological tissue repair activity that occurs in dif-

ferent organs, unified approaches have been proposed by including common components

such as the inflammatory response and extracellular matrix remodeling [10]. However, each

tissue is characterized by specific cell microenvironments. Different multiscale models have

therefore been developed for cardiac [11] and pulmonary [12] fibrosis, and various approaches

have been used to model the progression of liver fibrosis. Among them, the agent-based

(ABM) multiscale model developed by Dutta-Moscato et al. [13] successfully reproduced the

experimental collagen deposition observed in carbon tetrachloride (CCl4)-induced fibrosis in

rats. The model integrated parenchymal cells, inflammatory cells, collagen-producing cells and

molecular regulatory agents, with rules defining the properties and interactions between all

agents. This model was then modified by preventing the migration of collagen-producing

cells, thus providing a more accurate dynamic of collagen deposition [14]. The Dutta-Moscato

model has also been extended and modified by Wand and Jiang [15] to include information

about lipid accumulation induced by CCl4 treatment, making it possible to study the progres-

sion of liver fibrosis in presence or absence of steatosis. In addition to these agent-based
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models, Friedman and Hao recently published a partial differential equation (PDE) model for

liver fibrosis that includes information on inflammation regulation and ECM remodeling,

enabling exploration of anti-fibrotic drugs [16]. Although instructive, all these models reduce

the dynamics of HSCs to their activation to become ECM-producing myofibroblasts, without

taking into account the plasticity of HSCs recently illustrated by large-scale single-cell analyses.

[17–19]. Among the complex behaviors of HSCs, the authors identified heterogenous cell phe-

notypes such as proliferating cells and ECM-producing cells. In addition the inactivation pro-

cesses remain poorly understood and information is lacking about the fate of inactivated HSCs

(iHSCs) during liver fibrosis and reversion. The present study aims to decipher HSC dynamics

by developing multiscale models which integrate for the first time all the HSC states during the

development of fibrosis and its reversion. The multi-state combinatorial nature of the cells

studied led us to choose a rule-based model (RBM) approach, much more appropriate for

dealing with this type of network. Among these formalisms, we selected the Kappa language

[20–22]. Using the Kappa language, our model describes the interactions between all cell pop-

ulations and molecules such as transforming growth factor β 1 (TGFβ1) which induces HSC

activation and promotes secretion of type I collagen, the major component of ECM [23]. We

validated the predicted ECM dynamics using new experimental data from a mouse model of

CCl4 induced liver fibrosis. Importantly, simulation studies demonstrated the regulatory role

of HSC inactivation loops during liver fibrosis and predicted the accumulation of inactivated

HSCs during chronic liver disease. By analyzing RNA sequencing data from 102 patients with

non-alcoholic steatohepatitis (NASH) associated with liver fibrosis, we confirmed this accu-

mulation, identifying iHSCs as novel markers of fibrosis progression.

Results

Three rule-based model families for HSCs dynamics

We integrated information based on literature, to describe HSC dynamics during liver fibrosis

and its reversion however the lack of some information led us to propose hypotheses and

finally to develop three different families of models. As shown in Fig 1A, the three families

share common processes involving the different states of HSCs regulated by TGFβ1. In normal

liver, HSCs are maintained in a non-proliferative quiescent state (qHSC) and store vitamin A.

Upon liver injury (virus, toxic, etc.), the inflammatory response leads to the production of

TGFβ1 which activates qHSCs into an activated state (aHSC). The fully activated HSCs are

characterized by a myofibroblast (MFB) phenotype. Upon removal of liver injury, i.e in the

absence of TGFβ1 in the models, MFBs are either eliminated through apoptosis and senes-

cence pathways (apop_sene_MFB) or reverted to an inactivated HSC state (iHSC) close to but

different from the quiescent state. Upon a new liver injury, i.e in the presence of TGFβ1 in the

models, the iHSCs are reactivated (react_HSCs). In the same way that HSCs transform into

MFBs, react_HSCs transform into reactivated MFBs (react_MFBs) however information is

lacking about the fate of these cells. To overcome this issue, we developed two families of mod-

els in which the react_MFBs are either i) completely eliminated by the apoptosis/senescence

pathways but not by inactivation, this family of models called reactMFB-wo-inactivation (wo

for without) is described in Fig 1A1), or ii) eliminated in the same way as MFBs, i.e. by the apo-

ptosis/senescence pathways and/or the inactivation pathway, this family of models called

reactMFB-with-inactivation is described in Fig 1A2).

Similarly to react_MFB, information is lacking about the fate of iHSCs. While the activation

of iHSCs by TGFβ1 has been described using in vivo and in vitro experiments [24, 25], no data

have been reported about the fate of iHSCs in the absence of TGFβ1. However, Kisseleva et al.
[24] showed a decrease in the iHSC population during the reversion process. We therefore
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developed a third family of models in which, in the absence of TGFβ1, iHSCs are either elimi-

nated or return to a quiescent state, thereby participating in the repopulation of the injured

liver with new qHSCs. This potential new source of qHSCs needs to be balanced with the self-

renewal of native qHSCs in order to restore HSC homeostasis in the repaired liver. This mod-

els in which iHSCs revert to a quiescent state constitutes the third family called iHSC-rever-
sion-to-qHSC which is illustrated in Fig 1A3.

Finally, we developed three families of models: reactMFB-wo-inactivation, reactMFB-with-
inactivation, iHSC-reversion-to-qHSC. The biological processes of all the models have been

integrated in Fig 1B, where the interactions between TGFβ1 and aHSC, react_HSC, MFB and

react_MFB cells leading to the induction of their proliferation and the production of COL1 are

indicated.

The three families of models were built using the Kappa rule-based language (see Methods

section) and simulations were performed using the KaSim tool [26] based on the Gillespie sto-

chastic simulation algorithm (SSA) [27]. In these Kappa models, the hepatic stellate cells are

the agents which are characterized by three sites (Fig 1C) which are: i) the cell_state of HSCs

(qHSC, aHSC, MFB, iHSC, react_HSC, react_MFB, apop_sene_MFB), ii) the TGFB1_binding
that can be free or bound and iii) the state of the TGFβ1 receptor (TGFBR) that can be

Fig 1. Three models to describe HSC dynamics. A1 Schematic representation of models reactMFB-wo-inactivation; A2 Models reactMFB-with-
inactivation and A3 Models iHSC-reversion-to-qHSC. (B) Schematic representation of Kappa-modeled processes in all models. HSCs are agents

characterized by seven cell physiological states (qHSC, aHSC, MFB, iHSC, apop_sene_MFB, react-HSC, and react_MFB). Rules describe the processes:

(1) qHSCs are activated into aHSCs, (2) aHSCs are transformed into MFBs, (3) MFBs are transformed into apop_sene_MFBs to be eliminated, (4)

MFBs are inactivated into iHSCs, (5) iHSCs are reactivated into react_HSCs upon TGFβ1 stimulation, (6) react_HSCs are transformed into

react_MFBs. Similarly to MFBs, react_MFBs are eliminated by apoptosis and senescence (3) or by inactivation (4). (7) aHSCs and react_HSCs

proliferate, (8) MFBs and react_MFBs proliferate, (9) aHSCs and react_HSCs produce COL1, (10) MFBs and react_MFBs produce COL1, (11)

apop_sene_MFBs are degraded, (12) iHSCs are degraded. (13) qHSCs self-renewal. The effect of TGFβ1 is represented by gray arrows, it induces the

activation of qHSCs, the reactivation of iHSCs, and the production of COL1 in aHSCs, react_HSCs, MFBs and react_MFBs. The reversion of iHSCs

into qHSCs are represented by a dotted arrow. (C) Kappa contact map. HSCs are agents with three sites: cell_state (qHSC, aHSC, MFB, iHSC,

react_HSC, react_MFB, apop_sene_MFB), TGFB1_binding (free or bound) and TGFBR (membrane, internalized or degraded).

https://doi.org/10.1371/journal.pcbi.1011858.g001
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localized at the membrane, internalized or degraded. In addition to these agents, we intro-

duced counters to scale the intermediate steps between cell states, and we used tokens to

describe TGFβ1 and COL1 quantities instead of detailing the behavior of each molecule,

thereby highly reducing the computational cost (see Methods section).

The reactMFB-wo-inactivationmodels contain 75 rules and 41 parameters. A rule for

react_MFB inactivation and two parameters controlling the proportion between inactivated

and eliminated react_MFB have been added to obtain the reactMFB-with-inactivationmodels,

containing 76 rules and 43 parameters. An additional rule for iHSC reversion and two other

parameters controlling the proportion between reverted and eliminated iHSC have been

added to obtain the iHSC-reversion-to-qHSCmodels. These rules are grouped into 7 biological

processes: 1) qHSC renewal, 2) binding of TGFβ1 to HSCs, 3) TGFBR dynamics, 4) HSC acti-

vation and differentiation, 5) HSC proliferation, 6) COL1 production and elimination and 7)

MFB inactivation (detailed in Methods section).

Inactivation loops of react_MFBs are essential to maintain COL1

accumulation during chronic liver injury

To identify the families of models that predict HSC behaviors and collagen accumulation that

fits with the experimental data from Kiesseleva et al. [24], we conducted simulation studies

using the protocol described by the authors for a mouse model of liver fibrosis and reversion,

i.e. twice-weekly CCl4 (TGFβ1 in the model) injections for 8 weeks and an overall reversion

period of six months. Observations reported by Kisseleva et al. [24] included a 1.43-fold

increase in cells expressing α-SMA and a* 14-fold increase in the percentage of COL1 depos-

its at 8 weeks and a return to initial values at 6 months after the last injection. In addition, the

authors assessed iHSCs/qHSCs ratios and identified a 50/50 distribution at one month and a

total number of HSCs similar to initial conditions at six months of reversion. As shown in Fig

2, most qHSCs (98%) were immediately activated upon the first stimulation of TGFβ1 across

all models, a small number (2±1%) of qHSCs persisting during the stimulation period. Activa-

tion of qHSCs led to the production of aHSCs that differentiated into MFBs. These cells

express α-SMA protein, and we tracked α-SMA positive cells by summing the occurrences of

aHSCs, MFBs, react_HSCs and react_MFBs. Note that even if the number of qHSCs and

iHSCs is low, they can be activated or reactivated by TGFβ1 during repeated stimulation for

two months. In line with this observation, Rosenthal et al. [28] recently suggested that iHSCs

remain at a low level even during the activation phase. Comparison of the models showed that

the react_MFB inactivation loop greatly affects model behavior. When inactivation of

react_MFBs was not allowed (models reactMFB-wo-inactivation)(Fig 2A), we observed a lower

amount of α-SMA expressing cells (0.8-fold±0.02) and of COL1 deposits (9.5-fold±0.16) than

expected at 8 weeks, with amounts even decreasing before stimulation was stopped. Con-

versely, when inactivation of react_MFBs was allowed (models reactMFB-with-inactivation)

(Fig 2B, 2C and 2D) we observed an accumulation of α-SMA expressing cells and COL1

deposits that varied according to the percentage of react_MFB inactivation. While 5% allows

the model to fit with experimental observations (red circle in Fig 2), increasing the percentage

to 10 and 50% led to higher amounts of α-SMA expressing cells (1.6-±0.05 and 5-fold±0.03,

respectively) and COL1 deposits (16-±0.36 and 40-fold±0.16, respectively) at 8 weeks. Only

the model with 5% of react_MFB inactivation led to a 50/50 distribution of the iHSCs/qHSCs

ratio at one month and a return to the initial total number of cells at six months of reversion,

as described in the experimental data [24].

Based on the models reactMFB-with-inactivation parameterized with 5% of react_MFB

inactivation, we next evaluated the impact of a potential reversion of iHSCs to a quiescence

PLOS COMPUTATIONAL BIOLOGY A rule-based multiscale model of hepatic stellate cell plasticity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011858 July 29, 2024 5 / 29

https://doi.org/10.1371/journal.pcbi.1011858


Fig 2. Time-course analyses of cells and COL1 in models without or with react_MFB inactivation. A series of simulations was performed using

conditions of stimulation reported in Kisseleva et al. [24]. We used 10,000 TGFβ1 molecules per cell and 16 stimulations (twice a week) during 2

months. A1 Models reactMFB-wo-inactivation. B1 Models reactMFB-with-inactivation in which 5% of react_MFBs are inactivated. C1 Models

reactMFB-with-inactivation in which 10% of react_MFBs are inactivated. D1 Models reactMFB-with-inactivation in which 50% of react_MFBs are

inactivated. Stimulation of cells with TGFβ1 started on day 4 to allow the model to equilibrate. A2,B2,C2 and D2 display the variation in the number of

cell occurrences for qHSCs, aHSCs, MFBs, iHSCs, react_HSCs, react_MFBs and α-SMA positive cells. The number of α-SMA cells is the sum of the

number of aHSCs, MFBs, react_HSCs and react_MFBs. Simulations are expressed as the mean of 10 replicates. A3, B3, C3 and D3 display the variation

of COL1% area. Simulations are expressed as arbitrary unit (a.u) and all 10 replicates are represented. The red circles indicate the biological

observations reported in [24]. From left to right (A2,B2,C2 and D2), the first circle is for an 1.43-fold increase in cells expressing α-SMA at 8 weeks, the
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state. As described in these new models iHSC-reversion-to-qHSC, we observed that regardless

of the percentage of reversible cells, the overall behavior of the other model components was

not affected (see S1 Fig).This may be due mainly to the slow dynamics of iHSCs elimination

and quiescent cell renewal, which limit the impact of reversion. We have discarded this model,

which was developed on the hypothesis of iHSC reversion but without any supporting experi-

mental observations.

Taken together, our data demonstrate that inactivation of react_MFBs is required to sustain

COL1 accumulation by maintaining the level of α-SMA expressing cells, thus validating the

models reactMFB-with-inactivation. Simulation analyses allowed us to determine that a 5%

ratio between reac_MFB inactivation and apoptosis_senescence pathways reflected the cells

and COL1 behaviors seen experimentally. Regarding iHSCs, our observations suggest that

complete reversion of iHSCs to a quiescent state is a potential pathway to eliminate iHSC in

the absence of TGFβ1. Since the outcome generated by the models iHSC-reversion-to-qHSC, in

which iHSCs can revert to qHSCs was similar to the one obtained in the models reactMFB-
with-inactivation (S1 Fig) we chose to retain the latter for the rest of the analyses.

Collagen I accumulation is sensitive to the dynamics of TGFβ1 stimulation

Our models are calibrated using experimental data from a mouse model of CCl4-induced

fibrosis [24], a reproducible experimental model widely used to study fibrosis and repair [29].

Although the protocols vary somewhat in terms of the number, frequency and modalities of

CCl4 injections, these experimental models induce similar liver fibrosis. Other experimental

models of induction of liver fibrosis in rodents have been developed, including injection of

other chemical agents (such as thioacetamide (TAA) and dimethylnitrosamine (DMN)), high-

fat diets and surgical interventions (such as bile duct ligation) [30, 31]. Whatever the etiology,

induced damages lead to TGFβ1-dependent activation of HSCs, but with variable dynamics. It

can happen very quickly in a model induced by CCl4 or slower in a model induced by a fatty

diet. To explore the sensitivity of our validated model reactMFB-with-inactivation, we varied

the concentration of TGFβ1 and the number and periodicity of stimulations. As shown in Fig

3, the model was highly sensitive to the amount of TGFβ1, but this sensitivity varied with the

number of stimuli and periodicity, particularly for TGFβ1 values lower than 10,000 molecules

per cell. Beyond that, the number of molecules exceeded the number of receptors per cell, and

the model became saturated, as shown by the superposition of kinetic curves at 10,000 (green)

and 100,000 (yellow) molecules per cell. At lower TGFβ1 levels, collagen accumulation was

much more subtle. When stimulations were spaced sufficiently far apart, collagen levels

returned to baseline and, remarkably, we observed a much stronger induction upon second

stimulation, particularly at doses of 10,000 and 100,000 molecules per cell (Fig 3A, periodicity

30 and 60 days). This induction of collagen 1 was less pronounced at low doses, but increasing

the number of stimuli (Fig 3B, periodicity 180 hours and 15 days) showed that collagen contin-

ues to accumulate with each new addition of TGFβ1 at the dose of 1000 molecules per cell,

whereas it decreased for doses 10,000 and 100,000 molecules per cell. This effect remained visi-

ble for a larger number of stimulations (Fig 3C, periodicity 180h and 15 days and Fig 3D, peri-

odicity 90h and 180h).

second circle is for an equal proportion of iHSCs and qHSCs at one month of recovery and the third circle is for an equal number of cells at 6 months

and of cells at T0. The circle for COL1 simulations (A3, B3, C3 and D3) is for a* 14-fold increase in the percentage of COL1 deposits at 8 weeks.

https://doi.org/10.1371/journal.pcbi.1011858.g002
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Model predictions validated by new experimental data in mice

To evaluate the model predictions, we analysed COL1 accumulation in a mouse model of

CCl4 induced liver fibrosis. For the quantification of collagen deposits, we used second har-

monic generation (SHG) microscopy which we have previously demonstrated to quantify

Fig 3. Time course analysis of COL1 as a function of the variation in TGFβ1 concentration, number and periodicity of stimuli. Results are

expressed as the number of occurrences of COL1 according to the number of TGFβ1 stimuli: (A) 2, (B) 4, (C) 8, (D) 16, (E) 32, the periodicity which

varies from 22.5 hours to 60 days and the concentration of TGFβ1: 10 (Red), 100 (Blue), 1,000 (Purple), 10,000 (Green) and 100,000 (Yellow) molecules

per cell. The first stimulation occurs at day 4. Simulations are expressed as the mean of 5 iterations. P, Periodicity.

https://doi.org/10.1371/journal.pcbi.1011858.g003
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fibrillar collagen in human [32] and mouse [33] livers. Note that the global evaluation of colla-

gen deposits using Sirius red [24] and SHG microscopy may overestimate the contribution of

HSCs since other cells can contribute to liver fibrosis such as portal fibroblasts and bone mar-

row-derived cells [34]. However, HSCs have recently been shown to be the exclusive source of

myofibroblasts in CCl4-treated liver [35] which is why we chose data from CCl4-induced liver

fibrosis to calibrate our model. As shown in Fig 4A, we compared the signal quantification

data obtained by SHG microscopy in our experimental model with the simulation data. Our

experimental data showed maximum accumulation of collagen after 6 weeks and stabilization

at a lower level at 8 and 10 weeks after treatment (Fig 4A1). In tissue samples from mice that

have undergone the reversion protocol, the SHG signal shows a decrease in COL1 at 8 weeks

after CCl4 removal (Fig 4A2). For the simulation studies, TGFβ1 parameters were adapted to

the experimental protocol, i.e. three TGFβ1 stimuli in the first week and one stimulus per

week for ten weeks. CCl4 induces rapid hepatocyte damages leading to inflammation and

TGFβ1 production that we modeled using saturating TGFβ1 quantities (10,000 molecules/

cell). As shown in Fig 4B1, the predicted curves for COL1 accumulation reached a maximum

value similar to the experimental data, then at 8 and 10 weeks, the stabilization plateau was

slightly higher in our simulation. Regarding the reversion protocol, the predicted curves for

COL1 are in full agreement with the experimental data (Fig 4B2).

We also validated the prediction of COL1 dynamics using experimental data from other

laboratories, including liver fibrosis models induced by dimethyl_nitrosamine [36] and thioa-

cetamide [37]. Results are presented in (S2A and S2B Fig).

Fig 4. Comparison of model predictions and experimental data obtained in a mouse model of CCl4 induced liver fibrosis. A1 Representative SHG

microscopy images of collagen in mouse livers after 2, 4, 8 and 10 weeks of CCl4 treatment. A2 For the reversion experiments, treatment was stopped at

week 4. A3 Collagen quantification was performed with ImageJ and results are expressed as percentage of SHG signal relative to total area (Mean ± SD).

B1, Model simulations were performed using parameters corresponding to the CCl4 injection protocol (three TGFβ1 stimuli in the first week and one

stimulus per week for ten weeks). Collagen accumulation was plotted and experimental data (from A1) are indicated with black bars. B2, Model

simulations were performed using parameters corresponding to the reversion protocol (three TGFβ1 stimuli in the first week and one stimulus per

week for 4 weeks). Collagen accumulation was plotted and experimental data (from A1) are indicated with blue bars.

https://doi.org/10.1371/journal.pcbi.1011858.g004
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iHSC accumulation is associated with human liver fibrosis

A major observation by Kisseleva et al. [24] is that the fibrotic response is exacerbated in mice

that have undergone an initial chronic aggression followed by a reversion period allowing a

return to a healthy tissue phenotype. This was associated with the presence of inactivated stel-

late cells (iHSCs) which display an enhanced response to TGFβ1 when stimulated in cell cul-

ture, leading to faster and greater production of COL1 [24, 25, 38]. These iHSCs would

therefore still be present in the “repaired” liver after six months of reversion. To take this into

account, we calibrated our models reactMFB-with-inactivation on Kisseleva’s observations

et al. [24] after the second aggression by introducing the hypothesis of a slow elimination of

iHSCs. However, there is no experimental data describing the fate of these cells during aggres-

sion/reversion cycles. Using the relapse protocol described by Kisseleva et al. [24], we studied

the behavior of iHSCs throughout injury-repair cycles. This protocol includes chronic injuries

induced by eight CCl4 injections over one month, followed by a six-month recovery period,

and then a new injury similar to the first. We repeated this cycle three times (Fig 5).

Our simulations show that the dynamics of α-SMA expressing cells and amounts of COL1

were consistent with Kisseleva’s et al. [24] experimental observations, i.e. higher levels of these

two markers after the second aggression compared to the first one (Fig 5A and 5B, cycles 1, 2).

Importantly, the model allowed us to detail the dynamics of iHSCs that was not experimentally

evaluated, and we observed an increased number of iHSCs (Fig 5C, cycles 1, 2). When the

aggression/reversion cycles were repeated, we showed an accumulation of iHSCs that was asso-

ciated with that of α-SMA expressing cells and COL1 (Fig 5A, 5B and 5C, cycles 3, 4). The

increased number of iHSCs may result from the balance between the higher number of α-SMA

expressing cells leading to the inactivation of more iHSCs and the half-life of iHSCs. On the

basis of these observations, the model predicts a progressive accumulation of iHSCs during

cycles of aggression/reversion, suggesting a critical role for iHSCs in the dynamics of fibrosis,

with accumulated iHSCs constituting a source of COL1 overproducing cells during reactivation.

To validate this prediction, we searched for iHSC accumulation in samples from patients

with liver fibrosis. To this end, we analyzed RNAseq data from a large multicenter study com-

prising 206 histologically characterized liver samples from patients with non-alcoholic fatty

liver disease (NAFLD) including 102 patients with non-alcoholic steatohepatitis (NASH) asso-

ciated with liver fibrosis [39]. Patients were divided in two groups: with low (F0-F1, n = 34)

and high (F3-F4, n = 68) fibrosis grades. To identify iHSCs in human liver samples, we used

an iHSC gene expression signature reported by Rosenthal et al. [28] in a mouse model of non-

alcoholic steatohepatitis (NASH). This signature contained 39 genes that were significantly dif-

ferentially expressed in iHSCs when compared to both qHSCs and aHSCs. In addition, we

used 10 iHSC gene markers identified in a mouse model of CCl4-induced liver fibrosis [24]

and validated in an in vitro reversion model of human activated cells [38]. The list of these

genes is detailed in S1 Table.

As shown in Fig 6A, gene set enrichment analyses (GSEA) using the signature identified by

Rosenthal et al. [28] showed that iHSC genes were collectively enriched in the high fibrosis

group compared to the low fibrosis group (normalized enriched score = 1.38, p-value = 0.097).

We performed a new analysis, adding the 10 marker genes identified by Kisseleva et al. and El

Taghdouini et al. [24, 38] to the list of genes identified by Rosenthal et al. [28]. As shown in

Fig 6B, this additional set of genes increased the statistical power of the GSEA analysis (nor-

malized enriched score = 1.57, p-value = 0.048), suggesting that the expression of this iHSC-

specific gene set is increased in patients with high fibrosis. These observations are in line with

the increase in the number of iHSCs predicted by our model, during the progression of hepatic

fibrosis.
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Fig 5. iHSCs accumulate during injury-repair cycles. Simulations were performed using repeated cycles comprising

a first injury cycle (8 injections twice a week for 1 month), followed by a 6-month recovery period and a second injury

cycle as previously described by Kisseleva et al. [24]. Simulations are expressed as the mean of 50 replicates for cells

(A), and all 50 replicates have been represented for COL1 (B) and iHSCs (C). Overlaps are shown as grey area.

https://doi.org/10.1371/journal.pcbi.1011858.g005
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Fig 6. iHSC accumulation is associated with liver fibrosis. Gene set enrichment analyses of iHSC gene expression

was performed in low fibrosis (F0-F1, n = 34) and high fibrosis (F3-F4, n = 68) samples from patients with non-

alcoholic steatohepatitis (NASH) ([39]). A) Analysis performed with the iHSC gene signature identified by Rosenthal

et al. [28]. B) Analysis performed with the iHSC gene signature identified by Rosenthal [28], supplemented by ten

iHSC markers identified in [24, 38]. Results are presented in the form of correlation profiles between gene lists,

enrichment scores (ES) which indicate to which phenotype (low or high fibrosis) the gene set is most positively

correlated and heat maps visualizing clusters and gene distribution.

https://doi.org/10.1371/journal.pcbi.1011858.g006
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Discussion

Regardless of the underlying etiology, all chronic liver diseases are associated with the develop-

ment of hepatic fibrosis, which is a major public health issue. Understanding the dynamics of

hepatic fibrosis and its reversion is essential for the clinical management of patients and the

adaptation of therapies. A pivotal process in the development of hepatic fibrosis is the

TGFβ1-dependent activation of hepatic stellate cells whose plasticity is now widely recognized

[40, 41]. Here, we investigated HSC plasticity by developing a multiscale model using a rule-

based language. We provided the first model to describe the dynamics of HSCs during liver

fibrosis and its reversion, demonstrating the importance of inactivated cells in these processes.

Kappa, a language adapted to multiscale modelling

While ordinary differential equations (ODEs)-based models have long been used to model bio-

logical dynamics, rule-based models (RBM) are much more appropriate for dealing with net-

works with combinatorial multi-state interactions as discussed by Chylek et al. [42]. Indeed,

ODE approaches require the implementation of an equation for each species. Agent-based

models (ABM), while more appropriate for bottom-up approaches than ODEs, require a

description of all possible behaviors of agents. Common ABM approaches are based on the

object-oriented paradigm [43] or process calculi [44].

In the case of our model, the single agent has 4 sites, some of which have 8 or 14 different

states. Using an ABM approach would have exploded the number of rules (* 300) in the

model to describe the 39 possible agent states. RBM approaches were therefore the most

appropriate to represent the known interactions operating on stellate cells during fibrosis

development and reversion. Based on site graph rewriting, BioNetGen [45] and Kappa [21, 22]

are the two major languages used for RBM implementation and simulation.

Kappa formalism has been widely used for modeling biological reaction networks such as cell

signaling [46], gene regulation [47], epigenetic regulation [48], repressilator system [49] and

DNA repair [50]. Using Kappa language, our team previously developed a model to describe the

regulatory role of extracellular matrix networks in TGFβ1 activation [51]. The transition from

molecular to cell-molecule interaction models has been a new challenge, and we have recently

demonstrated the applicability of the Kappa language in multi-scale modeling [52]. However, to

overcome the explosion in memory demand due to the declaration of molecules and cells as

agents, we have used tokens and counters. The way tokens are stored in memory and the absence

of explicit bond with agents considerably reduces the computational cost associated with the

existence of different scales in the model. This involves the use of hybrid rules between agent

and tokenwhose applicability has been demonstrated in our model. Counters allowed a more

detailed description of the activation and differentiation states of HSCs by creating intermediate

steps and cell behaviors depending on their activation/differentiation stage, that better reflects

experimental observations. Moreover, counters allow to model phenomena that the duration of

which is more predictable than chemical interactions. With time-exponentially distributed

event, there is only one parameter: standard deviation which is fully characterised by the average

time. Erlang distributions provides a mean to narrow the distribution hence leading to events

which are more predictable (and which corresponds from a mathematical point of views to the

composition of several atomic events following time-exponential distributions).

In short, counters and tokens are key to multiscale modelling in Kappa. Tokens enable a more

compact representation of agent populations, counters enable a more compact representation of

site populations, with both facilitating the search and abstraction of potential rule applications.

To our knowledge, beside a model of pulmonary viral infection by William Waites [53], our

study is the first one where counters and tokens have been used in a Kappa model.
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A unique fibrosis model for different etiologies

While the role of TGFβ1 in HSC activation is well established, our model showed how its con-

centration, the number of stimuli and their periodicity influence the dynamics of liver fibrosis.

These observations underline the adaptability of the model to the different pathophysiological

conditions associated with the development of fibrosis. In murine models of liver fibrosis

induced by chemical compounds such as CCl4, the toxic effect is massive, with strong hepato-

cyte necrosis, exacerbated inflammatory response and a saturating release of TGFβ1. In other

models, such as diet-induced fibrosis, the immune response is different and fibrosis progresses

more slowly. Sensitive to small variations in TGFβ1, our model reproduces the collagen accu-

mulation observed in these different fibrosis mouse models. Similarly, the response to liver

injury in human is etiology-dependent and may affect the dynamics of HSC activation. In con-

trast to chemical models, diet-induced fibrosis models developed to mimic the progression

of NAFLD to non-alcoholic steatohepatitis (NASH) are characterized by a lower level of fibro-

sis. In addition, the dynamics of fibrosis are highly variable depending on the rodent strain

and diet composition. Moreover, the optimal model of steatohepatitis leading to fibrosis (cho-

line_deficient, amino_acid defined diet) is poorly reversible [54]. To overcome this heteroge-

neity, we chose a reversible diet model [55] which we compared with model predictions. We

set the parameters of TGFβ1 to low levels (4500 molecules/cell, 6 stimuli and a periodicity of

14 days). As shown in supplementary Fig S2-C, the model captured the increase in COL1 but

reversion dynamics were too fast, suggesting that for this condition the model requires addi-

tional regulators.

A model to capture stellate cell heterogeneity and microenvironment

remodeling

Recent single-cell studies have demonstrated the great heterogeneity of HSCs and MFBs dur-

ing the development of fibrosis [17, 28, 56]. These works also show that, in addition to a diver-

sity of phenotypes, the dynamics of HSCs during their activation and differentiation process

are far from linear, as shown by pseudotime analyses [57, 58]. Our approach manages to

model this heterogeneity by introducing intermediate steps in the activation and differentia-

tion process, and allowing cells in each of these states to proliferate, progress through the acti-

vation process and produce COL1. The implementation of these rules combined with the SSA

algorithm (Stochastic Simulation Algorithm) means that, at each point in the simulation, there

are different phenotypes and a ‘unique’ history is kept for each agent.

However, modelling HSC dynamics does not capture the full complexity of the microenvi-

ronment that governs these dynamics such as the multitude of events regulated by immune

cells. Other multiscale models include the role of Kupffer cells in HSC activation via TNF-α
[13, 15] or antagonistic regulation by M1 and M2 macrophages [16]. Similarly, it is difficult to

include all the components involved in extracellular matrix remodeling. This process is finely

regulated by the balance between the production of matrix metalloproteinases (MMPs) and

their inhibitors, Tissue Inhibitor of metalloproteinases (TIMPs), both secreted by HSCs,

MFBs, but also by immune cells involved in the resolution of fibrosis [59–61]. In their model,

Friedman & Hao [16] reduced ECM remodeling to the sole contribution of macrophages and

did not take into account the known role of HSCs at all. To overcome this molecular and cellu-

lar complexity while keeping remodeling process into our own model, we introduced tokens to

represent low and high remodeling COL1. In this way we modeled both collagen accumulation

during TGFβ1 stimulation and its regression upon TGFβ1 withdrawal.
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Inactivation of reactivated MFBs, a critical factor in the progression of

fibrosis

The process of inactivating HSC-derived MFBs has been presented as a key element in the

reversion of fibrosis enabling the elimination of * 50% of MFBs [24, 25]. The authors have

shown that the inactivated cells can be reactivated both in vivo and in vitro in response to a

new stimulus, and that they are much more reactive and fibrogenic than initially activated cells

[24, 38]. However, the fate of these reactivated cells remained unknown, leading us to hypothe-

size a potential re-inactivation of these reactivated cells. Our results showed that the inactiva-

tion of these cells was essential to maintain COL1 accumulation in chronic lesions, but that

this inactivation had to be limited. Indeed, our models have shown that 5% of reactivated

MFBs should be inactivated, experimental observations are no longer respected when using

higher percentages of reactivated MFBs. This loop of inactivation and reactivation induces a

change in the MFB population. As lesions accumulate, cells inactivated between aggressions

are reactivated, resulting in a population of reactivated MFBs that becomes the majority and

more fibrogenic cells. In support of these predictions, single-cell sequencing data identified

these ECM-producing MFB phenotypes with increase fibrogenic activity [28].

Reversion of inactivated stellate cells to a quiescent state as an alternative

to cellular elimination

Although the existence of iHSCs has been supported by several studies, their behavior is not

yet well understood. These cells have a phenotype close to that of quiescent cells, but retain the

memory of their previous activation [24, 38]. However, the fate of iHSCs in the absence of

reactivation stimuli remains unknown. The development of our models enabled us to observe

that the reversion of these iHSCs to a quiescent state, regardless of the percentage of cells

affected, did not impact the overall behavior of the other components. This may be due mainly

to the time required for the elimination of iHSCs and the renewal of quiescent cells, which is

particularly slow in our models. This dynamic limits the impact of reversion. It is also possible

that these cells have a faster elimination dynamic, but that this is compensated by a prolifera-

tion capacity, thus slowing down their elimination and increasing the impact of potential

reversion. As it stands, our models suggest that the complete reversion of iHSCs to a quiescent

state is a potential means of eliminating them in the absence of TGFβ1. Experimental follow-

up of these cells over reversion times of more than one month would provide more precise

information on their fate.

Inactivated HSCs as new markers of fibrosis progression?

The accumulation of iHSCs during fibrosis is a very important concept from a clinical perspec-

tive, as the progression of fibrosis is not at all linear. iHSCs within tissues could act as a kind of

memory of an initial injury, making the tissue more sensitive to the next injury. Of course, this

memory facilitates rapid repair, but the recurrence of these repair episodes, if too close

together, accelerates the progression of fibrosis. Although our model is not fully adapted to fol-

low the dynamics of the mouse NASH model due to the slow release of diet-induced TGFβ1,

we showed that the observation of iHSC accumulation is supported by the enrichment of

iHSC gene signature in NASH patients with increased fibrosis.

Identifying inactivated cells in vivo would provide a genuine marker of patient history.

However, this identification remains complex due to the intermediate phenotype of these cells,

between quiescent and activated state. There is as yet no established phenotypic signature for

inactivated cells, and gene expression signatures vary according to the mouse models used
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(NASH, CCl4). These phenotypic signatures depend both on the time of reversion and on the

methods used to identify them, depending on whether their expression is compared with that

of quiescent cells and/or activated cells. Recent advances in single-cell sequencing will enable

us to refine these signatures by characterizing more specific groups of genes.

Conclusion

The present study provides two major findings. First we have demonstrated the applicability of

the Kappa language to multi-scale approaches by using: tokens, to represent the quantities of

molecules in a compact way, and counters to abstract the dynamics of cell-specific phenotypes.

Second, we developed the first model of HSC dynamics during liver fibrosis and reversion.

Thus, our model provides biological predictions for the reactivation loop, the dynamics of

inactivated cells and their accumulation during fibrosis progression. These predictions have

been validated either experimentally in a mouse model of CCl4-induced fibrosis, or using

RNA sequencing data from patients with fibrosis.

Materials and methods

Kappa syntax

Kappa is a site graph rewriting language [62–65] that uses a chemistry-inspired syntax to trans-

parently describe the interactions between component occurrences. The syntax used by Kappa

is that of site graphs, using rules to describe the behavior of agents over time. An agent

describes species (e.g. cells, proteins) and defines the characteristics of these species. Rules

define both the interactions between agents and their behavior. Agents are described by one or

more sites which can have different states. These states allow agents to establish links between

themselves. A rule describes a process that sets a condition (left-hand member) and an event

(right-hand member). All the elements at the left of the! are the elements needed for the rule

to be applied, the elements at the right are what will be produced. In the following example,

two agents A and B interact to form a complex AB.

Aðxfpg; y½:�Þ; Bðy½:�Þ ! Aðxfpg; y½1�Þ; Bðy½1�Þ@ 0k0 ð1Þ

The agents A and B and their respective sites are written as: Agent_name(site_name{state_va-
lue}[binding_state]). The agent A has its site x in a state p and its site y free ([.]), and the second

agent B has it site y free. A and B will bind together via their site y. The symbol @ is followed by

the expression that defines the rate of each potential application of the rule in the state of the

system. That is to say the probability that a potential event effectively occurs within an infinites-

imal interval of time.

Simulating models in which agents have to be explicitly bound to other agents can be com-

putationally expensive. Instead, such bounds can be described implicitly. To this aim, the bind-

ing state of the binding site in an agent A can be encoded as an internal state which specifies

whether the site if free, or bound. In the latter case, the site to which this site is bound to is not

specified. Then the amount/quantity of agent B remaining is encoded by the means of a token.

Consequently, Tokens constitute a pool of variables enabling the description of abundant

molecular species in a continuous manner. Their use allows us to resolve the memory limita-

tion caused by declaring molecular species as an agent. If a token such as ATP is added to the

rule 1, the following rule is obtained (rule 2), where the binding of A and B requires ATP.

What stands between | and @ defines the quantity of token to be deleted or added (2) when the

rule is applied. Because the binding of A and B depends on the amount of ATP, the rate of the
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rule has to be modified to include the quantity of ATP, written as |ATP|.

Aðxfpg; y½:�Þ; Bðy½:�Þ ! Aðxfpg; y½1�Þ; Bðy½1�Þ j � 100ATP0@ jATPj∗0k0 ð2Þ

Models in which agents have numerous states require many rules to describe the changes

between these states. Instead of describing all these states using numerous rules, it may be suf-

ficient to know the number of steps to follow a process, requiring only a few rules, by increas-

ing the step index. With counters, we can use discrete intervals to describe a special type of site
which can be increased or decreased in the rules. In the following example (rule 3), A has a site
called n, which is a counter that counts the number of bonds that can be formed by A during

its lifetime in the system. This new rule allows A to bind to B as long as the value of n for A is

greater or equal to one. When a bond is formed, the value of n decreases by one.

Aðxfpg; y½:�; nf� 1gÞ; Bðy½:�Þ ! Aðxfpg; y½1�; nf� ¼ 1gÞ; Bðy½1�Þ@ 0k0 ð3Þ

However, the current syntax of Kappa cannot allow to test whether the value of a counter is

inferior to a given value (i.e., the “<” symbol is not supported). To overcome this limitation, it

is necessary to use two counters whose sum remains constant. This syntactic limitation is over-

come in the new version of Kappa (which internalises the use of pairs of counters to deal with

less than inequality tests).

Modeling HSC dynamics

Using Kappa rules, we described HSC dynamics by including various biological processes

such as the activation of quiescent HSCs (qHSC) by TGFβ1 leading to activated HSCs (aHSC),

the transdifferentiation of aHSCs into Myofribroblasts (MFB), the elimination of MFBs after

removal of TGFβ1 either by apoptosis and senescence pathways (apop_sene_MFBs) or by

reverting to an inactivated state (iHSC), the reactivation of iHSCs upon new TGFβ1 stimula-

tion leading to reactivated HSCs (react_HSC) and the transdifferentiation of react_HSCs into

reactivated MFBs (react_MFB). We also used rules to describe cell proliferation and produc-

tion of collagen (except for qHSCs and iHSCs). In these models, HSCs are agents characterized

by 3 sites: i) the cell state of HSCs (qHSC, aHSC, MFB, iHSC, react_HSC, react_MFB, apop_se-

ne_MFBs), ii) the TGFB1 binding (free or bound) and iii) the state of the TGFβ1 receptor

(TGFBR) that can be localized to the membrane, internalized or degraded. We introduced a

pair of counters (called intermediary-step and control_counter) to scale the intermediate steps

between cell physiological states, and we used 4 tokens to describe TGFβ1 and collagen mole-

cules. The resulting families of models contained 75 to 77 rules and 37 to 41 parameters,

depending on families. All rules are available in the GitHub repository: https://github.com/

MBougueon/HSC_model_Kappa. We detailed here the representative rules of the biological

processes. These rules are given in graphic form for easier reading.

qHSC renewal. qHSC renewal is modeled using two rules (Fig 7). These rules take into

account the fact that the site TGFB1_binding on qHSCs must be free, since binding of TGFβ1

induces activation into proliferating HSC.

TGFβ1 binding to cells. To describe the interaction of TGFβ1 with HSCs, 7 different

rules are used according to the cell state. Fig 8 shows the binding rule of TGFβ1 to qHSCs.

Only the site cell_state of the agent differs between these rules, except for MFBs and

react_MFBs, where the rule rate is decreased. The fact that each agent can bind TGFβ1 intro-

duces competition between agents for the binding of TGFβ1.

Turnover of TGFBR. The endocytic pathways regulating TGFBR receptor signaling and

turnover has been previously described by Di Guglielmo et al. [66] and modeled by Zi et al.
[67]. During this process, TGFβ1 binding to TGFBR2 induces the recruitment of TGFBR1,
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leading to the activation of signaling pathways that regulate TGFβ1-dependent processes such

as COL1 expression and cell proliferation. The trafficking of the TGFBR1/TGFBR2 complex

between membrane and cytosol takes 30 min and is not affected by TGFβ1 binding. In the

present study, we used TGFBR to represent the TGFBR1-TGFBR2 complex and we did not

describe the intracellular signaling mechanisms. Upon TGFβ1 binding, the receptor TGFBR is

internalized to transduce signals and can be either recycled (Fig 9A) or degraded (Fig 9B). To

Fig 7. Renewal of quiescent HSCs. An agentHSC with its site cell_state in a state quiescent and its site TGFB1_binding
in a state free disappears (degradation). Conversely, the second rule describes the creation of this same agent. The rate

of application of each rule is shown on the right.

https://doi.org/10.1371/journal.pcbi.1011858.g007

Fig 8. Binding of TGFβ1. Binding of TGFβ1 (as a token TGFB1_free) on the site cell_state of anHSC agent in a quiescent state, its TGFB1_binding site

is in a free state and its TGFBR site is in aMembrane state. When the rule is fired, the value of the token TGFB1_free is decreased and the state of the site

TGFB1_binding changes to bound and the state of the site TGFBR changes to Internalized.

https://doi.org/10.1371/journal.pcbi.1011858.g008

Fig 9. Degradation and recycling of the TGFβ1 receptor. (A) The TGFBR site in an Internalized state changes into a

Membrane state for the recycling rule, (B) and into a Degraded state for the degradation rule.

https://doi.org/10.1371/journal.pcbi.1011858.g009
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reduce model and time of calculation, the basal turnover of the receptor is not included in the

absence of TGFβ1. To model TGFBR synthesis and localization to the membrane, a rule simi-

lar to the rule for degradation is used, changing the site TGFBR from the state degraded to

membrane.
HSC activation and differentiation. During activation and differentiation, cells have the

potential to proliferate and produce COL1 (in variable quantities depending on their activation

and differentiation state). However, as each agent can only undertake one action at a time, dif-

ferent rules to describe cell activation, differentiation, proliferation and COL1 production are

used.

To model HSC activation and differentiation into MFBs, counters are used ranging from 0

to 14, corresponding to the 14 days reported in in vitro experiments (0 to 7 corresponding to

the change from qHSC to aHSC; 8 to 14 corresponding to the changes from aHSC to MFB).

On one hand, two rules describe the change of cell state (qHSC to aHSC and aHSC to MFB)

and on other hand, two rules describe the step-by-step dynamics by increasing counter inter-
mediate_step and decreasing counter control_counter.

Increasing the counter intermediate_step allows us to follow the activation and differentia-

tion processes. The decrease of the counter control_counter ensures that the value of the

counter intermediate_step remains in the range from 0 to 14 (needed because the “<” symbol

is not supported in Kappa). Fig 10 describes the dynamics of the activation, defined in 7 steps,

corresponding to the seven days of the transition from qHSC to aHSC, with the implementa-

tion of a single rule. For the reactivation process, rules similar to those of the activation process

were used.

Cell proliferation. A proliferation rule is written for each counter value. If anHSC agent

proliferates, all the sites of the newly created agent will have the same value as those of the par-

ent cell, except for TGFBR. Fig 11 shows an example of proliferation rules for the agentHSC
whose site cell_state is in the activated state and its counter intermediate_step is equal to 7. The

activation or differentiation steps do not affect the proliferation rate of agents and aHSCs and

Fig 10. HSC activation process. The rule specifies that as long as an agentHSC, whose site cell_state is in the state

activated has its counter control_counter with a value lower than or equal to eight then, the value of its counter
control_counter will be decremented by one and that of its counter intermediate_step will be incremented by one. This

simple rule describes the seven stages of activation.

https://doi.org/10.1371/journal.pcbi.1011858.g010

Fig 11. Example of proliferation rules. For an agentHSC whose site cell_state is in the state activated and its counter
control_counter equal to 7.

https://doi.org/10.1371/journal.pcbi.1011858.g011
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react_HSCs have additional rules for proliferation upon TGFβ1 binding. There are 30 rules to

describe the proliferation process. The value of state, intermediate_step and control_counter is

different between each rule to allow all cells to proliferate. Among these rules, 11 allow agents

whose site cell_state is in the aHSC or react_HSC states to proliferate upon TGFβ1 stimulation

by requiring the site TGFB1_binding to be in a state bound, then transforming this site into a

state free after the rule is fired.

Collagen 1 turnover. The amount of COL1 in liver fibrosis and reversion results from the

balance between production and degradation. Upon TGFβ1 stimulation, activated HSCs and

MFBs are the major cell producing COL1 while apop_sene_MFBs contribute to the degrada-

tion of COL1 during fibrosis reversion [68, 69]. To overcome the complex molecular mecha-

nisms involved in regulation of COL1 degradation, COL1 was described using two different

tokens: one for high remodeling (COL1_remodeling_high) and another for low remodeling

(COL1_remodeling_low). These two tokens allow the description of the low degradation rate of

COL1 during HSC activation and the high degradation rate during the process of reversion.

COL1 dynamics is described using 12 rules: 8 for the production of COL1_remodeling_high by

aHSCs, MFBs, react_HSCs and react_MFBs in the presence and absence of TGFβ1; 2 for the

degradation of each token (COL1_remodeling_low being degraded at a slower rate than

COL1_remodeling_high) and 2 to enable the two tokens to be linked (Fig 12A). The transfor-

mation of COL1_remodeling_high to COL1_remodeling_low depends on the number of

COL1-producing cells (aHSCs, react_HSCs, MFBs and react_MFBs) which are also character-

ized by expression of α-smooth muscle actin (αSMA).

The more cell agents are activated (or reactivated) and differentiated into MFBs (or

react_MFBs), the greater the production of COL1_remodeling_high. A total of 8 rules describe

the production of COL1. The state and the variable defining the amount of COL1_remodelin-
g_high is modified according to cells (Fig 12B). Of these 8 rules, 4 are TGFβ1-free and 4 are

TGFβ1-induced. For the latter 4, the cells must have the site TGFB1_binding in a state bound
and will be transformed into free after the production of COL1_remodeling_high.

MFBs inactivation. After TGFβ1 removal, i.e. in the absence of TGFβ1 stimulation in the

model, MFBs and react_MFBs are eliminated through the apoptosis and senescence pathways

Fig 12. Example of the rules involved in Collagen 1 turnover. A), Decrease of collagen degradation, the value of token COL1_remodeling_high is

decreased and that of COL1_remodeling_low is increased; B), Production of collagen by activated HSCs, the rate of application of the rule is

proportional to the value of counter intermediate_step. This enables the cells furthest advanced in the activation process to produce more collagen than

those just activated.

https://doi.org/10.1371/journal.pcbi.1011858.g012
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(Fig 13A). An additional rule describes the process of elimination of apop_sene_MFB. The

dynamics of the inactivation process is described in two steps using two rules (Fig 13B). The

first rule changes the MFBs to an inactivated cell state (iHSC) and decrements the counter

value named intermediate_step to 0. The second rule increments the value of this same coun-
ters by 1 and increments the value of the control_counters by 13.

Calibration and parameters estimation

For all the biological processes included in the families of models, 13 parameters were obtained

directly from the literature, 9 were calculated and 22 parameters were estimated from biologi-

cal observations by comparing model simulations with experimental data, running hundreds

of simulations (S2 Table). Special attention was paid to calibrate these 22 parameters because

of the undocumented information about them, but also because of the interdependence

between the parameters and the stochastic approach used.

To calibrate the models, we used a block-based parameter estimation method, i.e. a set of

parameters for each subsystem (block) was estimated sequentially. Each set was defined in

terms of a specific biological process such as cell proliferation, cell inactivation, collagen pro-

duction and degradation. Block estimation reduced the impact of interdependence and

enabled us to find a set of parameters corresponding to biological observations. As the evalua-

tion of collagen was the experimental model best described, we first calibrated the set of

parameters related to on collagen-producing cells. Next, we identified the set of parameters

related to react-MFB inactivation which strongly affects model dynamics. The third set of

parameters focused on iHSC and qHSC dynamics. The final set of parameters focused on col-

lagen itself, encompassing its production and degradation. Following this approach, the esti-

mation of the first set of parameters excluded the family of models called reactMFB-wo-

Fig 13. Rules for eliminating MFBs by apoptosis/senescence and inactivation. A), The apoptosis/senescence rule

consists of changing the site cellular_state of an agentHSC from a stateMFB to apoptosis_senescence. B), For

inactivation, two rules are necessary, the first changes the site cellular_state of an agentHSC from a stateMFB to

inactivated while reducing the value of the counter intermediate_step by 14. The second rule increases the values of

control_counters by 13 and intermediate_step by 1.

https://doi.org/10.1371/journal.pcbi.1011858.g013
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inactivation, as shown in Fig 2A. Finally, we performed a global verification to determine

whether all the parameters matched the experimental observations (visual inspection).

In addition, the behavior of iHSCs remains unknown, and we developed 3 different families

of models taking into account different hypotheses: 1)model family reactMFB-wo-inactivation
where reactivated MFBs cannot be inactivated, 2) model family reactMFB-with-inactivation
where reactivated MFBs can be inactivated, 3) model family iHSC-reversion-to-qHSC where

iHSCs can revert into qHSCs, in the latter model family the react_MFBs can be inactivated.

Here, we described the parameters based on biological observations. Note that the rule applica-

tion rate is drawn according to an exponential distribution whose parameter is equal to the

sum of the propensities of all the potential events in the system state. The rates of the rules

must therefore be defined as the value T1/2 of the biological process they describe.

Parameters for activation and differentiation rules. The activation process has been

extensively documented using primary cultures of HSCs. Isolated qHSCs are spontaneously

activated into aHSCs when cultured on plastic for 7 days, and complete transformation of

qHSCs into MFBs takes place within 14 days, with a faster proliferation rate for aHSCs than

for MFBs. [70, 71]. Based on these dynamics, the models was calibrated with 15 steps, and the

proliferation rate of aHSCs was twice that of MFBs. In vivo, HSC activation is mainly driven

by TGFβ1 which promotes proliferation and COL1 production. While qHSCs are highly sensi-

tive to TGFβ1, MFBs are much less so [71, 72]. Consequently, we did not introduce rules for

TGFβ1-dependent proliferation of MFBs in the models, and TGFβ1-dependent collagen pro-

duction was five times lower in MFBs than in aHSCs.

Parameters for TGFβ-dependent rules. The kinetics of TGFβ1 binding to HSCs have

already been reported using in vitro cell culture models [73] and a slower binding rate to

MFBs has been described due to a decrease in the number of receptors [72]. The parameters of

the receptor dynamics are those described by Vilar et al. [74] and the half-time required for

TGFβ1 to induce a signal initiating the activation process was calculated using the model of Zi

et al. [67]. This initialization step is necessary to activate the cellular machinery before the acti-

vation process begins. Note that this initialization time has been divided by 3.5 for iHSCs, as

these cells are much more reactive than qHSCs in response to TGFβ1 [24, 25, 38]. Consistent

with this, react_HSCs were allowed to proliferate immediately after being reactivated, whereas

proliferation of aHSCs started at the third step of the activation process. This modeling choice

was made to simulate the time required for qHSCs to initiate the cellular machinery of activa-

tion [75] whereas react_HSCs, due to their activation history, proliferated from the first step of

their reactivation.

Parameters for qHSC self-renewal rate and iHSC elimination rules. In the absence of

information on qHSC self-renewal rate and iHSC half-life, these parameters were estimated on

the basis of data reported by Kisseleva et al. [24].

Parameters for MFB and react_MFB elimination rules. The half-life of MFBs and

react_MFBs has not been documented, and was estimated on the basis of observations of the

accumulation of these cells during TGFβ1 stimulation and their disappearance 1 to 2 months

after the last TGFβ1 stimulation (Kisseleva et al. [24]. This accumulation represents an increase

in the total number of HSCs after two months of CCl4 treatment from 10.6 to 14.3% of the

total liver cell population, where qHSCs and alpha-SMA cells account for 10.6% (±0.8) and

14.3% (±1.5), respectively.

Parameters for collagen 1 dynamic rules. The rules governing the production, degrada-

tion, stabilization, and destabilization of COL1_high_remodeling and COL1_low_remodeling
were calibrated using data from Kisseleva et al. [24]. Since COL1 is experimentally quantified

as deposits resulting from global remodeling, total COL1 (COL1_tot) is defined as the sum of

COL1_remodeling_high and COL1_remodeling_low. COL1_tot increased 12- and 14-fold after
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1 and 2 months of TGFβ1 stimulation (two stimulation per week), respectively. aHSCs and

react_HSCs produced 10 time less COL1_remodeling_high than MFBs and react_MFBs. How-

ever, TGFβ1-dependent COL1 production was increased 10-fold in aHSCs and react_HSCs

and only 2-fold in MFBs and react_MFBs, since aHSCs and react_HSCs are more sensitive to

TGFβ1 [24, 25, 38]. In the absence of TGFβ1 stimulation, the models were calibrated to

observe a rapid decrease in COL1_tot over the first month, followed by a gradual return to its

initial value around 6 months later.

Parameters for the model families reactMFB-wo-inactivation and reactMFB-with-inac-
tivation. Upon removal of liver injury, i.e. in the absence of TGFβ1 stimulation in the mod-

els, 45% of MFBs are inactivated and the remaining 55% are eliminated through apoptosis and

senescent pathways [25, 76]. iHSCs can be reactivated upon TGFβ1 stimulation to produce

react_MFBs, but no information is available on their fate. Troeger et al. hypothesized that

react_MFBs can undergo new inactivation/reactivation cycles, but should be limited for each

cell [25]. Based on this hypothesis, two model families were created, including model family

reactMFB-wo-inactivation in which react_MFBs cannot be inactivated and model family

reactMFB-with-inactivation in which inactivation is possible. For the latter, we developed

models by varying the percentage of reactivated MFBs that could be inactivated from 1 to 50%.

Parameters for the model iHSC-reversion-to-qHSC. Using mouse models of liver fibro-

sis induced by CCl4, Kisseleva et al. [24] assessed the amount of iHSCs compared with qHSCs

after removal of CCl4. They reported that qHSCs and iHSCs were in equal proportion after

one month of recovery, and that the sum of qHSCs and iHSCs was equal to the initial number

of qHSCs after six months of recovery. However, there is no information about the behavior of

iHSCs in absence of CCl4 (i.e. of TGFβ1 in the models). In the absence of information on how

iHSCs behave in the absence of CCl4 (i.e. TGFβ1 in the models), we developed a family of

models with a possible return to the quiescent state by varying the ratio of iHSC that transform

into qHSC from 0 to 100%.

Experimental validation using a mouse model of CCl4-induced liver

fibrosis

To validate the predictions of the model, collagen I was quantified during the course of fibrosis

and reversion using a mouse model of CCl4 induced liver fibrosis. As previously described

[77], seven-week-old female C57Bl/6 mice were treated with oral administration of CCl4

(Sigma-Aldrich, St. Louis, MO, USA) diluted in olive oil. A first dose of 2.4 g/kg of mouse

weight was administered to mice three days before starting weekly treatment with a 1.6 g/kg

dose for ten weeks. Control mice were treated with the vehicle only (olive oil). Mice were sacri-

ficed at 24 hrs after the last CCl4 dose. For fibrosis reversal experiments, mice were injected

for 4 weeks with CCl4 and sacrificed at 8 days (1 week of recovery), or 15 days (2 weeks of

recovery) after the last injection. Each group (control, fibrosis and reversion) at each time of

sacrifice contained 5 mice. Collagen quantification was performed by SHG microscopy on 20

μm frozen tissue sections as previously described [78].

Computational validation using Gene set enrichment analysis of RNA-Seq

data from patients with liver fibrosis

The enrichment for iHSC gene expression signature in human fibrotic samples was performed

using Gene Set Enrichment Analysis (GSEA) [79, 80]. We used the iHSC gene expression sig-

nature previously identified by Rosenthal et al. [28] in a mouse model of non-alcoholic steato-

hepatitis (NASH) and we added iHSC markers previously identified in a mouse model of CCl4

induced liver fibrosis [24] and an in vitro reversion model of human activated HSCs [38]. The
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list of genes is detailed in supplementary S1 Table. For clinical samples, RNAseq data from

patients with non-alcoholic fatty liver disease (NAFLD) [39] were used. Note that three genes

(KRT20, GABRA3 and GSTT1) were not identified in the RNAseq data due to a low expres-

sion level. Liver samples with fibrosis were selected and separated in two groupss: with low

(F0-F1, n = 34) and high (F3-F4, n = 68) fibrosis grade. RNAseq data were filtered using the

BIOMART database [81] to select genes encoding proteins and data were normalized using

DESeq2 [82] with a threshold of 100 reads. The filtration steps reduced the number of genes

from 21,595 to 16,021.

Supporting information

S1 Fig. Temporal analysis of cells and COL1 in models with or without reversion of iHSC

to a quiescent state. Simulation series were performed using conditions of stimulation from

Kisseleva et al. [24]. TGFβ1 parameters were as follows 10,000 molecules per cell, 16 stimula-

tion (twice a week) during 2 months. (A1), models reactMFB-with-inactivation with 0% of the

iHSCs reverting into qHSC, (A2) and (A3), models iHSC-reversion-to-qHSC with 50% and

100% of the iHSCs reverting into qHSC, the remaining iHSCs being eliminated. (B1, B2 and

B3), variation in the number of cell occurrences for qHSCs, aHSCs, MFBs, iHSCs, react_HSCs,

react_MFBs and α-SMA positive cells in the three families of models. The number of α-SMA

cells is the sum of the number of aHSCs, MFBs, react_HSCs and react_MFBs. Simulations are

expressed as the mean of 10 replicates. (C1, C2 and C3), variation in the number of COL1

occurrence in the three models. Data are expressed as arbitrary unit (a.u) and all 5 replicates

are represented.

(TIF)

S2 Fig. Comparison of model predictions and experimental data acquired in models of

fibrosis induced by dimethyl_nitrosamine, thioacetamide and a high-fat diet. Simulations

were carried out using the stimulation protocols described in the different models. (A) dimeth-

yl_nitrosamine model: 3 TGFβ1 stimuli per week for 6 weeks [36], (B) thioacetamide model: 2

simulations with TGFβ1 per week for 10 weeks [37], (C) high-fat model: 6 simulations with

TGFβ1 every 14 days for 84 days, adapted to fit Farooq et al. results [55]. Collagen accumula-

tion was plotted and experimental data from [36, 37, 55] are indicated with black cross.

(TIF)

S1 Table. List of the genes used for the Gene Set Enrichment Analysis. The first column

contains the genes from Rosenthal et al. It includes 39 genes that are differentially expressed in

inactivated stellate cells compared with activated stellate cells and quiescent stellate cells [28].

The second list contains the eight marker genes of inactivated stellate cells identified both in a

mouse model of CCl4-induced liver fibrosis [24] and in a in vitro reversion model of human

activated cells [38].

(XLSX)

S2 Table. Table of parameters. A.U: Arbitrary Unit corresponding to % areas of COL1 depos-

its, Calculated: parameter calculated directly from values found in the bibliography. Estimated
from biological observations: parameters for which the values are estimated empirically in

order to adapt the families of models to observations at a specific time. All the parameters

describing a duration are calculated as the half-time of their reactions. Using the exponential

law, the average dynamics of reactions corresponding to the experimental observations was

ensured [83] using Block based parameter estimation.

(XLSX)
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Visualization: Matthieu Bouguéon, Vincent Legagneux, Nathalie Théret.
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