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Abstract: In this work it is proposed a novel dynamical model of the Lithium-ion batteries
intended for diagnosis, prognosis and health-aware control. The proposed model is a particular
version of an equivalent electrical circuit and a thermal model. Here, we illustrate how a more
accurate model of both: the open-circuit voltage and the internal resistance can be used for
improving the estimation of the battery aging. The modeling problem considers that a new
battery can be considered as a reference battery with nominal behavior, and the deteriorated one
has the same mathematical structure with a multiplicative degradation parameter, considered
here to be an input of the system. The battery deterioration is considered to simultaneously affect
both the capacity of the battery and the value of the internal resistance. The problem is solved
by finding the system input (i.e. the degradation parameter) as the solution of a feedback control
problem which minimizes the prediction error concerning the terminal voltage. Experimental
data is used to illustrate the proposed battery model and its corresponding degradation
parameter estimation. The results also include obtained estimations on temperatures and State
of Charge for different battery aging scenarios.

Keywords: Health monitoring and diagnosis, modeling and simulation of batteries, Robust
estimation, energy storage systems, Remaining Useful lifetime prediction, health-aware control.

1. INTRODUCTION

Lithium-ion batteries play a central role in modern tech-
nology, powering a wide range of devices from portable
gadgets to electric vehicles. Their exceptional properties,
such as high energy density, low weight and long lifespan,
have brought about a important change in energy storage
and use. However, over time, lithium-ion batteries can
degrade, resulting in reduced capacity and efficiency, which
significantly affects their overall performance and lifespan
(Pelletier et al. (2017)). This degradation has a significant
impact on processes that rely on this technology. For
example, in electric vehicles, the degradation of lithium-ion
batteries results in a reduced trajectory range, primarily
due to the loss of capacity, which limits the autonomy
of the vehicle (Taefi et al. (2016)) and increases the cost
contribution of the battery (Nykvist and Nilsson (2015)).
Such issue prompted the investigation of the aging process
in lithium-ion batteries.

Specifically, during cycling and storage, lithium-ion bat-
teries can be subject to a combination of mechanical and
chemical processes that lead to battery aging, including
lithium metal plating, loss of active materials, loss of
cyclable lithium, and thickening of the passive film on the
carbon anode due to electrolyte reduction. According to

Barré et al. (2013), phenomena such as loss of cyclable
lithium and loss of active material lead to a decrease in
energy storage capacity, reducing the battery’s ability to
hold a charge and requiring more frequent cycling. Also
according to the authors, the thickening of the passive
film increases the impedance, indicating an increase in
the internal resistance of the battery and a reduction
in the maximum available power. Both effects together
contribute to the reduction in battery performance, as seen
in Figure 1.

Despite the considerable interest in enhancing battery
lifespan, modeling and controlling such aging process poses
a significant challenge. As a result, various modeling ap-
proaches for different applications have been explored
in prior research, including physical and empirical ap-
proaches, which are extensively reviewed in (Pelletier et al.
(2017)), (Rosewater et al. (2019)) and (Collath et al.
(2022)). Each approach offers a number of advantages
and disadvantages. While physical models provide higher
accuracy (see for instance Bole et al. (2014)), they are
usually complex hampering the integration with embed-
ded systems. On the other hand, empirical models pri-
oritize simplicity but may lack the adaptability needed
to be included in different applications and struggle to
isolate stress factors due to the significant interconnec-



tions between degradation variables and operating con-
ditions, especially the increased temperature caused by
charge/discharge currents. In both types of approaches
there exists a notable gap in models that integrate degra-
dation and battery charging/discharging behavior. Partic-
ularly, aging is often primarily associated with capacity
fade, while the combined effects of reduced capacity and
increased resistance are frequently overlooked. Therefore,
additional research is necessary to enhance the modeling
of lithium-ion batteries, incorporating the aging process
with a specific emphasis on health-aware control, focusing
on simplicity, adaptability, and addressing the correlation
between resistance and capacity variations.

In this paper we are interesting in proposing a dynamical
model which includes a degradation index allowing to
absorbs all the possible sources of degradation in just one
parameter. This simplification is useful for focusing in the
estimation of the trend of such degradation index, as it
will be illustrated in this paper by using experimental data
that was firstly presented in Daigle and Kulkarni (2016).

The proposed model is intended for simulation, analysis,
diagnosis or even prognosis and health-aware control of
Lithium-ion batteries. The latter by using for instance the
techniques proposed in Spinola-Felix et al. (2023).

Reliable estimations of SoC in presence of battery de-
terioration is still an open problem. Previous works, as
Turner (2016) are mostly intended for estimating this SoC
by using the Extended Kalman Filter approach without
considering the effect of the deterioration on the estima-
tions. In this paper, we will show how a simple model
and a Proportional-Integral (PI) estimator could be used
for simultaneously estimating a deterioration index, the
SoC and the cell temperature based on available electrical
measurements (terminal voltage and current). The main
assumption concerns the fact that the open-circuit voltage
and the “reference" internal resistance (both function of
the SoC), are a priori known.

This paper is organized as follows: Firstly, we present the
novel dynamical battery model which includes the men-
tioned deterioration parameter (or index), Then we illus-
trate a very simple method for real-time estimation of such
deterioration index. Finally, it is presented preliminary re-
sults, concerning degradation estimation, State of Charge
(SoC) estimation and battery-cell temperature estimation,
based on the proposed model and using experimental data
provided by NASA Ames Research Center. Conclusions
and future work are presented in the last Section.

2. NOVEL BATTERY CELL MODEL WITH A
DEGRADATION PARAMETER

2.1 Modeling assumptions

In this paper we consider that only the terminal voltage,
denoted Vt, and the electrical current, denoted I, can be
measured at every time instant.

In addition, it is considered that the terminal voltage
trajectories are function of the battery aging but both
the Voc and the nominal internal resistance Rn remain
invariant with respect to the aging, and they only depends
(non-linearly) on the SoC. i.e.

Fig. 1. Terminal voltage during discharging (I = 1A) for
different aging situations. This Figure is taken from
Daigle and Kulkarni (2016).

Voc := Voc(SoC), Rn := Rn(SoC) (1)

Thus, we consider that aging is due to a degradation
parameter γ ≥ 1, such that:

C =
Cn

γ
, R = Rn(SoC)γ (2)

i.e. the battery capacity C, in Ah, decreases with age and
the internal resistance R increases with the age (degrada-
tion) of the battery. Because the nominal resistance Rn

only depends on the SoC, we can assume that the degra-
dation parameter absorbs increments on the internal resis-
tance due to increments on the battery aging (for a given
cell temperature). Actually, the internal resistance value
also depends on the Discharging or Charging situation. In
this paper only Discharging situations are considered and
the study is focused on scenarios where battery cell and
room temperatures remain around a given “reference"
temperature. See for instance Lebkowski (2017), where
it is presented the dependence of internal resistance versus
temperature, in particular on Lithium-ion batteries.

Thus, the main assumptions can be summarized as
follows (for a given reference temperature):

• The internal resistance is not constant during dis-
charging and charging. It increases as SoC decreases.

• The open-circuit voltage only depends on the SoC.
• Increase of internal resistance and decrease of capac-

ity are well correlated. They are images of the same
degradation phenomena.

• The degradation parameter γ (in particular its very
low-frequency component) mainly absorbs the aging
of the battery.

2.2 Electrical circuit model

Consider a degradation parameter γ(k) ≥ 1 (γ = 1
means that the battery cell is a new one as a given
reference battery).

Thus, the dynamics of the State of Charge (SoC, that
we will denoted z, in the sequel), for a battery capacity
under degradation, can be modeled as:

z(k + 1) = z(k)− Ts
I(k)

(3600 · Cn)
100 · γ(k) (3)

where Cn stands for the nominal value of capacity, whereas
the terminal voltage could be:



Fig. 2. Example of a nominal behavior of the internal
resistance (for a reference new battery) with respect
to the State of Charge, during discharging cycles.

Fig. 3. Example of the open-circuit voltage (for a ref-
erence new battery) with respect to the State of
Charge, during discharging cycles.

Vt(k + 1) = aVt(k) + (1− a)E(k) (4)

with
E(k) = Voc(z(k))−Rn(z(k)) · I(k) · γ(k) (5)

with Voc and Rn functions of the current SoC, i.e. z(k). The
parameter a is intended to model the dynamical behavior
of a battery voltage.

Remark that the degradation parameter γ(k) can be con-
sidered as a system input affecting the Linear Parameter
Varying model (3) - (5), by considering I(k) as a scheduling
parameter. Observers design for discrete-time LPV sys-
tems can be achieved as it is proposed in Martinez et al.
(2018); Halimi et al. (2013).

Therefore, accurate models of nominal Voc(z(k)) and
Rn(z(k)) (i.e. for a "reference" new battery), could im-
prove the quality of the estimations of the input γ(k), as
it will be illustrated more latter.

Here for instance we model Voc(z(k)), as follows (similar
to the models presented in Plett (2004)):

Voc(z(k)) := Eo −K1 ln (100− z(k))− K2

z(k)
(6)

for constant Eo, K1 and K2, whereas the internal resis-
tance is modeled as

Rn(z(k)) = R1 +
R2

z(k)
(7)

for constant R1 and R2, whose values can be different
according to the situation : for Charging or Discharging
cycles. See for instance (Pelletier et al. (2017)) for more
complex Charging or Discharging internal resistance mod-
els.

Figures 2 illustrates the considered nominal internal resis-
tance Rn(z(k)) with respect the SoC z(k) in percentage.
Figure 3 shows the considered open-circuit voltage for a
reference battery during discharging cycles and for con-
stant nominal ambient temperature.

2.3 Thermal model

The proposed model can be extended by including a dy-
namical thermal model to make use of possible measure-
ments of the cell temperatures. If we assume that internal
resistance increases during the battery deterioration, it
will be also affect temperature since the Joule losses are
function of such resistance. Thus, we suppose that the
dynamics of the cell temperature obeys:
T (k + 1) = c0T (k) + (1− c0) (TJoule(k) + Tamb(k)) (8)

with
TJoule(k) = c1Rn(z(k))I(k)

2γ(k) (9)

That is, the temperature is an image of the dissipated
energy within the cell which depends on the degradation
parameter γ(k). Here T is the temperature within the cell
and Tamb the ambient temperature including all possible
heat contributions of the neighborhood cells. Parameter c0
and c1 are function of cell heat capacity and convection
thermal resistance but they can be estimated by data-
driven techniques, for a given reference new battery. The
thermal model (8)-(9) includes the main sources of heat in
batteries, as it is stated in Rao and Newman (1997).

3. ESTIMATING THE DEGRADATION PARAMETER

The proposed model can be used for performing simula-
tions under different levels of deterioration, and by con-
sequence, it could useful for prognosis and health-aware
control. Here, we will illustrate the use of this model for
real-time estimation of the level of deterioration γ of a
given Lithium-ion battery, under the assumptions that
both electrical current and terminal voltage are available
at every time instant.

We can solve the problem of estimating γ(k) of a given
battery cell, as the problem of finding γ̂(k) such that the
prediction error e(k) := Vt(k) − V̂t(k) (or alternatively
e(k) := T (k)− T̂t(k)) is minimized. For instance, by using
the dynamics:

γ̂(k + 1) = γ̂(k) + Ki · e(k) (10)
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Fig. 4. Proportional-Integral control feedback scheme for
estimating the deterioration index γ(k). The battery
model of a healthy new battery is assumed to be
known and both: the electrical current and the ter-
minal voltage are available data.

with a suitable (probably time-varying) gain Ki, which
is in fact a Proportional-Integral-type estimator as it is
illustrated in Figure 4. Here, it minimizes the prediction
error e(k) := Vt(k) − V̂t(k) and focus on the estimation
of one parameter, i.e. only on the estimation of γ(k).
The battery model of a healthy new battery (i.e. when
γ(k) = 1) is assumed to be known.

The estimator uses the battery model (3)-(9).

Remark that the vector [z, Vt, T ]
T , can be estimated by

using the proposed battery model and by considering the
measured output y(k) = Vt(k) and the scheduling param-
eter ρ(k) = I(k) as it is the case for Linear Parameter
Varying (LPV) systems, see again Figure 4. Thus, the
choice of the integral gain Ki can be obtained by using
Robust Control techniques, assuring stability for any value
of I(k) in a given possible interval of values, for instance
0 ≤ I(k) ≤ 3A (for discharging scenarios).

Here we suppose that the reference parameters of a
new battery are known, as well as the initial conditions.
For instance ẑ(0) = 100% V̂t(0) = 4.2V and T̂ (0) =
Tamb(0) in oC. Here the PI estimator is initialised with
γ̂(0) = 1 for most of the scenarios.

Since the deterioration parameter γ(k) is estimated at
every second, here the SoC can be calculated by using
"Coulomb counting", in equation (3) i.e. by measuring
the battery current and integrating it in time. Thus, the
estimation of SoC must be re-calibrated on a regular basis,
such as by resetting the SoC to 100% when a charger
determines that the battery is fully charged (Vt around
4.2V. and I = 0A).

4. EXPERIMENTAL RESULTS

Here we present preliminary results by solving a voltage-
based fitting problem. By considering experimental data
used in Daigle and Kulkarni (2016), it was possible to find
the values of the deterioration parameter γ such that the
modeled terminal voltage fits the measured one.

Table 1 presents the used model parameters, correspond-
ing to a commercial cell LGDAS31865, 2200 mAh, 3.6V.
Remark that a value of Cn = 2.64Ah is used here. This
value has been obtained in such a way that the achieved

Fig. 5. Model simulation of a new battery for constant
current discharge (I = 1A) and 2.5V voltage cutoff.

Parameter Symbol Value Units
Nominal cell capacity Cn 2.64 Ah

Internal resistance term 1 R1 0.08 Ohms
Internal resistance term 2 R2 6.3497 -

Open-circuit voltage parameter 1 K1 0.1038 -
Open-circuit voltage parameter 2 K2 6.3497 -
Open-circuit voltage parameter 3 E0 4.35 Volts

Voltage filtering parameter a 0.9048 -
Temperature filtering parameter c0 0.9992 -
Thermal Joule-term parameter c1 16 oC/W

Sampling time Ts 1.00 s
Table 1. Used parameters for the battery-cell

model.

capacity will be 2.2Ah at 3.0V voltage cutoff, for a new
battery, as commercially announced for this kind of bat-
teries.

Figure 5 shows a simulation for illustrating the achieved
trajectories for temperature and for terminal voltage of a
new battery if 2.5V voltage cutoff is used.

We have implemented the PI estimator proposed in Sec-
tion 3, for an integral gain Ki = −20 · sign(I). This value
has been obtained in such a way that stability of the
estimation error is assured. This value can be chosen in
a more optimal way, and this will be the object of a future
work.

Figures 6 and 7 illustrate the obtained model fit and their
corresponding estimated degradation parameter (or level)
and estimated SoC.

Figures 8 and 10 illustrate the measured temperatures
compared to those estimated ones by using estimations
of the deterioration parameter γ as proposed in Section
3. The scenario concerns the temperature evolution for
Pulsed Load Charging and Discharging Cycles, for a new
and old cells. The ambient temperature is considered to
be constant in the model case curve which can explain the
offsets values since the ambient temperature can varying
around its expected equilibrium in about ±1oC.

These results suggest that the proposed model is quite
accurate to estimate the degradation parameter γ. See
Figures 9 and 11. A comparison of obtained estimated



Fig. 6. Model fitting of terminal voltage during discharging
(I = 1A) for three different aging cases.

Fig. 7. Estimated degradation parameter γ and SoC during
discharging (I = 1A) for three different aging cases.

SoC, for new and old batteries, are presented in Figure
12. Because the considered SoC is the nominal one (i.e.
we do not use the apparent one), the battery cut-off
voltage (3.2V) is achieved for SoC bigger than 20%, and
by consequence, the nominal internal resistance never
achieves values bigger than 0.4 ohms, as we can see in
Figure 2.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a new dynamical model
for Lithium-ion batteries that explicitly includes a param-
eter that models the aging of the battery. The obtained
experimental results illustrate the interest of a such model.
The proposed model is described by an equivalent elec-
trical circuit, the State of Charge dynamics by using a
Coulomb counting equation, and a thermal dynamics. All
these sub-models are affected by an input that increases
with the aging of the battery. Thus, the model could be
used for direct estimation of this input by using available
measurements. Here, a PI-based controller is used for es-
timation a such input by considering the availability of
the terminal voltage, the electrical current and the initial

Fig. 8. Cell temperature evolution, during a pulsed current
scenario, for a new cell. The ambient temperature is
considered to be constant in the model case curve.

Fig. 9. Estimated deterioration level, during a pulsed
current scenario, for a new cell.

Fig. 10. Cell temperature evolution, during a pulsed cur-
rent scenario, for an old cell. The ambient tempera-
ture is considered to be constant in the model case
curve.



Fig. 11. Estimated deterioration level, during a pulsed
current scenario, for an old cell.

Fig. 12. Estimated SoC during a pulsed current scenario,
for a new and an old cell.

conditions of State of Charge. The approach could be ex-
tended by including possible available measurements of the
battery cell temperature. The proposed model can also be
used for simulating a battery under particular conditions
of aging, performing prognosis tasks and for building con-
trol algorithms for health management or useful lifetime
control of such systems. These points will be the subject
of future work.
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