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Abstract Seismic imaging is a major challenge in geophysics with broad
applications. It involves solving wave propagation equations with absorbing
boundary conditions (ABC) multiple times. This drives the need for accurate
and efficient numerical methods. This study examines a collection of expo-
nential integration methods, known for their good numerical properties on
wave representation, to investigate their efficacy in solving the wave equation
with ABC. The purpose of this research is to assess the performance of these
methods. We compare a recently proposed Exponential Integration based on
Faber polynomials with well-established Krylov exponential methods alongside
a high-order Runge-Kutta scheme and low-order classical methods. Through
our analysis, we found that the exponential integrator based on the Krylov
subspace exhibits the best convergence results among the high-order methods.
We also discovered that high-order methods can achieve computational effi-
ciency similar to lower-order methods while allowing for considerably larger
time steps. Most importantly, the possibility of undertaking large time steps
could be used for important memory savings in full waveform inversion imag-
ing problems.

1 Introduction

The resolution of wave propagation equations is a widely researched topic due
to its broad range of applications in various fields. One particularly prominent
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application is seismic imaging, where material parameters of underground re-
gions are estimated based on seismic data. This technique is extensively uti-
lized in the industry for the exploration and extraction of fossil fuels [Ikelle
and Amundsen, 2018].

The numerical approximation of propagating wave equations is a critical
stage in this procedure. Consequently, the complexity of the problem impels
the development of novel techniques competitive to the efficiency and accuracy
of existing schemes [Alkhadhr et al., 2021, Kwon et al., 2020, Lee, 2023].

The propagation of elastic waves can be described as a linear hyperbolic
system of PDEs. Nonetheless, the addition of absorbing boundary conditions
to replicate an infinite domain modifies the eigenvalues, and they are no longer
purely imaginary. In this context, low-order classical explicit schemes such as
the Leap-Frog [Ruud and Hestholm, 2001] approximation, fourth-order Runge-
Kutta [Walters et al., 2020], and similar methods [Jing et al., 2019, Li and Liao,
2020] have proven effective. Nevertheless, despite their computational speed,
these algorithms require very small time steps to approximate the solution
accurately. Consequently, this leads to high memory requirements, which can
be a significant challenge in solving inverse problems, which is another crucial
step in seismic imaging.

In recent decades, a class of numerical algorithms known as exponential
integrators have emerged and demonstrated successful applications in various
fields. These algorithms have been effectively utilized in areas such as photonics
[Pototschnig et al., 2009], the development of numerical methods for weather
prediction [Peixoto and Schreiber, 2019], and the modeling of diverse physical
phenomena [Loffeld and Tokman, 2013], often surpassing the performance of
classical schemes. Another example of successful applications of exponential
integrators is provided by Brachet et al. [2022], where classical explicit and
implicit schemes were compared with exponential integrators, revealing that
exponential integrators exhibit superior dissipation and dispersion properties.
In Cohen and Dujardin [2017], exponential integrators were compared with
explicit and implicit schemes for solving the non-linear Schrödinger equation,
demonstrating accuracy comparable to the best performance of classical meth-
ods and surpassing other schemes such as the Crank-Nicholson method. In Iyi-
ola and Wade [2018], an exponential integrator was compared with an Implicit-
Explicit (IMEX) scheme and a second-order backward difference scheme for
solving non-linear space-fractional equations, concluding that it offers a sig-
nificantly larger stability region. In general, this class of methods enables the
use of larger time steps, with the potential for parallel implementation to en-
hance efficiency. Exponential integrators are typically employed to preserve
favorable dispersion properties while allowing for larger time steps Schreiber
et al. [2019].

Exponential integrators can be categorized into two types: one primarily
concerned with approximating the exponential (or related φ-functions) of a
large matrix resulting from the spatial discretization of the linear term of a
system of PDE, and the other focused on different schemes to approximate
the non-linear term [Hochbruck and Ostermann, 2010, Mossaiby et al., 2015].
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In the context of wave propagation equations with absorbing boundary condi-
tions, these equations are primarily governed by the linear term, and a source
function replaces the non-linear term with a well-defined analytic represen-
tation. This leads to a transformation of the problem, as demonstrated by
Al-Mohy and Higham [2011], which is a generalization of the work of Sidje
[1998], where the problem transforms into calculating the exponential of a
slightly enlarged matrix.

The approximation of a matrix exponential has received significant atten-
tion [Acebron, 2019, Alonso et al., 2023, Moler and Van Loan, 2003]. Numerous
exponential integrators have been developed to address this matrix function
calculation [Al-Mohy and Higham, 2011, Hochbruck and Ostermann, 2010, Lu,
2003]. One notable exponential integrator is based on the Krylov subspace,
with several schemes utilizing this approach and demonstrating good perfor-
mance [Gaudreault et al., 2021, Niesen and Wright, 2009, Sidje, 1998]. An-
other method relies on rational approximations [Al-Mohy and Higham, 2010],
which are generally implicit and less suitable for large operators. However,
they can be combined with the Krylov method to reduce matrix dimensions
[Al-Mohy and Higham, 2011]. Another approach utilizes Chebyshev polyno-
mials, an explicit method that can be formulated as a three-term recurrence
relation [Bergamaschi and Vianello, 2000, Kole, 2003]. Additionally, there are
other methodologies, such as Leja points interpolation [Bergamaschi et al.,
2004, Deka et al., 2023], optimized Taylor approximations [Bader et al., 2019],
and contour integrals [Schmelzer and Trefethen, 2006], among others.

When applied to solve hyperbolic systems, such as the wave equations in
heterogeneous media, their performance is poorly understood. To the best of
our knowledge, only a limited number of literature publications have focused
on methods of practical relevance for this specific problem [Kole, 2003, Kosloff
et al., 1989, Ravelo et al., 2024, Tal-Ezer et al., 1987, Tessmer, 2011, Zhang
et al., 2014].

In Zhang et al. [2014], an implicit exponential integrator method is de-
veloped, and a comparison with other methods is presented, demonstrating
superior results in terms of accuracy and dispersion. However, a notable draw-
back of the implicit method is its high computational cost for each time step,
making it primarily suitable for very stiff problems.

Kole [2003] proposes an explicit exponential integrator based on Chebyshev
polynomial approximations, which achieves high solution accuracy and permits
large time steps. Nevertheless, the applicability of Chebyshev polynomials for
approximating the solution is limited to cases where the system matrix is
symmetric or antisymmetric, preventing the modeling of absorbing boundary
conditions. As a result, its usage in seismic applications is constrained.

Chebyshev expansions have been proposed Kosloff et al. [1989], Tal-Ezer
et al. [1987], Tessmer [2011] to approximate the matrix exponential, and with
the use of absorbing boundary conditions. Nonetheless, the numerical results
are primarily validated using simplistic ABCs, and there is a lack of proof
demonstrating convergence for these boundary conditions.
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In previous work [Ravelo et al., 2024], we explored a generalization of
the exponential integrator using Faber polynomials, a variant of Chebyshev
polynomials. This approach enabled us to solve the wave equations with ab-
sorbing boundary conditions. We found that employing higher approximation
degrees in the Faber polynomial-based method allows for increased time step
sizes without incurring additional computational costs. Furthermore, the aug-
mented time step approximations exhibit favorable accuracy and dispersion
properties.

A notable gap in the existing literature is the absence of experiments com-
paring high-order methods with classical low-order schemes for solving wave
equations with absorbing boundary conditions. Our work fills in this gap by
comparing exponential integrators based on Faber polynomials, Krylov sub-
space projection, and High-order Runge-Kutta with various classical meth-
ods. Specifically, we consider classical low-order methods such as Leap-frog,
fourth-order and four-stage Runge-Kutta (RK4-4), second-order and three-
stage Runge-Kutta (RK3-2), and seventh-order and nine-stage Runge-Kutta
(RK9-7). Detailed descriptions of these methods can be found in Section 3. The
comparison between these algorithms focuses on several key characteristics,
including numerical dispersion, dissipation, convergence, and computational
cost, which are thoroughly discussed in Sections 4 and 5. By investigating these
aspects, we aim to comprehensively evaluate the different methods and their
suitability for solving wave equations with absorbing boundary conditions.
Finally, in Section 6, we summarize the main findings and draw conclusive
remarks based on our research.

2 The wave equation

The execution of finite difference methods when solving a system of partial
differential equations depends on the continuum formulation and the approxi-
mation of the spatial derivatives [Thomas, 2013]. These factors directly impact
the discrete operator used in the computations. This section lays the ground-
work for the entire analysis presented in the manuscript. We discuss the fun-
damental elements defining the discrete spatial operator present in seismic
imaging applications. These elements include formulating wave propagation
equations with absorbing boundary conditions (ABC), spatial discretization
using derivative approximations, and free surface treatment.

We employ Perfectly Matching Layers (PML) as the absorbing boundary
condition [Assi and Cobbold, 2017] to simulate an infinite domain. Despite
the significant computational cost associated with PML absorbing boundaries,
they remain widely used in numerous numerical studies within the field of
seismic imaging [Chern, 2019, Jing et al., 2019, Tago et al., 2012]. For com-
putational efficiency, we implement the PML for the two-dimensional acoustic
wave propagation equations. While we can extend our analysis to propagating
waves in three dimensions, the complexity of the equations substantially in-
creases, resulting in a significant rise in computational requirements. Thus, for
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our purposes, we define the system of equations within a rectangular domain
Ω = [0, a]× [0,−b] for t > 0, as follows:

∂
∂t
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0 1 0 0
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(1)
where, u = u(t, x, y) is the displacement, c = c(x, y) is the given velocity dis-
tribution in the medium, v = v(t, x, y) is the wave velocity, and f = f(x, y, t)
is the source term. The w-functions, (wx, wy) = (wx(t, x, y), wy(t, x, y)), are
the auxiliary variables of the PML approach and the β-functions are known
and control the damping factor in the absorbing layer.

βz(z) =

(
0, if d(z, ∂Ω) > δ

β0

�
1− d(z,Ω)

δ

�2

, if d(z, ∂Ω) ≤ δ
, z ∈ {x, y} (2)

where d(z, ∂Ω) is the distance from z to the boundary of Ω, δ is the thickness of
the PML domain, and β0 is the magnitude of the absorption factor. Thus, the
domain Ω comprises a physical domain, where the wave propagates normally,
and an outer layer of thickness δ (the domain of the PML), where the waves
dampen.

Due to the attenuation of displacement within the PML domain, we opt
for a Dirichlet boundary condition (null displacement) along three sides of the
rectangular domain Ω. However, this boundary condition does not apply to
the top side, as a free-surface boundary condition is more suitable for seismic-
imaging simulations. Therefore, on the upper side of Ω, we exclude the PML
domain (βy(y) = 0, for all y ∈ [0, δ]), and determine the solution approxima-
tion at the upper boundary based on the chosen spatial discretization.

2.1 Spatial discretization

Several finite difference discretization schemes have been proposed for the wave
propagation equations [Jing et al., 2019, Miao and Zhang, 2022, Moczo et al.,
2000, Robertsson and Blanch, 2020, Zingg et al., 1996]. While determining
the optimal approach remains an open problem, staggered grids have gained
significant popularity for these equations, as noted in Moczo et al. [2000].
Staggered grids have good numerical stability properties and usually allow
better wave representation for high wave numbers. Additionally, in the study
of Moczo et al. [2000], the effectiveness of second and fourth order staggered
grid spatial discretizations was compared for solving the wave equation, with
the fourth-order discretization demonstrating superior accuracy and stability
over the second-order counterpart. As our main interest is the time integration
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methods, to minimize spatial numerical errors we adopted an eighth-order
staggered grid spatial discretization.

The spatial discretization consists of a uniform staggered grid (∆x = ∆y)
of 8th-order. The positions of the discrete points are depicted in Fig. 1.

Ω

PML

+ + + + + + +

+ + + + + + +

+ + + + + + +

+

u, v, c

wx

wy

∆x
2

∆x
2

Fig. 1: Uniform staggered grid in 2D with the relative positions of the acoustic
wave equations’ variables and parameters. u, v and c are collocated. The
shaded region represents the PML domain.

For the inner discrete points, the 8th-order approximation of the derivatives
is given by

∂ui+ 1
2

∂x
≈ 1225

1024∆x

�
ui+1 − ui −

ui+2 − ui−1

15
+

ui+3 − ui−2

125
− ui+4 − ui−3

1715

�

(3)

∂2ui

∂x2
≈ −205

72
ui +

8

5
(ui+1 − ui−1)−

1

5
(ui+2 − ui−2) +

8

315
(ui+3 − ui−3)

− 1

560
(ui+4 − ui−4) (4)

with analogous expressions for the y-coordinate in the 2D discretization.

The approximation of derivatives near the sides and bottom boundaries,
where Dirichlet boundary conditions within a PML domain are applied, is
performed using the formulas (3) and (4). In these cases, the function values
required outside the domain Ω are set to zero. However, this does not im-
pact the accuracy of the numerical approximations because, within the PML
domain, the wave amplitudes decrease to zero.

A different strategy is necessary to approximate derivatives at points near
the upper boundary. Since there is no PML domain, and the boundary condi-
tion corresponds to a free surface.
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2.2 Free surface

From the free-surface condition∇u·(0, 1) = 0, we deduce the Neumann bound-
ary condition ∂u

∂y = 0. Additionally, by substituting βy = 0 at the free surface
in the third equation of 1, we obtain wy = 0 at the free surface. Utilizing these
values, we can approximate the required spatial derivatives of the functions in
(1) concerning the variable y.

There are two main approaches for approximating the spatial derivatives
concerning y. The first approach introduces artificial points outside Ω, assign-
ing function values at these points to satisfy the conditions at the free surface.
The second procedure involves approximating the derivatives at the free sur-
face and its nearest points using only the function values within the domain Ω,
without artificially extending the functions. According to Kristek et al. [2002],
the latter alternative brings greater accuracy to the numerical solution and is
the approach employed throughout this work.

Next, assuming that the grid points lying on the free surface correspond
to the evaluation of the displacement u (i.e., the free surface is at y = 0), we
need 8th-order approximations for

1. the second derivative ∂2u
∂y2 at the points with y = {0,−∆x,−2∆x,−3∆x}.

2. the first derivative ∂u
∂y at the points with y = {− 1

2∆x,− 3
2∆x,− 5

2∆x}.
3. the first derivative

∂wy

∂y at the points with y = {0,−∆x,−2∆x,−3∆x}.

The referred approximations for the derivatives ∂2u
∂y2 and ∂u

∂y , using Taylor

expansions, can be found in the Appendix A.1. As for the derivative
∂wy

∂y ,

we apply the algorithm outlined in Fornberg [1988]. This algorithm computes
the derivative with any approximation order and utilizes an arbitrary points
distribution where the values of the derived function are known.

3 Time integration methods

After characterizing the spatial discretization and the approximation of the
spatial derivatives, we obtain the following linear system of equations:

d

dt
U(t) = HU(t) + f(t), U(t0) = U0. (5)

Here, U(t) is a vector comprising the discretized functions u, v, wx, and wy,
while the matrix H represents the discretized spatial operator of the system
(1). The vector f consists of the source function evaluated at each grid point.

Most of the numerical methods described in this section solve the first-
order system of ordinary differential equations (5). Our primary focus lies in
approximating the time dimension, leading to the classification of methods as
either low or high order concerning time. The following subsections present
the numerical schemes employed in the former classifications.
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3.1 Low order methods

We consider four low-order methods that offer attractive features for approx-
imating the solution of wave equations. Three of these methods are based on
the Runge-Kutta (RK) approach, while the fourth is the Leap-frog scheme.

– 2nd order Runge-Kutta (RK3-2): The RK3-2 method is a second-
order RK scheme with three stages. It is a modification of the classical
RK2-2 method designed to increase its stability region [Crouseilles et al.,
2020], enabling its application to hyperbolic problems. The scheme can be
expressed as follows:

k1 = Hun + f(tn),

k2 = H(un + (∆t/2)k1) + f(tn +∆t/2),

k3 = H(un + (∆t/2)k2) + f(tn +∆t/2),

un+1 = un +∆tk3.

– 4th order Runge-Kutta (RK4-4): The classical RK4-4 scheme balances
stability region and computational requirements [Burden et al., 2015].

– 7th order Runge-Kutta of nine stages (RK9-7): This scheme has
been specifically constructed for hyperbolic equations and exhibits favor-
able dispersion properties [Calvo et al., 1996].

– Two step method (Leap-frog): The Leap-frog method is highly effi-
cient for solving wave equations. It utilizes two time steps to approximate
the second-order time derivative. The equations solved by the Leap-frog
method are

∂2u

∂t2
= −βxβyu− (βx + βy)

∂u

∂t
+ c2

�
∂2u

∂x2
+

∂2u

∂y2
+

∂ωx

∂x
+

∂ωy

∂y

�
+ f

∂wx

∂t
= −βxwx + (βy − βx)

∂u

∂x
∂wy

∂t
= −βywy + (βx − βy)

∂u

∂y

with the discrete approximations in time

∂2un
i

∂t2
≈ un+1

i − 2un
i + un−1

i

∆t2
,

∂wn
zi+1/2

∂t
≈

wn+1
zi+1/2

− wn−1
zi+1/2

2∆t
, with z ∈ {x, y}.

3.2 High order methods

The methods presented in this section are of arbitrary order and utilize ex-
ponential integrators based on Faber polynomials, Krylov subspaces, and a
high-order Runge-Kutta method.
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According to Hochbruck and Ostermann [2010], an exponential integrator
approximates the semi-analytic solution of (5) using the formula of constant
variation

U(t) = e(t−t0)HU0 +

tZ

t0

e(t−τ)Hf(τ)dτ.

Expanding the function f in a Taylor series, the solution of (3.2) can be
expressed as the matrix exponential [Al-Mohy and Higham, 2011]

u(t) =
�
In×n 0

�
e(t−t0)H̃

�
u0

ep

�
, (6)

where ep ∈ Rp is a vector with zeros in its first p− 1 elements and one in its
last element, In×n is the identity matrix of dimension n, and

H̃ =

�
H W
0 Jp−1

�
,

where the columns of the matrix W consist of the values of the function f
and the approximations of the first p−1 derivatives of f , and Jp−1 is a square
matrix of dimensions p×p with ones in the upper diagonal and zeros elsewhere.

Equation (6) forms the basis for the exponential integrator methods im-
plemented in this research, and the approach used to compute the matrix
exponential in (6) determines each of the following exponential integrators.

– Faber approximation (FA): This method is an exponential integrator
based on Faber polynomials. As presented in Ravelo et al. [2024], the expo-
nential approximation is carried on with the three-term recurrence Faber
series

F 0(H) = In×n, F 1(H) = H/γ − c0In×n,

F 2(H) = F 1(H)F 1(H)− 2c1In×n,

F j(H) = F 1(H)F j−1(H)− c1F j−2(H), j ≥ 3,

where the parameters c0 and c1 depend on the eigenvalues distribution of
the operator H. Then, the solution in the next time instant is expressed
as

un+1 =

mX

j=0

ajF j(H)un, (7)

where aj are the Faber coefficients.
– Krylov subspace projection (KRY): This method is an exponential in-

tegrator utilizing operator projections within the Krylov subspace. Various
proposed algorithms involve adaptive time steps and different strategies for
generating the subspace basis [Gaudreault et al., 2021]. However, to ensure
an impartial comparison among all the schemes, we opt for the traditional
Arnoldi algorithm to establish the vector basis and perform the projection
of H [Gallopoulos and Saad, 1992].
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u1 = u0/∥u0∥2
Do j from 1 to m :

w = Huj

Do k from 1 to j :
Ai,j = w · uk

w = w −Ai,juk

Aj+1,j = ∥w∥2
uj+1 = w/Aj+1,j

Then , eHu0 ≈ ∥u0∥2[u1| . . . |um]eAe1

Listing 1: Pseudocode of Arnoldi algorithm.

After constructing the matrix projection A, we compute the reduced ma-
trix’s exponential using the Padé polynomial approximation method, as
outlined in Al-Mohy and Higham [2011].
The Arnoldi algorithm to construct an orthonormal basis is very compu-
tationally intensive, and the amount of matrix-vector operations does not
represent its actual computational cost. Regarding this subject, the use of
non-orthonormal bases has been proposed to greatly reduce this cost Gau-
dreault et al. [2021]. However, due to the non-orthogonality of the Krylov
basis, the reduced matrix A does not represent an orthogonal projection of
the linear transformation H onto the Krylov subspace [Gaudreault et al.,
2021]. This discrepancy may lead to numerical errors that differ from those
encountered in the classical Arnoldi method. As we aim to use the classi-
cal Krylov method, we employ the Arnoldi algorithm without considering
the cost of constructing the Krylov subspace, given the potential to signif-
icantly reduce the computational cost.

– High-order Runge-Kutta (HORK): Runge-Kutta methods are exten-
sively used for solving differential equations Butcher [1996], and also in
combination with exponential integrator schemes [Crouseilles et al., 2020,
Lawson, 1967]These methods are naturally extended to high-order schemes.
They can be explicit and are easy to implement. For this research, we adopt
the Runge-Kutta algorithm of arbitrary order proposed by Gottlieb and
Gottlieb [2003], defined by the relation

k0 = un

ki = (In×n +∆tH)ki−1, i = 1 . . .m− 1

km =

m−2X

i=0

λiki + λm−1 (In×n +∆tH)km−1

un+1 = km,

where λi are the coefficients of the Runge-Kutta and have a straightforward
computation. According to Gottlieb and Gottlieb [2003], the Runge-Kutta
method exhibits strong stability-preserving properties if the coefficients λi

are non-negative.
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3.3 Computational cost and memory usage

In addition to the accuracy of the numerical solution when discussing the dif-
ferent approaches, we are also interested in their resource consumption. Specif-
ically, we focus on the computational operations required by each algorithm
and their utilization of computational memory.

Determining the exact number of computations performed by these meth-
ods is a complex task, further complicated by the fact that sparse matrix-vector
multiplications are known to be bandwidth-limited in terms of performance
Alappat et al. [2022], Huber et al. [2020]. Therefore, we adopt a simplified
model that focuses exclusively on counting the loading and storing of ele-
ments. We consider only the matrix-vector operations, as the other vector
operations introduce, at most, small variations in the number of operations.
Consequently, the cost of each method by time step will be its number of stages
or matrix-vector operations (MVOs). Therefore, the overall number of MVOs
of a method for computing the solution up to a fixed time T and using a time
step size ∆t can be expressed as:

Nop = #MVOs
T

∆t
=

#MOVs

∆t
T,

where the value of T can be disregarded when comparing the methods since
it remains constant within a numerical experiment.

Memory consumption becomes a critical factor when solving the three-
dimensional wave equation for seismic imaging applications. The primary con-
cern is for the inverse problem, where the solution for each time step must be
stored to be accessed later. Therefore, the number of time steps required for
each method

Nmem =
T

∆t
,

is also an important variable that we will take into account afterward.

4 Analysis on homogeneous media

A common challenge arises when utilizing finite difference methods to solve
wave equations due to numerical dispersion and dissipation. Numerical disper-
sion occurs when phase velocities depend on the frequency, leading to distor-
tions in wave signals. On the other hand, numerical dissipation is associated
with wave amplitude and is responsible for the emergence of high-frequency
waves with small amplitudes in finite difference methods (Section 5.1 of Strik-
werda [2004]).

Since the continuous wave equation is non-dispersive and non-dissipative,
it is essential to ensure that the numerical methods used to solve it do not
introduce excessive dispersion and dissipation. In seismic imaging problems,
these issues can lead to significant inaccuracies in estimating the velocity field.
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Therefore, special attention must be given to identifying and mitigating these
errors.

In this section, we conduct a comparative analysis of the methods intro-
duced in Section 3 within the context of a homogeneous velocity field and
a single wave signal. We focus on evaluating their dispersion and dissipation
errors and examining how these errors depend on the choice of time-step size.

4.1 Numerical dispersion and dissipation by Fourier transform

Our analysis investigates numerical dispersion and dissipation by quantifying
variations in phase velocities of numerical approximations concerning a ref-
erence solution. To achieve this, we conduct a comparison in the frequency
domain and estimate velocity changes for each frequency. For this analysis,
a Fourier transform is applied to the solution, consisting of a single signal
of a Ricker wavelet [Harold, 1994]. Consequently, we consider a homogeneous
medium with a source point and a receiver (a spatial position where the signal
is recorded over time).

Let Fappr(ω) and F ref(ω) denote the Fourier transforms of the approxi-
mated and reference signals, respectively, with ω representing the frequency.
Thus, we establish the relationship as follows:

Fref(ω) = ek(ω)+il(ω)Fappr(ω),

where the real functions k(ω) and l(ω) account for the numerical dissipation
and dispersion errors, respectively, present in the approximated solution.

It is important to note that minimizing dissipation and dispersion errors
hinges upon the extent to which the functions k(ω) and l(ω) approaches zero.
As the numerical solution is computed at a finite number of time instants, ω
is also limited to a finite range. Then, we calculate the mean of the absolute
values of k(ω) and l(ω), which can be considered an approximation of the
integral of their absolute values. Hereafter, we refer to these metrics as the
dissipation and dispersion error. Furthermore, to mitigate potential numerical
errors arising from divisions by small quantities during the computation of
dispersion and dissipation errors, we exclusively consider frequencies where
the amplitudes in the reference or approximated solutions surpass 1% of the
peak amplitude of the reference solution.

In the next section, we will outline the numerical features of the Ricker
signal experiment. Following that, in the subsequent two sections, we will apply
the criteria discussed here to assess the numerical dissipation and dispersion
errors.
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4.2 Single signal experiment

The numerical solutions for wave propagation equations are computed in
the homogeneous medium Ω = [0km, 6km] × [0km, 5km], with a velocity
c = 3km/s. A Ricker source is placed at position (3km, 4.99km) (with a delay
of t0 = 0.18s), and a receiver is positioned at (3km, 2.5km). The time integra-
tion is carried out until T = 1.3s without applying any absorbing boundary
conditions, as the reflections at the boundary have not yet reached the receiver
by the final time. The spatial discretization size used for numerical solutions
of the methods is ∆x = 10m, while the reference solution is computed with
∆x = 2.5m and ∆t = 0.104ms using the RK9-7 scheme.

We are mainly interested in the largest time step allowed such that the error
of the methods is under a fixed threshold. However, to ensure uniform wave
sampling of the numerical approximations at the receiver, we use larger time
steps up to the point when the wave closely approaches the receiver (t = 0.6s).
Then, a uniform ∆t = 0.417ms is employed until the final time T = 1.3s is
reached. Figure 2 displays the homogeneous medium with the source and the
receiver positions and the snapshots of the reference solution at times t = 0.6s
and T = 1.3s.
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(a) Wave propagation at time t = 0.6s.
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(b) Wave propagation at time T = 1.3s.

Fig. 2: Snapshots of the reference solution at times t = 0.6s and T = 1.3s
within the homogeneous medium Ω = [0km, 6km] × [0km, 5km]. The Ricker
signal source position (blue dot) and the receiver location (black square) are
highlighted. During the time interval t ∈ [0.6, 1.3]s, the front wave propagates
through the receiver location.

Although our primary focus lies in evaluating the time error of the meth-
ods, it is essential to acknowledge the influence of spatial discretization on
numerical accuracy. To account for this spatial effect, convergence, disper-
sion, and dissipation are computed for all methods with a small time-step,
∆t = 0.417ms (see Figure 10 in Appendix A.2). The minimum convergence,
dispersion, and dissipation errors obtained from this computation serve as an
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estimation of the spatial effect. Then, we determine the maximum ∆t allow-
able for the methods such that the time error remains less or equal to 50% of
the spatial error.

For this experiment, the approximation error due to the spatial discretiza-
tion is approximately 3.9 · 10−6 (see Figure 10 in Section A.2). Based on this,
we determine ∆tmax as the maximum ∆t such that the approximation error
is less or equal to Err = 5.9 · 10−6. Then, the convergence can be analyzed by
investigating the signal error at a specific receiver location (3km, 2.5km). It
becomes clear that an increase in the number of stages leads to an increase in
∆tmax (see Figure 3).
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Fig. 3: Dependence of ∆tmax on the approximation degree of the numerical
scheme. A higher number of stages leads to an increase in the maximum allow-
able time step without significantly increasing the number of computations.

Referring to Figure 3, it can be observed that the Krylov method displays
a highly oscillatory pattern concerning its associated ∆tmax. Intriguingly, this
pattern reaches its local peak values when the subspace dimension is an odd
number. The general behavior of the methods convergence is not sensible to the
cutting point of the error threshold, and for variations of Err = 5.9 ·10−6, they
remain valid. So, we expect a similar behavior when studying the dispersion
and dissipation.

4.3 Dispersion results

The dispersion error arising from spatial discretization is estimated as 0.002.
Consequently, we permit for the time integrator methods an error threshold
of 1.5× higher, equating to a maximum allowable dispersion error of 0.003.
Then, we search for ∆tmax such that the dispersion error remains below this
limit.

In addition to ∆tmax, we introduce a computational cost measure denoted
as Ndisp

op , similar to the ideas of Section 3.3, defined as:
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Ndisp

op =
# MVOs

∆tmax
.
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(a) Maximum time-step, ∆tmax.
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(b) Number of MVOs by ∆tmax.

Fig. 4: Variation of ∆tmax (left) and Ndisp

op (right) concerning the numerical
scheme and the number of stages utilized, according to the numerical disper-
sion error for a Ricker source peak frequency of fM = 15Hz. Generally, a
higher number of stages leads to an increase in the maximum allowable time
step size without significantly increasing the number of computations. * Here
we neglect the computational complexity of creating the Krylov subspaces.

Based on Fig. 4, the Leap-frog algorithm is approximately two times faster
than the other schemes but requires small time steps. On the other hand, the
explicit exponential methods exhibit an increase in their maximum time step
as the number of stages used rises, without a significant increase in the num-
ber of matrix-vector operations required. Interestingly, the peak values of the
Krylov methods for the largest ∆t and the lower Ndisp

op are consistently for the
odd numbers of the subspace dimension 4.

To ensure the robustness of our analysis, we reproduce the previous results
in Appendix A.2.1 using various peak frequencies of the Ricker source since
wave frequencies influence dispersion.

4.4 Dissipation results

Similar to the previous section, we estimate the minimum dispersion error,
independent of the time integrator used. The minimum dissipation error is
approximately 2.4 · 10−7. Thus, we once again compute the maximum time-
step, ∆tmax, such that the dispersion error remains below 3.6 · 10−7. Besides
of ∆tmax, we define the computational cost measure as
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Ndiss

op =
# MVOs

∆tmax
,

similar to convergence and dispersion.
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(a) Maximum time-step, ∆tmax.
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(b) Number of MVOs by ∆tmax.

Fig. 5: Variation of ∆tmax (left) and Ndisp

op (right) concerning the numerical
scheme and the number of stages utilized, according to the numerical dissi-
pation error for a Ricker source peak frequency of fM = 15Hz. Generally, a
higher number of stages leads to an increase in the maximum allowable time
step size without significantly increasing the number of computations. * Here
we neglect the computational complexity of creating the Krylov subspaces.

In Figure 5, a similar trend is observed with the dispersion error, except
that the performance of the exponential integrator is better in relation to
the Leap-frog when comparing the dissipation error. Notably, the high-order
methods display an increase in the time-step size with the number of stages
used without significantly increasing the number of matrix-vector operations
required.

As with the numerical dispersion, we reproduce the experiments for differ-
ent Ricker source peak frequencies in Appendix (Section A.2.2).

5 Analysis on realistic seismic models

In this section, we describe the numerical experiments we will use to compare
the accuracy of the approximations of the different methods. For comparison,
we generated a reference solution using the RK9-7 scheme with a finer grid
(∆x = 5m) and then estimated the error for each method using various time
step sizes. To ensure a robust accuracy assessment, we employ two procedures.
First, we compare the approximated solution across the entire physical space
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(excluding the PML domain) at a specific time instant. Second, we compare
the seismogram data of the solution values at the upper boundary for all
the simulation time. For each error evaluation, we determine the maximum
time step size, ∆tmax, that allows a scheme of a particular order to achieve
a solution accuracy below a predefined threshold with the least number of
MVOs. Additionally, we introduce an efficiency measure and an indicator of
memory utilization derived from the number of MVOs and ∆tmax, following
the concepts outlined in Section 3.3.

5.1 Test cases

We consider four numerical scenarios with different velocity fields (see Figure
6). The first is a synthetic example of a heterogeneous medium with high
contrast velocities and a sharp corner. The second is a 2D slice of the velocity
field of the Santos Basin1 oil and gas exploration region. A 2D portion of
Marmousi velocity field is the third example, and the final test is the 2D
SEG/EAGE synthetic model.
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(a) Corner Model.

� � � � � �� ��

���������������

�

�

�

�

�

�

�
�
�
��
��
�
�
�

��

��

��

��

�
�
��
�
��
�
��
�
�
��
�

(b) Santos Basin.
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(c) Marmousi.
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(d) SEG/EAGE.

Fig. 6: Velocity fields of the test cases Corner Model, Santos Basin, Marmousi,
and SEG/EAGE, used to study the numerical convergence.

1 A typical velocity field of Santos Basin region, in Brazil.
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In all the examples, we include a source and an arrangement of receivers
near the surface of the medium. The specification of this construct and other
parameters of the numerical simulations are specified in Table 1.

Test cases Corner Model Santos Basin

Domain dimensions Ω = [0km, 4km]× [0km, 4km] Ω = [0km, 12km]× [2km, 6.4km]

Simulation time T = 1.1s T = 1.5s

Source position (2km, 0.02km) (6km, 2.02km)

PML thickness (δ) 1.0km 0.8km

Test cases Marmousi SEG/EAGE

Domain dimensions Ω = [2km, 8km]× [0km, 3.5km] Ω = [2km, 11km]× [0km, 3.5km]

Simulation time T = 1.5s T = 2s

Source position (5km, 0.02km) (6.5km, 0.02km)

PML thickness (δ) 0.8km 0.8km

Table 1: Parameters of the four numerical simulations considered in this paper.

We save the solution at the upper boundary at each simulated time instant
to construct the seismogram. We use a time span twice as long as specified in
each experiment outlined in Table 1 to allow the reflected waves to reach the
surface.

5.2 Maximum time-step

We need to calculate the maximum allowable time step, denoted as ∆tmax, for
all time integration schemes. We initially consider the numerical error inherent
to the spatial discretization in each numerical experiment (see Appendix A.3)
since this error is independent of the time integration method. Next, we employ
a tolerance level equivalent to 150% of the spatial discretization error in each
experiment. Finally. we use that tolerance to compute the value of ∆tmax for
the numerical schemes described in Section 3.

We consider a spatial-step size of ∆x = 10m to compute the approximated
solutions mentioned before. Figures 7 and 9 show the allowed ∆tmax by all the
methods for the numerical tests Corner Model, Santos Basin, Marmousi, and
SEG/EAGE.

Figure 7 presents the maximum time step, ∆tmax, considering the spatial
error of the solution at a time instant. Generally, when the approximation
degree increases, we observe an increment in the allowed ∆tmax. Moreover,
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(a) Corner Model solution at time
T = 1.1s.
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(b) Computing ∆tmax for Corner Model using
an error tolerance of 3.03 · 10−7.
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(c) Santos Basin solution at time
T = 1.5s.
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(d) Computing ∆tmax for Santos Basin using
an error tolerance of 8.33 · 10−7.
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(e) Marmousi solution at time T = 1.5s.
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(f) Computing ∆tmax for Marmousi using an
error tolerance of 9.93 · 10−7.
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(g) SEG/EAGE solution at time T = 2s.
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(h) Computing ∆tmax for SEG/EAGE using an
error tolerance of 1.3 · 10−6.

Fig. 7: Snapshots of the reference solution for Corner Model, Santos Basin,
Marmousi, and SEG/EAGE numerical tests (left column), and the ∆tmax of
each method such that the error with the reference solution is under a fixed
threshold (right column). An increase in the number of stages of the method
leads to a larger ∆tmax.
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the Krylov subspace approximation exhibits the largest time steps among the
studied methods, followed by the other high-order methods. In contrast, low-
order methods such as Leap-frog and RK3-2 require smaller time steps.

The determination of ∆tmax based on the seismogram data is illustrated
in Figure 9. Similar to Figure 7, an increase in the number of stages leads to a
higher maximum time step. Notably, the Krylov subspace method consistently
demonstrates the highest ∆tmax values, followed by other high-order methods.

Based on the insights gained from Figures 7 and 9, we can conclude that
the choice between using the error of the solution at a particular time instant
or the seismogram data leads to similar values of ∆tmax for the methods.
Therefore, for the sake of simplicity, we estimate ∆tmax with the error of the
approximation in the physical domain at a specific time instant (as illustrated
in Figure 7). Next, we estimate the computational efficiency and memory
consumption of each method using the concepts of Section 3.3.

5.3 Computational efficiency and memory consumption

From the previous section, we concluded that using a method with a large
number of stages allows an increase in the maximum time step such that we
have a solution with good accuracy. However, it is unclear if increasing the
number of stages to use a larger ∆t reduces the number of operations or how
it helps in utilizing the memory. To answer this question, we apply the ideas
discussed in Section 3.3 and define the measure of computational efficiency

N∆t
op =

# MVOs

∆tmax
,

and the indicator of memory consumption to store results for a backward
propagation

N∆t
mem =

T

∆tmax
,

where T is the simulation time defined by Table 1, for each numerical experi-
ment.

Figure 8 illustrates the number of MVOs and the memory usage for all
the methods when solving the Marmousi numerical example. The Leap-frog
algorithm proves the most efficient among the tested methods. However, in
terms of memory utilization, this method requires a substantial amount of
memory. On the other hand, among the high-order methods, the Krylov sub-
space approximations demonstrate the best performance, even comparable to
the Leap-Frog scheme. However, we would like to point out that we are using
a simplified model that doesn’t consider the creation of the Krylov subspaces.
Nevertheless, we observe a significant decrease in the number of stored vec-
tors for high-order methods in general. Additionally, we notice that further
increases in the approximation degree have an attenuated effect in reducing
memory utilization, which is negligible for degrees larger than 20.
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(a) Corner Model seismogram until time
T = 2.2s.
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(b) Computing ∆tmax for Corner Model using
an error tolerance of 2.92 · 10−7.
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(c) Santos Basin seismogram until time
T = 3s.
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(d) Computing ∆tmax for Santos Basin using
an error tolerance of 2.65 · 10−6.
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(e) Marmousi seismogram until time
T = 3s.
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(f) Computing ∆tmax for Marmousi using an
error tolerance of 1.3 · 10−6.
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(g) SEG/EAGE seismogram until time
T = 4s.
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(h) Computing ∆tmax for SEG/EAGE using an
error tolerance of 4.2 · 10−6.

Fig. 9: Seismogram of the reference solution for Corner Model, Santos Basin,
Marmousi, and SEG/EAGE numerical tests (left column), and the correspond-
ing ∆tmax of each method, ensuring the error remains below a fixed threshold
(right column). An increase in the number of stages of the method leads to a
larger ∆tmax.
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(a) Computational cost.
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(b) Memory utilization.

Fig. 8: Dependence of the number of MVOs and amount of stored solution vec-
tors on the polynomial degree for the Marmousi numerical test. As the number
of stages increases, the number of computations stabilizes, and memory usage
decreases. * Here we neglect the computational complexity of creating the
Krylov subspaces.

We observed similar behavior in the other numerical tests, and their cor-
responding graphs can be found in Appendix A.3.1.

6 Discussion

In this paper, we have implemented seven time-integration schemes, consist-
ing of three arbitrary-order schemes based on exponential integrators and four
classical low-order schemes. These algorithms have been compared through
various numerical accuracy metrics, including stability, dispersion, and conver-
gence. We have also studied the computational cost and memory requirements
for each method across different approximation degrees.

The stability and dispersion analyses were conducted within a homoge-
neous domain by analyzing the Fourier transform of a single wave generated
by a Ricker wavelet. We observed that the high-order methods were capa-
ble of using larger time steps as the polynomial degree increased. In general,
we found that the Leap-frog method, although requiring smaller time steps,
outperformed the high-order methods. Yet, when considering the dissipation
error, the high-order methods displayed competitiveness and even surpassed
all the low-order methods.

We conducted extensive tests to evaluate convergence using four distinct
velocity fields: three realistic fields and one with sharp interfaces. We assessed
the approximation error both in the physical space at a specific time instant
and using seismogram data. Remarkably, our results proved consistent and ro-
bust across both types of errors and all four numerical experiments. Moreover,
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the Krylov method presented the largest time step size in all the tests, re-
sulting in the least amount of solution vectors required to save for the inverse
problem. As a drawback, the Krylov method requires at each time instant
to access as many vectors (with the dimensions of the solution of the wave
equations) as stages of the method are used. This greatly hinders using the
method to solve the direct problem. In general, high approximation degrees
allowed for larger time steps, a finding that significantly impacts the number
of saved vectors needed for solving the inverse problem. These results provide
a different strategy to approach the memory challenges associated with the
inverse problem.

This research addresses a gap in the existing literature, as most previ-
ous studies on high-order methods have predominantly focused on the spa-
tial dimension Burman et al. [2022], Liu and Sen [2009], Weber et al. [2022],
Wilcox et al. [2010]. Additionally, no prior work has comprehensively examined
high-order exponential integrators in the context of the wave equation applied
to seismic imaging, scrutinizing the performance across a wide range of ap-
proximation degrees. Nonetheless, we acknowledge that our implementation
of high-order approximations using exponential integrators is naive. Substan-
tial enhancements are possible, particularly in terms of implementing adaptive
time-stepping strategies to mitigate the hump phenomena associated with the
matrix exponential Moler and Van Loan [2003]. Indeed, adaptive algorithms
have been proposed, such as the KIOPS algorithm for the Krylov subspace
projections, which significantly outperforms the classical Krylov method used
in our study.
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A Appendix

A.1 Approximations at the free-surface

We present the finite difference approximations of 8th order for the required derivatives
of the functions at the points near the free surface. To simplify the notation, we define
ui = u(x,−i∆x), and wi = wy

�
x,−(i+ 1

2
)∆x

�
. Since we are considering a uniform grid,

we have that ∆y = ∆x, and so, only ∆x will be used.
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A.2 Homogeneous medium

This section complements the results in Section 4. First, we show the convergence, dispersion,
and dissipation errors associated with the eighth-order spatial discretization scheme using
∆x = 10m (Figure 10). Additionally, we present how varying the peak frequencies as fM =
10, 15, 20, 25, impact the maximum allowable time-step ∆tmax and the number of matrix-
vector operations (MVOs) for different schemes and approximation degrees.
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(a) Convergence error.
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(b) Dispersion error.
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(c) Dissipation error.

Fig. 10: Convergence, dispersion, and dissipation errors using the time-step
∆t = ∆x

8c for different numerical methods, with a peak frequency of fM =
15Hz. The approximation order does not matter, since there is an error asso-
ciated to the spatial discretization.
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A.2.1 Dispersion results
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(a) Peak frequency fM = 10Hz.

� � � �� �� �� �� ��
���������������

����

����

����

����

����

�
�
�
�

(b) Peak frequency fM = 15Hz.
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(c) Peak frequency fM = 20Hz.
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(d) Peak frequency fM = 25Hz.

Fig. 11: Maximum time step (∆tmax) while controlling the time dispersion
error of each method to be below 50% of the spatial dispersion error concerning
different peak frequencies of the Ricker wavelet. A grater number of stages
generally allows larger time steps.

From Fig. 11, we perceive that the general behavior is maintained independent of the peak
frequencies. With the difference that when the peak frequency increases, the results for
the Krylov method are more oscillatory, and the high-degree approximations using Faber
polynomials suffer from more round-off errors.
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(a) Peak frequency fM = 10Hz.
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(b) Peak frequency fM = 15Hz.
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(c) Peak frequency fM = 20Hz.

� � � �� �� �� �� ��
���������������

��� ���

��� ���

��� ���

��� ���

��� ���

��� ���

��� ���

�
�
��
�

�
�

(d) Peak frequency fM = 25Hz.

Fig. 12: Dependence of the number of matrix-vector operations and the max-
imum time-step required to compute the solution on the polynomial degree,
considering different peak frequencies. While increasing the number of stages
generally leads to a slight increment in computations. * Here we neglect the
computational complexity of creating the Krylov subspaces.

In Figure 12, we still observe that the Leap-frog algorithm requires the least amount of
MVOs. The FA and HORK methods share a similar number of computations independent
of the peak frequency.

A.2.2 Dissipation results

A similar trend of Fig. 11 is observed in Figure 13, as with the dispersion error. The Krylov
method still has the worst performance for the different peak frequencies. However, it is
noteworthy that the RK9-7 method (red triangle) displays an even better performance
concerning the dissipation error.
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(a) Peak frequency fM = 10Hz.
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(b) Peak frequency fM = 15Hz.
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(c) Peak frequency fM = 20Hz.
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(d) Peak frequency fM = 25Hz.

Fig. 13: Maximum time step such that the time dissipation error of each
method is less than 50% of the spatial dispersion error for different peak fre-
quencies of the Ricker wavelet. In general, more stages allow larger time steps,
except for the Krylov method, where ∆tmax reach a limit.

Regarding computational efficiency in the analysis of the dispersion error, the RK9-7
scheme still maintains an efficient computational performance. The FA and HORK exhibit
similar behavior among the high-order methods, with a decline in efficiency for high-order
Faber polynomials as the peak frequency increases. Nonetheless, the Krylov method exhibits
the best performance in general, but with a very marked oscillatory behavior.
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(a) Peak frequency fM = 10Hz.
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(b) Peak frequency fM = 15Hz.
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(c) Peak frequency fM = 20Hz.
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(d) Peak frequency fM = 25Hz.

Fig. 14: Dependence on the polynomial degree of the number of matrix-vector
operations by maximum time-step required to compute the solution for dif-
ferent peak frequencies. When the number of stages increases, the number of
computations increases slightly. * Here we neglect the computational complex-
ity of creating the Krylov subspaces.

A.3 Convergence and computational efficiency

In this section, we complement the results of the numerical experiments of Section 5. First,
we show the error graphics using the minimum time-step of ∆t = ∆x

8cmax
, where cmax is the

medium maximum velocity. These graphs account for all the methods discussed in Section
3 and several approximation degrees for the high-order schemes. Following that, we present
the graphics of the estimation of ∆tmax, the computational efficiency, and the memory
utilization.
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(a) Corner Model.
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(b) Santos Basin.
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(c) Marmousi.
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(d) SEG/EAGE.

Fig. 15: Error at a time instant in the physical space achieved by each time in-
tegrator and several approximation degrees, for all the numerical experiments
described in Section 5.1, using a time step size of ∆t = ∆x

8cmax
. Regardless of

the order of the method, there is an inferior limit for the error due to spatial
discretization step-size size and scheme.

Based on Figure 16, we observe an approximation error in all the numerical examples
that do not decrease with the order of the method or with the selected method. This error
is independent of the time integration strategy and is produced by the spatial discretization
operator. While the dependence of the spatial error on the numerical experiment is weak, it
is important to estimate it accurately for a reliable computation of ∆max, as quantified in
Table 3.
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Numerical experiment Spatial error Error tolerance

Corner Model 2.02 · 10−7 3.03 · 10−7

Santos Basin 5.55 · 10−7 8.33 · 10−7

Marmousi 6.62 · 10−7 9.93 · 10−7

SEG/EAGE 8.65 · 10−7 1.3 · 10−6

Table 2: Numerical error at a time instant in the physical domain produced
by the spatial discretization.

Table 3 contains two key columns of information. The first column, labeled “Spatial
error”, represents the error stemming from the spatial discretization. Meanwhile, the second
column, labeled “Error tolerance”, accounts for the error tolerance of 150% of the spatial
error we defined for the numerical experiment.

For the minimum error using the seismogram data, we have the respective error graphics
and tolerance for each numerical test.
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(a) Corner Model.
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(b) Santos Basin.
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(c) Marmousi.
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(d) SEG/EAGE.

Fig. 16: Error using the seismogram data achieved by each time integrator and
several approximation degrees, for all the numerical experiments described in
Section 5.1, using a time step size of ∆t = ∆x

8cmax
. Regardless of the order of

the method, there is an inferior limit for the error due to spatial discretization
step-size size and scheme.

Numerical experiment Spatial error Error tolerance

Corner Model 2.92 · 10−7 4.38 · 10−7

Santos Basin 2.65 · 10−6 3.97 · 10−6

Marmousi 1.3 · 10−6 1.95 · 10−6

SEG/EAGE 4.2 · 10−6 6.3 · 10−6

Table 3: Numerical error utilizing the seismogram data produced by the spatial
discretization.
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A.3.1 Computational efficiency and memory consumption

Figure 17 displays each time the integrator’s computational cost and memory utilization
for the numerical tests Corner Model, Santos Basin, and SEG/EAGE. Although there are
some variations between the experiments, the general behavior remains consistent. High-
order methods require significantly less memory; in some cases, they are competitive with
low-order methods, such as the Leap-Frog scheme.

The relationship between the number of MVOs and the quantity of stored solution
vectors concerning the polynomial degree is illustrated for the Corner Model (first line),
Santos Basin (second line), and SEG/EAGE (third line) numerical tests. As the number of
stages increases, there is a stabilization in the number of computations, and memory usage
decreases.
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(a) Computational cost of Corner Model.
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(b) Memory utilization of Corner Model.
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(c) Computational cost of Santos Basin.
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(d) Memory utilization of Santos Basin.
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(e) Computational cost of SEG/EAGE.
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(f) Memory utilization of SEG/EAGE.

Fig. 17: Dependence of the number of MVOs and amount of stored solution
vectors on the polynomial degree, for the Corner Model (first line), Santos
Basin (second line), and SEG/EAGE (third line) numerical tests. As the num-
ber of stages increases, the number of computations stabilizes, and memory
usage decreases. * Here we neglect the computational complexity of creating
the Krylov subspaces.


