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0.1 Preface

The origin of these lectures notes comes from a series of courses taught in

the University of Pretoria in Match 2018. There are, now, many books

in mathematical epidemiology [18, 17, 25, 10, 64, 92] to cite a few. These

lectures notes consider only finite dimensional deterministic system, ODE for

short.

In these lectures notes we have addressed some issues which are not commonly

treated elsewhere.

1. We have given detailed exposition on Lyapunov and LaSalle techniques

with examples from the literature.

The reduction techniques of Vidyasagar are given. They are used

throughout these lectures, simplifying the models by dimension reduc-

tion.

2. The exposition on R0 is now classical, but we try to clear the notion

of threshold in relation with Varga’s theorem;

3. We think that our exposition on Monotone systems with applications

to large scale epidemiological systems is original. All the results are

proven in details, results which are dispersed in the literature.

4. The linear chain trick is exposed and show how to deal with delays only

with ODE

5. The problem of parameters, identification and identifiability is intro-

duced with a control theory approach.

I would like to thanks the department of mathematics of UP, the staff and

their students for their warm welcome and to permit this opportunity to give

these lectures.



Chapter 1

Introduction and Important
Concepts

1.1 Mathematical modeling of infectious diseases

Mathematical epidemiology has a long history. In 1760 Daniel Bernoulli

presents a study on smallpox (called “petite vérole”) under the title “Essai

d’une nouvelle analyse de la mortalite caus?e par la petite v?erole & des

avantages de l’inoculation pour la pré?venir.” These study is often quoted as

the first epidemiological model. In introduction of these study Bernoulli says

je souhaite seulement dans une question qui regarde de si pr?s le

bien de l’humanit?, on ne d?cide rien qu’avec toute la connais-

sance de cause qu’un peu d’analyse & de calcul peut fournir

(I only wish in a matter that looks so closely at the good of humanity, we

decide nothing with all the knowledge that a little analysis & calculation can

provide.)

Actually the foundations of mathematical epidemiology were laid not by

mathematicians but by physicians in the beginning if the twentieth century.

9



10 1. INTRODUCTION AND IMPORTANT CONCEPTS

P. D.En’ko’s paper (1889) ”on the course of epidemics of some infectious dis-

eases, VRAC 1889”was the first to discuss the elements of a genuine epidemic

model, namely the chain binomial. The foundations of the entire approach

to epidemiology based on compartmental models were laid by public health

physicians such as Sir Ross [78, 79], R.A., W.H. Hamer, A.G. McKendrick

and W.O. Kermack [57] between 1900 and 1935.

A particularly instructive example is the work of Ross on malaria. Sir Ronald

Ross was awarded the second Nobel Prize in Medicine in 1902 for his demon-

stration of the dynamics of the transmission of malaria between mosquitoes

and humans. Ross waged a constant and often acrimonious battle for the

acceptance of what he called his “mosquito theorem” p22 of [77] :

The word theorem is used here in its correct sense as expressing

not a mere speculation, but a body of established fact.

The implication of this theorem is that a reduction of Anopheles population

is a mean to prevent Malaria. The argument against Ross’s ideas were

• it is impossible to totally eradicate the mosquitoes in an area (Ross

admitted this);

• thus there will always be some mosquitoes remaining (Ross admitted

this);

• thus malaria transmission will continue, and vector control is a waste

of time and effort (here Ross disagreed)

The fallacy of such an argument is now well established : you must think

quantitatively ! To quote Ross again [78] :
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The mathematical treatment adopted in section 28 has been met

with some questioning by critics. Some have approved of it, but

others think that it is scarcely feasible owing to the large num-

bers of variables which must be considered. As a matter of fact

all epidemiology concerned as it is with the variation of disease

from time to time or from place to place, must be considered

mathematically, however many variables are implicated, if it is to

be considered scientifically at all. To say that a disease depends

upon certain factors is not to say much, until we can also form an

estimate as to how largely each factor influences the whole result.

And the mathematical method of treatment is really nothing but

the application of careful reasoning to the problems at issue

Ross insists on the qualitative nature of the studies.

It was the challenge of convincing the world that mosquito control was a

practical public health undertaking that stimulated Ronald Ross to develop

his model in 1911.

The mechanism of transmission of infections is now known for most diseases.

Generally, diseases transmitted by viral agents, such as influenza, measles,

rubella (German measles) and chicken pox, confer immunity against reinfec-

tion, while diseases transmitted by bacteria, such as tuberculosis, meningitis

and gonorrhea, confer no immunity against reinfection. Other diseases, such

as malaria,are transmitted not directly from human to human but by vec-

tors, agents (usually insects) that are infected by humans and subsequently

transmit the disease back to humans.

Mathematical epidemiology differs from most sciences as it does not lend itself

to experimental validation of models. Experiments are usually impossible and

would probably be unethical. This gives great importance to mathematical
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models as a possible tool for the comparison of strategies to plan for an

anticipated epidemic or pandemic, and to deal with a disease outbreak in

real time [18].

Are mathematics useful in epidemiology ? we will quote Ross again.

Ronald Ross is not the first to use mathematics to study some problems in

epidemiology. But it can be said that Ross is the first to systematically use

the mathematical approach . In the introduction of An Application of the

Theory of Probabilities to the Study of a priori Pathometry. Part I Ross

writes

The whole subject (i.e., Epidemiology) is capable of study by

two distinct methods which are used in other branches of science,

which are complementary of each other, and which should con-

verge towards the same results – the a posteriori and the a priori

methods. In the former we commence with observed statistics,

endeavour to fit analytical laws to them, and so work backwards

to the underlying cause (as done in much statistical work of the

day) ; and in the latter we assume a knowledge of the cause, we

construct our differential equations on that supposition, follow up

the logical consequences, and finally test the calculated results by

comparing them with the observed statistics

Ross is the first to use the a priori method and the cited text, dating back

to 1916 ! It is a good introduction to a course on modelling.
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1.2 Deterministic epidemic models : compartmen-

tal approach

Dynamic models of many processes in pharmacokinetics;metabolism, epi-

demiology, ecology, and other areas are derived from mass balance consider-

ations

As a result, these models lead to particular systems of ordinary differential

equations–many of them nonlinear–that are called compartmental systems.

The equations of compartmental systems are subject to such strong struc-

tural constraints that it seems likely that their solutions may also be strongly

constrained.

The conservation law that dominates such systems is the law of conser-

vation of mass : there are also called mass balance systems. A compartment

is an amount of some material that is kinetically homogeneous.

By kinetically homogeneous we mean the material of a compartment is

at all times homogeneous; any material entering it is instantaneously mixed

with the material of the compartment.

• A space or a region limited by barriers

• Or a substance or a physical quantity ,without precise localization

An example is the presence of lead in an living organism :

Lead in an organisme gives rise to a disease : lead poisoning (also call

saturnism)

a part of lead absorbed is excreted, but the remaining accumulate es-

sentially in bones; 80 to 95%. In bones lead has a mean half life of 20–25

years.

Lead also accumulate in liver, kidneys, brain with irreversible and se-

vere effects in the organism. Modeling lead poisoning leads to consider 3
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compartments : blood in which lead is transported, soft tissues and finally

bones.

x1

x2

a21
a12

a01

a02 a03

a31

a13

x3

Λ

soft tissues 
(kidneys, ...)

Plasma, red blood cells

Bones

Figure 1.1: Flow graph of lead poisoning

1.2.1 Compartmental equations

The box in the following figure represents the i-th compartment of an n

compartment system.
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Ii

qi FjiFij

F0i

From  j

Outside Input

Going to  j

Outside output

Figure 1.2: A comparment

Arrows represents the input and output flows in the compartment.

q̇i = Ii − F0i +
∑
j ̸=i

Fij − Fji

Inputs : the flows into the compartment

Ii(t)∆t+

(∑
j

Fij

)
∆t

Outputs : the outflows leaving the compartment

F0i∆t+

(∑
j ̸=i

Fji

)
∆t

Instantaneous mass balance equations

q̇i(t) = Ii(t) +

(∑
j ̸=i

Fij

)
− F0i −

(∑
j ̸=i

Fji

)
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The functions Fij and Ii are flows : quantity of material by unit of time.

The functions Ii, F0i, Fij can be functions of q1, . . . ,qn and possibly t.

So we can write the functions Fij(t, q)

These are nonnegative quantity Ii ≥ 0, F0i ≥ 0, Fij ≥ 0

If there is no material un a compartment, nothing can leave the compartment.

Mathematically

qi = 0 ⇒ Fji = 0 and F0i = 0

To summarize we have

•

Fij ≥ 0 F0i ≥ 0 Ii ≥ 0

•

qi = 0 ⇒ Fji = 0 et F0i = 0

Now we will suppose that these functions are C1

Proposition 1.2.1 If f is a function from Rn into Rm of class Ck, s.t. f(x∗) =

0 there exists A(x) of class Ck−1, from Rn in matrices m × n such that for

any x ∈ Rn we have

f(x) = A(x) (x− x∗)

Proof

we consider C1 from R into Rm

φ(t) = f(x∗ + t (x− x∗))
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f(x) = φ(1)− φ(0) =

∫ 1

0

φ′(s) ds

=

∫ 1

0

Df(x∗ + s (x− x∗) . (x− x∗) ds

=

(∫ 1

0

Df(x∗ + s (x− x∗) ds

)
(x− x∗)

Then A(x) =

(∫ 1

0

Df(x∗ + s (x− x∗) ds

)
of class C1.

■

Consequence for our functions there exists a function fij such that

Fij = fij qj

q̇i = Ii − F0i +
∑
j ̸=i

Fij − Fij

q̇i = −

(
f0i +

∑
j ̸=i

fji

)
qi +

∑
j ̸=i

fij qj + Ii

We now introduce a matrix A defined by

• A(i, j) = fij

• A(i, i) = −f0i −
∑
j ̸=i

fji

• and the vector I = (I1, · · · , In)T

The equations can now be written in a linearized way

q̇ = Aq+ I

Functions fij are called fractional transfer coefficients. Dimension of these

functions are t−1. Depending generally for q and t.
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The entries of the matrix A have some properties : the off-diagonal entries

are nonnegative.

Definition 1.2.1 (Metzler Matrix ) A matrix A whose off diagonal entries

are nonnegative, i.e. if i ̸= j then aij ≥ 0 is called a Metzler matrix.

But we have more properties for our matrices A

q̇ = A(t,q)q+ I(t,q)

a diagonal entry is given by A(i, i) = −f0i −
∑
j ̸=i

fji ≤ 0. In other words

A(i, i) is equal to minus the sum of entries of columnn i and subtracting the

term −f0i. Then for the matrix A, each column sum is non positive.

A Metzler matrix, which satisfies that the column sum are nonpositive (this

implies that the diagonal terms are non positive) diagonale) is called a com-

partmental.

1.2.2 Graphic representations

A standard graphical representation of compartmental systems uses nodes for

compartments and directed arcs labeled with fractional transfer coefficients

for transfers between compartments, and for excretions.

Inputs are labeled with the input function. Such representations are called

compartmental system connection diagrams or simply connection diagrams

or flow-graphs. Actually these are digraphs with weight on each arc : these

are also called un Coates graph.

1.2.3 An example : The Kermack?McKendrick Model

We formulate our descriptions as compartmental models, with the popu-

lation under study being divided into compartments and with assumptions
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about the nature and time rate of transfer from one compartment to another.

Diseases that confer immunity have a different compartmental structure

from diseases without immunity

In order to model such an epidemic we divide the population being stud-

ied into three classes labeled S, I, and R. We let S(t) denote the number

of individuals who are susceptible to the disease, that is, who are not (yet)

infected at time t. I(t) denotes the number of infected individuals, assumed

infectious and able to spread the disease by contact with susceptibles. R(t)

denotes the number of individuals who have been infected and then removed

from the possibility of being infected again or of spreading infection. Re-

moval is carried out either through isolation from the rest of the population

or through immunization against infection or through recovery from the dis-

ease with full immunity against reinfection or through death caused by the

disease.In formulating models in terms of the derivatives of the sizes of each

compartment we are assuming that the number of members in a compartment

is a differentiable function of time. This may be a reasonable approximation

if there are many members in a compartment, but it is certainly suspect

otherwise. The basic compartmental models to describe the transmission of

communicable diseases are contained in a sequence of three papers by W.O.

Kermack and A.G. McKendrick in 1927, 1932, and 1933


Ṡ = −β S I

İ = β S I − γ I

Ṙ = γ I

(1.1)

Actually, in the paper of Kermack and McKendrick, S, I and R are area

densities.

We have the following hypothesis

• Constant population.
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• All individuals are equally susceptible

• Infection leads to death or complete recovery with permanent immunity

The flow graph

SS I R
susceptiblesusceptible infectiousinfectives

 

removedremoved

Figure 1.3: Flow graph of Kermack-McKendrick model

Explanation : the production of new infective is proportional to the prod-

uct of densities S and I. Intuitively S I is the probability of encounter.

This is the mass action law, when the variables are densities.

Another way to formulate is : we assume that any individual makes β

adequate contact by unit of time with others. If N is the total population

and S, I and R prevalence (i.e., % relatively to the population), we have

I N infectious individuals, then the number of encounter of an infective by

unit of time is (β N) I. Among this encounters, only the encounters with a

susceptible, will produce a new infective

Then the number of new infections in unit time per infective is equal to

(β N) I S = β,N S I = β̃ S I

Note : the hypothesis of homogeneity.
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1.2.4 Transfer rates

For the simple Kermack-McKendrick model described in the previous section,

we assumed that the recovery rate, or the rate of transfer from compartment

I to R, is given by γ I . This is equivalent to assuming the following:

(H) the fraction of the infectious population that recovers per unit time

is a constant.

Proportional transfer rates as assumed in (H) are often used for transfers

between compartments in simple compartmental models. However, we need

to understand that this is only one of many assumptions we can make about

population transfers.

In fact, our assumption that recovery rate is in proportion to the size of the

infectious population is by no means universal. In the following, we develop

a better mathematical understanding of the proportional transfer rate, and

consider other possible alternatives. Consider a general compartment C of

total population size N(t), where individuals leave the compartment at a rate

rN(t) (r > 0). Then the size N(t) satisfies

dN(t)

dt
= −r N(t), r > 0,

and thus N(t) = N0 e
−r t, or

N(t)

N0

= e−r t.

Therefore, e−r t gives the fraction of the population that remains in the

compartment C. In probability terms, e−r t is the probability of an individual

entering C at time t = 0 and remaining in C at time t > 0. Since we are

interested in the population transfer out of C, we consider
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F (t) =

{
1− e−r t, t ≥ 0

0, t < 0

which gives the fraction of the population that has left C during the time

period [0, t), or the probability of an individual who has left C during [0, t).

Here we see that F (t) has the characteristics of a probability distribution.

In fact, let X denote the random variable of the residence time of an

individual in compartment C, the time period from entrance to exit, we see

that

F (t) = Prob[ X ≤ t ].

In other words, F (t) is the probability distribution function of individual

residence time in C, and it satisfies the following properties:

• F (t) ≥ 0

• F (t) → 0, as t → −∞

• F (t) → 1, as t → +∞

Now we see that the assumption of proportional exit rate is the same as

the following: (H0) the residence time of an individual in compartment C

has an exponential distribution. We can also describe the random variable

X in terms of probability density function f(t) =
d

dt
F (t), namely:

f(t) =

{
r e−r t, t ≥ 0

0, t < 0,

with the following properties

• f(t) ≥ 0



1.2. DETERMINISTIC EPIDEMIC MODELS : COMPARTMENTAL APPROACH 23

•
∫ +∞

−∞
f(t) dt = 1

• F (t) = Prob[ X ≤ t ] =

∫ t

−∞
f(s) ds.

The expected value, also called the mean value, of X is

E(X) =

∫ +∞

−∞
t f(t) dt =

1

r

For transfers from compartment I toR, the residence time is the period

between time of infection and time of recovery, which is the infectious period.

Then
1

γ
is the mean infectious period.
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Chapter 2

Some Classical Examples

2.1 Introduction

Ronald Ross discovers the transmission of Malaria by mosquitoes Anophe-

les. Ross proves this transmission in 1898 and was awarded Nobel prize in

1902. Ross is better known to the medical community as the discoverer of the

mosquito transmission of malaria than as the author of a far-reaching theo-

retical approach to the study of disease in populations. We need little wonder

that towards the end of his life, Ronald Ross, the man who incriminated the

mosquito in the transmission of malaria, would write:

’In my own opinion my principal work has been to establish the

general laws of epidemics’

This section will present the so-called Ross model. This model has been

published in the appendix of in 1911 in Prevention of Malaria [78] and also

in Nature the same year [79]. This model is interesting since

• It shows how to model, what are the hypotheses taken into account

and the hypotheses neglected.

25
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• this model is really seminal : the so-called famous model of Lotka-

Volterra, also quadratic equations in the plane, is dated of 1925;

• despite its simplicity it captures the dynamics of Malaria;

• this model was used by Ross to found the justification of anti-vectorial

measures.

The rest of the chapter is organized as follows. In accordance with the a

priori method first we will describe the natural history of malaria. In other

words, how does it work? Then we will discuss in detail the construction of

Ross model and continue with his analytic study to state what Ross called

the mosquito theorem (which also shows Ross state of mind). To conclude on

malaria we will present a simple model intra-host, ie a model that describes

the infection in an individual.

2.2 Natural history of Malaria

To be established Malaria needs three ingredients :

• A human host

• a mosquito of Anopheles type

• a hematophagous protozoan.

The causative agent, le Plasmodium was discovered in 1880, in Alg?ria at

Constantine, by a french military doctor Alphonse Laveran. Laveran was

awarded in 1907 by the Nobel prize.

4 parasitic species for man :

• Plasmodium vivax,
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• Plasmodium falciparum,

• Plasmodium malariae,

• Plasmodium ovale.

All have an asexual cycle in man schizogony and a sexual cycle in

mosquito called sporogony. The most dangerous and frequent in Africa is

P. falciparum. Parasite cycle is divided in 3 parts. Two in man and one in

mosquito. The first part occurs in liver, the second occurs in red blood cells

Figure 2.1: Le cycle du parasite du paludisme Plasmodium falciparum
(D’apr?s C. Rogier)
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2.2.1 In Liver

Parasite is inoculated in the peripheral blood with the anticoagulant saliva

of moquito. . These parasites are called sporozoites. There are mobile and

are moved by the blood flow to penetrate liver cells. It takes less than 45

minutes

Each sporozoite enters in a hepatocyte (liver cell); and from these moment

unable to move Sporozoite transforms, grews and divides. After a mean

duration between 8 to 15 days the hepatocyte is invaded by several thousands

of nucleus called schizonte. Once matured the schizonte bursts and releases

m?rozoites which pass in blood. The duration of this period is around 15

days

This Liver cycle was only discovered in 1948 seulement with teh works pf

James, Tate, Shortt and Garnham.

2.2.2 In blood

M?rozoites invade Erythrocytes (Red Blood Cell) taking the characteristic

aspect for P. falciparum of a kitten ring. They becomes trophozoites feeding

from hemoglobin. At the end trophozoites becomes pigmented schizontes.,

Once mature the red blood cell burst and releases new merozoites which will

parasite healthy RBC.

Several similar evolutions succeed one another as well. After few weeks

(10-12 days for P. falciparum ) some schizonts will turn into male sexed cells

or females: the gametocytes. We distinguish macrogametocytes (females) et

des microgametocytes (males). This cells stays in the blood being a reservoir

for the mosquito
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Figure 2.2: Different form of Plasmodium falciparum in Erythrocyte cycle
(Laveran Drawings).
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Figure 2.3: Laveran Drawings planche I [62]

sporogony in mosquito

If a female mosquito bites an infected individual it ingests gametocytes in

his gut. The gametes increase in size. In 10 minutes the male and female ga-

metes have left their envelope. The male produced 8 flagellated microgametes

mobile. This event, the formation of vigorous mobile male gametes from a

previously quiet gamete is called exflagellation. This striking phenomenon

has fascinated malariologists since the observation by Laveran himself.
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Fertilization produces a mobile ookinete that will establish itself as oocyst

on the inside of the digestive tract.

Inside the oocyst will form sporocysts that will give several hundred sporo-

zoites. The sporozoites migrate to the salivary glands of the mosquito, where

they develop in vacuoles and can stay up to 59 days. During their develop-

ment, sporozoites can become up to 1000 times more infectious than when

their presence in the oocyst.

2.2.3 The vector

Only the female bite the host, usually after sunset. A blood meal is necessary

before laying eggs singly on liquid surfaces.

Figure 2.4: anopheles

Eggs give larvae (Figure 2.5), then nymph and finally the winged insect
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Figure 2.5: larvae ias parallel to surface

The flight of the mosquito does not exceed, in principle, one or two kilo-

meters.

There are more than 300 species of Anopheles, only 60 are human plas-

modium vectors.

2.3 Building the model

With Ross, we will make some simplifying hypotheses. It is assumed that the

human population is constant as well as that of female anopheles. In other

words, mortality is equal to the birth rate. A hypothesis of homogeneity

is admitted: that humans and mosquitoes are equally distributed. In other

words, a mosquito has an equal probability of biting a determined human.

The mosquito population is divided into two fictitious compartments: healthy

mosquitoes, we say susceptible, and infectious mosquitoes. We do the same

for the human population.
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Figure 2.6: Les compartiments

These assumptions are simplifications. On the episode on which we study the

transmission we can admit that the populations are approximately constant.

In any model, there are simplifying hypotheses, e.g. when we write the

equations of the pendulum we neglect the friction and the resistance of the

air.

Sh(t) and Ih(t) are the respective populations of humans in the susceptible

and infectious compartment.

We will write the balance of transfers between each compartment. We con-

sider a time interval ∆t, supposedly small. In this interval of time we will

write the movements of populations between each compartment. There are

some hidden hypotheses here: we neglect the incubation time, we also make

the implicit assumption that there is no superinfection.



34 2. SOME CLASSICAL EXAMPLES

2.3.1 Infectious human evolution

W evaluate Ih(t+∆t).

Input These are the new infectious individuals.

• To become infectious you must have been bitten by an infectious

mosquito.

• A mosquito bites a human per unit of time.

• It is assumed that the probability of becoming infectious after an

infectious bite is b1.

• There are Iv(t) infectious mosquitoes, they will induce a Iv ∆t

bites.

• In all these bites, only those made on a susceptible human will

produce a new infectious. The proportion is Sh

H
= H−Ih

H
where H

is the constant human population.

• Therefore the number of new infectious is

b1 a Iv
H − Ih

H
∆t

Output It’s the infectious ones that heal and regain the susceptible compart-

ment. It is therefore assumed that there is no immunity.

• It is assumed that the average speed for a healing individual is

γH per unit of time. Mortality is assumed to be µH . This is the

number of deaths per person per unit of time.

• Therefore it disappears

(γH + µH) Ih∆t

infectious either by cure or by death.
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Balance Finally

Ih(t+∆t) = Ih(t) + b1 a Iv
H − Ih

H
∆t− (γH + µH) Ih∆t

Susceptibles balance Since the human population is constant , Sh(t) = H−
Ih(t) we have

Sh(t+∆(t) = Sh(t)− b1 a Iv
H − Ih

H
∆t+ (γH + µH) Ih ∆t

Actually it is sufficient to know Ih(t) to immediately know by difference Sh(t).

The first relation can also be written

Ih(t+∆t)− Ih(t)

∆t
= b1 a Iv

H − Iv
H

− (γH + µH) Ih

When ∆t goes to 0 we obtain the following ODE

d Ih(t)

dt
= İh(t) = b1 a Iv(t)

H − Ih(t)

H
− (γH + µH) Ih(t)

which is written writes more simply, omitting the time t in the functions

Ih and Iv.

İh = b1 a Iv
H − Ih

H
− (γH + µH) Ih (2.1)

This gives the following graph



36 2. SOME CLASSICAL EXAMPLES
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Figure 2.7: Human

2.3.2 Infectious mosquito population

The principle is the same. A new infectious mosquito will appear after the

bite of a susceptible mosquito biting an infectious human. The probability

of becoming infected, for the mosquito biting an infectious host, is b2. We

will have aSv bites, where a Sv
Ih
H

will give rise to an infectious mosquito. If

we denote by V the vector population (Anopheles females) Sv = V − Iv. We

will thus have, by introducing the speed of recovering of the mosquito and

its mortality

İv = b2 a (V − Iv)
Ih
H

− (γV + µV ) Iv (2.2)

which gives the flow graph
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Figure 2.8: Complete flow graph

We see that in the human susceptible compartment, deaths are µH Sh and

births µH H = µH (Sh + Ih). Newborns are born susceptible. It is also an

implicit assumption and it is actually true. The gain in the compartment of

susceptible is in fact µH Ih, in other words Ṡh = −İh. Which is another way

of saying that the H population is constant: Ḣ = 0.

2.3.3 Ross model, final form

We have a system of ODE


İh = b1 a Iv

H − Ih
H

− (γH + µH) Ih

İv = b2 a (V − Iv)
Ih
H

− (γV + µV ) Iv

(2.3)
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In epidemiology, it is often the percentages, in other words the prevalences,

that are measured. As the population is constant we will introduce the

percentage of infectious individuals:

x =
Ih
H

for human hosts and y =
Iv
V

for mosquitoes

Since H et V are constant we have ẋ =
İh
H

et ẏ = İv
V
. We prepare, a litlle bit

(2.3)


İh = b1 a

Iv
V

V

(
1− Ih

H

)
− (γH + µH) Ih

İv = b2 a V (1− Iv
V
)
Ih
H

− (γV + µV ) Ih

(2.4)

dividing the first equation by H and the second by V , by setting m = V
H

we

get 
ẋ = ma b1 y (1− x)− (γH + µH)x

ẏ = b2 a (1− y)x− (γV + µV ) y
(2.5)

To obtain the final model, two more approximations are made: the rate of

recovering is the inverse of the average duration of the time spent in the

infectious status. In other words, an infectious individual remains infectious

on a mean time

1

γ
time units

In particular mortality is negligible in the face of healing time in humans. If

conservatively we take between 2 and 6 months for a recovery

µH ≈ 1/(60× 365) j−1 ≈ 4.56 10−5

et γV ≈ 1/(2× 60) j−1 ≈ 0.008
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µV

γV
≈ 1

360
≈ 0.0027

Similarly, the mosquito’s recovering time is assumed to be negligible com-

pared to life expectancy of the mosquito. In all the entomological literature

it is admitted that the mosquito remains infected all his life. We therefore

neglect µH and γV . Which finally gives


ẋ = ma b1 y (1− x)− γ x

ẏ = b2 a (1− y)x− µ y
(2.6)

As a result of this model Ross stated what he called his mosquito theorem.

Formulated in a contemporary way, this theorem would be read now

Theorem 2.3.1 (Mosquito theorem, Ross)

For the system (2.6)

• Si on a
ma2 b1 b2

γ µ
≤ 1,

the disease free equilibrium (0, 0) is globally asymptotically stable on

[0, 1]× [0, 1].

• Si
ma2 b1 b2

γ µ
> 1,

then there exists a unique equilbrium (x̄, ȳ) ∈]0, 1[×]0, 1[ ]0, 1]×]0, 1]

which is is globally asymptotically stable on ]0, 1[×]0, 1[ .

2.4 Ross model analysis

We will postpone this analysis, waiting for the tools needed.
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2.5 Malaria intra-host model

Ross model is a model for the spread of a disease. It may be useful to study

the spread of pathogens within an individual. The model we will present was

introduced by Anderson, May and Gupta in 1989.

Let x the concentration in the blood of healthy erythrocytes, y the con-

centration of parasitized erythrocytes and m the concentration of merozoites

circulating freely in the bloodstream.


ẋ = Λ− µx x− βxm

ẏ = β xm− µy y

ṁ = r µy y − µm m− β xm.

In the absence of parasites, the concentration of red blood cells is con-

stant. The number of red blood cells in the blood is normally between 4.5 -

5.5 million / mm3, their lifespan is 120 days, they are produced by the bone

marrow. This explains the choice of ẋ = Λ− µx x in the absence of parasite.

Now the term β xm represents the penetration rate of merozoites in ery-

throcytes An infected erythrocyte passes into the infected compartment The

mortality of infected erythrocytes is µy. For P. falciparum the average cycle

time is 48 hours When a red blood cell bursts it releases r merozoites. A

merozoite if it does succeed to enter a RBC will be eliminated in the spleen.

The term β xm which appears in the last equation represents the passage of

the merozoite circulating in the red blood cell. If this term was not present,

the model would allow a single merozoite to infect several RBC!

The term r µy is the mean number of sporozoites produced by a infected

erythrocyte by unit of time. Since an erythrocyte has a mean life of
1

µy

and

since when bursting it gives r merozoites, the number by unit of time is
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r
1
µy

= r µy

In this model the unknown parameter is β, for the others we have at least

an approximate knowledge.

This model, without the quadratic term in ṁ, is baptized as a model of

viral dynamics ( May et al)

In fact this model is also a model of HIV infection. It is proposed by

Perelson in the 1990s. The only difference is that recruitment, instead of

being constant is represented by a logistic function. In this case, the variable

x represents the concentration of CD4 + lymphocyte cells. and we would

have

ẋ = Λ+ p x

(
1− x

xmax

)
− µx x− β xm.

In this form y is the concentration of infected lymphocytes and m the

concentration of free circulating virion.

With this model Perelson has said

While the mathematics involved was trivial, the application of

mathematics in this manner was novel and set off what has been

described as a revolution in thinking about HIV

2.6 SEIR model

Disease infection begins with the transmission of the pathogen from one host

to another. After pathogens invade the host body, they need to be able to

evade or overcome the host immune response, and be able to multiply or

replicate. When the pathogens accumulate sufficiently large numbers and

reach the targeted organs, they begin to cause sufficient damage to the host
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body so that the host becomes symptomatic, and the host is then capable

to transmit the pathogens to others. The period from time of infection to

time of onset of symptoms is called the incubation period. The period from

time of infection to time of being contagious or infectious is called the latent

period. The period from the beginning to the end of being infectious is called

the infectious period. See the illustration (2.9) for an example of relations

between these periods. During the latent period, a host may or may not show

symptoms, but the host is not capable of transmitting pathogens to other

hosts.

Time of infection
Beginning 
of infectiousness

Onset of 
symptoms

End of 
infectiousness

Recovery

Latent period Infectious period

Incubation period

Figure 2.9: SEIR model

We have the following flow graph
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Figure 2.10: Scheme of infection



Ṡ = Λ− µS S − β
S I

N

Ė = β I S − (µE + α)E

İ = α I − (γ + µI) I

Ṙ = γ I − µR R

(2.7)

In this model S, E, I, R andN = S+E+I+R are numbers. It is assumed,

under the hypothesis of homogeneity that any individual makes β adequate

contact by unit of time. Then I infectious will make β I adequate contacts.

But in all these contacts, only the contact with susceptible individuals will

give rise to latent (E) individual. The proportion of susceptibles in the whole

population is
S

N
. Then the new latent will be

β I
S

N

This law is called true mass action or frequency-dependent transmission.

The mean period for latency is
1

α
, for recovery

1

γ
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Chapter 3

Basic Mathematical Tools and
Techniques

3.1 Well-posedness of a model

We consider the Kermack-McKendrick model (1.1)


Ṡ = −β S I

İ = β S I − γ I

Ṙ = γ I

(3.1)

with initial condition (S0, I0, R0). We claim that nonnegative initial condi-

tions leads to nonnegative solutions. In other word, any trajectory beginning

in the nonnegative orthant R3
+ stays in this orthant. In other words the non-

negative orthant is positively invariant for the dynamical system. It is what

we mean by well-posedness. Recall that the variables are either numbers or

densities, then in the nonnegative orthant.

To study the well-posedness of a system we will give a Theorem. This

Theorem seems to be intuitively evident, but it has to be proved ...

This Theorem will allows to study well-posedness for epridemiological or

45
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biological models.

Theorem 3.1.1 (Barrier Theorem )
We consider a differential equation ẋ = X(x), where X is a C1 function defined

on an open set U ⊂ Rn, U −→ Rn.
We consider a C1 function H : Rn −→ R. We define a closed set

Ω = {x ∈ Rn | H(x) ≤ 0}
and its boundary is ∂Ω = {x ∈ Rn | H(x) = 0}.

We assume that in every point of the boundary x ∈ ∂Ω we have ∇H(x) ̸= 0
and

⟨X(x) | ∇H(x)⟩ ≤ 0,

then the set Ω is positively invariant.

H(x)=0

x0

H(x) < = 0

X(x0)

∇H(x0)

In other words {x ∈ Rn | H(x) ≤ 0 x ∈ Ω} is positively invariant.This

result seems to be intuitively evident. This partly true as the proof will show.

Geometrically this says that the vector field, on the boundary ‘points

inside’.

before proving the Theorem we need another result. This result tell how

we can have estimates when we modify (approximate ) a vector field
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Lemma 3.1.1

Let X a Lipschitz vector vector with Lipschitz constant L. We consider

the approximation Xε of X, in other words for any x we have

∥Xε(x)−X(x)∥ ≤ ε

∥ ∥ being any norm on Rn.

Then for any t where the quantities are defined

∥Xε
t (x

ε
0)−Xt(x0)∥ ≤ ∥xε

0 − x0∥ eLt + ε
eLt − 1

L

proof of the Theorem

Actually we will prove the theorem for a Locally Lipschitz vector field.

The case C1 is then contained in it. To go out from the set

G = {x ∈ Rn | H(x) ≤ 0 x ∈ Ω}

the trajectory, by the intermediate value theorem, must pass through he

boundary ∂G = {x ∈ Ω | H(x) = 0 }
We will distinguish two cases.

In the first case

we suppose that in x0, H(x0) = 0. We have

⟨X(x0) | ∇H(x0)⟩ < 0

Let ε < 0 such that ⟨X(x0) | ∇H(x0)⟩ < ε < 0, with a continuity

argument, there is a ball centered in x0 and of radius η > 0, such that for all

y ∈ B(x0, η) we have
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⟨X(y) | ∇H(y)⟩ < ε < 0

We consider the trajectory Xt(x0) from x0. For t ≥ 0 small enough

0 ≤ t < α, the trajectory remains in the ball B(x0, η). We have

d

dt
H(Xt(x0)) = ⟨∇H(Xt(x0)) | X (Xt(x0))⟩ < ε < 0

The function H(Xt(x0)) is strictly decreasing and so H(Xt(x0)) < 0 for

0 < t < α.

Which proves that Xt(x0) ∈
◦
G

Second case

we suppose now that ⟨X(x0) | ∇H(x0)⟩ = 0. We consider the vector field

Xε(x) = X(x)− ε
∇H(x)

∥∇H(x)∥

This vector field satisfies for all ε > 0, the hypothesis of first case on

Ω ∪ ∂G. Let η small enough such that in the closed ball B(x0, η) the vector

field Xε satisfies the required inequality. We choose t ≤ T sufficiently small

such that Xt(x0) ∈ B(x0, η/2). Since Xε is a ε approximate field of X, we

apply the lemma (3.1.1), which gives us the increase

∥Xε
t (x0)−Xt(x0)∥ ≤ ε

eLT − 1

L

This proves that by choosing ε small enough such that eLT−1
L

< η/2 we

will have

Xε
t (x0) ∈ B(x0, η)
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From the previous demonstration Xε
t (x0) ∈

◦
G, so Xt(x0) is the limit of points

of G which is closed, so in G. The path from x0 can not leave G locally. Since

this is true for every x0 point of ∂G we have shown the result on Ω.

■

Proof of the lemma

We use the fondamental identity

Xt(x0) = x0 +

∫ t

0

X (Xs(x0)) ds

then

∥Xε
t (x

ε
0)−Xt(x0)∥ ≤ ∥xε

0 − x0∥+
∫ t

0

∥Xε (Xε
s (x

ε
0))−X((Xs(x0)) ∥ds

Writting∫ t

0

∥Xε (Xε
s (x

ε
0))−X((Xs(x0)) ∥ds ≤∫ t

0

∥Xε (Xε
t (x

ε
0))−X((Xε

s (x0)) ∥ds+
∫ t

0

∥X (Xε
t (x

ε
0))−X((Xs(x0)) ∥ds

we get

∥Xε
t (x

ε
0)−Xt(x0)∥ ≤ ∥xε

0 − x0∥+ ε t+ L

∫ t

0

∥Xε
s (x

ε
0)−Xs(x0)∥ ds

If we set u(t) = ∥Xε
t (x

ε
0)−Xt(x0)∥ we have

u(t) ≤ u(0) + ε t+ L

∫ t

0

u(s) ds

The inequality is immediate by Gronwall’s lemma.

■
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Lemma 3.1.2 (Gronwall 2) Let t u : [0, α] −→ R+ a continuous and nonneg-

ative function. We assume that there exists constants C, ε and L such that

for any t ∈ [0, α] we have

u(t) ≤ C + ε t+ L

∫ t

0

u(s) ds (3.2)

Then we have

u(t) ≤ C eLt +
ε

L
(eLt − 1)

Proof

Let y(t) = L

∫ t

0

u(s) ds et z(t) = e−Lt y(t). From inequality 3.2.

ẏ ≤ L (C + ε t) + Ly

and

ż = e−Lt(ẏ − Ly) ≤ Le−Lt(C + εt)

which gives integrating from 0 to t

or equivalently

z(t) ≤
∫ t

0

Le−Ls(C + εs) ds

y(t) ≤ eLt
∫ t

0

Le−Ls(C + εs) ds

taking into account the inequality satisfied by u

u(t) ≤ C + εt+ eLt
∫ t

0

Le−Ls(C + εs) ds

A straighforward computation leads to
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eLt
∫ t

0

Le−Ls(C + εs) ds = −C − εt+ CeLt +
ε

L
(eLt − 1)

Which is the inequality to prove ■

Remark 3.1.1

If the vector field is not Lipschitzian, the theorem is no more true. For

example for the equation ẋ = −3 |x|
2
3 on R, origine is a barrier however

some solutions can go through. For this vector fiels R+ is not positively

invariant.

The same applies to the vector field given by the ODE ẋ = −
√
2 g x, the

origin is a barrier and R− should be positively invariant. This is not the case

as can be seen on the figure 3.1.
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Figure 3.1: Different solutions of ẋ = −
√
2 g x

3.1.1 Examples

3.1.2 Kermack-McKendrick model
Ṡ = −β S I

İ = β S I − γ I

Ṙ = γ I

We prove that the nonnegative orthant is positively invariant. The bound-

ary of R3
+ is given by 3 hyperplane cone : R+ × R+ × {0}, {0} × R+ × R+
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and R+ × {0} × R+.

When S = 0 we have Ṡ = 0, the vector field is tangent to the RI-

plane hence the conditions of theTheorem are satisfied. Identically if I = 0

then İ = 0. When R = 0, Ṙ = γ I ≥ 0, since we are in the nonnegative

orthant. Note that to be in accordance with the notations of the Theorem,

the nonnegative orthant is defined by −S ≤ 0 ;−I ≤ 0 ;−R ≤ 0.

3.1.3 Ross model

3.2 Lyapunov techniques

Lyapunov method also called direct method or second method of Lyapunov

has been introduced in 1892 in Lyapunov’s thesis and published in french in

1897.

Probl?me g?n?ral de la stabilit? du mouvement. Annales de la facult?

des sciences de Toulouse 9(2) (1907): 203-474

This method allow to establish stability of the equilibrium of a system,

without integrate this EDO.

This method was forgotten and rediscovered in USSR in the 1944

This method was ignored in the West till 1950. From this date, this

method was the prerogative of the russian mathematician and control engi-

neers. Its importance was rediscovered first in control theory and popularized

by LaSalle and Lefschetz in 1959.

It is now well funded that Lyapunov is a very fundamental method.

3.2.1 Problematics 
ẋ = f(x)

x ∈ Rn

x(0) = x0

(3.3)
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The unique solution for the initial value x0, is denoted by Φt(x0). By

renormalizing f , we can always suppose that the vector field is complete, i.e.,

the function Φt(x0) is defined for any t.

Now we suppose that x0 is an equilibrium,

f(x0) = 0

We have the following well known property : for any (t, s) ∈ R2

Φt (Φs(x)) = Φt+s(x)

One parameter group property

We recall properties of equilibria

Definition 3.2.1 (stability) We say that x0, an equilibrium of ẋ = f(x) is

stable (in Lyapunov’s sense) iff for any open set U containing x0, it exists

an open set V of initial values , V ⊂ U such that for any y ∈ V and for any

t ≥ 0 we have Φt(y) ∈ U

x0

∀ U

∃ V

Figure 3.2: Stable equilibrium
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Definition 3.2.2 (attractivity) We say that x0 is attractive in the open set V

if for any y ∈ V

lim
t→+∞

Φt(y) = x0

x0

V

Figure 3.3: attractive equilibrium

Definition 3.2.3 ( asymptotic stability) We say that x0 is asymptotically sta-

ble (locallly ) if x0 is stable and if there exists an open set V of x0 in which

x0 is attractive.

Remark 3.2.1 Beware : attractivity does not imply stability. However this is

true for linear systems. ẋ = Ax.
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Figure 3.4: attractivity without stability

3.2.2 Lyapunov functions

Definition 3.2.4 ( Lyapunov fonction ) We call Lyapunov function in x0, an

equilibrium of ẋ = f(x), a function V such that there is an open set U

containing x0, and such that the following properties are satisfied

• V (x) ≥ 0 sur U

• V (x) = 0 iff x = x0

• On U we have

V̇ (x) = ⟨∇V (x) | f(x)⟩ ≤ 0

A function satisfying the two first properties in x0 is said definite positive.

3.2.3 Theorems

Theorem 3.2.1 (Lyapunov first theorem) If x0 is an equilibrium of ẋ = f(x),

if there exists a Lyapunov function in x0 for this system then x0 is a stable
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equilibrium.

Lyapunov second theorem

If moreover V̇ is negative definite , i.e. si V̇ (x) = 0 iff x = x0, then x0

is an asymptotically stable equilibrium

The attraction basin of x0 is contained in U where the 3 properties of V

are satisfied.

Theorem 3.2.2 (Lasalle) If V is a Lyapunov function the greatest invariant

set contained in

L = {x | V̇ (x) = 0}

is an attractive set. This assertion is called LaSalle’s principle of invariance

and is true even is V is only nonnegative and non necessarily positive definite.

If L = {x0} then x0 is asymptotically stable.

Theorem 3.2.3 (Lasalle) We consider the ODE with an equilibrium x0, de-

fined on a compact positively invariant set Ω.

If we have a nonnegative function V , such that V̇ ≤ 0 on Ω and moreover

the largest invariant set contained in L = {x ∈ Ω | V̇ (x) = 0} is reduced to

{x0}

Then x0 is globally asymptotically stable in Ω

Note: V is not a Lyapunov function : not positive definite.

Theorem 3.2.4 (Poincar?-Lyapunov) We consider a C1 ODE , ẋ = f(x) and

x0 and equilibrium.

1. If Df(x0) has all its eigenvalues with negative real part, i.e., s(Df(x0)) <

0, then x0 est asymptotically (locally ) stable.
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2. if Df(x0) has (at least ) one eigenvalue with a positive real part, i.e.,

s(Df(x0)) > 0, then x0 is unstable.

Advantage of Lyapunov over Poincar? : Lyapunov can give a conclusion

when Poincare fails

example :


ẋ = −x2

ẏ = −y

The positive orthant is est positively invariant. The origin is stable in the

domain R+ × R+.

-1 0 1

-3

-2

-1

1

2

3



..
x

y

Figure 3.5: Saddle-Node

Il is sufficient to choose for Lyapunov function on sur R+ × R+

V (x, y) = x+
1

2
y2



3.2. LYAPUNOV TECHNIQUES 59

3.2.4 Examples

Lotka-Volterra model introduced by Pi?lou : n the prey , p the predator ṅ = r n
(
1− n

K

)
− a n p

ṗ = b n p− µ p

This can be also considered as an intra-host model for a disease. n can

represent a concentrationof target cells, e.g. red blood cells and p a parasit

destroying red blood cells. . .

It is easy to determine a coexistence equilibrium

n∗ =
µ

b
p∗ =

r

a

(
1− µ

bK

)
This equilibrium has a biological meaning if p∗ > 0 or bK

µ
> 1

This coefficient is a basic reproduction ratio : it is the mean number

of predator fathered by one predator introduced in a population of preys

(without predator) during its life :

Prey Population at Equilibrium : K , mean life of a predator 1
µ
, basic

repruction ration bK 1
µ
.

Proof of the Stability of the coexistence equilibrium when R0 =
bK
µ

> 1.

we consider

f(n, p) = b (n− n∗ lnn) + a (p− p∗ ln p)

and the Lyapunov function R∗
+ × R∗

+

V (n, p) = b (n− n∗ lnn) + a (p− p∗ ln p)− f(n∗, p∗)

V̇ =b r n(1− n
K )−a b np−b r n∗ (1− n

K )+a b n∗p+a b n p−aµ p−a p∗ (b n−µ)

Taking into account b n∗ = µ we get
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V̇ = b r
(
1− n

K

)
(n− n∗)− a b p∗ (n− n∗)

Using again a p∗ = r
(
1− n∗

K

)
we obtain

V̇ = b (n− n∗) r

(
1− n

K
− 1 +

n∗

K

)
= −b r

K
(n− n∗)2 ≤ 0

This proves stability . Now consider the set L defined by

L = {(n, p) ≥ 0 | n = n∗}

To be invariant in this set, n must be constant equal to n∗ must be

constant, then ṅ = 0. Hence

ṅ = r n∗
(
1− n∗

K

)
− a n∗ p = 0

Precisely p = p∗. The greatest invariant set L is {(n∗, p∗)}.
We conclude by LaSalle ’s invariance principle to the asymptotic stability

on R∗
+ × R∗

+.

Stability of the predator free equilibrium when R0 =
bK
µ

≤ 1.

Lyapunov function

V (n, p) = b (n−K lnn) + a p

Which gives

V̇ = −b r

K
(n−K)2 + a µ p (R0 − 1) ≤ 0

3.2.5 How to find a Lyapunov function ?

Bad news
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More an art than a science

Good news :

Some ingenuity, astuteness and tricks are needed

How do you find this dawn Lyapunov function for the Lotka-Volterra

Model ?

Back to classical Lotka-Volterra
ṅ = r n − a n p

ṗ = b n p− µ p

Dividing the two equations

dn

dp
=

r n − a n p

b n p− µ p

We can separate the variables

(b− µ

n
) dn = (−a+

r

p
) dp

Equivalently

(b− µ

n
) dn− (−a+

r

p
) dp = 0

Integrating this relation shows that

f(n, p) = b
(
n− µ

b
lnn
)
+ a

(
p− r

a
ln p
)

is a first integral, i.e., the derivative of f on the trajectories are zero,

or this function is constant on the trajectories of the ODE. Recall : the

coexistence equilibrium is n∗ =
µ

b
, p∗ =

r

a
Interlude : the function s−s∗ ln s, defined on R+\0 has a unique minimum

s∗. Hence
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s− s∗ ln s− s∗ + s∗ ln s∗

is definite positive for s∗

Recall

f(n, p) = b
(
n− µ

b
lnn
)
+ a

(
p− r

a
ln p
)

Tada !!!

f(n, p)− f(n∗, p∗)

is a Lyapunov function for (n∗, p∗)

The function

f(n, p) = b (n− n∗ lnn) + a (p− p∗ ln p)

is a Lyapunov function for the classical Lotka-Volterra. For the Pielou

Lotka-Volterra we use the same function, evidently with modified value for

the equilibrium.

If bK
µ

> 1

n∗ =
µ

b
p∗ =

r

a

(
1− µ

bK

)
If

bK
µ

< 1

n∗ = K and p∗ = 0 which makes disappear the p∗ ln p term.

3.2.6 Lyapunov and Ross model

Theorem 3.2.5 Let G an open set, containing origin, positively invariant for

the system
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ẋ = A(x).x,

where A(x) is a Metzler matrix depending continuously of x.

We suppose there exists cT ≫ 0 such that cT A(x) ≪ 0 for any x ∈ G,

x ̸= 0.

Then the origin is GAS in G.

Consider on G Lyapunov function.

V (x) =
n∑

i=1

ci | xi | .

We define εz = sign(z), i.e. |xi| = εxi
xi.

The function V is locally Lipschitz : we can defined Dini derivative.

V̇ =
∑n

i=1 ci εxi
ẋi

=
∑n

i=1 ci εxi

∑n
j=1 aij xj

=
∑n

i=1

∑n
j=1 ci εxi

aij xj

=
∑n

j=1 εxj
xj

∑n
i=1 ci εxj

εxi
aij

=
∑n

j=1 εxj
xj

[
cj ajj +

∑
i ̸=j ci εxj

εxi
aij

]
≤
∑n

j=1 εxj
xj

[
cj ajj +

∑
i ̸=j ci aij

]
=
∑n

j=1 |xj| (cT A)j ≤ 0.

Since cT A(x) ≪ 0 sur G, function V̇ is definite negative.


ẋ = ma b1 y (1− x)− γ x

ẏ = b2 a (1− y)x− µ y

Two equilibria : DFE : (0, 0) and
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x̄ =

ma2 b1 b2
µγ

− 1

ma2 b1 b2
µγ

+ b2 a
µ

ȳ =

ma2 b1 b2
µγ

− 1

ma2 b1 b2
µγ

+ mb1 a
γ

This equilibrium has a biological meaning iff

R0 =
ma2 b1 b2

µ γ
> 1


ẋ = α y (1− x)− γ x

ẏ = β (1− y)x− µ y

Two equilibria (DFE) : (0, 0) and

x̄ =

αβ
µγ

− 1
αβ
µγ

+ b2 a
µ

ȳ =

αβ
µγ

− 1
αβ
µγ

+ mb1 a
γ

Make sense iff

R0 =
αβ

µ γ
> 1

We can write

ẋ
ẏ

 =

 −γ α (1− x)

β (1− y) −µ

 x
y


Which is

Ẋ = A(X)X

Stability of the DFE

R0 =
αβ

µ γ
≤ 1
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A(x, y) =

 −γ α (1− x)

β (1− y) −µ


We set

cT =
[
β + µ γ + α]

]

[
β+µ γ+α]

]  −γ α(1−x)

β (1−y) −µ

 =
[
γ µ (R0−1)−(α+γ)β y γ µ (R0−1)−(β+µ)αx

]
We choose

V (x, y) = ⟨X | c⟩

where we denote X = (x, y)T .

V̇ = ⟨Ẋ | c⟩ = ⟨A(X)X | c⟩ = ⟨X | A(X)T c⟩

V̇ =

〈[
x

y

]
|
[
γ µ (R0−1)−(α+γ)β y

γ µ (R0−1)−(β+µ)αx

]〉

V̇ = γ µ (x+ y) (R0 − 1)− (2αβ + αµ+ β γ)x y ≤ 0

Conclusion : LaSalle

Stability of the EE

R0 =
αβ

µ γ
> 1

We know that an endemic equilibirum (x̄, ȳ) ≫ 0 exists

We use the variable change xnew = x− x̄ et ynew = y − ȳ
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ẋnew = α (ynew + ȳ) (1− x̄− xnew)− γ (xnew + x̄)

ẏnew = β (1− ȳ − ynew) (xnew + x̄)− µ (ynew + ȳ)

To simplify we write again x for xnew and y for ynew.

Taking into account

α (1− x̄) ȳ − γ x̄ = 0

β (1− ȳ) x̄− µ ȳ = 0

we obtain 
ẋ = −(α ȳ + γ)x+ α (1− x− x̄) y

ẏ = β (1− y − ȳ)x− (β x̄+ µ) y

A(x, y) =

 −(α ȳ + γ) α (1− x− x̄)

β (1− y − ȳ) −(β x̄+ µ)


α (1− x̄) ȳ − γ x̄ = 0 in other words − (α ȳ + γ) x̄ = −α ȳ

β (1− ȳ) x̄− µ ȳ = 0 in other words − (β x̄+ µ) ȳ = −β x̄

A(x, y) =

 −α
ȳ

x̄
α− α (x+ x̄)

β − β (y + ȳ) −β
x̄

ȳ


[
β x̄ α ȳ

] [ −α ȳ
x̄

α−α (x+x̄)

β−β (y+ȳ) −β x̄
ȳ

]
=
[
−αβ ȳ (y+ȳ) −αβ x̄ (x+x̄)

]
≪ 0

On

]x̄, 1− x̄[×]− ȳ, 1− ȳ[

Proof Finished with the preceding theorem.
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3.3 Proofs of the Theorems

LaSalle theorem encompasses second theorem of Lyapunov. We prove Lya-

punov first theorem, and after LaSalle.

Let U be an open set, B̄(x0, ε) a closed ball, centered in x0 contained in

U .

0

∀ U

 
B(0,ε)W

δ

Let

δ = min
∥x−x0∥=ε

V (x) > 0

and

Wδ = {x ∈ B(x0, ε) | V (x) < δ}

Wδ is an open set, x0 ∈ Wδ ̸= ∅. Since V is decreasing on trajectories, a

trajectory starting in Wδ cannot cross the sphere of radius ε. Remark : Wδ

is positively invariant.
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0

∀ U

 
B(0,ε)W

δ

To prove LaSalle’s invariance principle we need some concepts.

Definition 3.3.1 (invariant set ) We say that M is positively invariant for

ẋ = f(x), if for any x0 ∈ M we have Φt(x0) ∈ M for any t ≥ 0

negatively invariant is defined similarly. A set is invariant if it is positively

and negatively invariant.

Definition 3.3.2 A point p is called an ω-limit point of the l’orbitγ(x0), if

there exists a strictly increasing sequence of real numbers t1< . . .<tk such

that

lim
k→+∞

x(tk, x0) = p

Theorem 3.3.1 If the positive orbit γ+(x0) is bounded then the set of ω-limits

points, ω(γ) points is a non empty invariant compact, connected set.

We can now prove the LaSalle’s invariance principle

Let U a compact neighborhood containing x0, on which V is a Lyapunov

function.

m = min
x∈U

V (x)
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And let

W = {x ∈ U | V (x) ≤ m}

W is an invariant compact set. Any trajectory γ+(x) for x ∈ W is

bounded. The set of Omega-limit points of γ+(x) is an invariant compact

set Ωx contained in W .

The set

Ω =
⋃
x∈W

Ωx

Is a positively invariant set.

The set Ω is an invariant set, constituted of Omega-limit point, attracting

trajectories of W .

What is the value of V̇ on Ω ?

Let ω ∈ Ωx for x ∈ W .

ω = lim
k→+∞

Φtk(x)

V (ω) = lim
k→+∞

V (Φtk(x))

V (ω) is a a limit value (adherence value) of V (Φt(x)). This function

is decreasing, lower bounded (by 0). Hence admits a limit c. Therefore

V (ω) = c, for any point of Ωx.

V̇ (ω) =
d

dt
V (Φt(ω)|t=0

V̇ (ω) =
d

dt
V (Φt(ω)|t=0

By invariance Φt(ω) is an Omega-limit point. Φt(ω) ∈ Ωx. Hence

V (Φt(ω)) = c. Fonction V is constant on trajectories starting fromω.
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Therefore

V̇ (ω) =
d

dt
V (Φt(ω)|t=0 = 0

The set Ω satisfies

Ω ⊂ L = {x ∈ W | V̇ = 0}

This ends the proof of Theorem (3.2.2)

Now we have to prove the Theorem (3.2.3), i.e., Lasalle’s Theorem for semi-

definite functions.

From the proof of LaSalle’s invariance principe we know that x0 is attractive.

The difficult part is to prove the stability in x0

We restrain to Ḡ which is positively invariant and we consider the dy-

namical system on this compact.

L = {x ∈ Ḡ | V̇ (x) = 0} = {x0}

Assume x0 is not stable. We denote, as usual ϕt() the flow associated to the

ODE. It is complete since all trajectories are bounded.

This means that we can find an ε > 0, a sequence of initial states xn in

G and a sequence of positive time tn, such that

∥xn − x0∥ <
1

n
et ∥ϕtn(xn)− x0∥ = ε

We construct these element in the following way : by unstability, we know

that there is ball of radius ε, such that for any ball B(x0,
1

n
), there exists

a xn in this ball, such that the trajectory starting from xn leaves the ball

B(x0,
1

n
). By the crossing borders theorem, there exists a time tn such that

∥ϕtn(xn)− x0∥ = ε.
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By extracting a subsequence (we are in a compact set) ϕtn(xn), we can assume

that que ϕtn(xn) converge toward a z with ∥z − x0∥ = ε.

We claim that the sequence tn goes to infinity, tn → +∞. If it would not

the case, sequence tn is bounded and we can extract a subsequence tnk
which

converges, tnk
→ T . But in one hand, by hypothesis

lim
k→∞

ϕtnk
(xnk

) = z,

and in the other hand by continuity

lim
k→∞

ϕtnk
(xnk

) = ϕT (x0) = x0

Recall that x0 is an equilibrium then for any t > 0 ϕt(x0) = x0.

This is a contradiction since ∥z − x0∥ = ε. Hence we have proved tn → +∞
when n → ∞
Since tn → +∞, for a given t ∈ R, there exists a tn large enough such that

tn + t > 0. Since V is decreasing on the trajectories (V̇ ≤ 0) we have

V (ϕt+tn(xn) = V (ϕt(ϕtn(xn)) ≤ V (xn)

going to the limit we obtain

V (ϕt(z) ≤ V (x0) (3.4)

Now for any s ≥ 0, again by the argument of V decreasing on trajectories

we have

V (ϕs(ϕt(z)) ≤ V (ϕt(z)) (3.5)

By attractivity of x0, ϕs(ϕt(z)) → x0 when s → +∞, passing to the limit ,

the inequality (3.5) becomes

V (x0) ≤ V (ϕt(z)) (3.6)
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From ( 3.4) and ( 3.6) we deduce that for any t ∈ R, V (x0) = V (ϕt(z)). On

the orbit of z ,

γ(z) = {ϕt(z) | t ∈ R}

V est constant.The orbit of z is invariant, hence inM , this a contradiction

with avec M = {x0}.
The equilibrium is stable and attractive Ḡ.

3.4 SEIR example

S E I Rγ
Ι
 α

Ε

μS μE μI μR 

Λ β I 


Ṡ = Λ− β S I − µS S

Ė = β S I − αE E − µE E

İ = αE E − µI I − γI I

Ṙ = γI I − µR R

(3.7)

R does not occur in the 3 first equations. Then we can discard the last

equation

3.4.1 DFE

DFE : (
Λ

µS

, 0, 0) = (S∗, 0, 0)

R0 =
β αE

(αE + µE) (γ1 + µI)

Λ

µS

=
β αE

(αE + µE) (γ1 + µI)
S∗

Endemic equilibrium (S̄, Ī , Ē) where

S̄ =
(αE + µE) (γ1 + µI)

β αE
=

S∗

R0
Ī =

Λ(1− 1

R0
)

β S̄
Ē =

µI + γI
αE

Ī
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assume (natural hypothesis)

µS ≤ min(µE , µI)

If we denote N = S + E + I we have

Ṅ = Λ− µS S − µE E − (µI + γI) I ≤ Λ− µS N

as a consequence the compact set of R3
+ defined by

Ω = {(S,E, I) ∈ R3
+ | S + E + I ≤ Λ

µS
= S∗}

is a positively compact invariant absorbing set

Absorbing means that any ω-limit set is in Ω.

Then we will restrict our analysis to this compact set

3.4.2 Stability of the DFE

The DFE is in Ω. Consider the Lyapunov function

V (S,E, I) = (µI + γI)E + β S∗ I

a simple computation gives

V̇ = [β αE S∗ − (αE + µE) (γ1 + µI)]E + β (µI + γI) (S − S∗) I

= (αE + µE) (γ1 + µI) [R0 − 1)]E + β (µI + γI) (S − S∗) I ≤ 0

Since S ≤ N ≤ S∗ on Ω and R0 ≤ 1.

What is the largest invariant set in L = {(S,E, I) ∈ Ω | V̇ (S,E, I) = 0}
If R0 < 1, necessarily E = 0 in L. Invariance implies I = 0 hence S = S∗.

R0 = 1 idem

3.4.3 Stability of the EE

Recall R0 > 1.

V (S,E, I) = (S − S̄)− S̄ ln
S

S̄
+

[
(E − Ē)− Ē ln

E

Ē

]
+

µE + αE

αE
[(I − Ī)− Ī ln

I

Ī
]
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V̇ = Λ− µS S−β S I − Λ
S̄

S
+ µS S̄ + β S̄ I

+β S I−(αE + µE)E − β S I
Ē

E
+ (αE + µE) Ē

(µE + αE)E − (µI + γI)
µE + αE

αE
I − (µE + αE)

Ī

I
E + (µI + γI)

µE + αE

αE
Ī

V̇ = Λ− µS S − Λ
S̄

S
+ µS S̄ + β S̄ I

− β S I
Ē

E
+ (αE + µE) Ē

− (µI + γI)
µE + αE

αE
I − (µE + αE)

Ī

I
E + (µI + γI)

µE + αE

αE
Ī

But recall

β S̄ = (µI + γI)
µE + αE

αE

another simplification

V̇ = Λ−µS S − Λ
S̄

S
+ µS S̄

− β S I
Ē

E
+ (αE + µE) Ē

−(µE + αE)
Ī

I
E + β S̄ Ī

we write

−β S I
Ē

E
= −β S̄ Ī

Ē

E

S

S̄

I

Ī
(αE + µE) Ē = β S̄ Ī et

−(µE + αE)
Ī

I
E = −β S̄ Ī

Ī

I

E

Ē
to get

V̇ = β S̄ Ī + µS S̄ − µSS̄
S

S̄
− β S̄ Ī

S̄

S
− µS S̄

S̄

S
+ µS S̄

− β S̄ Ī
Ē

E

S

S̄

I

Ī
+ β S̄ Ī

− β S̄ Ī
Ī

I

E

Ē
+ β S̄ Ī
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Factoring β S̄ Ī and µS S̄ we get

V̇ = µS S̄

[
2− S

S̄
− S̄

S

]
+ β S̄ Ī

[
3− S̄

S
− Ē

E

S

S̄

I

Ī
− Ī

I

E

Ē

]
Claim : The expressions between brackets are negative definite
We have something like 2− x− y with xy = 1 and

3− a− b− c with abc = 1
Function ln is concave hence

1

n
[lnx1 + · · ·+ lnxn] = ln n

√
x1 · · ·xn ≤ ln[

1

n
(x1 + · · ·xn)]

taking exponential n n
√
x1 · · ·xn − (x1 + · · ·xn) ≤ 0

if x1 · · ·xn = 1 we get

n− (x1 + · · ·xn) ≤ 0

We have equality iff if all xi = 1

V̇ = µS S̄

[
2− S

S̄
− S̄

S

]
+ β S̄ Ī

[
3− S̄

S
− Ē

E

S

S̄

I

Ī
− Ī

I

E

Ē

]
This function is definite negative, this ends the proof.

blacksquare

3.5 Last example

We consider what is known a generalized Lotka-Volterra equations. This a popu-
lation model. The model consist of n equations

ẋi =

(
ri +

n∑
i=1

aij xj

)
xi (3.8)

It is convenient to vectorialize these equations

ẋ = diag(x) (r +Ax)

Wherer diag(x) is the diagonal matrix whose diagonal terms are the compo-
nents of x.
The term aij represent the repr?sente the incidence of species j on species i. Vector
r is the birth-rate. Generaly the aii are negative, representing the intra-specific
competition, as it appears in Logistic equation (also known as Pearl-Verhulst
ODE).
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We assume that A is a Hurwitz Metzler matrix. This is mutualism. Each species
has a positive incidence on the other species. Furthermore we assumer ≫ 0.

Then we know that there exists x̄ ≫ 0 such that Ax + r = 0. It is sufficient to
apply ( 5.2.2). Indeed since −A−1 ≥ 0, r ≫ 0 and −A−1 invertible we deduce
x̄ = −A−1 r ≫ 0.

We have an equilibrium in the interior of the nonnnegative orthant x̄. Now we can
rewrite (3.8) as

ẋi =

(
n∑

i=1

aij (xj − x̄j)

)
xi

Since A is Hurwitz, there exists c ≫ 0 such that Ac ≪ 0. We now consider the
Lyapunov function on the orthant

V (x) = max
i=1,··· ,n

|xi − x̄i|
ci

Let i an index where
|xi − x̄i|

ci
is maximum.

V̇ = εxi−x̄i

ẋi
ci

= εxi−x̄i

xi
ci

n∑
j=1

aij (xj − x̄j)

=
xi
ci

aii |xi − x̄i|+
∑
j ̸=i

εxi−x̄i aij (xj − x̄j)


≤ xi

ci

aii |xi − x̄i|+
∑
j ̸=i

aij |xj − x̄j |


≤ xi

ci

aii |xi − x̄i|+
∑
j ̸=i

aij
cj
ci
|xi − x̄i|


=

xi
c2i

|xi − x̄i|

aii ci + ∑
j ̸=i

aij cj


=

xi
ci

V (x) (Ac)i ≤ 0

Function V̇ is negative definite. this end s the proof of the GAS of the equilibrium..
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3.6 Reduction of systems and Vidyasagar’s Theo-

rem

We consider a triangular system, more precisely this is a system on Rn×Rm which
can be written in the following form{

ẋ1 = f1(x1)
ẋ2 = f2(x1, x2)

(3.9)

where f1 is an application from Rn into Rn and f2 from Rn×Rm into Rm. We will
assume that the conditions for existence and uniqueness are satisfied(for example
f1 and f2 of class C1).
The trajectories have the same projection on Rn×{0}, these are the ones of system
ẋ1 = f1(x1) sur Rn.
It is clear why they are called triangular. Actually the Jacobian is lower block
triangular. Theses systems are also called hierarchical. We will give a result
obtain by Vidyasagar [97]. We give the autonomous version which is more simple.
However this theorem is also valid, with some extra-hypothesis for non-autonomous
systems.

Theorem 3.6.1 [Vidyasagar]
We consider a C1 system {

ẋ1 = f1(x1)
ẋ2 = f2(x1, x2)

(3.10)

such that the origin of Rn is globally asymptotically stable (GAS) for the isolated
system ẋ1 = f1(x1) on Rn and such that the origin of Rm is GAS pour ẋ2 =
f2(0, x2).
Then the origin is asymptotically stable.
If all the positive trajectories are bounded then the origin is GAS on Rn × Rm.

This theorem is very convenient because it allows to “reduce” the system. For
example if the stability of the isolated system is obvious, it remains to study the
reduced system ẋ2 = f2(0, x2).

Remark 3.6.1 If all the positive trajectories are not bounded, only the local asymp-
totic stability can be obtained. The following example in R2, from Seibert and
Suarez [81], is a counter-example.

{
ẋ = −x
ẏ = y (x2 y2 − 1)

(3.11)
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It is clear that 0 is GAS for the first system ẏ = −y. Since we have symmetries,
we consider the system in the nonnegative orthant. Let the functions HK(x, y) =
x y − k

Ḣk =

〈
∇Hk


[

−x
y (x y − 1)

]〉
= x y (x2 y2 − 2)

Hyperbolas xy −
√
2 = 0 are invariant. These hyperbolas xy − a where a >

√
2

are boundaries where the vector field points toward the increasing xy. The origin
is not GAS.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 3.6: Local Asymptotic Stability only

Proof

We prove stability. Let

B(0, ε) = {(x1, x2) | ∥x1∥ ≤ ε, ∥x2∥ ≤ ε} a neighborhood of the origin.

Since the equilibria of the isolated systems are GAS, since these systems are C1 the
converse of Lyapunov Theorems can be applied. Then it exist C1 positive definite
functions V1(x1) and V2(x2) such that

V̇1 = ⟨∇V1(x1)|f1(x1)⟩ ≤ 0
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V̇2 = ⟨∇V2(x2)|f2(0, x2)⟩ ≤ 0

These functions V̇1 et V̇2 are negative definite on B(0, ε) for ε small enough.
Since f1 et V1 are C1 let

L = max
(x1,x2)∈B(0,ε)

∂f1
∂x1

(x1, x2)

and
M = max

(x1,x2)∈B(0,ε)
∇V2(x2)

Since V2 is a Lyapunov function, we can choose δ1 <
ε
2 small enough such that

max
∥x2∥≤δ1

V2(x2) < min
ε
2
≤∥x2∥≤ε

V2(x2)

We have

V̇2(x2) = ⟨∇V2(x2)|f2(x1, x2)⟩ = ⟨∇V2(x2)|f2(0, x2)⟩+⟨∇V2(x2)|f2(x1, x2)−f2(0, x2)⟩

With the relation

f2(x1, x2)− f2(0, x2) =

∫ 1

0

∂f2
∂x1

(t x1, x2)x1 dt

which gives in B(0, ε)

∥f2(x1, x2)− f2(0, x2)∥ ≤ L ∥x1∥

and

V̇2(x2) ≤ ⟨∇V2(x2)|f2(0, x2)⟩+ LM ∥x1∥ (3.12)

Function ⟨∇V2(x2)|f2(0, x2)⟩ is negative definite, therefore if we define φ by

φ(c) = min
c≤∥x2∥≤ε

−⟨∇V2(x2)|f2(0, x2)⟩

The function φ, defined in R, is continuously increasing , tends to 0 when c tends
to 0 and satisfies φ(c) > 0 pour tout c > 0.
Since ẋ1 = f1(x1) is AS, we can choose δ2 ≤ δ1 such that, if the initial condition

satisfies ∥x1(0)∥ ≤ δ2, we will have for any t ≥ 0, the inequality ∥x1(t)∥ ≤ φ(δ1)
LM .

If we have ∥x1∥ ≤ δ2 and ∥x2∥ ≥ δ1, with the inequality (3.12), we deduce

⟨∇V2(x2)|f2(0, x2)⟩+ LM ∥x1∥ < 0 (3.13)
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Let now δ3 be such that 0 < δ3 < δ2 and such that

max
∥x1∥≤δ3

V1(x1) < min
δ2≤∥x1∥≤ε

V1(x1)

Let U the open set defined by

U = {(x1, x2)| ∥x1∥ ≤ δ3; ∥x2∥ ≤ δ3}

If x1(0) ≤ δ3, since V1 is decreasing, the preceding inequaltiy shows that ∥x1(t)∥ ≤
δ2. In other words no trajectory can reach the sphere of radius δ2 in Rn).
Let now ∥x2(0)∥ ≤ δ3. Since

max
∥x2∥≤δ3

V2(x2) ≤ max
∥x2∥≤δ1

V2(x2) < min
ε
2
≤∥x2∥≤ε

V2(x1)

the trajectory starting from (x1(0), x2(0)) as long it verifies ∥x2(t)∥ ≤ δ1

V2(x2(t)) ≤ min
δ1≤∥x2∥≤ε

V2(x1)

We have seen above that we have ∥x1(t)∥ ≤ δ2. This implies, as long as ∥x2(t)∥ ≥
δ1, from the inequality (3.13), and inequality V̇2(x2) ≤ 0.
Since V2 is non-increasing on the trajectories in the ring defined by ∥x1∥ ≤ δ2,
δ1 ≤ ∥x2∥ ≤ ε

2 , we conclude that any trajectory cannot reach the sphere of radius
ε
2 in Rm. We proved ∥x1(t)∥ ≤ δ2 < ε and ∥x2(t)∥ ≤ ε

2 . This ends the stability
proof.
We will show the local attractivity by LaSalle’s invariance principle.
Since the origin is stable, there exists a compact neighborhood of the origin U ,
positively invariant. we will restrict ourselves to this neighborhood U .

Let V1 a Lyapunov-LaSalle functionBy hypothesis

V̇1 = ⟨∇V1(x1)|f1(x1)⟩ ≤ 0

Let E = {(x1, x2) ∈ U | V̇1(x1) = 0} and the greatest invariant set contained in E.
This is clearly ({0}×Rm)∩U . By hypothesis ẋ2 = f2(0, x2) is GAS on {0}×Rm.
We claim that this implies that any negative trajectory from U \ {0} goes out of
U .
Indeed, if it is not the case, we will have a complete trajectory γ in U . The set
of α-limit points of γ is invariant. By asymptotic stability and invariance, this set
contain the origin. This means that trajectory starts as close as we want of the
origin to going back to this origin. The closure of this trajectory is compact, which
contradicts the stability. This proves our claim.
This means that the the greatest invariant set contained in E is reduced to {0}.
This proves the attractiveness of the origin in U .
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If a trajectory is relatively compact, then the ω-limit points are in {0} × Rm.
Indeed for tn → ∞ we have x1(tn) → 0. If all trajectories are relatively compact
the ω-limits points are in {0} × Rm. By asymptotic stability on {0} × Rm the
origin is an ω-limit point. Any trajectory approaches as close as we wont to the
origin. By stability it is trapped in U above. The tends to the origin.

■
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Chapter 4

The concept of basic reproduction
ratio R0

4.1 Introduction

This chapter consists essentially of two parts. A mathematical part, which uses
mathematical theorems and demonstrations. Finally, examples to understand the
notion.

We denote by R0 the basic reproduction rate. This concept is now unanimously
recognized as a key concept in epidemiology. It is defined ”heuristically” as the
average number of new cases of infection, caused by an average infected individual
(during the infective period), in a population entirely composed of susceptible.

For about twenty years, R0 is part of the majority of research articles using math-
ematical modeling.

Originally, this concept comes from demography and ecology. This is the average
number of girls (females) born of a female (female) during her life. The use of R0

is relatively recent in epidemiology.

The first to have introduced this concept in 1886 is undoubtedly Richard B?ckh,
the director of the statistics office of Berlin. Using a life table for women from
1879, it summed the probability of survival products by the birth rate of girls. He
concludes that, on average, 2,172 girls will be born to a woman. He corrects this
figure using the sex ratio and comes up with, what we would call R0, an estimate
of 1.06.

It is Dublin and Lotka (1925) and Kuczynski (1928), which introduce, in the
demographic context, the notion and calculation of R0. In a summary in 1939, in
French, of his contribution Lotka writes

83
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The net reproductivity, R0, introduced by Boeckh, has more merit,
since it gives a measure essentially independent of the age distribution
of the population.

If F(a) is the probability for a woman to survive at a, if β(a) is the birth rate of
girls, at age a for a woman then

R0 =

∫ +∞

0
F(a)β(a) da.

This is the approximation calculation done by B?ckh. This is the mean number of
girls that woman will have during all her life.
One wonders where the 0 index comes from. We can define the order time n for
the function F(a)β(a)

Rn =

∫ ∞

0
anF(a)β(a) da

The basic reproduction rate is the 0 moment of order.
The concept of threshold has been used by Ross in his elementary mosquito theo-
rem. Neither Ross nor Kermack and McKendrick have attached a name or symbol
to their threshold concept. From 1911, Ross, Ross and Hudson developed a theory
of epidemics between 1916 and 1917. Ross calls it a priori pathometry or theory
of ”happenings”. It should be noted that Lotka was very interested in Ross papers
and solves several of the problems posed by Ross in 1919 in ”a contribution to
quantitative epidemiology”. He also devotes 120 pages ”contribution to malaria
epidemiology” to the model of Ross [69]. In his article on the history of R0 [39],
Heesterbeek regrets that Lotka, who introduced R0 demographer and biomathe-
matician, missed out on this concept in epidemiology.
McKendrick was also a military doctor. He served under Ross in the 1901 Sierra
Leone eradication campaign. It was Ross who encouraged McKendrick to learn
mathematics and apply it to medical problems. In his correspondence with McK-
endrick, Ross makes clear his desire to establish the general law of epidemics. In
1911 he wrote a letter to McKendrick

We shall end by establishing a new science. But first let you and me
unlock the door and then anybody can go in who likes.

The following basic paper is still that of Kermack and McKendrick [57]. They es-
tablish in the continuity of Ross a threshold of critical densityNc for the population
in the form

1

Nc
=

∫ ∞

0
ϕtBt dt
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The next step is given by McDonald in 1952. George McDonald is the first professor
of Tropical Medicine and Hygiene and director of the Ross Institute in 1947. He has
had a considerable influence on the use of modeling in malariology. It introduces
the term basic reproduction rate.

In 1975 Dietz and Hethcote rediscover the R0 concept for direct transmission
diseases. Dahlem’s 1982 conference, initiated by May and Anderson, serves to
promote the concept. We must finally wait for Diekmann et al. to give a pre-
cise mathematical definition It is defined an operator, called the ”next generation
operator”. The largest eigenvalue defined R0. This operator is for a generation.

The classical and non-mathematical definition ofR0 is, as given in the introduction,
the average number of secondary cases of infectious disease, generated by a typical
individual in a population consisting entirely of susceptible individuals throughout
their entire period of infectivity.

This is a heuristic definition. Diekmann and Heesterbeek gave a mathematical
definition. In these notes we will treat the case of compartmental deterministic
models in finite dimension.

4.2 The structure of compartmental epidemiologi-

cal models

We will make an essential assumption: there is no immigration of infected individ-
uals. Indeed, if this were the case, there would be no balance without disease.

We will consider that the population is divided into n compartments. The number
of individuals in the i compartment is given by xi (or xi can be a prevalence , i.e.
the percentage of individuals contained in the i compartment relative to the total
population, or a density)

It is assumed that the compartments are marked in such a way that the first p
consist of ”uninfected”individuals, more specifically non-carriers of the germ (virus,
protozoan, parasite, dots). In fact all those who will not evolve to a compartment
of infectious individuals. In these compartments may have susceptible, vaccinated,
quarantined individuals in such a way that they can transmit neither horizontally
nor vertically.

The essential concept is that these compartments will never be able to give trans-
mitters of their own.

The rest of the compartments are infected. For example infectious, latent, asymp-
tomatic carrier.

we denote by

x = (x1, x2, · · · , xn)T
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the state of the system

"Healthy"
"Diseased"

Figure 4.1: infected and non infected

We can now describe the dynamics of the system
In other words we will rewrite the ODE ẋ = f(x). Let the compartment xi.

Vi
+(x)

Vi
-

Fi(x)

(x)

xi

Figure 4.2: Le bilan

We will now describe the dynamics of this infectious disease.
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In other words, we will write the differential equation ẋ = f(x). Let the compart-
ment xi.
We consider the balance of what comes in and what comes out in each compart-
ment:

1. We denote by Fi(x) the speed of appearance of new infected, in the com-
partment i. They are new infected, obtained by transmission of any kind.
Horizontal, i.e., from individual to individual or vertical from mother to
child.

2. We denote by V+
i (x) is from other compartments by any other cause (moving,

aging, healing etc . . . )

3. We denote by V−
i (x) the speed of what leaves the i compartment. For

example by mortality, change of epidemiological status, movement etc . . .

We finally have

ẋi = Fi(x) + V+
i (x)− V−

i (x)

Xs are states without disease, i.e.

Xs = {x | xp+1 = · · · = xn = 0}.

The nature of the epidemiological characteristics implies the following properties
for the introduced functions:

H1 x ≥ 0 and F(x) ≥ 0, V+
i (x) ≥ 0, V−

i (x) ≥ 0

Indeed this is flows of materials.

H2 If xi = 0 then V−
i (x) = 0

If there is nothing in a compartment, nothing can come out of it, it is the
essential property of a compartmental model.

H3 If i ≤ p then Fi(x) = 0

Compartments with an index of less than p are ”uninfected”. By definition,
it can not appear in these compartments ”infected”.

H4 If x ∈ Xs then Fi(x) = 0 and for i ≥ p we have V+
i (x) = 0

Recall that we have assumed that there is no immigration of infectives.
Since we are in a state in Xs this means that we are in the state with
no infected anywhere. V+

i (x) is infectious coing from other compartment.
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Nothing can move from a uninfected compartment in i, since it is an infected
compartment. And all the infected compartment are empty.

If there are no carriers of germs, in the population, no new ”infected” can
appears. This is Lavoisier’s principle. There is no spontaneous generation.

We will consider a point of equilibrium without disease, which is also a point of
equilibrium of the system. For example, in the case of demographic dynamics, this
means that the population is not moving. In fact, every x∗i is fixed and is zero for
i > p. In other words, a ”disease-free” equilibrium, x∗ ∈ Xs is such that f(x∗) = 0
Such an equilibrium is called a disease-free equilibrium (DFE).
We denote , for any state, by x1 = (x1, · · · , xp)T the ”non infected” components
x2 = (xp+1, · · · , xn)T ) the ”infected” one.
The system ẋ = f(x) can be rewritten{

ẋ1 = f1(x1,x2)
ẋ2 = f2(x1,x2)

(4.1)

By definition x∗ = (x∗
1, 0) where

f1(x
∗
1, 0) = 0

and for any x1 we have

f2(x1, 0) = 0

Indeed if (x1, 0) is a state without disease state, any new infected can appear.
If we assume that f is C1 then there are matrices A11(x), A12(x), and A22(x) such
that

f1(x1,x2) = A11(x).(x1 − x∗
1) +A12(x).x2

and
f2(x1,x2) = A22(x).x2

These two results result from the proposition 1.2.1 applied to the functions f1(x1, x2)
and f2(x1, x2). According to this proposition we know that there exists a matrix
A1(x) of size p× n such that

f1(x) = f1(x1, x2) = A1(x)

[
x1 − x∗1

x2

]
We break A1 into a block A11 of size p× p and a block A12 of size p× n− p

A1 =
[
A11 A12

]
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This gives the first statement.

The second relationship comes from the proposition applied to the function f2(x),
considered as a function of x2, which vanishes in 0.

The system is rewritten{
ẋ1 = A11(x).(x1 − x∗

1) +A12(x).x2

ẋ2 = A22(x).x2
(4.2)

The Jacobian at the point of equilibrium (x∗
1, 0) is written

Jac(x∗) =

[
A11(x

∗) A12(x
∗)

0 A22(x
∗)

]
noindent We will make an additional assumption We suppose that

H5 The DFE is x∗ = (x∗
1, 0). If F(x) is set to zero, the matrix Df(x∗) is Hurwitz.

It simply means that when there is no disease, the population admits a locally
asymptotically stable equilibrium, the DFE.

We have J(x∗) = DF(x∗) +DV+(x∗) +DV−(x∗) . Moreover, since the Fi com-
ponents of the function F are identically zero for i ≤ p we have

DF(x∗) =

[
0 0
0 F

]
and

D(V+ − V−)(x∗) =

[
J3 J4
0 V

]
Theorem 4.2.1 F ≥ 0 and V is an asymptotically stable Metzler matrix

Proof

We denote by ei the i-th vector of the canonical basis of Rn. For i > p and j > p
since Fi(x

∗) = 0

∂Fi

∂xj
(x∗) = lim

h→0+

Fi(x
∗ + h ej)

h
≥ 0

For indices satisfying i > p and j > p and i ̸= j we have V−
i (x∗+h ej) = 0. Indeed

x∗ + h ej is a state wher we add to x∗, h element from the infected compartments
j, with j ̸= i. So there is nothing in the compartment i when system is in state
x∗+h ej , therefore nothing can go out. Hence Vi(x

∗+h ej) = V+
i (x∗+h ej). Now

since i > p we have x∗
i = 0 ( x∗ is a DFE)

We deduce
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∂Vi

∂xj
(x∗) = lim

h→0+

V+
i (x∗ + h ej)

h
≥ 0

This proves that V is Metzler. By H5 matrices J3 and V are asymptotically stable
. Matrix V is an asymptotically stable matrix..

■

4.2.1 Definition of R0

Definition 4.2.1 (spectral radius) :

We call the spectral radius of a matrix A, the maximum value of the module of the
eigenvalues ?? of A.

ρ(A) = max
λ∈Sp(A)

|λ |

Definition 4.2.2 (R0)

R0 = ρ(−F V −1)

First like F ≥ 0 and V is an asymptotically stable Metzler, then −V −1 ≥ 0.
This is demonstrated in the theorem 5.2.2. This proves that −F V −1 is a positive
matrix. According to the classic Perron-Frobenius theorem, the spectral radius is
an eigenvalue of this matrix.

This definition is purely mathematical.

Remark 4.2.1 The definition of ”next generation matrix” given here differs from a
− sign compared to that of van den Driessche [94]. We use Metzler matrices, which
appear naturally in compartmental systems, whereas in [94] the M -matrices are
used. Which leads van den Driessche to note V+

i what comes in, V−
i what comes

out and to note

ẋi = Fi − Vi

with Vi = V−
i − V+

i !!!

This is absolutely unnatural, but it is to bring up the opposites of the stable Metzler
matrices, the M -matrices
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4.2.2 Biological interpretation of R0

We will now give the biological interpretation of the definition of R0.

A small number of infectious individuals are introduced into a susceptible popula-
tion. We are therefore at equilibrium at the DFE.

To determine the fate of a small number of infected individuals, we consider the
dynamics of the system, with reinfection suppressed, since we are interested in the
evolution of the introduced infectious individuals. As we want their immediate
future, we consider the system approached by its linearization at equilibrium. If
one is close to equilibrium the behavior of the system is approximated by the
linearized system.

Since Df = DF +DV+ −DV− the system becomes

ẋ = (DV+ −DV−).x =

[
J3 J4
0 V

]
.x

If (0,x0
2) is a small number of infected individuals at time t we have, by integrating

the linear system, to the time etV .x0
2 infectious people. This represents the state

of the infected in the infected compartments.

In the end we will have obtained∫ ∞

0
(0, etV .x0

2) dt = (0,−V −1.x0
2)

This set of infected will generate new cases by transmission. The number of new
cases will be

−F V −1.x0
2

We will interpret the components of

−F V −1

If we consider an infected in the j compartment, then the (i, j) entry of −V −1

is the average time that this individual will stay in the i compartment during its
”infective period”. The (k, i) entry of F is the speed with which an individual in the
i compartment produces new infections in the k compartment. Therefore the (k, j)
entry of −FV −1 is the average number of new infections in the k compartment
produced by an infected individual in the j compartment.

If K is the next generation matrix, we have just seen that Ki,j is the average
number of infected individuals of type i produced by an infected individual of type
j. The K matrix is a positive square matrix of the size dimension of the type of
infected.
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The matrix−FV −1 is called the ”next generation matrix”. Approximately−FV −1 x0,
vectorially expressed, the ”number”of new secondary cases. We are led to consider,
at generation n, the quantity (−FV −1)n x0. In other words Mn.x0 where M is a
positive operator. It is a discreet positive system. The importance of dominant
modes in these positive systems is well known. The term mode is the term of the
engineers or physicists to designate the eigenvalues. Dominant mode is simply the
spectral radius. By the Perron-Frobenius theorem ref Perron, it is a proper value.
Hence the definition of mathcalR0. The system is stable and converges to 0 if
mathcalR0 < 1. The system is unstable and the state of the system tends to in-
finity, and is aligned with the eigenvector corresponding to the largest eigenvalue.
This is an intuitive result. But we have a lot more. This is the subject of the next
part.

4.3 R0 is a threshold

For a dynamic system, we call threshold at the point of equilibrium a function
of the parameters of the system T such that if T < 1 then the system is locally
asymptotically stable and unstable if T > 1.

Theorem 4.3.1 The epidemiological system is asymptotically stable to the DFE if
R0 < 1 and unstable if R0 > 1.

Proof
We apply the Poincar?-Lyapunov theorem of linearization Just look at the Jacobian
in x∗:
Proof
We apply Poincar?-Lyapunov linearization theorem. It is sufficient to consider the
Jacobian at x∗ :

Jac(x∗) =

[
A11(x

∗) A12(x
∗)

0 A22(x
∗)

]
=

[
J3 J4
0 F + V

]
By the hypothesis H5 A11(x

∗) = J3 is Hurwitz. Therefore it is sufficient to prove
that F +V is Hurwitz. But F +V is a regular decomposition (see definition 4.3.1)
of A22(x

∗).
A regular decomposition of a matrix is the decomposition of this matrix in the

sum of a nonnegative matrix ( here F ) with a Hurwitz Metzler matrix (here V ).
Varga’s theorem (See Theorem 4.3.2 ) gives the equivalence :

s(F + V ) < 0 is equivalent to ρ(−FV −1) < 1 .
By continuity s(F + V ) ≤ 0 is equivalent to ρ(−FV −1) ≤ 1. This implies

s(F + V ) > 0 is equivalent to ρ(−FV −1) > 1.
Conclusion is obtain by Poincar?-Lyapunov theorem. ■
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4.3.1 Varga’s Theorem

We will prove a theorem of Varga [95, 96] which is closely related to R0.

Definition 4.3.1 (regular decomposition)

Let A a Metzler matrix.A regular decomposition of A is any decomposition of A

A = F + V

where F ≥ 0 and V is Hurwitz Metzler matrix.

Theorem 4.3.2

For any regular decomposition of a Metzler matrix A, the following assertions are
equivalent

• A is Hurwitz

• ρ(−F V −1) < 1

Remark 4.3.1

Any regular decomposition gives a threshold

Proof

Suppose that A is Hurwitz, then we claim −A−1 ≥ 0 (see below)

Matrices V = A − F and A being invertible (note that a Hurwitz matrix is non-
singular) we have using A− F = (I − F A−1)A

−F V −1 = −F (A− F )−1 = −F A−1 (I − F A−1)−1

Let G = −F A−1. This is a nonnegative matrix. To obtain its spectral radius,
from Perron-Frobenius, it s sufficient to consider only nonnegative vectors. Let
v > 0 an eigenvector of G associated to the eigenvalue λ ≥ 0, such that Gv = λ v.
We have

−F V −1 v = G(I +G)−1 v =
λ

1 + λ
v.

Matrix −F V −1 is nonnegative. Reciprocally let µ ≥ 0 an eigenvalue of −F V −1

associated to an eigenvector v > 0 . Then G(I + G)−1 v = µ v. Since G and
(I+G)−1 commute, we deduce Gv = µ (I+G) v or (1−µ)Gv = µ v. This implies
that necessarily µ ̸= 1 and v is an eigenvector of G associated to the eigenvector

to
µ

1− µ
.
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The function from R+ into [0, 1[, defined by par x 7→ x

1 + x
is a bijection from the

eigenvalues of G = −F A−1 onto the eigenvalues of −F V −1. This a monotonous
function. Therefore

ρ(−F V −1) =
ρ(G)

1 + ρ(G)
< 1

Reciprocally suppose that ρ(−F V −1) < 1. Then −I − F V −1 is invertible, and is
a Metzler matrix. Since ρ(−F V −1) < 1 we have s(−I − F V −1) < 1. This is a
Hurwitz Metzler. Then the opposite of its inverse is nonnegative therefore

−A−1 = (−I − F V −1)−1 V −1 ≥ 0

This proves that A est Hurwitz. This ends the proof.
■

Lemma 4.3.1
Let A a Metzler matrix, the following assertions are equivalent

• A is Hurwitz

• −A−1 ≥ 0.

Proof
Assume A is Hurwitz then

−A−1 =

∫ +∞

0
etA dt =

[
A−1etA

]+∞
0

Let ei the canonical basis of Rn

(−A−1)i,j = ⟨−1
A ej | ei⟩ =

∫ +∞

0
⟨etA ej | ei⟩ dt ≥ 0

We have used that etA let invariant the nonnegative orthant ( use barrier
Theorem 3.1.1)
Reciprocally assume −A−1 ≥ 0. Let c ≫ 0 then v = −A−1 c ≫ 0 this gives
Av = −c ≪ 0.
Consider the ODE ẋ = AT x.

Let now V (x) = ⟨v | x⟩. This is a Lyapunov function on the nonnegative
orthant. For x ≥ 0

V̇ (x) = ⟨v | AT x⟩ = ⟨Av | x⟩ = −⟨c | x⟩ ≤ 0

and V̇ is definite negative on Rn
+. Hence the ODE is asymptotically stable on

the nonnegative orthant.
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Now let x ∈ Rn and x = x+ − x−. We have etA = etA x+ − etA x− → 0 when
t → +∞. This proves that A is Hurwitz. (The origin is attractive, and A is linear)

■
We have more, by continuity of the functions s and ρ we obtain

s(F + V ) ≤ 0 ⇐⇒ ρ(−FV −1) ≤ 1

By contraposition we obtain

s(F + V ) > 0 ⇐⇒ ρ(−FV −1) > 1.

4.4 Examples

We give examples to illustrate the computation of R0. We will consider classical
examples.

Ross model

We consider the model with prevalences. in other words x represent the % of
infected humans and y the % of infected mosquitoes.

ẋ = mab1 y (1− x)− γ x

ẏ = b2 a (1− y)x− µ y
(4.3)

With the preceding noations

F =

[
mab1 y (1− x)
b2 a (1− y)x

]
V =

[
−γ x
−µ y

]
then

F =

[
0 mab1

b2 a 0

]
V =

[
−γ x
−µ y

]
Therefore

F V −1 =

 0
mab1

µ
b2 a

γ
0


Then
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R2
0 =

ma2 b1 b2
γ µ



Chapter 5

Monotone systems in Epidemiology

5.1 Generalities

5.1.1 Introduction

We write this chapter on monotone system applied to epidemiology for many rea-
sons. The first one is to have a self-contained lectures notes. The second reason is
that this is rarely taught in the academic lectures, moreover there are no elemen-
tary references and results are scattered in the literature.

However it exists two excellent references at research level : [49, 44].

The following notes in this chapter are devoted to monotonous systems, a
concept introduced by M. W. Hirsch in a series of founding articles [43, 45, 46, 47].
These systems appear quite often in biology.

We cannot speak of monotonous systems, without using the Perron-Frobenius
theorem. The Perron-Frobenius theorem manifests a certain ubiquity in applied
mathematics. We will see this further. In this chapter we will give the proofs of
these fundamental theorems. The notion of R0 is based on this theorem.

A Metzler matrix is a matrix whose terms outside the diagonal are nonnegative.
Economists (Arrow 1966) gave this name to this type of matrix because of their
study by L. Metzler. These matrices have many applications in economics but also
in all areas where we mode with compartmental systems. We can also speak of
the ubiquity of Metzler’s matrices. In fact there are two competing schools: Those
who use the matrices of Metzler, still called quasi-positive matrices [84, 86, 92], and
those using the opposite matrices, called Z -matrices [14, 94, 96]. The Z-matrices
contain the M -matrices for which there is an abundant literature.

97
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The positive matrices have the characteristic of leaving invariant, as applications,
the nonnegative orthant. In other words, A is positive if, and only if, ARn

+ ⊂ Rn
+.

For discrete dynamic systems we will consider xn+1 = Axn.
We must be careful not to confuse this notion of positive matrix with the notion
of positive symmetric matrix. Here it will means that the entries of the matrix are
nonnegative.
If we consider differential equations and if one looks for matrices such that the dy-
namic system ẋ = Ax leaves invariant the nonnegative orthant we obtain naturally
Metzler matrices. There are a strong similarity between linear discrete systems and
linear differential systems. We will exploit the dynamic properties of these linear
differential systems to make the dictionary work in the other direction. In other
words, A is nonnegative if, and only if, ARn

+ ⊂ Rn
+.

5.1.2 Generalities and Notations. Cones and Ordered rela-
tion

The ordered space Rn

In a standard way if x ∈ Rn is a vector, we denote by xi its i-th component.

Definition 5.1.1 We define an order on Rn by x ≥ y if for any index i the inequality
xi ≥ yi is satisfied

It is easy to see that this relation is an order relation that makes Rn an ordered
vector space. Note that this is partial order. In an ordered vector space of finite
dimension, the nonnegative elements form a closed convex cone. This role is played,
for the standard order, by the nonnegative orthant.

The following notation are now well recognized.
We write Rn

+ the nonnegative orthant. We have the equivalence x ≥ y and x−y ∈
Rn+, especially

x ≥ 0 ⇐⇒ for any index i we have xi ≥ 0

Notation x > 0 means x ≥ 0 and x ̸= 0
We will denote x ≫ 0 if x is in the interior of Rn

+, in other words

x ≫ 0 ⇐⇒ for any index i xi > 0

Remark 5.1.1 These notations are now well admitted [14, 49, 86, 44], but it was
not always the case. For example in some papers x < y will means what we denote
by x ≪ y [43, 85]. So when reading or citing the literature pay attention to the
notations used
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Similarly, we extend these notations to matrices by assimilating the vector
space of matrices M(n, n),R) with Rn2

. We write A ≥ B if for every couple of
index (i, j) we have ai,j ≥ bi,j and we have the analog for A > B and A ≫ B.

For this order on Rn we define the closed interval

[[a,b]] = {x ∈ Rn | a ≤ x ≤ b} = [a1,b1]× · · · × [an,bn]

This notation must not to be confused with the notation for segment

[a, b] = {ta+ (1− t)b | 0 ≤ t ≤ 1},

which is used in convexity.
In the same manner is defined the open interval

]]a,b[[= {x ∈ Rn | a ≪ x ≪ b} =]a1,b1[× · · ·×]an,bn[

If E and F are subspaces of Rn we define

R+E = {λx | λ ∈ R+ x ∈ E}

and

E + F = {x+ y | x ∈ E y ∈ F}

We will denote ⟨x | y⟩ the euclidean inner product of two vectors. If A is a matrix
AT will denote the transpose. If vectors of Rn are identified with column matrices
n× 1, then the inner product is expressed by ⟨x | y⟩ = xT y
We denote by ei le i-th vector of the canonical basis of Rn.

Cones and Order

The nonnegative orthant is Rn
+ is a pointed convex cone (that means that 0 is in

the cone).

Definition 5.1.2 (Cone)
A cone in a real vector space is a set K which satisfies

R∗
+K ⊂ K

In other words it is a set invariant by homotheties
A cone is said salient if it does not contain a pair of non zero opposite vectors, or
equivalently does not contains a vectorial line.

K
⋂

−K = {0}
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Definition 5.1.3 A closed convex salient cone is a non empty convex set K, satis-
fying

1. K +K ⊂ K

2. R+K ⊂ K

3. K ∩ −K = {0}

It is easy to show that such a set is convex.
In the remaining cone will means : closed convex salient cone

An order relation is said to be compatible with the structure of vector space if

for any z x ≤ y =⇒ x+ z ≤ y + z (5.1)

for any λ ≥ 0 x ≤ 0 =⇒ λx ≥ 0 (5.2)

If moreover we have

xn ≤ yn =⇒ lim
n→∞

xn ≤ lim
n→∞

yn

we will say that the order is compatible with the topology. If these 3 properties
are satisfied then we say that we have a ordered topological vector space.

Proposition 5.1.1
An order is compatible with the vector space if the set of elements ≥ 0 is a close
convex salient cone. Reciprocally a cone define an order.
A topological vector space is ordered iff the set of elements ≥ 0 is a close convex
salient cone

Orthant and faces

Definition 5.1.4
A subset F of the orthant is a face of the orthant if F is a cone and for any x ∈ F
the relation 0 ≤ y ≤ x implies y ∈ F

A face F is said proper if F ̸= {0} and F ̸= Rn
+.

It is easy to see that faces are

FI = {x ∈ Rn
+ | xi = 0 si i ∈ I ⊂ [1, · · · , n]}

Face FI is the convex cone generated by ei for index in I.
The dimension of a face F is the dimension of the vector space generated by this
face, in other words the vector space generated by the ei for i ∈ I. As a face is a
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convex cone, the generated vector space is also F − F . The faces {0} and Rn
+ are

called the trivial faces. The faces of dimension 1 are the half-lines R+ei.
If x is an element of the orthant the set R+[[0, x]] is the face generated by the
element x.
We have two ways of defining a face. By a system of equations. This is what we
choose here, with the notation FI . If we denote J = [1, n] \ I, FI is defined by the
set of equations

xj = 0 fort any j ∈ J.

But if we consider FI as the convex cone generated by some vectors of the canonical
basis ei for i ∈ I, this correspond to the parametric defintion :

x ∈ FI ⇐⇒ x =
∑
i∈I

λi ei λi ≥ 0

The positive orthant is an intersection of half-space hyperplanes. This is called
a polyhedron. The faces are the faces of this polyhedron.

5.2 Monotone application andMonotone vector field

Definition 5.2.1
The application f : Rn −→ Rn is said to monotone nondecreasing if for any pair
(x, y) we have

x ≤ y =⇒ f(x) ≤ f(y)

Application f is said strongly monotone if

x < y =⇒ f(x) ≪ f(y)

If F class C1 vector field ( or an ODE) we can associate to the vector field the
local flow ϕt(x0), i.e., the value of the system{

ẋ = F (x)
x(0) = x0

at time t is defined en t.

Definition 5.2.2 (Monotone nondecreasing vector field)
A vector fiels is said monotone nondecreasing (monotone for short) if the associated
flow ϕt(.)is monotone nondecreasing i.e.,

x ≤ y =⇒ ϕt(x) ≤ ϕt(y)
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Definition 5.2.3 ( Strongly Monotone nondecreasing vector field)
A vector fiels is said strongly monotone nondecreasing if the associated flow ϕt(.)is
strongly monotone nondecreasing i.e.,

x < y =⇒ ϕt(x) ≪ ϕt(y)

5.2.1 Monotone linear applications

Nonnegative matrices are characterized by an invariance property.

Proposition 5.2.1
Linear monotone applications correspond to nonnegative matrices.
A matrix is nonnegative, if and only if, it leaves invariant the nonnegative orthant
Rn
+.

Indeed, if x 7→ Ax is monotone, then for all x ≤ y we have Ax ≤ Ay. Equivalently,
y− x ≥ 0 results in A (y− x) ≥ 0. A leaves invariant the nonnegative orthant. So
for every vector of the canonical basis ej , Aej ≥ 0 and consequently

A(ei, ej) = ⟨Aej | ei⟩ ≥ 0

Conversely if A ≥ 0 then for all x ≥ 0 we have Ax ≥ 0.

5.2.2 Metzler Matrices: Dynamical properties

We will show that the Metzler matrices leave ”dynamically” invariant the nonneg-
ative orthant and this characterizes them. More precisely we will study the linear
systems ẋ = Ax and search among these systems those which leave positively
invariant the nonnegative orthant.

Theorem 5.2.1
The linear system ẋ = Ax has the nonnegative orthant positively invariant iff A is
Metzler

Proof
Sufficient : we prove that et A ≥ 0, for any t ≥ 0, if A is Metzler.
We have

et A = e−c t et(A+c I

For c big enough B = A+ c I ≥ 0, then et(A+c I ≥ 0. Indeed if B ≥ 0 we have,
from the result with nonnegative matrices :
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⟨etB ej | ei⟩ =
∑
k≥0

tk

k!
⟨Bk ej | ei⟩ ≥ 0

Necessarily if et A ≥ 0, for any t ≥ 0, we will shiw that A is Metzler.

We have

A =
d

dt
(et A)|t=0

= lim
t→0
t>0

etA − I

t

Therfeore for i ̸= j

⟨Aej | ei⟩ = lim
t→0
t>0

⟨etA ej | ei⟩ − ⟨ ej | ei⟩
t

= lim
t→0
t>0

⟨etA ej | ei⟩
t

≥ 0

■

Proposition 5.2.2 Linear system ẋ = Ax + b leaves positively invariant the non-
negative orthant iff A is Metzler and b ≥ 0

Analogous proof as before.

This result is atrributed to ? Karlin by economy Nobel prize K. Arrow [9] and
Bellman however never published by Karlin.

There is a discret analogue of this result. One wonders what are the matrices
A, such that for the discrete system xn+1 = Axn leaves positively invariant the
nonnegative orthant. It is clear that if we look for the matrices A which leave
invariant the orthant ARn + subsetRn+. It is immediate that these are the non-
negative matrices A ≥ 0

5.2.3 Characterization of Hurwitz Metzler matrices

A book by Berman et Plemmons (1979) gives 50 equivalent condition for a Metzler
matrix to be stable [14].

Actually this is a convenient abuse of language actually we means by stable a
matrix such that ẋ = Ax, asymptotically stable at the origin.

Here we will give some of the most important and prove them. In fact we will
only need property 2, the others are classical and not expensive to demonstrate.
The proofs given by [14] are generally lengthy algebraic proofs. Using the power
of Lyapunov and LaSalle techniques gives easy, elegant and short proof.

We recall some definition for matrices
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Definition 5.2.4
If we denote by spec(A) the set of eigenvalues of A, i.e., the spectrum, we define
the stability modulus, denoted by s(A) the real number

s(A) = max
λ∈spec(A)

Re(λ)

The spectral radius ρ(A) is

ρ(A) = max
λ∈spec(A)

|λ|

Theorem 5.2.2
If A is Metzler, the the following assertions are equivalent

1. Metzler matrix A is Hurwitz (asymptotically stable, i.e., s(A) < 0)

2. Metzler matrix A is invertible and −A−1 ≥ 0

3. If b is a vector such that b ≫ 0 then there exists x ≫ 0 such that Ax+ b = 0

4. It exists c > 0 such that Ac ≪ 0

5. Il exists c ≫ 0 such that Ac ≪ 0

Proof

(1 ⇒ 2) :
Let any norm on Rn. Since A is AS, we know that [48] ther exists a constant K
such that for any t x0 and for any t ≥ 0 we have

∥etA x0∥ ≤ K es(A) t x0

This implies that the integral ∫ +∞

0
etA x0 dt

is normally convergent for any x0.

We deduce the existence of

∫ +∞

0
etA dt

Matrix being A Hurwitz we have lim
t→+∞

etA = 0.Since A is invertible

−A−1 =

∫ +∞

0
etA dt =

[
A−1etA

]+∞
0
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Using component (i, j) of −A−1 given by ⟨−A−1 ej | ei⟩ we get

(−A−1)i,j =

∫ +∞

0
⟨etA ej | ei⟩ dt ≥ 0

Indeed from 5.2.1 we have etA ej ≥ 0

(2 ⇒ 3) :

La solution de Ax + b = 0 est donn?e, si A est inversible, par −A−1b. Comme
b ≫ 0 et −A−1 ≥ 0 et qu’aucune ligne de −A−1 ne peut ?tre identiquement nulle
on en d?duit x = −A−1b ≫ 0

(3 ⇒ 4) :

WE choose b ≫ 0 from 3, thers exists c > 0 such that Ac+ b = 0 (we weaken the
assertion ) therfore Ac = −b ≪ 0

(4 ⇒ 5) :

It is sufficient to perturb 4. Indeed let ε > 0 an c1 = c+ ε
∑n

i=1 ei ≫ 0.

Then Ac1 = Ac+ε
∑n

i=1Aei. By a continuity argument we can choose ε > 0 small
enough such that Ac1 ≪ 0.

(5 ⇒ 1) :

We consider on the nonnegative orthant the ODE ẋ = AT x. Choosing

V (x) = ⟨c | x⟩

Since c ≫ 0 lfunction V is definite positive on Rn
+.

V̇ = ⟨c | Ax⟩ = ⟨AT c | x⟩

This last quantity is zero iff x = 0. This prove the GAS of AT on Rn
+ by Lyapunov

theorem. Since any initial condition x0 can be written x0 = x+0 − x−0 with x+0 and
x−0 in the nonnegative orthant we deduce that etAx0 converges to the origin .This
prove that AT hence Ais Hurwitz.

■

5.3 Perron-Frobenius Theorems

We will prove Perron’s Theorem.

We state the weak form of Frobenius’ s Theorem
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Theorem 5.3.1

The spectral radius ρ(A) of a nonnegative matrix A is an eigenvalue of A and there
exists a corresponding nonnegative eigenvector.

In other words

If A ≥ 0 ∃v > 0 such that Av = ρ(A) v

We get immediately the corollary

Theorem 5.3.2

The stability modulus s(A) of a Metzler matrix A is an eigenvalue of A an there
exists a corresponding nonnegative eigenvector.

In other words

If A is Metzler ∃v > 0 such that Av = s(A) v

To prove Perron, we need a fix point theorem, Brouwer’s Theorem

Theorem 5.3.3 ( Brouwer) Any continuous application of a compact convex set
K ⊂ Rn into K has a fix point.

This theorem is still true when Rn is replaced by a Banach space: Schauder’s
Theorem

It has a generalization to locally convex topological vector spaces vectoriels topologiques
localement convexes : Tychonoff-Kakutani ’s Theorem

Perron-Frobenius Proof

Consider K

K = {x ≥ 0 | ∥x∥1 = 1 et ρ(A)x ≤ Ax}

Let v such that Av = λ v with |λ| = ρ(A). By dividing by the 1-norm, we can
assume ∥v∥1 = 1.

ρ(A) |v| = |ρ(A) v| = |Av| ≤ A |v|

v ∈ K, then K is non empty. Now it is easy to check that K is compact and
convex.

If there exists x ∈ K tel que Ax = 0, we are finished (and ρ(A) = 0)

Otherwise we define a function on K

f(x) =
1

∥Ax∥1
Ax
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f(x) =
1

∥Ax∥1
Ax

This function is continuous and

Af(x) =
1

∥Ax∥1
AAx ≥ ρ(A)

∥Ax∥1
Ax = ρ(A) f(x)

In other words f send K in K, then f admit a fix point y ∈ K, by Brouwer ’s
Theorem

1

∥Ay∥1
Ay = y

This means that y is an eigenvector of A of eigenvalue ∥Ay∥1.
Bur since y ∈ K, we have

∥Ay∥1 y = Ay ≥ ρ(A) y

from y > 0, we deduce ∥Ay∥1 ≥ ρ(A).

therefore ρ(A) = ∥Ay∥1 ■

Perron’s Theorem is for nonnegative matrices. Perron-Frobenius ’s Theorem im-
prove Perron’s Theorem conclusion at the price of a supplementary hypothesis.To
state Perron-Frobenius’s Theorem we have to introduce another notion for matrices

5.4 Irreducible Matrices

This term was coined in 1912 by Frobenius.

Definition 5.4.1 A square matrix n×n, for n ≥ 2, denoted A = (aij) is irreducible
if for any proper subset of the set I of indices {1, · · · , n}, there exists one index
j ∈ I and one index i /∈ I such that aij ̸= 0. A matrix 1 × 1 is irreducible if it is
nonzero.

The geometrical interpretation is that A has no invariant subspace VI of form
VI = {x ∈ Rn | for any j ∈ I xj = 0}. Indeed VI is generated by the set linearly
independent of vectors {ej | j ∈ I}. This subspace will not be invariant if there
exists a vector Aej for j ∈ I which cannot be expressed as a linear combination of
ei for i ∈ I

This means there is no permutation P of coordinates such that in this new coor-
dinates P−1AP is not in block form
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P−1AP =

[
E F
0 G

]
where diagonal blocks are at least of dimension 1.

The irreducibility cannot be characterized by a beautiful graph theoretic interpre-
tation

Definition 5.4.2 A digraph (for directed graph) G = (X,U) is a pair of n points
X = {x1, · · · , xn} with a subset U of X ×X

Elements of X are called nodes (also called vertices) of the graph. An element
(x, y) ∈ U is called an edge , x is the origin and y its end. It said that the edge
leads x to y

A graph is a set of nodes with edges connecting some nodes. The edges are oriented

Definition 5.4.3 A path is a sequence of edges (u1, · · · , up) such that each ui has
for end the origin of ui+1. We say that the origin of u1 is connected to the end of
up
A graph is strongly connected if any pair (x, y) of vertices there is path which leads
x to y

Associating a graph to a matrix

Definition 5.4.4 If A = (aij) is a n × n matrix, we consider the graph with n
vertices X = {1, · · · , n}. An edge leads vertice i to vertice j if aji ̸= 0. We say
that aji is the weight of the edge (i, j) .

Conversely to any n graph we can associate a matrix n× n, where aij = 1 if there
is an edge from i to j and aij = 0 otherwise.

You will note the inversion of indices, this is to stick to the representation of
compartmental model. In our definition aji is the flow from i to j. It is clear that
the irreducibility of A is equivalent to the irreducibility of AT .

Remark 5.4.1

The diagonal terms has no role in irreducibility

Theorem 5.4.1 :

A irreducible iff its associated graph G(A) is strongly connected
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Proof
Condition is necessary

Assume A irreducible. Let i a vertice. We define by I the set of vertices,
different of i, accessible by a path from i, i.e. the set of vertices j ̸= i such that
there is path which leads i to j.

The set I is non empty. Indeed let J the complement set of the singleton {i}.
Since A is irreducible there exists k /∈ J and j ∈ J such that ajk ̸= 0. But with the
definition of J this means that there exists j ̸= i such that aji ̸= 0. There exists a
path from i to j.

We assume, argument by absurdity, that I ̸= {1, · · · , n}. By irreducibility of
A there exists j ∈ I and t k /∈ I such that akj ̸= 0. Hence we have a path leading
from j to k. Since j ∈ I, j is accessible from i, hence ki is accessible from i. A
contradiction.

Sufficient condition. Assume again by an argument of absurdity that the associated
graph is strongly connected and A reducible. Then there exists a proper subset of
indices I, such that if J is its complement, we have aji = 0 for any i ∈ I and any
j ∈ J . We have simply taken the negation of the property of irreducibility. We
choose and index i ∈ I and an index j ∈ J . This is possible since I is proper. Now
we know that there is path from i to j. Then there exists indices {k1, · · · , kp} such
that the following entries are non zero

aj,k1 , ak1,k2 , · · · , akp,i
With hypothesis on I and J we deduce that since akp,i ̸= 0, kp /∈ J , soit kp ∈ I.
But if kp ∈ I the same argument applied to akp−1,kp proves that kp−1 ∈ I. A finite
induction argument proves j ∈ I, a contradiction.

■

Corollary 5.4.1
If a nonnegative matrix A is irreducible, then for any pair of indices (i, j), if i ̸= j
there exists k ∈ N such that

Ak(j, i) ̸= 0

Conversely if Ak(i, j) ̸= 0 there exists a path of length k leading from i to j.

Proof
Consider A2(i, j)

A2(j, i) =
n∑

k=1

aj,k ak,i



110 5. MONOTONE SYSTEMS IN EPIDEMIOLOGY

ajk is non zero if there exists an edge from k to j, entry ak,i is non zero if there is
an edge from i to k. Since the sum is a sum of nonnegative terms, A2(j, i) will be
non zero if there exists a path of length 2 from i to k.

By Ak(j, i) is non zero if there exists a path of length k leading from i to j.
Irreducibility implying strong connectedness, the proof is finished. ■

An reducible matrix A can be transformed in block form

P T AP =


A11 A12 · · · A1p

0 A22 · · · A2p
...

...
. . .

...
0 0 · · · App


Where diagonal Aii are irreducible matrices and P a permutation matrix.

Apply reduction process by induction

Proposition 5.4.1

a nonnegative matrix A is irreducible iff A leaves invariant no nontrivial face of
the nonnegative orthant.

left as an exercise.

5.4.1 Irreducible Metzler Matrices

We will characterize by a dynamic property the irreducibility of Metzler matri-
ces. An linear ODE with Metzler matrix let positively invariant the nonnegative
orthant. What is happening at the border, in other words on the faces of the
orthant?

Proposition 5.4.2 :

If A is an irreducible Metzler matrix, no trajectory can remain in a face of the
nonnegative orthant.

More precisely

A is an irreducible Metzler matrix then for any t > 0 we have etA ≫ 0.

Particularly if x0 > 0 then etA x0 ≫ 0.

Proof

We will begin to bring back to a nonnegative matrix. For c ≥ 0 large enough
matrix A+ c I is nonnegative. Since

et A = e−c t et(cI+A)
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and e−c t > 0, it is sufficient to prove the proposition for cI + A ≥ 0. We al-
ready know that diagonal terms does not count in irreducibility. Then A + c I is
irreducible if A is .
We can assume that A ≥ 0. Then we have, by analyticity

⟨et A ej | ei⟩ =
∑
k≥0

tk

k!
⟨Ak ej | ei⟩

This series is a sum of nonnegative terms. The sum will be positive if one term
is positive. Since the matrix is irreducible nonnegative there exists from corollary
(5.4.1) a natural number k such that

Ak(j, i) = ⟨Ak ej | ei⟩ ≠ 0

This ends the proof of et A ≫ 0.
Therefore if x is a vector x > 0 then et A x ≫ 0. Any positive trajectory starting
from the orthant is immediately in the interior. This ends the proof.

■
This shows that etA, corresponding to irreducible Metzler matrices , is a strongly
monotone application.

Proposition 5.4.3
Linear system ẋ = Ax, is strongly monotone, i.e., the linear application etA is
strongly monotone iff A is an irreducible Metzler matrix.

Proof
Condition is sufficient : this is the preceding proposition.
Condition is necessary. We know that A is necessarily Metzler since etA ≫ 0 ≥ 0.
This is 5.2.1. We will give a contrapositive proof. Again writing

etA = e−st e((sI+A)

we can assume esI+A ≫ 0. Then we assume that A ≥ 0. Assuming A reducible,
it exists a proper face F , invariant by A, i.e.,

A F ⊂ F

By induction we observe that An leave F invariant. Since F is a cone, we have for
any t ≥ 0

F + t A F +
t2

2!
A2 F + · · ·+ tn

n!
A2 F ⊂ F
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Face F is a closed set, a we just prove that etA F ⊂ F . A contradiction with
etA ≫ 0.

■

5.4.2 Perron-Frobenius

We will give another characterization of irreducility for Metzler matrices

Proposition 5.4.4 (Irreducible Metzler Matrices )

The Metzler matrix A is irreducible iff for any vector x > 0 in a face F of Rn
+,

where F is defined by

F = {x ≥ 0 | i ∈ I ⟨ei | x⟩ = 0},

there exists an index i ∈ I such that ⟨ei | Ax⟩ > 0.

This means, geometrically, that for any face of the nonnegative orthant, the vector
field associated to A , for any point of F is never tangent to F .

Proof

The condition is necessary

Again we can replace A by A+λ In, wher In is the identity matrix, for λ large
enough. Indeed if there exists i such that ⟨ei | x⟩ = 0 and ⟨ei | Ax⟩ > 0 this is
equivalent to ⟨ei | x⟩ = 0 and ⟨ei | (A+ λIn )x⟩ > 0. Then we will assume A ≥ 0.
We will give a contrapositive proof.

Assume i that for any i ∈ I ⟨ei | x⟩ = 0 we have ⟨ei | Ax⟩ = 0.

Let Fx = R+ [[0, x]] the face generated by par x. (Exercise show that this is the
smallest face containing x)

Since A ≥ 0 we have AFx = R+ [0, Ax]. Fx is characterized by a set if indices I.

We have Fx = {x ≥ 0 | ⟨ei | x⟩ = 0}. For these indices we have ⟨ei | Ax⟩ = 0.
Therefore AFx ⊂ Fx. A face is invariant by A, then the matrix is not irreducuble.

Necessary condition.

Again by a contrapositive argument.

If A is reducible, there exists a face, which can be written Fx, such that AFx ⊂
Fx. For any index such that ⟨ei | x⟩ = 0 we then have ⟨ei | Ax⟩ = 0.

■

Theorem 5.4.2 (Characterization)

A Metzler matrix is irreducible iff one of the following assertions is satisfied
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1. An eigenvector of A cannot belong to a face of the nonnegative orthant.

2. Matrix A has exactly one eigenvector v ≫ 0 (up to a positive multiplicative
factor). It is associated to the stability modulus

3. Condition x > 0 with Ax ≤ αx implies x ≫ 0.

4. (I +A)n−1 ≫ 0.

Proof of condition (1) and (3)

We prove condition (1). Condition (1) is sufficient by a contrapositive argument.
Assume A leaves invariant a subspace VI generated by a face. We consider the
restriction A|V of application A to V . This is again a Metzler Matrix.Therefore,
Perron’s Theorem can be applied to ? A|V : there exists an eigenvalue v > 0 of
A|V , therefore of A, in VI , hence v ∈ ∂Rn

+.

Condition (1) is necessary. Let v ∈ ∂Rn
+ an eigenvector of A and a canonical basis

vector ei such that ⟨v|ei⟩ = 0. We j-have et A v = etλ v. Then φ(t) = ⟨et A v|ei⟩ = 0.
Function φ is differentiable and we have

φ′(t) = ⟨Aet A v|ei⟩ = ⟨λ et λ v|ei⟩ = 0

Therefore φ′(0) = ⟨A v| ei⟩ = 0, this proves that A is reducible from proposition
(5.4.4).
we will now prove condition (3). If A is reducible there is an invariant face and
an eigenvector v in this face : this is obtained by applying Frobenius Theorem to
the restriction of A to F . Then there exists v > 0 with Av = λ v ≤ s(A) v and
however v does not satisfies v ≫ 0.
Conversely for A + τ I ≤ 0, for any x satisfying the inequality , the face Fx =
R+ [[0, x]] generated by x satisfies AFx ⊂ Fx. Since no face can be positively
invariant by A, we deduce x ≫ 0.
end of proof condition (1) and (3)
To prove condition (2) we need some technical results

Lemma 5.4.1
If the nonnegative matrix A, has two eigenvectors in the interior of the nonnegative
orthant, the associated eigenvalues are equal and there exists an eigenvector on the
boundary of the orthant.

Proof

We need some technical results on a generalization of the infinity norm ∥ ∥∞.
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Proposition 5.4.5 (Weighted infinity norm) :
To any vector v ≫ 0, we associate the norm defined by

∥x∥v = max
i

|xi|
vi

This is clearly a norm on Rn. If we denote by |x| the vector whose components
are |xi|, we have

∥x∥v = inf

v−
|x|
λ

≥0

λ = inf
t≥0 |x|≤t u

t

The unit ball for ∥ ∥v is Bv = [[−v, v]]. The unit sphere is a polyhedron., with
faces parallel to the faces of the nonnegative orthant.
The vector x

∥x∥v belongs to the unit sphere as is v. This implies that for any x > 0
we have
Important remark

v − x

∥x∥v
∈ ∂Rn

+

It also can be checked by considering the components.
We can now prove the lemma

Let Av1 = λ1 v1 and Av2 = λ2 v2 with v1 ≫ 0 and v2 ≫ 0.
Since A ≥ 0 eigenvalues λ1 and λ2 are nonnegative.
Assume λ2 ≥ λ1 ≥ 0. Let

v3 = v1 −
1

∥v2∥v1
v2

We have seen in the properties of the weighted norms that v3 ∈ ∂Rn
+. Therefore

Av3 ≥ 0.

Av3 = λ1 v1 − λ2
1

∥v2∥v1
v2 ≥ 0.

If λ1 = 0, then λ2 = 0, we are finished
Otherwise

Av3 = λ1

[
v1 −

λ2

λ1

1

∥v2∥v1
v2

]
≥ 0

With the definition of ∥v2∥v1 , necessarily we have λ1 ≥ λ2. (Compute the coordi-
nates ofAv3, look for the index where the maximum is reached, and use Av3 ≥ 0
This prove λ1 = λ2 with v3 ∈ ∂Rn

+ eigenvalue of A.
■

Back to Proof of Theorem (5.4.2)
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Condition (2) of Theorem (5.4.2) is sufficient : assume A is nonnegative irreducible,
it admits an eigenvector in the orthant from Perron’s Theorem and with condition
(1), already proved, of the Theorem, it cannot be in the boundary of the orthant.
It is necessarily unique from the preceding lemma.
Conversely assume A has a exactly one eigenvector v ≫ 0, Av = λ v. Since A ≥ 0
we have λ ≥ 0. By Perron’s Theorem we have a nonnegative eigenvector x such

that Ax = ρ(A)x. If we consider v − x

∥x∥v
∈ ∂Rn

+, then

A

(
v − x

∥x∥v

)
= λ v − ρ(A)

x

∥x∥v
≥ 0.

Let i0 such that
xi0
vi0

= maxi
xi
vi

= ∥x∥v, then

λ vi0 − ρ(A)
xi0(
xi0
vi0

) = (λ− ρ(A)) vi0 ,

which implies λ ≥ ρ(A) hence λ = ρ(A). This proves that x and v are eigenvectors
for the same eigenvalue ρ(A). But t x+(1− t) v are also eigenvectors for ρ(A) and
for t small enough be in the interior of the nonnegative orthant.
We have two eigenvectors ≫ 0. a contradiction. Necessarily x = v

Condition (4) of Theorem (5.4.2). If A is reducible it exists v > 0, v ∈ ∂Rn
+

such that Av = λ v. We have (I + A)n−1 = (1 + λ)n−1 v in the boundary of the
nonnegative orthant. Conversely if A is irreducible, let v > 0 in the boundary
of the orthant. Then (I + A) v /∈ Fv. The set (I + A)Fv is necessarily in a
face of dimension strictly greater than the dimension of Fv. By a finite induction
(I +A)n−1 v ≫ 0.
Therefore for any vector of the canonical basis ei we have (I+An−1) ei ≫ 0, which
proves

(I +An−1) ≫ 0.

■
Theorem 5.4.2 contain the following theorem

Theorem 5.4.3 (Perron-Frobenius)
Let A be an irreducible nonnegative matrix, then the spectral radius is a simple
eigenvalue of A and its associated eigenvector v is positive. This vector is unique
(up to a positive multiplicative factor)

In other words
If A ≥ 0 irreducible then ∃ v ≫ 0 such that Av = ρ(A) v
We get immediately
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Theorem 5.4.4 (Perron-Frobenius)
Let A an irreducible Metzler matrix, then the stability modulus is a simple eigen-
value of A and its associated eigenvector v is positive. Conversely A has exactly
one eigenvector v ≫ 0 (up to a positive multiplicative factor). It is associated to
the stability modulus

If A is an irreducible Metzler matrix then ∃ v ≫ 0 such that Av = s(A) v

5.4.3 Stability modulus and order

The stability modulus is an increasing function on the set of Metzler matrices.

Theorem 5.4.5

1. If theres exists v ≫ 0 such that Av ≤ β v then s(A) ≤ β.

2. If moreover A is irreducible then if v > 0 and Av < β v imply s(A) < β.
Actually we have necessarily v ≫ 0.

3. If it exists v > 0 such that α v ≤ Av then α < s(A).

This theorem, for its nonnegative version and spectral radius is proved in [14] in
a algebraic way (th?or?mes 2.1.11, 1.3.34 et 1.3.35). We will give a short proof
using Lyapaunov and LaSalle.

Proof
Let v ≫ 0 such that Av ≤ β v. This is equivalent to (A− β I) v ≤ 0.
Considering on the nonnegative orthant the definite positive function V (x) = ⟨c|x⟩
it appears that system ẋ = (A− β In)

T x is stable. The trajectories starting from
a nonnegative point are bounded. taking the proof argument of 5.2.2, i.e., the
nonnegative orthant generate Rn, it is clear that all trajectories are bounded.
This linear system is not unstable hence its stability modulus in non positive, in
other words

s(A− β In) = s(A)− β ≤ 0.

If moreover A is irreducible, and v > 0 we consider the same function V . From
5.4.2 property 3, A irreducible and Av < β v implies v ≫ 0. V is definite positive.
We look for the greatest invariant set E in L defined by par V̇ = 0, i.e.,

L = {x ≥ 0 |⟨(A− β In) v|x⟩ = 0}

Let x ∈ E then any trajectory from x denote ϕt(x) stays in L. Therefore for
any t > 0
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⟨(A− β In) v|ϕt(x)⟩ = 0

then

d

dt
⟨(A− β In) v|x⟩ = ⟨(A− β In) v|ẋ⟩ = ⟨(A− β In)

2 v| x⟩ = 0

By induction we prove that for any k, if x ∈ E, we have ⟨(A − β In)
k v| x⟩ = 0.

This implies by lemma (5.4.2) that

⟨exp(t (A− β In) v| x⟩ = 0

Since (A−β In) is irreducible exp(t (A−β In) ≫ 0, hence exp(t (A−β In) v ≫ 0,
which in turn implies that x = 0. Then the greatest invariant set contained in L
is {0}. By LaSalle ’s invvaraint principle (A − β, In is Hurwitz. Which proves
s(A− β In) < 0
E is simply Since A− β In is irreducible, no face can be invariant, since v ≫ 0 we
have (A− β In) v ≪ 0. This means that V̇ is negative definite. By Lyapunov, the
origin is GAS in the nonnegative orthant.
This proves that the origin is GAS, hence

s(A− β I) = s(A)− β < 0.

For the other inequalities if v ≫ 0 arguments are identical. We simply consider
the system ẋ = (α In −A)x. We prove that this system is stable by an analogous
argument, which proves α ≤ s(A) Hurwitz. When v > 0 There is, here, a difference
since we cannot ascertain that v ≫ 0. We must use LaSalle’s principle. Let
consider the greatest invariant set E contained in L such that

L = {x ∈ Rn
+ | ⟨(α In −A)) v|x⟩ = 0

By a similar argument as before, we obtain if x ∈ E, for any t ≥ 0

⟨exp t (α In −A)) v|x⟩ = 0

Since (−α In + A) is Metzler a matrix (note the sign change), exp t (−α In +
A)) ≥ 0, this matrix is invertible, with v > 0 it implies that exp t (−α In+A)) v ≫
0, hence

⟨exp t (α In −A)) v|x⟩ = 0

iff x = 0. Then the origin is attractive and because we are with linear systems,
the matrix (α In −A) is Hurwitz, implying α ≤ s(A)

■
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Theorem 5.4.6

Let A and B two Metzler matrices

1. If A ≤ B then s(A) ≤ s(B)

2. If A is irreducible A < B implies s(A) < s(B).

Proof

Let v > 0 such that Av = s(A) v. Then we have Av = s(A) v ≤ B v. From
Theorem (5.4.5 3), we deduce s(A) ≤ s(B).

If A is irreducible, there exist v ≫ 0 such that Av = s(A) v. We have A < B, which
implies Av < B v, let s(A) v < B v. If A is irreducible A ≤ B, B is irreducible.
We conclude with (5.4.5 4).

■

Corollary 5.4.2

If B is a principal matrix of A then s(B) ≤ s(A)

If a Metzler matrix is Hurwitz its diagonal is negative.

Proof as an exercise.

5.5 Characterization of Monotone Dynamical Sys-

tems

We will see that actually the Metzler matrices are the infinitesimal version of the
monotone vector fields

Definition 5.5.1 (Kamke-Muller condition)

The vector field F is said of type K if for any i and for any pair (x, y) such that
x ≤ y and xi = yi we have Fi(x) ≤ Fi(y).

This definition extends to non-autonomous vector fields F (t, x). We consider the
associated flow ϕt,t0(x0) pour t ≥ t0, associated to non-autonomous ODE.{

ẋ = F (t, x)
x(t0) = x0

Properties considered in the assertions must be true for any t. We have the fol-
lowing theorem
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Theorem 5.5.1
Let F be a class C1 vector field on a convex open set Ω. We use the order from the
nonnegative orthant. Then the following are equivalent

1. F is monotone

2. F is of type K

3. F is such that, for any x ∈ Ω, the Jacobian DF (x), computed at x, is a
Metzler matrix.

A vector field satisfying condition (3) is said to be cooperative. We assume Ω
convex, Actually it is sufficient to have a weaker condition. We say that Ω is order
convex : if for any pair x and y in Ω satisfying x ≤ y then t x + (1 − t) y ∈ Ω for
any t ∈ [0, 1].

Proof

1 ⇒ 2

Let x ≤ y et xi = yi, by hypothesis, for any t ≥ 0 : ϕt(x) ≤ ϕt(y). Let ei the i-th
vector of the canonical basis. We have

⟨ei | ϕt(y)⟩ − ⟨ei | ϕt(y)⟩ ≥ 0.

Since ⟨ei | ϕ0(y)⟩ − ⟨ei | ϕ0(y)⟩ = yi − xi = 0, we deduce

d

dt
[⟨ei | ϕt(y)⟩ − ⟨ei | ϕt(y)⟩]|t=0

= Fi(y)− Fi(x) ≥ 0

This proves 1 ⇒ 2.

2 ⇒ 3

We have x + t ej ≥ x for any t > 0 and the i-components of x + t ej and x for
i ̸= j are equal. If F is of type K, then if i ̸= j, we have Fi(x + t ej) − Fi(x) ≥ 0
therefore i ̸= j

lim
t→∞
t>0

Fi(x+ t ej)− Fi(x)

t
=

∂Fi

∂xj
(x) ≥ 0

Matrix DF (x) is Metzler

3 ⇒ 2

Let x ≤ y, such that xi = yi. Since Ω is order-convex for s ∈ [0, 1] we have
(1− s)x+ s y ∈ Ω. Therefore
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Fi(y)− Fi(x) =

[(∫ 1

0
DF ((1− s)x+ s y) ds

)
(y − x)

]
i

=
∑
j ̸=i

∫ 1

0

∂Fi

∂xj
((1− s)x+ s y) ds (yj − xj) ≤ 0

2 ⇒ 1

Let x ≤ y and assume ϕt(x) and ϕt(y) are defined for t > 0. We wont to get
ϕt(x) ≤ ϕt(y).
Let v ≫ 0. For example v = e1 + · · · en and consider the ODE

ẋ = F (x) + ε v

We denote by ϕε
t ( ) the associated flow. We know that for ε > 0 small enough,

the flow ϕε
s(y + ε v) will be defined on [0, t]. Furthermore ϕε

s(y + ε v) uniformly
converges on [0, t]. See lemma 3.1, chap 1 [37].

We will show that for ε small enough, for any s ∈ [0, t] we have ϕs(x) ≪ ϕε
s(y+ε v)

We have ϕ0(x) ≪ ϕε
0(y + ε v), therefore this inequality is still satisfied, by a con-

tinuity argument, for s small enough. We will use an absurdity argument. If this
were not true, it exists s0 > 0 and an index i such that

⟨ei | ϕs0(x)⟩ = ⟨ei | ϕε
s0(y + ε v)⟩,

with ϕs0(x) ≤ ϕε
s0(y + ε v) and for any s < s0

ϕs(x) ≤ ϕε
s(y + ε v)

Which implies for 0 ≤ s < s0

⟨ei | ϕs(x)⟩ ≤ ⟨ei | ϕε
s(y + ε v)⟩

Consequently

d

ds
⟨ei | ϕε

s(y + ε v)− ϕs(x)⟩|s=s0
= lim

s→s0
s<s0

1

s− s0
⟨ei| (ϕε

s(y + ε v)− ϕs(x))⟩

= Fi(ϕ
ε
s0(y + ε v)) + ε vi − Fi(ϕs0(x))

≤ 0

We deduce
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Fi(ϕ
ε
s0(y + ε v)) < Fi(ϕ

ε
s0(y + ε v)) + ε vi ≤ Fi(ϕs0(x))

But in the other hand since F is of type K, with the hypotheses in s0, we have

Fi(ϕs0(x)) ≤ Fi(ϕ
ε
s0(y + ε v))

A contradiction which proves our claim, namely

ϕs(x) ≪ ϕε
s(y + ε v),

for any s ∈ [0, t]. Since ϕε
t (y + ε v) → ϕt(y) when ε → 0, by going to the limit

we get

ϕt(x) ≤ ϕt(y)

This ends the proof
■

Remark 5.5.1 Theorem is still true for non-autonomous systems.

Remark 5.5.2 Let F a class C1, monotone vector fiels. We denote by ≺ any of the
relations ≤, < and ≪. If i x ≺ y then ϕt(x) ≺ ϕt(y).

Proof
If x ≤ y we know that ϕt(x) ≤ ϕt(y) by definition. Since ϕt() is a diffeomorphism,
it is bijection therefore x < y implies ϕt(x) ̸= ϕt(y and consequently ϕt(x) < ϕt(y.
If x ≪ y since we have ϕt() monotone,the interval

[x, y] = {z | x ≤ z ≤ y}

is sent in [ϕt(x), ϕt(y)]. Since x ≪ y the set [x, y] has is interior empty and therefore
t [ϕt(x), ϕt(y)] also, since ϕt()is a diffeomorphism. we deduce ϕt(x) ≪ ϕt(y).

■

Corollary 5.5.1
A monotone vector field, with the origin as a fix point leaves the nonnegative or-
thant and its interior positively invariant

Proof
It is sufficient to remark that if x ≥ 0 then ϕt(x) ≥ ϕt(0) = 0.
Int he same manner x ≫ 0 implies ϕt(x) ≫ ϕt(0) = 0.

■

The following proposition will extend to monotone linear non-autonomous vector
fields.
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Proposition 5.5.1 We consider a non-autonomous linear equation, where for any
t ≥ t0 matrix A(t) is Metzler. {

ẋ = A(t)x
x(t0) = x0

Then the nonnegative orthant and its interior are positively invariant by the flow
associated to the ODE.

Proof

The matrix A(t) is Metzler, we claim that A(t)x is of type K.

Indeed if xi = yi et x ≤ y then

⟨ei|A(t) (y − x)⟩ ≥ 0

therefore

⟨ei|A(t) y⟩ ≥ ⟨ei|A(t)x⟩

The vector field (non-autonomous ) is monotone: from the preceding remark if
x > 0 we have aϕt,t0(x) > ϕt,t0(0) = 0. This proves the positive invariance of the
nonnegative orthant. Moreover if x ≫ 0 then ϕt,t0(x) ≫ 0, this proves the positive
invariance of the interior of nonnegative orthant.

■

Remark 5.5.3 We can now prove directly 3 ⇒ 1

5.6 Strongly monotone vector fields

Monotone Linear vector field are associated to Metzler matrices. We will see
that Strongly Monotone Linear vector field are associated to irreducible Metzler
matrices Indeed we see A irreducible Metzleri, iff et A ≫ 0. If x < y, or equivalently
y − x > 0 with et A ≫ 0 implies et A (y − x) ≫ 0.

5.6.1 Linear vector fields strongly monotone

We prove the result for the linear non-autonomous vector fields.

Theorem 5.6.1

Let R(t, t0) the fundamental solution of the following ODE
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{
Ẋ = A(t)X

X(t0) = I

We assume that A(t) is Metzler for any t ≥ t0 that it exists a tile s ∈ [t0, t1] such
that A(s) is irreducible.
Then R(t1, t0) ≫ 0 For any t1 > t0.

Proof
By an absurdity argument. Assume it is false for a time t1 ≥ t0. Then it ex-
ists x > 0 such that R(t1, t0)x ∈ ∂Rn

+. Since R(t1, s) is invertible and non-
negative for any s ≤ t1 and since we have the one parameter group relation we
have R(t1, s)R(s, t0) = R(t1, t0). We see that R(s, t0) cannot be strongly posi-
tive and R(s, t0)x is in the boundary of the nonnegative orthant : The interior
of the orthant is invariant. Since A(s) is irreducible, there exists ei such that
⟨ei|R(s, t0)x⟩ = 0 and such that ⟨ei|A(s)R(s, t0)x⟩ > 0. But since R(t, t0) ≥ 0,
the function φ(t) = ⟨ei|R(t, t0)x⟩ is nonnegative for any t ∈ [t0, t1]. By hypothesis
φ(s) = 0. It is a minimum. Therefore φ′(s) = 0, but in the other hand, also by
hypothesis φ′(s) = ⟨ei|A(s)R(s, t0)x⟩ > 0. A contradiction.

■

Corollary 5.6.1
Let the linear equation ẋ = A(t)x. We assume that A(t) is an irreducible Metzler
matrix, the flow is strongly monotone.

Proof
Immediately from the preceding theorem. The solution of{

ẋ = A(t)Xx
x(t0) = x0

is given by x(t, t0, x0) = R(t, t0)x0. Preceding theorem shows that R(t, t0) ≫ 0.
Therefore if x > y then R(t, t0)x ≫ R(t, t0) y. ■
Following Theorem is a sufficient condition for the strong monotonicity

Theorem 5.6.2
Let F a class C1 vector field on open convex set Ω. If the Jacobian ∂F

∂x is an
irreducible Metzler, the vector field F is strongly monotone.

Proof
We use the relation
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x(t, t0, x1)− x(t, t0, x0) =

(∫ 1

0

∂x

∂x0
(t, t0, s x1 + (1− s)x0) ds

)
(x1 − x0)

We denote by ∂x
∂x0

(t, t0, x0) the derivative of the solution of ẋ = F (x) with respect
to the initial condition.
We know that ∂x

∂x0
(t, t0, x0) is the fundamental solution of the non-autonomous

ODE {
Ẋ = ∂F

∂x (x(t, t0, x0)) X
X(t0) = I

By hypothesis ∂F
∂x (x(t, t0, x0)) is irreducible Metzler, hence from the corollary

(5.6.1) the flow, in other words ∂x
∂x0

(t, t0, x0) is strongly monotone. Since x1 > x0
we deduce the strong inequality in the integral and therefore for the integral, , i.e.
x(t, t0, x1) ≫ x(t, t0, x0).

■

5.7 A convergence Criteria

We have the following proposition

Proposition 5.7.1 : [Hirsch [43]]
We consider a monotone vector field and an initial condition x, such that the
positive trajectory from x is bounded. Assume that there exits T > 0 such that

ϕT (x) ≥ x ou ϕT (x) ≤ x

Then the ω-limit set of the trajectory is periodic, with period T .

Proof
Assume ϕT (x) ≥ x. If ϕT (x) = x we are finished. If x is not a fix-point, then
ϕT (x) is different of x, i.e., x < ϕt(x). Since the trajectory is relatively compact,
we can extract a convergent subsequence from the sequence ϕnT (x), that we will
denote by ϕnk T (x), in such a manner that nk is strictly increasing and

lim
k→∞

ϕnk T (x) = y

This limit is a point of the y omega-limit set ω(x) of the trajectory.
Since the vector fiels is monotone, and since by hypothesis ϕT (x) > x, we deduce
by induction, that for any pair of natural number n > p owe have
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ϕnT (x) > ϕp T (x)

Therfeore

ϕnk+1 T (x) ≥ ϕ(nk+1)T (x) = ϕT [ϕnk T (x)] > ϕnk T (x)

going to the limit, from the inequalities we deduce

y = ϕT (y)

The ω-limit point y is on a trajectory of period T . It remains to show that the
trajectory is exactly the omega-limit set .

Let z ∈ ω(x) a strictly increasing sequence tp such that lim
p→∞

ϕtp(x) = z. Let for

any p be the index nk(p) of the defining sequence of y such that

nk(p) T ≤ tp < (nk(p) + 1)T

The sequence of real tp − nk(p) T is abounded sequence. Then a convergent sub-
sequence can be extracted. To simplify we will denote in an identical way. Then
lim
p→∞

(tp − nk(p) T ) = τ . Which gives

ϕtp(x) = ϕnk(p) T

[
ϕtp−nk(p)T

(x)
]
= ϕtp−nk(p)T

[
ϕnk(p) T (x)

]
Sequence nk(p) T being an extracted sequence of nk T defining y we deduce, passing
to the limit that

z = ϕτ (y)

The omega-limit point is therefore on the periodic trajectory from y.

■
We can now state an useful theorem for existence of an equilbrium

Theorem 5.7.1 [Hirsch [43]]

We consider a monotone vector field. Let {ϕt(x) | t ≥ 0} a relatively compact
positive trajectory. If there exists a positive T > 0 such that

ϕT (x) ≫ x ou ϕT (x) ≪ x

then ϕt(x) converge to an equilibrium when t tends to infinity.

If the field is strongly monotone, it is sufficient to have x < ϕt(x) or ϕt(x) < x to
conclude.
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Proof
Assume ϕT (x) ≫ x. Other case is similar. Due to this strict inequality and by
continuity of the solution of an ODE, it exists ε such that ϕs(x) ≫ x if s ∈
[T − ε, T + ε].
From proposition 5.7.1, we know that the omega-limit set is periodic trajectory of
period s for any s ̸= 0, s ∈]T − ε, T + ε[. It is known that the set of period is an
additive sub-semigroup of the semigroup (R+,+)

This semigroup is dense (we can have a period as small as we want). This
semigroup is closed ( continuity of the trajectory), hence this R, i.e., 0 is a period.
The omega-limite set is reduced to point. Q.E.D. ■

5.8 Looking for invariant sets and equilibria

Proposition 5.8.1
Let F be a class C1 monotone vector field. We denote by ≺ any of the following

binary relation ≤, < and ≪. If x ≺ y then ϕt(x) ≺ ϕt(y).

Proof
If x ≤ y we have ϕt(x) ≤ ϕt(y)by definition. Since ϕt() is diffeomorphism, it is
bijection therefore if x < y then ϕt(x) ̸= ϕt(y and consequently ϕt(x) < ϕt(y.
If x ≪ y since ϕt() is monotone, the interval

[x, y] = {z | x ≤ z ≤ y}

is send in [ϕt(x), ϕt(y)]. Since x ≪ y the set [x, y] has a non empty interior
and therefore [ϕt(x), ϕt(y)] also, because ϕt() is a diffeomorphism.. We deduce
ϕt(x) ≪ ϕt(y).

■
The following lemma has been proved by Selgrade in 1980 [82], this version comes
from [86].

Lemma 5.8.1
Let f a monotone field . Let denotes by ≺ one of the relation <, ≤ or ≫.
Then the set

A+ = {x ∈ Rn|f(x) ≻ 0}
is positively invariant and the flow is nondecreasing on this set.
The set

A− = {x ∈ Rn|f(x) ≺ 0}
is positively invariant and the flow is nonincreasing on this set.
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Proof

Let ϕt(x) the flow associated to the vector field.

Let z(t) = f(ϕt(x)). We have ż(t) = Df(ϕt(x) f(ϕt(x)) = Df(z(t)) z(t). This
proves that f(ϕt(x)) is the unique solution of the system{

ẋ = Df(x)x
x(0) = f(x)

This system is monotone, then let positively invariant the 3 sets Rn
+, Rn

+ \ {0} and
the interior of Rn

+, i.e., Rn
+,∗.

Then if x ∈ A+, f(x) belongs to one of this three set, say e.g. K. The solution
of the linearized system, starting from f(x) stays in K, hence ϕ(f(x) ∈ K . This
proves that A+ is positively invariant.

Then ϕt(x) is nonincreasing if x ∈ A+, at least locally, but this is true necessarily
by positive invariance for all the trajectory.

■

Proposition 5.8.2

Consider a monotone system in Rn, ẋ = f(x) with f being C1.

Let a ≪ b such that f(a) ≥ 0 and f(b) ≤ 0, then [a, b] is positively invariant. The
trajectories from a and b are converge to equilbria.

If there is an unique equilibrium p in [a, b] then p is GAS in [a, b]

Proof

Let x ∈ [a, b], since f(a) ≥ 0, by the preceding theorem ϕt(a) is non decreasing,
hence a ≤ ϕt(a) and by monotonicity ϕt(a) ≤ ϕt(x). This gives a ≤ ϕt(a) ≤
ϕt(x). By the same argument with b, this proves that [a, b] is positively invariant.
Now ϕt(a) is a nondecreasing function, by lemma (5.8.1), which is bounded hence
converging to a limit.

If there is an unique equilibrium p then ϕt(a) and ϕt(b) converge to p. Hence

a ≤ ϕt(a) ≤ ϕt(x) ≤ ϕt(b) ≤ b,

proves the convergence to p. The stability is obtained by considering the order
interval [ϕt(a), ϕt(b)] which are positively invariant and as small as we want for t
large enough.

■
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5.9 Sublinearity, positive invariance and equilibria

Definition 5.9.1 (Hirsch-Smith [49])

A map T : Rn
+ −→ Rn is sublinear if

0 < λ < 1 , x > 0 ⇒ λT (x) ≤ T (λx),

strictly sublinear if

0 < λ < 1, x ≫ 0 ⇒ λT (x) < T (λx),

and strongly sublinear if

0 < λ < 1, x ≫ 0 ⇒ λT (x) ≪ T (λx).

Strong sublinearity is the strong concavity assumption of Krasnosel′skĭı [58].

Proposition 5.9.1

If the application T is C1 then the condition

x ≫ y ≫ 0 =⇒ DT (x) < DT (y)

implies the strict sublinearity if T (0) ≥ 0.

This is called the strict anti-monotonicity of DT

Proof

Let x ≫ 0 and λ ∈ (0, 1) let Φ(s) = T (λ s x)− λ (T (s x)).

We have Φ(1)− Φ(0) = T (λx)− λT (x)− (1− λ)T (0) and therefore

T (λx)− λT (x) = (1− λ)T (0) +

[∫ 1

0
(DT (λ t x)−DT (t x)) dt

]
(λx) > 0

Remark 5.9.1

The condition is sufficient but not necessary. The Ricker function αx e−β x is
strictly sublinear but its derivative is not anti-monotone.

Proposition 5.9.2 [49]

The application T : Rn
+ −→ Rn is strongly sublinear provided T is C1 and for any

x ≫ 0

T (x) ≫ DT (x) . x
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Proof

Let define φ(s) =
1

s
T (s x) then φ′(s) = − 1

s2
T (s x) +

1

s
DT (s x) . x.

Since φ′(s) = − 1

s2
[T (s x)−DT (s x) . s x], then by hypothesis φ′(s) ≪ 0, therefore

for 0 < λ < 1

T (λx)− λT (x) = λ [φ(λ)− φ(1)] = −λ

∫ 1

λ
φ′(s) ds ≫ 0

■

Proposition 5.9.3
Let F be a C1 vector field in Rn, whose flow ϕ preserves Rn

+ for t ≥ 0 monotone
and strictly sublinear in Rn

+. Then the flow ϕt( ) associated to F is monotone and
strictly sublinear.
Moreover if F is strongly monotone and strictly sublinear, then ϕt( ) is strongly
monotone and strongly sublinear.

Proof
The application ϕt is monotone since the vector field is monotone (Theorem (5.6.2)).
To prove the strict sublineariry we consider, for λ ∈ (0, 1) and x ≫ 0, the quantity

y(t) = ϕt(λx)− λϕt(x).

We consider the time derivative ẏ

ẏ = F (ϕt(λx))− λF (ϕt(x))

= F (ϕt(λx))− F (λϕt(x)) + [F (λϕt(x))− λF (ϕt(x))]

= A(t) y +B(t).

With

A(t) =

∫ 1

0
DF (s ϕt(λx)) + (1− s)λϕt(x)) ds,

and
B(t) = F (λϕt(x))− λF (ϕt(x))

In other words y(t) is the solution of a linear equation with a second term B(t),
and initial condition y(0) = 0. We denote by R(t, t0) the fundamental solution of{

Ẋ = A(t)X
X(t0) = In
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Since ϕt( ) preserves the nonnegative orthant we have ϕt(0) ≥ 0 and since x ≫ 0 by
monotonicity 0 ≤ ϕt(0) ≪ ϕt(x) ( proposition (5.8.1)). Hence, since F is strictly
sublinear, B(t) > 0 for any t ≥ 0.
Then by the variation of constant formula we have

y(t) =

∫ t

0
R(t, τ)B(τ) dτ.

Since for any z ≥ 0, DF (z) is Metzler, the same is true for A(t). Hence R(t, t0) ≥
0 for t ≥ t0 and is a nonsingular matrix. By hypothesis B(τ) > 0, hence
R(t, τ)B(τ) > 0, therefore y(t) ≫ 0 for t > 0. Which proves that ϕt is strictly
sublinear.
The second assertion comes from the observation that ϕt( ) is strongly monotone
by Theorem (5.6.2) and by noticing that since DF ((x) is Metzler irreducible, then
R(t, t0 is positive, which implies that, with B(t) > 0, R(t, τ)B(τ) ≫ 0. This
proves the strong sublinearity.

■
The sublinear applications have nice properties. They will be detailed in the next
propositions.

Proposition 5.9.4 (Krasnosel′skĭı sublinearity trick)
Let F be a C1 vector field in Rn, whose flow ϕ preserves Rn

+ for t ≥ 0 and is
strongly monotone strictly sublinear in Rn

+. Assume that all trajectories are for-
ward complete.
Then F cannot have two distinct positive equilibria in the interior of the nonneg-
ative orthant Rn

+

Proof
Denote by ϕ( ) the flow of F . The fact that ϕt( ) is strongly monotone and strongly
sublinear proves the uniqueness of any positive equilibrium p, by Krasnosel′skĭı
sublinearity trick [42, 58] :
Let p1 and p2 two different positive equilibrium. There are fix points of ϕt. Let r
be defined by

r = min

{
1

∥p1∥p2
,

1

∥p2∥p1

}
,

such that p1 ≥ r p2 and p2 ≥ r p1. We have r ∈ (0, 1) since ∥p1∥p2 ∥p2∥p1 > 1.
Indeed let i0 and j0 indices realizing the maximum for each of the two weighted

norms, then
p1,i0
p2,i0

p2,j0
p1,j0

>
p1,i0
p2,i0

p2,i0
p1,i0

= 1.

Actually r is the maximum number such that simultaneously p1 ≥ r p2 and p2 ≥
r p1.
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By strong sublinearity and monotonicity we have

p1 = ϕt(p1) ≥ ϕt(r p2) ≫ r ϕt(p2) = r p2.

Similarly we have p2 ≫ r p1. This contradicts the maximality of r.
■

Now we will revisit proposition (5.8.2) with the additional hypothesis of sublinear-
ity.

Proposition 5.9.5
Consider a C1 vector field F strongly monotone and strictly sublinear in the non-
negative orthant.
We assume that there exists 0 ≪ a ≪ b such that F (a) ≥ 0 and F (b) ≤ 0.
Then the nonnegative orthant is positively invariant and there is an unique positive
equilibrium which is GAS on the interior of the nonnegative orthant.

Proof
We know that [a, b] is positively invariant. But we have, by sublinearity, for 0 <

λ < 1 the inequalities F (λ a) > λF (a) ≥ 0 and λF

(
1

λ
b

)
< F (b) ≤ 0. Hence for

any 1 > ε > 0 and ξ > 1 the order interval [ε a, ξ b] is positively invariant. This
proves that the interior of the nonnegative orthant is positively invariant and that
all the forward trajectories are bounded, hence F is a complete vector field.
By proposition (5.8.2) ϕt(a) converge to an equilibrium, which is unique by sub-
linearity. This ends the proof.

■
The following proposition is a result of stability with something less stringent that
sublinearity. It is used in some proof in [44, 70]

Proposition 5.9.6
Consider a C1 vector field f strongly monotone
Assume that x∗ ≫ 0 is an equilibrium such that

for any λ > 1 f(λx∗) > 0 and for any λ < 1 f(λx∗) < 0

Then x∗ is GAS in Rn
+.

If f is only monotone if

for any λ > 1 f(λx∗) ≫ 0 and for any λ < 1 f(λx∗) ≪ 0

then x∗ is GAS in the interior of the nonnegative orthant.
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Proof

For any ξ < 1 and λ > 1 the order interval Bξ,λ = [ξ x∗, λ x∗] is positively invariant
with f monotone.

• If f is strongly monotone, if x ∈ Bξ,λ we claim that f(x) points into Bξ,λ.
If x in the boundary of Bξ,λ either ξ x∗ < x or x < λx∗. Since f is strongly
monotone and increasing at ξ x∗ (respectively decreasing at λx∗), then either
for t > 0 we have ξ x∗ ≤ ϕt(ξ x

∗) ≪ ϕt(x) or ϕt(x) ≪ ϕt(λx∗) ≤ λx∗, i.e.,

ϕt (Bξ,λ) ⊂
◦
Bξ,λ

• If f is monotone, but since f(ξ x∗) ≫ 0 and f(λx∗) ≪ 0, we have

ξ x∗ ≪ ϕt(ξ x
∗) ≤ ϕt(x) and ϕt(x) ≤ ϕt(λx∗) ≪ λx∗, again

ϕt (Bξ,λ) ⊂
◦
Bξ,λ

This proves that there is no other equilibrium in Bξ,λ. Then by proposition (5.8.2),
the unique equilibrium x∗ is GAS in any Bξ,λ, hence in the interior of the nonnega-
tive orthant for f monotone and the nonnegative orthant for f strongly monotone.

5.10 A Theorem on stability

The following theorem give a simple proof of Theorem 6.1 proved by Hirsch [44]
and also a theorem with the weaker condition given by Smith [85]. The strict
antimonotonicity of the Jacobian of the vector field in [44] is replaced by strict
sublinearity of the vector field. Strict sublinearity implies, as we have seen, strict
antimonotonicity of the Jacobian [58, 59].

Theorem 5.10.1 [Hirsch 1984]

Let F be a C1 vector field in Rn, whose flow ϕ preserves Rn
+ for t ≥ 0 and is

cooperative, irreducible and strictly sublinear in Rn
+. Assume that all trajectories

in Rn
+ are bounded.

• If F (0) = 0, the origin is an equilibrium, then either all trajectories in Rn
+

tend to the origin, or else there is a unique equilibrium p ≫ 0 which is
globally asymptotically stable on Rn

+ \ {0}.

• If F (0) > 0, there is a unique equilibrium p ≫ 0 which is globally asymptot-
ically stable on Rn

+.
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Proof
Consider the case that the trajectory of some x ∈ Rn

+ does not tend to 0. By
hypothesis this trajectory is forward bounded. The omega limit set ω(x) of x has
a least upper bound Y in Rn

+ \ {0}, for the ordering on Rn. Let z be a point of
ω(x). Since ω(x) is an invariant set, ϕ−t(z) ∈ ω(x) for any t ≥ 0. Since ϕ is
a monotone flow, from ϕ−t(z) ≤ Y we deduce z ≤ ϕt(Y ) for any t ≥ 0. This
proves that ϕt(Y ) is an upper bound of ω(x), whence Y ≤ ϕt(Y ). If Y is an
equilibrium, we have finished, otherwise Y < ϕt(Y ), and by strong monotonicity
of the flow we deduce that, for a T > 0, we have Y ≪ ϕT (Y ). By theorem 5.7.1,
since the system is monotone and the trajectories bounded, ϕt(Y ) converges to
an equilibrium p > 0 as t → +∞. Moreover by strong monotonicity since p > 0
implies p = ϕt(p) ≫ ϕt(0) ≥ 0.

This proves that any trajectory, which does not tend to the origin, converges to a
positive equilibrium, which is unique by sublinearity (proposition (5.9.4))
By sublinearity, for any s ∈ (0, 1), F (s p) > sF (p) = 0. Again for any λ > 1 we

have
1

λ
f(λ p) > f(p) = 0. We are in the situation of proposition (5.9.6). Hence

p is GAS in the interior of the nonnegative orthant. By strong monotonicity, any
trajectory, starting from a face of the orthant, except at the origin, enters the
positive orthant. Then no trajectory of Rn

+ \ {0} tends to zero, hence tends to p
which is GAS.

■

Remark 5.10.1
This theorem can extend to any compact subset K ⊂ Rn

+ positively invariant.
Strong monotonicity can be only required in the interior of K as long as the bound-
ary of K is not positively invariant.
Exercise : prove it
See example on Schistosomiasis below.

5.11 Another Theorem from Hirsch

Theorem 5.11.1
Assume that X is a strongly ordered separable topological vector space. Assume ϕ
strongly monotone in X (or SOP) and that every orbit of ϕ is closure compact. Let
p, q be equilibria with p ≪ q, with no other equilibria in the order interval [p, q].
Then: either every trajectory in [p, q] \ {p} approaches q, or else every trajectory
in [p, q] \ {q} approaches p.

comments:
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This theorem has to be applied on a strongly ordered separable topological vector
space.

We say ϕ is order-compact if ϕt(S) has compact closure whenever t > 0 and S
in the domain D(ϕt() of ϕt() is order-bounded.

D(ϕt) is the domain of ϕt an open subset of X.

The set of equilibria is denoted by E.

A point x ∈ X is quasiconvergent if ω(x) ∈ E; the set of quasiconvergent points is
denoted by Q.

We call x convergent when ω(x) is a singleton {p}; in this case ϕt(x) −→ p ∈ E.

The set of convergent points is denoted by C.

When all orbit closures are compact and E is totally disconnected (e.g., countable),
then Q = C; because in this case every omega limit set, being a connected subset
of E, is a singleton.

We call ϕ strongly order preserving, SOP for short, if it is monotone and whenever
x < y there exists open subsets U and V of x,y respectively, and t0 > 0 such that

ϕt0(U) ≤ ϕt0(V )

Monotonicity of ϕ then implies that for any t ≥ t0 ϕt(U) ≤ ϕt(V ).

We say that ϕ is eventually strongly monotone if it is monotone and whenever
x < y there exists t0 > 0 such that

t ≥ t0 =⇒ ϕt(x) ≪ ϕt(y)

If ϕ is eventually strongly monotone then it is SOP.

5.12 Hirsch’s Theorem modified

In the following we denote by K = Rn
+ ( some other cone to see . . . ) the nonneg-

ative orthant.

Recall definition (??) : A subset F of K is called a face if F is a cone and if for
any x ∈ F

0 ≤ y ≤ x =⇒ y ∈ F

Definition 5.12.1

We consider an order interval [p, q] with p ≪ q. We have
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[p, q] = p+K ∩ q −K

[p, q] is a convex polytope, i.e, the finite intersection of half-spaces. A hyperplane
H of Rn is supporting [p, q] if one of the two closed halfspaces of H contains [p, q].
A subset F of [p, q] is called a face of [p, q] if it is either ∅, [p, q] itself or the
intersection of [p, q] with a supporting hyperplane.

Theorem 5.12.1
We consider a C1 monotone system ẋ = f(x), whose flow ϕ preserve Rn

+ for t ≥ 0.
We have two equilibria p ≪ q, with no other equilibrium in [p, q].
We assume that p is asymptotically stable for ϕ and that there exists a positively
invariant face F of [p, q] containing p which is in the basin of p. We also assume
that some other faces F1, F2, · · · , FK are positively invariant, and for any point x
of each Fi, the omega-limit set satisfies ω(x) ∩ F ̸= ∅.
We assume that the system is strongly monotone on the complement

[p, q] \ (F ∪ F1 ∪ · · · ∪ Fk).

Then any trajectory of [p, q] \ {q} converges to p. Hence the equilibrium q is un-
stable.

Proof
Consider the totally ordered arc in [p, q], J = {x = (1 − t) p + t q | 0 ≤ t ≤ 1}. If
point x ∈ I converges to p then by monotonicity [x, p] is in the basin of p. Since p
is asymptotically stable there exists x ̸= p in J converging to p. Let a = sup{x ∈
J | x converges to p}. Similarly let b = inf{x ∈ J | x converges to q}. The order
interval [[a, b]] is composed of points converging neither to p, neither to q.
The ordered interval [p, a]] is an open subset of [p, q], containing p in the basin of
p.
We will show that a = b = q which will prove the theorem.
Before this we show that any face Fi is in the basin of p. We know that for any
x in Fi, ω(x) ∩ F ̸= ∅. Since any point of F converges to p, by invariance of the
omega limit set, we have p ∈ ω(x), which implies that the trajectory from x enters
[p, a]] proving that x converges to p.
We proceed by contradiction assuming a ≪ b. By definition of a, any point of
[[a, b]] does not converge to p. Let

W = ϕR+([[a, b]] ∪ J).

Continuity of ϕ implies that W is a separable metric space positively invariant
under ϕ. Moreover W ∩ (F ∪ F1 ∪ · · · ∪ Fk) = ∅, otherwise this will implies that
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a point of [[a, b]] converges to p, a contradiction. It follows that W is an ordered
space, with a strongly monotone semiflow ϕ. By Theorem 1.14 of [49], if Q is the
set of quasiconvergent points, ([[a, b]] ∪ J) \Q is at most countable. Then there is
a point in [[a, b]] ∪ J converging to p or to q. A contradiction, hence a = b.
We will now prove that a = q. We proceed by contradiction, assuming that a ≪ q.
We already know that p ≪ a. The point a cannot converge to p. If not, since the
basin of an asymptotically stable point is open, this will contradict the definition
of a. If a converges to q, this will implies that in [p, q] the point q is asymptotically
stable, by the preceding argument we obtain again a contradiction. This proves
that a is a nonconvergent point. The set X = ϕR+(a) is a positively invariant
compact ordered set with a strongly monotone semiflow ϕ without equilibrium.
By lemma 1.1 of [49], X has a maximal element z. For any t ≥ 0, ϕt(z) is an
upper bound of X, hence z = ϕt(z) is an equilibrium, a contradiction. This ends
the proof of the Theorem.

■

5.13 Example : Gonorrhea

Gonorrhea is a sexually transmitted disease caused by the bacterium Neisseria
gonorrhoeae manifested primarily by urethritis in men, vaginitis, cervicitis and
metritis in women.
Neisseria gonorrhoeae is a strict human parasite, host of the mucous membranes
of the genital tract of man and woman. Transmission is mainly direct (this germ
being fragile) and almost venereal.
This is one of the most common infectious diseases with more than 200 million
annual cases worldwide. It primarily affects the poor.
A person treated may again be contaminated. There ’s no immunization for gon-
orrhea.
The following model is a seminal paper from Lajmanovitch and Yorke [60] in 1976.
In 1984 Hirsch remarks the monotonicity of the system [44] and revisits stability
analysis.
We consider n groups (patches). We begin with a model in one isolated group :
SIS model {

Ṡ = Λ− µS − β S
N I + γ I

İ = β S
N I − (γ + µ) I

(5.3)

N is the total population{
Ṅ = Λ− µN

İ = β S
N I − (γ + µ) I

(5.4)
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This system is triangular, N∗ = Λ
µ and we can apply Vidyasagar’s Theorem (3.6.1).

It is sufficient to study the reduced system :

İ =
β

N∗ (N
∗ − I) I − (γ + µ) I

x =
I

N∗ ẋ = β̃ x(1− x)− γ̃ x

Model in n groups : multigroup model. n equations i = 1, . . . , n.

ẋi = (1− xi)
∑
j

βi, j xj − αi xi (5.5)

βi, j xj visiting infectious from patch j coming in patch i

ẋ =
[
D +B − diag(x)B

]
x

B = (βi,j),
D = −diag(αi).

ẋ =
[
D +B − diag(x)B

]
x

rewritten in Scilab/Matlab notations

ẋ =
[
D + diag(1− x)B

]
x

f(x) =
[
D + diag(1− x)B

]
x

Jacf(x) = D + diag(1− x)B − diag(Bx)

B irreducible, system is strongly monotone and strictly sublinear.
Remark

B +D stable ⇐⇒ s(B +D) < 0 ⇐⇒ R0 = ρ(−BD−1) > 1

Varga : B +D regular splitting B ≥ 0 D stable Metzler matrix.
Diekmann, van den Driessche-Watmough : −BD−1 next generation matrix.

All the condition of Hirsch’s Theorem are satisfied hence

Theorem 5.13.1
If ρ(−B−1) < 1 the origin (DFE) is GAS for system (5.5).
If ρ(−B−1) > 1 there exists a unique positive endemic equilibrium, which is GAS
for system (5.5) on [0, 1] \ {0}.
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Remark 5.13.1

What happens when ρ(−B−1) = 1 ? It can be shown that the DFE is GAS using
Lyapunov techniques [30].

5.14 Ross model in a patchy environment

5.14.1 The migration model

This model does not keep track of where an individual usually resides, but just
considers where he is at time t. As in the Ross model, the demography is neglected,
i.e., there is no death or birth. The transfer rate from patch i to patch j, for i ̸= j,
is denoted by mji ≥ 0. The total host population on patch i is denoted Ni. Hence,
for i = 1, · · · , n, the dynamics is given by

Ṅi =

n∑
j=1 j ̸=i

mij Nj −Ni

n∑
j=1 j ̸=i

mji .

This system can be written

Ṅ = M N . (5.6)

Where N is the column vector (N1, · · · , Nn)
T , the superscript T denotes transpose,

and the matrix M is defined by M(i, j) = mij , for i ̸= j and

M(i, i) = −
n∑

j=1 j ̸=i

mji .

5.14.2 The Ross-Macdonald model on n patches

We use the following notations :

• Ih,i is the infectious host population on patch i.

• p is the number of patches harboring vectors. Iv,i, Vi are respectively the
infectious vector population and the constant vector population on patch i.
If i > p there is no vector on patch i, i.e., Vi = 0.

• a is the man biting rate of vectors.

• b1 is the proportion of infectious bites on hosts that produce a patent infec-
tion.
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• b2 is the proportion of bites by susceptible vectors on infectious hosts that
produce a patent infection.

• µ is the per capita rate of vector mortality.

• γ is the per capita rate of host recovery from infection.

As in the classical Ross-MacDonald model the total population of hosts is constant
when we consider all the patches. On the other hand since there are no migration
of vectors, the population of vectors is constant on each patch.

Remark 5.14.1 For sake of simplicity, we assume that the parameters b1, b2, γ
and µ are the same for all patches. However, the analysis presented here can be
extended when these parameters differ from patch to patch.

We number the patches in such a way that only the p first patches, 1 ≤ p ≤ n, are
infested by vectors. On the patches i for i > p, we have Vi = 0 hence, Iv,i = 0.

Since we already know the dynamics of the host population on patches by system
(5.6), it is sufficient to model the dynamics of the population of infectious hosts.
Similarly the population of vectors being constant on each patch we only need to
study the dynamics of the population of infectious vectors.

For patches such that i ≤ p, i.e., where vectors are present, we have


İh,i = b1 a Iv,i

Ni − Ih,i
Ni

− γ Ih,i +
n∑

j=1,j ̸=i

mij Ih,j − Ih,i

 n∑
j=1,j ̸=i

mji


İv,i = b2 a (Vi − Iv,i)

Ih,i
Ni

− µ Iv,i .

(5.7)

In the equations for infectious hosts, the term b1 a Iv,i
Ni−Ih,i

Ni
corresponds to the

infection of susceptible hosts bitten by infectious vectors, using the classical fre-
quency dependent transmission, with a varying host population on patch i. The
term −γ Ih,i is the recovery term. The other terms account for migration. In

the equations for infectious vectors, b2 a (Vi − Iv,i)
Ih,i
Ni

corresponds to the infec-
tion of susceptible vectors, when biting an infected host. The last term −µ Iv,i
corresponds to mortality.

For i > p, there are no vector on patch i and the equations for infectious hosts
only have recovery and migration terms. The equation governing the evolution of
Ih,i is the following
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İh,i = −γ Ih,i +
n∑

j=1,j ̸=i

mij Ih,j − Ih,i

 n∑
j=1,j ̸=i

mji

 . (5.8)

The complete system of 2n + p equations is obtained by incorporating to the
previous system, the n equations Ṅ = M N .
We are going to “vectorialize” the model, using the following vectors of Rn :

Ih = (Ih,1, · · · , Ih,n)T , Iv = (Iv,1, · · · , Iv,p, 0, · · · , 0)T and
V = (V1, . . . , Vp, 0, · · · , 0) ∈ Rn.

We denote β1 = b1 a and β2 = b2 a. If X is a vector, with either X ∈ Rp or
X ∈ Rq, we denote by diag(X, p, q) the p × q matrix whose diagonal is given by
the components of X and the other terms are zero. The short notation diag(X)
denotes, if X ∈ Rp, the p× p diagonal matrix diag(X, p, p).

We use the notation π to denote the projection of Rn on Rp, p ≤ n;

π : (x1, . . . , xn)
T 7−→ (x1, . . . , xp)

T

With these notations and conventions, the complete system becomes
Ṅ = M N

İh = β1 diag(N)−1 diag(N − Ih) Iv − γ Ih +M Ih

πİv = β2 diag(πN)−1 diag(π(V − Iv))πIh − µπIv .

(5.9)

This system evolves on the affine hyperplane of R2n+p, whose equation is
∑

iNi =
H, where H is the total host population.

Remark 5.14.2 In the case where the parameters β1, β2, γ and µ are not the same
for all patches, they are replaced in system (5.9) by diagonal nonnegative matrices
and this does not change the fundamental structure of the system.

5.14.3 Properties of the model

The model is such that the entire population H = N1 + · · ·+Nn is constant.
Let 1 be the vector (1, · · · , 1)T of Rn. The vector (H, · · · , H) will be denoted H 1.

Proposition 5.14.1 :
The Parallelepiped

P = {(N, Ih, π Iv) ∈ R2n+p| 0 ≤ N ≤ H 1; 0 ≤ Ih ≤ H 1 ; 0 ≤ Iv ≤ V } .

is positively invariant for system (5.9).
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Proof
It is sufficient to consider the system on the faces of P and to show that on

each face, the vector fields associated to the system points into the nonnegative
orthant.

If Ih,i = 0 then

İh,i = b1 a Iv,i
Ni

Ni
+

n∑
j=1,j ̸=i

mij Ih,j ≥ 0.

If Ih,i = H then for all j ̸= i we have Ih,j = 0, since the entire population is H
and

İh,i = −γ H −H

 n∑
j=1,j ̸=i

mji

 < 0.

If Iv,i = 0, then

İv,i = b2 a (Vi)
Ih,i
Ni

≥ 0.

If Iv,i = Vi then

İv,i = −µVi < 0.

Finally, since M is a Metzler matrix [53], the nonnegative orthant is positively
invariant by the system Ṅ = M N .

■

5.14.4 Reduction of the system

We will reduce the stability analysis of (5.9), to the study of a smaller and simpler
system.
Let us show that matrix M can be assumed to be irreducible. In other words,
we can assume that the graph of the patches is strongly connected. If M is not
irreducible, then by renumbering the patches, it can be given the following block
triangular structure

M =


M11 0 · · · 0
M21 M22 0 0
...

. . .
. . .

...
Mk1 Mk2 · · · Mkk

 ,

where the diagonal blocks are irreducible.
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Let us consider the blocks Mii corresponding to traps, i.e., groups of compartments
for which there are no transfers to the environment. It is easily seen that asymp-
totically, all the material will be transfered into the traps of the system. From this
moment the traps will behave as irreducible groups. For studying the asymptotic
properties of the system, it is therefore sufficient to restrain the study to traps.
This shows that M can be assumed to be irreducible.

Theorem of Vidyasagar (3.6.1) will permit us to reduce the stability analysis to a
smaller system

If we prove that the system Ṅ = M N has an equilibrium, which is globally
asymptotically stable, then we can apply theorem 3.6.1. Recall that the stability
modulus s(M) of a matrixM is the largest real part of the elements of the spectrum
Spec(M) of M .

s(M) = max
λ∈Spec(M)

Re(λ).

By Perron-Frobenius Theorem (5.4.4) if M is an irreducible Metzler matrix, then
there exists a positive eigenvector w ≫ 0 of M such that M w = s(M)w, and any
positive eigenvector is a multiple of w. Moreover the multiplicity of the eigenvalue
s(M) is 1.

The Metzler matrix M satisfies 1T M = 0 or equivalently MT 1 = 0. This implies
that s(M) = 0 and all the other eigenvalues are with negative real part. An
immediate consequence of the relation 1T M = 0 is that any trajectory of the
system Ṅ = M N remains in the affine hyperplane orthogonal to vector 1 and
containing the initial condition N(0).

From the preceding remark on irreducible Metzler matrices, there exists w ≫ 0
such that M w = 0. Hereafter we denote by w the unique vector w ≫ 0, defined
by

M w = 0 and
n∑

i=1

wi = 1. (5.10)

Hence Hw = (Hw1, · · · , Hwn)
T is in the hyperplane orthogonal to 1, and con-

taining N(0). It is the unique equilibrium of the system in this hyperplane. Since
all the nonzero eigenvalues of M have a negative real part, this equilibrium is
globally asymptoticaly stable on the hyperplane.

Hereafter we denote by N̄ = Hw this equilibrium. By application of Vidyasagar’s
theorem the stability analysis of (5.9) is now reduced to the stability analysis of
the system
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İh = β1 diag(N̄)−1 diag(N̄ − Ih) Iv − γ Ih +M Ih

π İv = β2 diag(π N̄)−1 diag(π (V − Iv))π Ih − µ π Iv.

(5.11)

The dimension of this reduced system is n+ p.
Since the populations in the patches are constant, we will now rewrite the system
using the prevalence variables xi = Ih,i/N̄i, yi = Iv,i/V̄i and the vectorial density
on each patch denoted by mi = Vi/N̄i. Clearly the vectorial densities on the last
n − p patches are 0. Accordingly the vectors x, y and m are in Rn. With these
notations the system (5.11) can be rewritten as follows

ẋ = β1 diag(m) diag(1− x) y − γ x+Dx

π ẏ = β2 diag(1− π y)π x− µπ y.
(5.12)

The matrix D is defined by D(i, j) =
1

N i

M(i, j)N j . In other words

D = diag(N̄)−1M diag(N̄).

Since Mw = M N̄ = 0, it follows that

D.1 = diag(N̄)−1M diag(N̄).1 = 0.

In other words, if we denote by dij ≥ 0 the (i, j) entry of D for i ̸= j and −dii ≤ 0
the (i, i) entry of D, then

−dii +
n∑

j ̸=i

dij = 0.

In this form system (5.12) is clearly a generalization on n patches of the classical
Ross-Macdonald model, with Dx as the migration term.
We have the straightforward property

Proposition 5.14.2 :
The unit cube [0, 1]n+p is positively invariant for system ( 5.12).

We will simplify this system one step further. Hereafter X = (x, π y) ∈ Rn+p ,
where In is the n× n identity matrix and we set the block matrices

B =

 0 0 Ip
0 In−p 0
Ip 0 0

 ,
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∆ =

[
D − γ In 0

0 −µ Ip

]
,

Λ =

[
β1 diag(m) 0

0 β2 Ip

]
.

B is nonnegative, Λ is a nonnegative diagonal matrix and ∆ is a stable Metzler
matrix.

Remark 5.14.3 These properties are unchanged if we consider different parameters
β1, β2, γ and µ in each patch.

We now have

Ẋ = Λdiag(1−X)BX +∆X = [Λdiag(1−X)B +∆]X. (5.13)

We consider the evolution of this system on the unit cube of Rn+p.

Proposition 5.14.3 : The system (5.13) is cooperative and strongly monotone on
the unit cube [0, 1]n+p

Proof
The Jacobian J of the system (5.13) in Rn+p is

J(X) = Λdiag(1−X)B +∆− Λdiag(BX).

Clearly J is a Metzler matrix, for 0 ≤ X ≤ 1, and the system is cooperative on
the unit cube.
We will first prove that the Jacobian is an irreducible matrix on (0, 1)n+p. This
will induce the strong monotonicity on the interior of the unit cube. We need to
examine more closely the Jacobian. Using the notation diag(X, p, q), introduced
in section 5.14.2, we can decompose J(X) into n×n, n× p, p×n and p× p blocks
as follows :

J(x, π y) =

D − γ In − β1 diag(m) diag(y) β1diag(πm, n, p) diag(1− π x)

β2 diag(1− π y, p, n) −µ Ip − β2 diag(π x)

 .

To prove the irreducibility, it is sufficient to check that the directed graph associ-
ated with J is strongly connected. For the sake of intelligibility we also name xi,
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i = 1, · · · , n and yj , j = 1, · · · , p the vertices of the associated graph. The irre-
ducibility of D and the structure of J imply that the subgraph generated by the
vertices xi is strongly connected. Now, if y ≪ 1, the p×n block β2 diag(1−π y, p, n)
shows that there is a path which, from any vertex yj where j ≤ p, leads to vertex
xi. In the same manner if x ≪ 1 there is a path from any vertex xi to the vertex
yj (necessarily j ≤ p). It is now clear that between any couple of vertices there
exists a path. This proves the strong monotonicity on the unit cube except on the
faces, i.e., for x ̸≪ 1 and y ̸≪ 1. Now if an initial point is on one of these faces,
the trajectory of the system leaves immediately the face. This implies the strong
monotonicity of the flow of the system.

■

5.14.5 Main theorem

In this section we will give an analytic expression for R0 and completely answer
to the stability question.

As usual ρ(M) is the spectral radius of a matrix M. To express the basic reproduc-
tion ratio, we need a notation to extract blocks from matrices. If M is a matrix,
we denote by M(1 : p, 1 : q) the submatrix consisting of p first rows and the q first
columns of M . With this notation

Proposition 5.14.4 :

The origin is the DFE of (5.12) and

R2
0 =

β1 β2
µ

ρ (− diag(πm)Z) ,

where Z = (D − γ I)−1 (1 : p, 1 : p), i.e., the submatrix of the p first rows and p
first columns of (D − γ I)−1.

Proof

The Jacobian, computed at the DFE, is J(0) = ΛB +∆. The part coming from
infection is ΛB and the part coming from other transfers is ∆. Hence R0 =
ρ(−ΛB∆−1). If Ip,n is the p× n identity matrix, we set

F =

[
0 β1 diag(πm, n, p)

β2 Ip,n 0

]
.

V =

[
D − γ In 0

0 −µ Ip

]
.
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We have R0 = ρ(−F V −1) = ρ(−V −1 F ). We can compute F V −1. We remark
that the product Ip,n . (D − γ In)

−1 is the block (p, n) extracted from the matrix
(D − γ In)

−1.

−F V 1 =

 0
β1
µ

diag(πm, n, p)

−β2 (D − γ n)−1(1 : p, 1 : n) 0

 .

If A and B are two n× p and p× n matrices, we have the relation

det

[
λ In −A
−B λ Ip

]
= λn−p det(λ2 Ip −BA) = λp−n det(λ2 Ip −AB)

The last relation implying simply that, in the characteristic polynomial of AB,
there are (n−p) roots equal to zero. Then, using again the structure of diag(m, n, p)
and Cayley reduction, we have

R2
0 = ρ

(
−β1 β2

µ
diag(πm)

[
(D − γ In)

−1(1 : p, 1 : p)
])

,

where (D − γ I)−1(1 : p, 1 : p) is the block of the p first rows and p first columns
of (D − γ I)−1.

For the classical Ross-Macdonald model, this formula gives the intended result

R2
0 =

ma2 b1 b2
γ µ

. We have now reduced the study of the stability of the complete

system (5.9) to the study the stability of (5.13).

Remark 5.14.4 The expression of R0 can be rendered more geometrical if we use
the projection π.This is useful if the reordering of coordinates is not done.

R2
0 = ρ

(
−β1 β2

µ
diag(πm)π (D − γ I)−1 πT

)
.

Finally, using the definition of D and the fact that diagonal matrices commute, we
have the following expression of R0 for the original system (5.9)

R2
0 =

β1 β2
µ

ρ
(
− diag(π V ) diag(π N̄)−2 π (M − γ I)−1 πT diag(π N̄)

)
. (5.14)

We know from [26, 94] that ifR0 < 1 then the DFE is locally asymptotically stable,
and if R0 > 1 then the DFE is unstable. Our main result is a global stability result
of the DFE , which holds for R0 ≤ 1 and a global stability result for R0 > 1.
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Theorem 5.14.1 :
If R0 ≤ 1, then all the trajectories of (5.13) tend to the disease free equilibrium,
which is globally asymptotically stable on the unit cube. If R0 > 1, then there exists
a unique endemic equilibrium (x̄, ȳ) ≫ 0, and all the trajectories of the unit cube,
minus the origin, tend to this equilibrium which is GAS on the unit cube minus
the origin.

Proof
We recall the system (5.13)

Ẋ = Λdiag(1−X)BX +∆X = [Λdiag(1−X)B +∆]X.

To prove the first assertion we assume R0 = ρ(−ΛB∆−1) ≤ 1.
The Jacobian at the origin is J = ΛB + ∆. Since ∆ is a nonsingular Metzler
matrix and Λ ≥ 0, this expression is a regular splitting of J . Then we have seen
that we have the equivalence between s(J) ≤ 0 and ρ(−ΛB∆−1) ≤ 1.
We have seen that the Jacobian at the origin is an irreducible Metzler matrix and
that there exists a positive vector c ≫ 0 such that

cT (ΛB +∆) = s(J) cT ≤ 0.

We use on the unit cube the Liapunov proper function

V (X) = ⟨c |X⟩,

where ⟨ | ⟩ denotes the usual inner product. Since c ≫ 0 this function is positive
definite in the nonnegative orthant. We compute the derivative V̇ of V along the
trajectories of (5.13)

V̇ = ⟨c |(Λ diag(1−X)B +∆)X⟩ ≤ ⟨c |(ΛB +∆)X⟩ = ⟨(ΛB +∆)T c |X⟩

= ⟨s(J) c|X⟩ = s(J) ⟨c|X⟩ ≤ 0

This proves the stability of the DFE. We now consider the asymptotic stability.

V̇ (X) = ⟨c |(Λ diag(1−X)B +∆)X⟩ = ⟨c |(ΛB +∆)X⟩ − ⟨c |Λdiag(X)BX⟩.

If R0 < 1, then s(ΛB +∆) < 0 whence

V̇ (X) ≤ ⟨c |(ΛB +∆)X⟩ = s(ΛB +∆) ⟨c |X⟩ < ⟨c|X⟩ < 0.

When R0 = 1, we have α(ΛB +∆) = 0, and V̇ reduces to
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V̇ (X) = −⟨c |Λdiag(X)BX⟩ ≤ 0.

We consider the set E = {X ∈ [0, 1]n+p| V̇ (X) = 0}. Since c ≫ 0 and Λdiag(X)BX ≥
0, this set is composed of points for which xi yi = 0, for all the indexes i ≤ p. We
show that the largest invariant set L, contained in E is reduced to {0}. The proof
hinges on the irreducibility of the system. There exists at least a point in L such
that xi = 0 or yi = 0 with i ≤ p.

If xi = 0 considering

ẋi = β1mi (1− xi) yi − γ xi + (M x)i

= β1mi yi +
∑
j ̸=i

mij xj = 0.

This shows that yi = 0, and all the xj for which mij ̸= 0 i.e., all the xj “con-
nected” to xi are equal to zero. A finite recursion argument, with the irreducibility
hypothesis, concludes that all the xi and the yi are equal to zero. The set L is
reduced to the origin.

If yi = 0 considering

ẏi = β2 (1− yi)xi − µ yi = β2 xi = 0.

the invariance of L shows that xi = 0, and we are back to the preceding situation.
In any case L is reduced to the origin. By LaSalle’s invariance principle [61] we
deduce the global asymptotic stability of the DFE.

which proves the asymptotic stability of the DFE.

For the second assertion of the Theorem, when R0 > 1 then the DFE is unstable.
It is straightforward to check that the system is strongly sublinear. Let 0 < λ < 1
and

T (X) = Λdiag(1−X)BX +∆X

Then if X ≫ 0, BX ≫ 0

T (λX) = Λdiag(1−λX)B λX+∆λX ≫ Λdiag(1−X)B λX+∆λX = λT (X).

This proves the strong sublinearity, hence all the hypothesis of Hirsch’s Theorem
(5.10.1) are satisfied, therefore there exists an unique positive equilibrium which
is GAS on [0, 1]n+p \ {0}.

■
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5.15 Wolbachia

Wolbachia is a bacteria which infects arthropod species, including a high propor-
tion of insects ( 60% of species).

The unique biology of Wolbachia has attracted a growing number of researchers.

While Wolbachia is commonly found in many mosquitoes it is absent from the
species that are considered to be of major importance for the transmission of
human pathogens.

The successful introduction of a life-shortening strain of Wolbachia into the dengue
vector Aedes aegypti that decreases adult mean life has recently been reported.

Moreover it is estimated that the population of mosquitoes harboring Wolbachia
is less efficient to transmit dengue, as some results has been obtained.

Then it is considered that using Wolbachia can be a viable option for controlling
the incidence of the dengue.

The bacteria is transmitted only by the eggs laid by female mosquitoes.

Our model take into account cytoplasmic incompatibility, which is outlined in the
following table :

Table 5.1: Cytoplasmic incompatibility

Reproduction

♂
Infected Uninfected

♀
Infected Infected Infected
Uninfected Sterile Uninfected

This phenomenon causes embryos from Wolbachia-uninfected females to die when
they are mated with infected males whereas infected females are not affected in
this manner.

We will give a simple model introduced by Moacyr : Lu is the aquatic stage (eggs,
Larvae, puppae) uninfected by Wolbachia, Lw infected, Au and Aw the respectively
adult stages uninfected and infected.

There are a intra-specific competition in the aquatic stages and cytoplasmic in-
compatibility is modeled in equation 2 and 4.
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Ȧu = λLu − µuAu

L̇u = r Au
Au

Au +Aw
− [λ+ ν + d (Lu + Lw)]Lu

Ȧw = λLw − µiAw

L̇w = r Aw − [λ+ ν + d (Lu + Lw)]Lw

(5.15)

This system is defined on the nonnegative orthant, by Lipschitz prolongation. The
nonnegative orthant is clearly positively invariant.

5.15.1 Monotonicity

We consider the Jacobian of this system

Jac =



−µu λ 0 0

r − r A2
w

(Aw+Au)2
−λ− ν − dLw − 2 dLu − r A2

u

(Aw+Au)2
−dLu

0 0 −µw λ

0 −dLw r −λ− ν − 2dLw − dLu


If we consider the permutation matrix

P =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1


The matrix P JacP is aMetzler matrix. This means that the system is monotone
for the cone K = −R+ ×−R+ × R+ × R+.

5.15.2 Strong monotonicity

The system is irreducible. If we draw the graph of the Jacobian we obtain
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Au ≠0

Au ≠0

Lw ≠0

Lu ≠0

Figure 5.1: Graph of Jacobian

The system will be strongly monotone if Lw ̸= 0 and Au ̸= 0.

5.15.3 Equilibria

We have three equilibria.

A DFE

L∗
u =

(rλ− µu(λ+ ν))

dµu
A∗

u =
λ (rλ− µu(λ+ ν))

dµ2
u

This equilibrium exists if the basic offspring number, for uninfected, satisfies

Roffsp,u =
r λ

µu (λ+ ν)
> 1

A Wolbachia completely infected equilibrium (WCIE)

L∗
w =

(rλ− µw(λ+ ν))

dµw
A∗

w =
λ (rλ− µw(λ+ ν))

dµ2
w

This equilibrium exists if the basic offspring number, for infected, satisfies

Roffsp,w =
r λ

µi (λ+ ν)
> 1
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A coexistence equilibrium

L̄u =
µ2
u [r λ− µw (λ+ ν)]

dµw (µ2
u − µw µu + µ2

w)
Āu =

λ [r λ− µu (λ+ ν))

dµ2
u

L̄w =
(µw − µu) [r λ− µw (λ+ ν)]

d (µ2
u − µw µu + µ2

w)
Āw =

λ [rλ− µw(λ+ ν)]

dµ2
w

This equilibrium exists if Roffsp,w > 1

Since Wolbachia is life shortening we assume that µw > µu. Hence if Roffsp,w >
1 we have three equilibria.

5.15.4 Basic reproduction ratio

We will now consider the basic reproduction ratio for the infection R0.

The Jacobian at the DFE is

J(A∗
u, L

∗
u, 0, 0) =



−µu λ 0 0

r −2rλ
µu

+ λ+ ν −r − rλ
µu

+ λ+ ν

0 0 −µi λ

0 0 r − rλ
µu


This is a block upper triangular matrix. The upper block diagonal is

J1 =

−µu λ

r −2rλ
µu

+ λ+ ν


The trace of this matrix is − rλ

µu
+ λ + ν − µu − rλ

µu
< 0, if Roffsp,u > 1. The

determinant of J1 is rλ − µu(λ + ν) > 0. This block is Hurwitz. Therefore
hypothesis H5 is satisfied.

We can now look at the Jacobian of the transmission in the infected compartment

F =

[
0 0
r 0

]
The Jacobian of the other terms is

V =

[
−µi λ

0 − rλ
µu

]
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Hence the next generation matrix is

K =

[
0 0
r
µw

µu

µw

]
and

R0 =
µu

µw
< 1

Which proves the asymptotic stability of the DFE.

5.15.5 Stability of the CWIE

Consider the Jacobian at the CWIE

J(0, 0, A∗
w, L

∗
w) =



−µu λ 0 0

0 − rλ
µw

0 0

0 0 −µw λ

0 − rλ
µw

+ λ+ ν r −2rλ
µw

+ λ+ ν


This a lower block triangular matrix. The lower diagonal block is

J4 =

−µw λ

r −2rλ
µw

+ λ+ ν


which is clearly Hurwitz if Roffsp,w > 1.

The upper diagonal block is

J1 =

[
−µu λ

0 − rλ
µw

]
which is Hurwitz without any condition.

The Jacobian J(CWIE) is then Hurwitz, which proves the asymptotic stability of
the CWIE.

5.15.6 Global analysis

We have 3 equilbria, we will use Hirsch’s Theorem (5.11.1). We must prove that
the trajectories are forward bounded
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Solutions are forward bounded

we denote Xu = (Au, Lu) and Xw = (Aw, Lw). The vector field on R4
+ defined by

(5.15) will be denoted by f(Au, Lu, Aw, Lw) = (fu(Au, Lu, Aw, Lw), fw(Au, Lu, Aw, Lw))
on R2+ × R2

+.

The equilibria will be denoted by

XDFE = (A∗
u, L

∗
u, 0, 0) XWCIE = (0, 0, A∗

w, L
∗
w) Xcoex = (Āu, L̄u, Āw, L̄w, )

and

X∗
u = (A∗

u, L
∗
u) X∗

w = (A∗
w, L

∗
w)

Recall that the order is given by the cone K = −R+×−R+×R+×R+. We denote
by ≤ the classical order given by the nonnegative orthant and by ≤K the order
associated to K.

We have

XDFE ≪K Xcoex ≪K XWCIE

Since f(XDFE) = 0 and f(XWCIE) = 0, by proposition (5.8.2) the order interval
(for K-order) [XDFE, XWCIE]K is positively invariant.

We can obtain more : if ξ > 1 we have fu(ξ A
∗
u, ξ L

∗
u, 0, 0) < ξ fu(A

∗
u, L

∗
u, 0, 0) = 0

and fw(0, 0, ξ A
∗
w, ξ L

∗
w) < ξ fu(0, 0, A

∗
w, L

∗
w) = 0. For the K-order

ξ XDFE = (ξ A∗
u, ξ L

∗
u, 0, 0) ≪K ξ XWCIE = (0, 0, ξ A∗

w, ξ L
∗
w) with

f(ξ XDFE) >K 0 and f(ξ XWCIE) <K 0

This proves by proposition (5.8.2) that [ξ XDFE, ξ XWCIE]K is positively invariant.
For ξ large enough any element of the nonnegative orthant can be included in this
order interval. Therefore any trajectory is bounded.

Stability analysis

We consider the order interval [XDFE, Xcoex]K and the 2-face defined by Aw =
Lw = 0. The 2-face is positively invariant and we claim that XDFE is GAS on this
face. It is sufficient to note that this system on the 2-face is strongly monotone,
strictly sublinear and that X∗

u is asymptotically stable. By Hirsch theorem (5.10.1)
X∗

u is GAS. We know thatXDFE is asymptotically stable becauseR0 > 1. Hence all
the hypothesis of Theorem (5.11.1) are satisfied. All trajectories in [XDFE, Xcoex]K
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converge to XDFE and Xcoex is unstable. This result is obtained without any
computation.
Actually [ξ XDFE, Xcoex]K is in the basin of attraction of Xcoex. Left as an exercise.

u

Increasing order for u

Increasing order for w

X*u

Xu,coex

ξ X*u

ξ X*wX*wXw,coex

Xcoex

R2

R2

Figure 5.2: Order interval and equilibria

5.16 Brucellosis

We consider the following model for ovine brucellosis incorporating direct and
indirect transmission from

B. Ainseba, C. Benosman and P. Magal
Journal of Biological Dynamics, vol 4, n¡ 1, 2010 pp 2-11

This section left as an exercise has for objective to give easily the stability analysis
of the model. Compare with the original paper !
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Ṡ = b S −
(
m+

(b−m)

K
N

)
S + (1− p) b I − a1 S I − a2 S C

İ = p b I −
(
m+

(b−m)

K
N

)
I + a1 S I + a2 S C

Ċ = k1 I (1− C) − k2, C

Brucellosis is due to a virus Brucella. It is transmitted from animals to humans
either by ingestion of contaminated products, such as milk or vegetables cultivated
on soil containing contaminated manure, or directly via the mucosa upon contact
with the infected organisms. This model incorporate vertical transmission and the
contamination of the environment.
AS usual S(t) and I(t) are the susceptible and infected at time t and C(t) is the
fraction of contaminated environment. p is the proportion of newborns that are
infected. The population dynamic is described by a logistic equation with b the
birth rate and m the death rate. It assumed that b ≥ m.
Show that the compact

K = {(S, I, C) ∈ R3
+ | 0 ≤ S + I ≤ N 0 ≤ C ≤ 1

is positively invariant.
Hence use Vidyasagar’s Theorem (3.6.1 ) to show that the stability of the fol-
lowing system, on the domain [0,K] × [0, 1], is equivalent to the stability of the
3-dimensional system

İ = −b (1− p) I + a1 (K − I) I + a2 (K − I)C

Ċ = k1 I (1− C) − k2C

Show that the system is strongly monotone on K
Show that the right side of the ODE is strongly sublinear on K.
Show that

R0 =
a1K

b (1− p)
+

a2 k1K

k2 b (1− p)

Use Hirsch’s theorem (5.10.1 to show that
if R0 < 1 the DFE is GAS on K
If R0 > 1 there exists an unique EE in K which is GAS.

If R0 = 1 , consider the candidate Lyapunov function V (I, C) = k2 I + a2K C.
Show that the origin is stable.
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Use again Hirsch’s Theorem Hirsch’s theorem (5.10.1 to exclude an endemic EE
and to the stability of the DFE. You can also use LaSalle’s principle.

5.17 Population dynamics of mosquito

The life cycle of a mosquito consists of two main stages: aquatic (egg, larva, pupa)
and adult (with males and females). After emergence from pupa, a female mosquito
needs to mate and get a blood meal before it starts laying eggs. Then every 4−−5
days it will take a blood meal and lay 100−−150 eggs at different places (10−−15
per place). For the mathematical description, our model is inspired by the model
considered in [29, 5].
However we will consider three aquatic stages, where the authors [29, 5] lump
the three stages into a single aquatic stage. The rationale is to prepare for a
subsequent model with infection by Wolbachia. Furthermore, we split the adult
stage into three sub-compartments, males, immature female and mature female
which leads to the following compartments:

• Eggs E;

• Larvae L;

• Pupae P ;

• Males M ;

• Young immature females Y ; We consider a female to be in the Y compart-
ment from its emergence from pupa until her gonotrophic cycle has began,
that is the time of mating and taking the first blood meal, which takes
typically 3−−4 days.

• Mature females F , i.e., fertilized female. A female needs to mate successfully
only once and rarely remate.

The parameters µE , µP , µY , µF and µM are respectively the death rate of eggs,
larvae, pupae, immature female, mature females and males. The parameters ηE ,ηL,
ηP , β are the respective rate of transfer to the next compartment. The param-
eter ν is the sex ratio. In this model, we use a density dependent death rate for
the larvae stage since mosquitoes larvae (anopheles and aedes) are density sen-
sitive, which imply an additional density mortality rate µ2 L . The equation for
L can be considered as a logistic equation. Such an hypothesis is appropriate
since mosquitoes only have access to a finite number of potential breeding sites,
and density-dependent larval survival has been demonstrated at such sites. The
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parameter ϕ is the average amount of eggs laid per fertilized female per unit of
time.

Mating is a complex process that is not fully understood. However, as discussed
in [5] and references therein, the male mosquito can mate practically through all
its life. A female mosquito needs one successful mating to breed lifelong. It is
admitted that mosquitoes locate themselves in space and time to ensure they are
available to mate. Therefore, it is reasonable to assume that in any case the
immature female will mate and afterwards move to compartment F , or die. Thus
a parameter like 1

β+µY
can represents the mean time given by length of the first

gonotrophic cycle of a female, i.e., the interval from immediately after the mating
to the first blood meal.

We assume that all the parameters are constant. In reality, the mosquito popula-
tion varies seasonally. Nevertheless, such a model should be a good approximation
for a definite season.

5.17.1 The model

E

L

P

YM

F

Eggs

Larvae

Pupae

Immature FemalesMales

Mature Females

μEηE

ηL

νηP

(1−ν)ηP

β

μL

μP

μYμM
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Ė = ϕF − (µE + ηE)E

L̇ = ηE E − (µL + ηL + µ2 L)L

Ṗ = ηL L− (µP + ηP )P

Ẏ = ν ηP P − (β + µY )Y

Ḟ = β Y − µF F

Ṁ = (1− ν) ηP P − µM M.

(5.16)

If we denote by X a vector of the state space of this systems.

XT = (E,L, P, Y, F,M),

then the systems can be written

Ẋ = A(X)X,

For (5.16) the matrix is given by

A(X) =



−(µE + ηE) 0 0 0 ϕ 0

ηE −(µL + ηL + µ2 L) 0 0 0 0

0 ηL −(µP + ηP ) 0 0 0

0 0 ν ηP −(β + µY ) 0 0

0 0 0 β −µF 0

0 0 (1− ν) ηP 0 0 −µM



.

The matrix A(X) is a Metzler matrix, this implies that the nonnegative orthant
is positively invariant for (5.16).

Actually A(X) depends only of L, so we will denote the matrix A(X) simply by
A(L).
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5.17.2 Analysis of the model

We can define a basic offspring number, using the techniques of R0, where the
transmission term is given by ϕF ) :
Using (5.16) shows that

R0,offsp =
ϕ

µF

ηE
µE + ηE

ηL
µL + ηL

ν ηP
µP + ηP

β

β + µY
.

When R0,offsp ≤ 1 the only equilibrium is the origin. When R0,offsp > 1 a second
positive equilibrium exists X∗ = (E∗, L∗, P ∗, Y ∗, F ∗,M∗)T .
We can express all the components as positive linear expressions of P ∗

L∗ =
µp + ηp

ηL
P ∗, Y ∗ =

ν ηP
β + µY

P ∗, (5.17)

F ∗ =
β

β + µY

ν ηP
µF

P ∗, M∗ =
(1− ν) ηP

µM
P ∗ (5.18)

E∗ =
ϕ

µE + ηE

β

β + µY

ν ηP
µF

P ∗. (5.19)

Finally, replacing in the equation L̇ = 0, we get

P ∗ =
ηL (µL + ηL)

µ2 (µP + ηP )

(
ηE ν ϕ ηL ηP

µF (µE + ηE) (µL + ηL) (µP + ηP )
− 1

)
=

ηL (µL + ηL)

µ2 (µP + ηP )
(R0,offsp − 1) > 0. (5.20)

The system is monotone

Jac =



−ηE − µE 0 0 0 ϕ 0
ηE −ηL − µ2 − µL 0 0 0 0
0 ηL −ηP − µP 0 0 0
0 0 ν ηP −β − µY 0 0
0 0 0 β −µF 0
0 0 (1− ν) ηP 0 0 −µM


Then by proposition (5.8.2) the order interval [0, x∗] is positively invariant.
The system is strictly sublinear. Denote by T (X) = A(X)X, then for 0 < λ < 1
and X ≫ 0

λT (X) = λA(L)L < λA(λL)L = T (λX)
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Let now λ > 1, then by sublinearity
1

λ
T (λX∗) < T (X∗) = 0. Therefore the order

interval [0, λX∗] is positively invariant by proposition (5.8.2). We conclude that
all the trajectories are forward bounded. Then we can us Vidyasagar’s Theorem
to reduce the system, suppressing the equation for the males.

The Jacobian for the reduced system is now
−ηE − µE 0 0 0 ϕ

ηE −ηL − µ2 − µL 0 0 0
0 ηL −ηP − µP 0 0
0 0 ν ηP −β − µY 0
0 0 0 β −µF


This matrix is clearly irreducible and the system is strongly monotone and strictly
sublinear. We conclude with Hirsch’s Theorem

Theorem 5.17.1

If the basic reproduction ratio R0,offsp > 1 then there is an unique positive equilib-
rium X∗ which is GAS on R6

+ \ {0}.

5.18 A schistosomiasis model

We consider the following model from

Allen, E J and Victory, H D Jr, Modelling and simulation of a schistosomiasis
infection with biological control. Acta Tropica, 2 vol 87, pp 251–267 (2003).

We consider the following system with variables :

• Ih infected human by schistosomes

• Es the latent snails

• Is infectious snails releasing cercariae

• Im infected mammals

• Nh the human population

• Ns the snail population for transmission for schistosomiasis

• Nrs a resistant snail population, competitor for the first population

• Nm a mammals population.
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Two subsystem. A demographic model



Ṅh = Λ− µhNn

Ṅs = rsNs

(
1− Ns

Ks
− λrsNrs

)

Ṅrs = rrsNrs

(
1− Nrs

Krs
− λsNs

)

Ṅm = rmNm

(
1− Nm

Km

)
and a transmission model

İh = βhs (Nh − Ih) Is − γh Ih

Ės = (βsh Ih + βsm Im) (Ns − Es − Is)− (µs + αs +
Ns

Ks
+ λrsNrs)Es

İs = αsEs − (µs +
Ns

Ks
+ λrsNrs) Is

İm = βms (Nm − Im) Is − (µm +
rm
Km

Nm) Im

It is immediate that the nonnegative orthant is positively invariant. By considering
the population dynamics equations, the compact

K = {X ∈ R8
+|Nh ≤ Λ

µh
, Ns ≤ Ks, Nrs ≤ Krs, Nm ≤ Km},

is positively invariant and absorbing. Absorbing means that any trajectory
tends to K when t → +∞. Therefore any trajectory is forward bounded.

Considering the population dynamics it is clear that N∗
h =

Λ

µh
and N∗

m = Km

are GAS equilibria. For the equations giving (Ns, Nm) we have a classical Lotka-
Volterra competition model. This is analyzed for example in [48, 98].

We assume that λsKs > 1 and λrsKrs < 1. In this case the positive coexistence
equilibrium exists (N∗

s , N
∗
rs) and is GAS on the interior of the nonnegative orthant.

We can apply Vidyasagar’s Theorem to obtain a reduced system.
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İh = βhs (N
∗
h − Ih) Is − γh Ih

Ės = (βsh Ih + βsm Im) (N∗
s − Es − Is)− (γs + αs)Es

İs = αsEs − γs Is

İm = βms (N
∗
m − Im) Is − γm Im

With a variable change, with new variables (Ih,Σs = N∗
s − Ss, Is, Im), the system

is equivalent to

İh = βhs (N
∗
h − Ih) Is − γh Ih

Σ̇s = −γsN
∗
s + (βsh Ih + βsm Im + γs) (N

∗
s − Σs)

İs = αs (Σs − Is)− γs Is

İm = βms (N
∗
m − Im) Is − γm Im

(5.21)

The jacobian is



−βsh Is − γh 0 βhs (N
∗
h − Ih) 0

βsh (N
∗
S − Σs) −(βsh Ih + βsm Im + γs) 0 βsm (N∗

S − Σs)

0 −αs −(αs + γs) 0

0 0 βms (N
∗
m − Im) −βms Is − γm


The Jacobian is a Metzler matrix. If we look for the graph of this matrix
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The system is strongly monotone excepted in some hyperplane defined by Σs =
N∗

s ,i.e., all the snail are infected and/or infectious and by Im = N∗
m, i.e., all the

mammal are infected. These hyperplanes are not positively invariant and any
trajectory, starting in one of these surfaces, leaves these hyperplanes.

Left as an exercise, we compute R0 for the DFE (0, 0, 0, 0)

R2
0 =

αs γm βhs βshN
∗
h N

∗
s + αs γh βsm βmsN

∗
mN∗

s

γhγmαsγs + γhγmγ2s
.

It is not difficult to check that the system is strictly sublinear.
We have, denoting by F the vector field defined by the system (5.21)

F (N∗
h , N

∗
s , N

∗
s , N

∗
m) = (−γnN

∗
h ,−γsN

∗
s ,−γsN

∗
s ,−γmN∗

m)T ≪ 0

Hence by Hirsch’s Theorem if R0 > 1 there exists a unique positive equilibrium
which is GAS on the nonnegative orthant minus the origin. We can also use the
proposition using sublinearity.

5.19 A metapopulation model with a disease

We begin to study the demographic model.
The demographic model is the combination of a demographic process on each
patch with a migration process. We use, for the migration process, the frame-
work developed by Arino and van den Driessche[6, 7]. We consider population
dynamics (deaths or births) within the patches. The population birth rate is anal-
ogous to the function used in [8, 99]. These birth rate encompasses such laws as
Ricker, Beverton-Holt and constant recruitment. Our model can also represent
single-species dynamical system which is composed of several patches connected
by discrete diffusion like in [70, 89].

5.19.1 The demographic model

Recruitment

Following [20], we consider a family of functions B(x). These functions represent
the per capita birth rate.
The dynamics of demography are governed by ẋ = B(x)−µx, where µx is the per
capita death rate. We assume that this family satisfies the following hypotheses.
Each function B is differentiable on R and there exists a continuously differentiable
function B(x) on (0,+∞) such that for any x > 0:

• [H1] B(x) = B(x)x
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• [H2] B(x) > 0

• [H3] B′(x) < 0

• [H4] µ > B(+∞)

In [20] a supplementary hypothesis is assumed : [H5] B(0+) > µ. This hypothesis
ensures that there is no natural extinction of the population. We will relax this
hypothesis: we will consider the family of functions composed of functions of type
B satisfying the hypothesis [H1] to [H4], to which we also add the zero function.
These assumptions are used to take into account the possibility of the absence
of reproduction in some places and eventually extinction when there is no mobil-
ity. Then the family of functions B is composed of functions such that B(0) = 0,
satisfying hypotheses [H1] to [H4], together with the constant nonnegative func-
tions. When B(0) = 0, since B is C1, the function B satisfying hypothesis [H1] is
continuous on R+, thus B(0) makes sense.

The dynamics, given by ẋ = B(x)− µx, satisfy:

• the half-line R+ is positively invariant,

• if B is not the zero function and [H5] is satisfied, then there exists a unique
positive demographic equilibrium x̄, which is globally asymptotically stable
on R+ \ {0},

• if [H5] is not satisfied, the origin is globally asymptotically stable.

The considered family includes for instance:

• the constant recruitment functions: B(x) = Λ;

• the Ricker type functions [92, 20] B(x) = α e−β x, with α > µ > 0, β > 0;

• the Beverton-Holt functions : [92, 20] B(x) = α
1+β xm , with α > µ > 0, β >

0, m > 0;

• Deriso-Schnute functions: B(x) = α (1 − γβx)1/γ , with α > µ > 0, β >
0, γ > 0.
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The migration process

Arino-van den Driessche migration model
We consider n patches. This model does not keep track of where an individual
usually resides, but just considers where he is at time t. The transfer rate from
patch i to patch j, for i ̸= j, is denoted by mji ≥ 0. The total host population in
patch i is denoted by Ni. The per capita birth rate is given by Bi(Ni)Ni, the per
capita death rate by µiNi. Hence, for i = 1, · · · , n, the dynamics is given by

Ṅi = Bi(Ni)Ni − µiNi +

n∑
j=1 j ̸=i

mij Nj −Ni

n∑
j=1 j ̸=i

mji.

This system can be written in a condensed form

Ṅ = diag(B(N))−diag(µ)N +M N = diag(B(N)) N −diag(µ)N +M N. (5.22)

Where N is the column vector (N1, · · · , Nn)
T , the superscript T denoting trans-

pose, the matrix diag(B(N) denotes the diagonal matrix whose diagonal elements
are given by the vector

B(N) = (B1(N1), · · · ,Bn(Nn))
T ,

and diag(µ) denotes the diagonal matrix whose diagonal elements are given by the

µ = (µ1, · · · , µn)
T .

the matrix M is defined by M(i, j) = mi,j for i ̸= j and

M(i, i) = −
n∑

j=1 j ̸=i

mji ,

We also define, for further reference the matrix diag(B(N)).
As we have already seen the matrix M is a Metzler matrix.
Let 1 be the vector of Rn : 1 = (1, · · · , 1)T . Each column sum of the matrix M is
zero. This can be written

1T M = 0.

Takeuchi diffusion model
According to [70] we have the model

Ṅi = Bi(Ni)Ni − µiNi +

n∑
j=1 j ̸=i

mij (Nj −Ni).
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mij here is a nonnegative diffusion coefficient for the species from j-th patch to
i-th patch. It is supposed in this model that the net exchange from the j-th patch
to the i-th patch is proportional to the difference (Nj− Ni) of population densities
in each patch.
In the same vein we define by M(i, j) = mi,j for i ̸= j and

M(i, i) = −
n∑

j=1 j ̸=i

mij ,

again M is Mezler matrix, but with the difference M .1 = 0.
The model is also represented by system (5.22).

Stability Analysis

Theorem 5.19.1
On the nonnegative orthant, we consider the system (5.22). We further assume
that the matrix M is irreducible.
If either

• B(0) = 0 and there is at least one function Bi(x)x which is not zero and

moreover if the stability modulus satisfies s
(
diag(B(0))− diag(µ)+M

)
> 0;

• or B(0) > 0.

Then there exists an equilibrium N̄ ≫ 0 which is globally asymptotically stable on
the nonnegative orthant, except the origin.
Else B(0) = 0 and s (diag(B(0))− diag(µ) +M) ≤ 0. Then the origin is globally
asymptotically stable, i.e., the population goes to extinction in all patches.

Proof
We use Hirsch’s Theorem (5.10.1).
First of all, the nonnegative orthant is positively invariant thanks to the assump-
tions on the matrix M and the functions Bi.

We will show that there exists a positively invariant absorbing compact set for
system (5.22):
Let I be the set of index i for which the function Bi(x)x is different from the null
function, and let J be the set of the other indexes. One of these set can be empty.

Let H be the map defined by H =
n∑

i=1

Ni. We have

Ḣ =
∑
i∈I

(Bi(Ni)Ni − µiNi) +
∑
j∈J

(−µj Nj) .



168 5. MONOTONE SYSTEMS IN EPIDEMIOLOGY

For each index i ∈ I, there exists Ñi > 0 such that Bi(Ñi) ≤ µi. Let us define
N∗ = max

i
(Ñi). Since Bi is decreasing, we have Bi(N

∗) ≤ µi. Thus, Ḣ ≤ 0

for N ≥ N∗ 1 and Ḣ < 0 for N > N∗ 1. This shows that the set [0, N∗ 1] is a
positively invariant absorbing compact set. As a consequence all the trajectories
of system (5.22) are forward bounded.

We claim that system (5.22) is cooperative and strongly monotone.
We set F (N) = diag(B(N)) N − diag(µ)N +M N , i.e., the vector field associated
to system (5.22). The derivative is given by

DF (N) = diag(B(N)) + diag(B′(N)) diag(N)− diag(µ) +M

The matrix M being Metzler it follows immediately that DF (N) is Metzler, which
proves that system (5.6) is monotone. Moreover sinceM is irreducible, system (5.6)
is strongly monotone.

Using hypothesis [H3] and the fact that there is at least one index i such that
Bi(N) > 0, we have for N ≫ 0,

F (N)−DF (N)N = −diag(B′(N)) diag(N)N > 0.

This proves the strict sublinearity of F by proposition (5.9.2).

If B(0) = 0, then the origin is unstable since we have assumed in this case that
s (diag(B(0))− diag(µ) +M) > 0. Otherwise B(0) > 0 and in this case the origin
is not an equilibrium. Therefore, when the hypothesis (i) (respectively (ii)) of
Theorem 5.19.1 is satisfied we have checked that system (5.6) satisfies all the
conditions of Theorem (5.10.1), and hence, there exists an equilibrium N̄ ≫ 0,
which is globally asymptotically stable on Rn

+ \ {0}.

To ends the proof of Theorem 5.19.1 it remains to consider the last case:

B(0) = 0 and s
(
diag(B(0))− diag(µ) +M

)
≤ 0.

Since the matrix diag(B(0))− diag(µ) +M is an irreducible Metzler matrix, there
exists v ≫ 0 such that

vT (diag(B(0))− diag(µ) +M) = s
(
diag(B(0))− diag(µ) +M

)
vT . (5.23)

We define the Lyapunov function on Rn
+ by V (N) = vT N . The derivative V̇ along

the trajectories of system (5.6) is

V̇ = vT
(
diag(B(N))− diag(µ) +M

)
N.
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Since, by assumptions on the birth rate functions, B is decreasing and thanks to
(5.23), we have

V̇ = vT
(
diag(B(N))− diag(B(0))

)
N + s

(
diag(B(0))− diag(µ) +M

)
vT N ≤ 0.

We consider the largest invariant set contained in V̇ = 0. This set is contained
in the set {N |Ni = 0 i ∈ I}. Recall that I is the set of index i for which the
function Bi(x) is different from the null function. If I is empty then F is simply a
linear stable vector field. Otherwise by irreducibility of M , the largest invariant set
contained in V̇ = 0 is reduced to the origin. This proves, by Lasalle’s invariance
principle the global asymptotic stability of the origin.

5.19.2 SIS disease

In this section we will study the stability of a metapopulation SIS model with a
generalized law of contact.

The SIS model

Following [91] we consider the infection law given by C(N)S I
N , where N is the

size of population, S and I respectively the number of susceptible and infectious
individuals. N = S + I.

Diekman and Kretzschmar [27] suggest C(N) =
ζ N

1 + αN
, Anderson [3] propose

C(N) = ζ Nα, Hesterbeek and Metz [38] use
κ1N

1 + κ2N +
√
1 + 2κ2N

.

We denote by Ii, Ni respectively the number of infectious individuals and the total
population in patch i. Taking into account the fact that Ni = Si+Ii, the epidemic
equation in patch i is given by

İi = Ci(Ni) (Ni − Ii)
Ii
Ni

− µi Ii +

n∑
j=1 j ̸=i

mij Ij − Ii

n∑
j=1 j ̸=i

mji .

Using the same convention as in Section 5.19.1 we can write Ṅ = diag(B(N) )N − diag(µ)N +M N,

İ = diag(C(N)) diag(N)−1 diag(N − I) I − diag(µ) I +M I.
(5.24)
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Where I is the column vector (I1, · · · , In)T and diag(C(N) ) denotes the diagonal
matrix whose diagonal elements are given by the vector

C(N) = (C1(N1), · · · , Cn(Nn))
T , .

This system evolves on the closed positively invariant subset of R2n given by Rn
+×

{I | 0 ≤ I ≤ N}.

Reduction of the model

System (5.24) is a triangular system, hence we can apply Vidyasagar’s Theorem
(3.6.1).

We have seen that when s (diag(B(0))− diag(µ) +M) > 0, all the solutions of
(5.6) are forward bounded and system (5.6) has a positive equilibrium, say N̄ ≫ 0,
which is globally asymptotically stable on Rn

+ \ {0}. The solutions of (5.24) are
forward bounded since they satisfy I(t) ≤ N(t) for all t ≥ 0. Therefore, thanks to
Vidyasagar’s Theorem (3.6.1), the stability analysis of system (5.24) is reduced to
the stability analysis of the following system

İ = diag(C(N̄)) diag(N̄)−1 diag(N̄ − I) I − diag(µ) I +M I. (5.25)

Computation of R0

In this section we will give an analytic expression for the basic reproduction ratio
R0.

Proposition 5.19.1
The state (N̄ , 0) is a disease-free equilibrium (DFE) of (5.24) and

R0 = ρ
(
−(M − diag(µ))−1 diag(C(N̄))

)
.

Proof.
The Jacobian computed at the DFE, is J((N̄ , 0)) = F +V where F = diag(C(N̄))
comes from infection and V = M − diag(µ) is the part coming from other trans-
fer. Since M is an irreducible Metzler matrix, with s(M) = 0, M − diag(µ) is a
nonsingular irreducible Metzler matrix. Hence −(M − diag(µ))−1 ≫ 0 and thus

R0 = ρ(−F V −1) = ρ
(
−(M − diag(µ))−1 diag(C(N̄))

)
.

■
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5.19.3 Existence and stability of equilibria

We can now state the stability result.

Theorem 5.19.2 :

We consider the system Ṅ = diag(B(N) )N − diag(µ)N +M N,

İ = diag(C(N)) diag(N)−1 diag(N − I) I − diag(µ) I +M I

defined on Ω = Rn
+ × {I | 0 ≤ I ≤ N}, with s (diag(B(0))− diag(µ) +M) > 0 and

M irreducible.

If R0 ≤ 1, then the disease free equilibrium is globally asymptotically stable (GAS).

If R0 > 1, then there exists a unique endemic equilibrium (N̄ , Ī) ≫ 0, which is
GAS on Ω \ {(N̄ , 0)}.

Proof

We consider the vector field X of the reduced system (5.25), on the positively
invariant set {0 ≤ I ≤ N̄}.

X(I) = diag(C(N̄)) diag(N̄)−1 diag(N̄ − I) I − diag(µ) I +M I.

Since

DX(I) = diag(C(N̄)) diag(N̄)−1 diag(N̄ − 2I)− diag(µ) +M,

and since for I ≫ 0 we have X(I) −DX(I) I = diag(I) I ≫ 0, the vector field is
cooperative, irreducible and strongly sublinear. Hypothesis R0 < 1 implies that
the origin is asymptotically stable. Hence by Theorem 5.10.1 the origin is globally
asymptotically stable. Hypothesis R0 > 1 implies that the origin is unstable. This
proves, using again Theorem 5.10.1, that there exists a unique equilibrium Ī ≫ 0
which is globally asymptotically stable.

It remains to consider the case R0 = 1. This implies s(DX(0)) = 0 and since
DX(0) is an irreducible Metzler matrix there exists a positive vector v such that

vT
[
diag(C(N̄))− diag(µ) +M

]
= 0

We use on {0 ≤ I ≤ N̄} the Lyapunov function V (I) = vT I. The derivative
V̇ along the trajectories is
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V̇ = vT
[
diag(C(N̄))− diag(µ) +M − diag(C(N̄)) diag(N̄)−1 diag(I)

]
I

= −vT diag(C(N̄)) diag(N̄)−1 diag(I) I

V̇ is definite negative. This proves the global asymptotic stability of the origin.
■

5.20 Notes

To quote H. Thieme

The theory of (quasi-)positive matrices (i.e., Metzler) and of the as-
sociated dynamical system, as rarely as it is taught in standard lin-
ear algebra or ordinary differential equations courses, is a immensely
powerful tool in population models with some kind of structures . . . H.
Thieme pp 418 [92]

The Perron-Frobenius theorem appears everywhere in applied mathematics: in
solutions using iterative methods linear systems [96], in finite Markov chain the-
ory [83], input-output analysis in economics, Lotka-Volterra models [90], Google’s
page rank algorithm, in demographics (Leslie Models) and even in the ranking of
American Football teams [56] . . .

It is an important theorem and also a little forgotten in the academic courses.
The theory of monotonic systems, seen from the angle of dynamical systems, was
introduced by Hirsch in a series of papers in the 1980s [43, 45, 46, 47]. In fact they
were called cooperative systems. The two terms still coexist. The book ”theory
of the chemostat” [84] gives some applications of monotonous systems. We have
included this theory in this course, because on one hand there are applications in
epidemiology and on the other hand there is no elementary references as remarked
by H. Thieme.



Chapter 6

Models with continuous delays

6.1 Introduction

Dynamic models of many processes in mathematical epidemiology give systems of
ordinary differential equations called compartmental systems. Often, these systems
include time lags; in this context, continuous probability density functions (pdfs)
of lags are far more important than discrete lags.

Consider the already seen example of an intra-host model
ẋ = Λ− µx x− β x v
ẏ = β x v − µy v
ṁ = r µy y − µv m− β x v

(6.1)

variables :

• x Concentration of target cells, namely CD+ T-cells

• y Concentration of cells invade by virions (HIV)

• m Concentration for free circulating virions

This a classical Model : Perelson (1993), Nowak (1996), May-Anderson-Gupta
(1989). In [76] is said fundamental model of immunology.

The binding of a parasite particle to a receptor on a target cell initiates a cascade of
events that can ultimately lead to the target cell becoming productively infected,
i.e. producing new parasite.

However, in reality there is a time delay between initial viral entry into a cell
and subsequent viral production Fixed delays (of which a zero delay is a special
case) are not biologically realistic.

173
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For example conversion of a newly infected cell into a productively infected cell is a
multi-step process that requires viral entry into the host cell, reverse transcription
of viral RNA into DNA, transport of the newly made DNA into the nucleus,
integration of the viral DNA into the chromosome, production of viral RNA and
protein, and the creation of new virus from these newly synthesized RNA molecules
and proteins.

Even in a homogeneous population of target cells, it is unreasonable to expect that
the time to complete all of these processes will be the same for every infected cell.

If we consider biologically realistic differences in cell activation state, metabolism,
position of the cell in the cell cycle, pre-existing stores of nucleotides and other
precursors needed for the production of new virions, along with generic variation
in the viral population, variation in infection delay times becomes a near certainty.

To incorporate a delay, we consider the following modified model

ẋ = Λ− µx x− β x v

ẏ = β

∫ ∞

0
g(τ)x(t− τ) v(t− τ) dτ − µy y

ṁ = r µy y − µv v − β x v

(6.2)

This is an integrodiff?rential equation. The function g(t) is the probability
that a individual infected is infectious t unit of time later. This is a probability
density function (pdf). A pdf g satisfies

• g(t) ≥ 0

•
∫ +∞

−∞
g(t) dt = 1

• F (t) = Prob[ X ≤ t ] =

∫ t

−∞
g(s) ds.

A very useful pdf is the Erlang distribution

gn,σ =
tn−1 e−

t
σ

σn (n− 1)!
(6.3)

The characteristics are : mean nσ, deviation nσ2, maximum (n − 1)σ ; This

function is also defined with the parameter k =
1

σ
. The parameter n is called the

shape parameter and σ the rate parameter.
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This gamma distribution can reproduce a variety of biological delay distributions
and is amenable enough to allow for analytical solutions.

It is a ‘tunable’ distribution that can mimic both exponential declines and
more general bell-shaped distributions

This distribution was developed by Agner Krarup Erlang to model the number of
simultaneous phone calls. The Erlang distribution can be used to model the time
to complete n operations in series, where each operation requires an exponential
period of time to complete. In a Poisson process the sum of n inter-arrival times
has an Erlang distribution with parameters n and σ. We will show that the
Erlang distribution is the distribution of the sum of k independent and identically
distributed random variables each having an exponential distribution..

6.2 Some historical background

When g is a gamma function or a convex combination of gamma distributions the
system (6.2) can be converted into a system of differential equations. This have
been used in [74]. The process of converting time-delay integro-differential equa-
tions in a set of ODE is coined by MacDonald as the “linear chain trick” [73]. In
other community this is also known as the method of stages [22, 36, 67, 66, 68].
Any distribution can be approximated by a combination of stages in series and in
parallel [52, 22]. Actually it can be proved that given any distribution g with sup-
port on [0,∞), there is a sequence of convex combination of gamma distributions
which converges weakly to this distribution. If g is continuous, weak convergence
implies uniform convergence on compact intervals. Least squares approximation
on a finite interval is used in [54].

In the introduction of his well known monograph on lags [73], MacDonald points
out that early in this century, differential equations with lags had been interpreted
as equations for systems for which there were hidden state variables.

That idea goes back to Picard who introduced the idea of hidden variables to
explain non-conservative systems and then suggested that hereditary effects appear
because too few state variables were taken into account

Vogel developed the idea of hidden variables in considerable detail in his mono-
graph in the context of the reduction of hereditary systems to dynamical systems.
The use of a catenary chain of compartments with one-way flow to generate a dis-
tribution of lags is well known. Gy?ri gives two references in the Russian literature
on this chain method and MacDonald used it extensively in his monograph, calling
it the Ôlinear chain trickÕ, and pointing to it as an example of hidden variables.
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6.3 The Linear Chain Trick

Suppose that the material leaving a compartment j has a pdf of delay hij(τ)
before entering the compartment i. At time t a fraction hij(t − τ) dτ will enter
compartment i during the interval [τ, t + dτ ] for τ ≤ t. Then the total material
coming from j at time t is

fij

∫ t

−∞
qj(τ)hij(t− τ) dτ

To fix the idea consider the following SIR model, where to be infectious has a
delay, modeled by a pdf.

Ṡ = Λ− β S(t)

∫ +∞

0
f(τ) I(t− τ) dτ − µS(t)

İ = β S(t)

∫ +∞

0
f(τ) I(t− τ) dτ − (µ+ γ) I(t)

When the pdf is an Erlang function or a convex linear combination of Erlang
functions this system is equivalent to a system of ODE [21, 31].

Consider the following input-ouput linear system, which a catenary compartmental
system

n I...1 2

1
b

1
b

1
b

Figure 6.1: Catenary system

The system of ODE is given by
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ẋ1 = u− 1
σx1

ẋ2 =
1
σ (x1 − x2)

· · ·
ẋn = 1

σ (xn−1 − xn)

output = y = h(x) = 1
σ xn =

1

σ
⟨en|x⟩

If we denote by ei the canonical basis of Rn
+, let define C =

1

σ
eTn , B = e1 and

A =
1

σ


−1 0 0 · · · 0
1 −1 0 · · · 0
0 1 −1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 1 −1


Then the linear system is now 

ẋ = Ax+B u

y = C x

The output is given, for x0 = 0, by

y(t) =

∫ t

0
C e(t−s)AB u(s) ds =

∫ +∞

0
C e(t−s)AB Y (t− s)u(s) ds

where Y (t) is the Heaviside function

Y (t) =

{
1 t ≥ 0

0, t < 0

We recall the convolution of functions :

Definition 6.3.1
If f and g are two locally integrable functions, their convolution, denoted by f ⋆ g,
is defined by

f ⋆ g(t) =

∫
R
f(t− s) g(s) ds =

∫
R
f(t) g(t− s) ds
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Then the output y(t) is simply

y(t) = [CetAB Y (t)] ⋆ u(t),

and a delay with pdf h(τ)

∫ t

−∞
qj(τ)hij(t− τ) dτ =

∫
R
qj(τ)hij(t− τ)Y (t− τ) dτ = [hij Y ⋆ qj ] (t)

We will now compute CetAB for the catenary system. First of all we remark that

A =
1

σ
(−In +N). The matrix N is a well known nilpotent matrix with 1 on the

first sub-diagonal, Np is the matrix with 1 on the p sub-diagonal. Therefore Nn−1

is simply the matrix with only 1 in the (n, 1) entry and Nn = 0.
The second remark is

CetAB =
1

σ
⟨en|etA e1⟩ =

1

σ
etA(n, 1)

Using the fact that N and In are commuting

1

σ
etA(n, 1) = e

−
t

σ
tn−1

(n− 1)!σn
= gn,σ

Finally

y(t) = gn,σ(t) ⋆ u(t)

This means that introducing such a catenary chain of compartments between two
compartments generates a continuous distribution of delays with density function
(6.3).
If one introduces a unit impulse, i.e., a Dirac function δ, into the first compartment
of the catenary chain at t = 0, the density function for time of exit is exactly the
Erlang function. We will precise this now.
We consider a linear control system

ẋ = Ax+B u

y = C x
(6.4)

Definition 6.3.2 (Impulse response) :
The matrix

h(t) = C etAB,

is called the impulse response of the linear system (6.4)
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Proposition 6.3.1 :

The impulse response is the output of a linear control system for a nul initial
condition, to a Dirac input.

Proof Consider the following sequences of functions{
fn(t) = n if 0 ≤ t ≤ 1

n
fn(t) = 0 otherwise

These functions are called unit pulse (
∫
R fn(s)ds = 1)

If we use fn as an input we obtain

yn(t) = CetA n

∫ 1
n

0
e−sAB ds

= CetA n
e

1
n
A − I

A
B

Therefore

lim
n→+∞

n
e

1
n
A − I

A
= I

The limit of yn is CetAB.

This result is obtained immediately with the language of distributions, since δ is
a unit for the convolution.

y(t) = h(t) ⋆ δ = h(t)

The limit of fn in distributions sens is the Dirac function δ. It can be shown that,
for σ fixed, the sequence of Erlang function (6.3) converges to the Dirac function
when n → +∞.

6.4 Generalized linear chain trick

We will show how to generates a convex combination of Erlang functions.

We consider a dynamic system where a peculiar one dimensional feedback u(x)
has been distinguished. For example the xv term appearing in the second equation
of the system (6.1).

ẋ = f(x, u(x)) (6.5)

The function f is an application from Rn × R into R. The function u is defined
from Rn to R. The functions f and u are supposed to satisfy conditions which
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ensure that for any initial state x(0) = x0 the system (6.5) has a unique solution.
Usually a system ẋ = f(x, u) is called a controlled system.

x = f(x,u)
ux

Figure 6.2: Control system

When the function u depends only of time t it is called a control or an input.
When u depends on x(t) it is called a feedback.

x = f(x,u)
x

x u(x)
u

Figure 6.3: Feedback

Let us consider the following controlled linear system ( in control theory’s sense
[87, 71]). {

ẏ = Ay + wB
z = C x

(6.6)

Where the state is y ∈ Rk , A is a k × k real matrix, w is a real function, B a
k × 1 column vector , z ∈ R and C is a 1 × k row vector. In control theory w is
the input (or control), z is the output (or observation ). We denote by Y (t) the
Heaviside function, this function is also known in control theory as the unit step
function. For an initial state y(0) = y0 , and for a control signal h(t), the output
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signal of (5.9) is given by ( see for example [63])

z(t) = C etA y0 +

∫ t

0
Ce(t−τ)AB h(τ) dτ (6.7)

= C etA y0 +

∫ t

−∞
Ce(t−τ)AB h(τ)Y (τ) dτ (6.8)

= C etA y0 +

∫ +∞

0
CeτAB h(t− τ) dτ (6.9)

= C etA y0 + CetAB Y ⋆ h (6.10)

The output is obtained by a convolution integral, where by misuse of language
we have denoted by CetAB Y (t) the impulse response, i.e., the function t 7−→
CetAB Y (t). This function is called the impulse response of the system. The
reason is that this is the response of the system when the input is the Dirac
function considered as a distribution ( L. Schwartz’s generalized functions, [80] ).
The output is obtained by convolution of the impulse response with the input. By
the classical theory of ODE, CetAB is then a linear combination of function of
type tk eλt, tk eλt cos(ω t) and tk eλt sin(ω t) for k ∈ N, λ ∈ R and ω ∈ R.

We assume that the kernel function (or the probability density function) h of a
certain delay can be represented by h(t) = CetAB Y (t). The presence of Y (t) is to
ensure that the time delay is always positive. Moreover since h(t) is a distribution
the matrix A must be a stable matrix. We can assume, without loss of generality
that B and C are nonnegative vectors and that the off-diagonal entries of A are
nonnegative (which implies etA is nonnegative). In other words A is a Metzler
stable matrix [53, 71].

The system (6.5), when there is a distributed delay ( associated to the preceding
h ) on the feedback, becomes an integro-differential equation.

ẋ = f(x,

∫ ∞

0
u(x(t− τ))h(τ) dτ)

= f(x,

∫ t

−∞
u(x(τ))h(t− τ) dτ)

(6.11)

We consider an initial condition

u(x(t)) = θ(t) for t ≤ 0 (6.12)

where θ is a continuous function defined on )−∞, 0].
Now we define

y(t) =

∫ 0

−∞
e(t−τ)AB u(x(τ)) dτ
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and

y0 = y(0) =

∫ 0

−∞
e(−τ)AB u(x(τ)) dτ =

∫ 0

−∞
e(−τ)AB θ(τ) dτ

We have the relation∫ t

−∞
u(x(t− τ))h(τ) dτ =

∫ t

−∞
C e(t−τ)AB u(x(τ)) dτ = z(t) = C y(t)

Then for any initial state x(0) = x0 and an initial condition u(t) = θ(t) on R−,
the integro-differential equation (6.11) is equivalent to{

ẋ = f(x,Cy)
ẏ = Ay + u(x)B

(6.13)

with initial condition x(0) = x0 y(0) = y0. More precisely any solution of (6.11)
becomes a solution of (6.13) (see [13] for example).
The general linear chain trick can replace system with delays with a pdf which is
linear combination of gamma functions, by a system of ODE. Realization theory
is a part of linear control theory which gives explicit means of constructing such
a matrix A when the distribution is known. The delay is obtained in inserting
between the feedback and the original system a linear system.

x = f(x,u)
x

x u(x)
u

y= A y + w  b
z= C y

z

Figure 6.4: Linear chain trick

6.5 Application

When the distribution g is a convex combination of Erlang distribution

g =

q∑
i=1

πi gki,σi
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with πi ≥ 0 and
∑

πi = 1, and the corresponding delay is applied to the general
class of within-host parasite models (6.1), the system can be replaced by the with
the following flow graph (6.5), analogous to figure 9 of [54] represent the block
diagram for the interconnection of the different systems :

...
.
. ...

y
1,1

y
2,1

y
3,1

y
k1,1

y
kq,q

y
3,q

y
2,q

y
1,q

γ1,1α1,1

γ2,1

γk1,1αk1,1
γkq,qαkq,q

γ1,qα1,q

γ2,qα2,q

α3,q

+

output 
β x v

input w

π1 πq

x=ϕ(x)-β x v
v=w-µvv-uβxv

Figure 6.5: Block diagram of system (6.14)

We draw reader’s attention to the fact that this block diagram is not strictly
speaking a compartmental model, since this is not a mass-balance system. From a
pseudo-compartment j is globally leaving a quantity αjyj of material, and entering
γj−1 yj−1. This γj−1 yj−1 quantity entering in the j compartment has not to be
subtracted to the amount of material of the j − 1 compartment. The coefficients
γj can be considered as yield coefficients. We only assume that the coefficients are
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positive. The arrows are only to symbolize what material is entering (or leaving).
This picture is more a signal flow graph in control theory’s spirit.
From the flow graph the system of ODE is simply

ẋ = φ(x)− β x v

and for i = 1, · · · q

ẏ1,i = πi β x v − α1,i y1,i

ẏ2,i = γ1,i y1,i − α2,i y2,i
. . .
ẏki,i = γki−1,i yki−1,i − αki,i yk,i

v̇ =
∑n

i=1 γki,i yki,i − µv v − uβ x v

(6.14)

The system (6.14) can be written in a condensed form.
ẋ = φ(x)− β x v
ẏ = Ay + β x v B
v̇ = C y − µv v − uβ x v

(6.15)

6.5.1 Notations

To simplify the exposition we need some notations. We will adopt some conve-
nient notations from MATLAB or SCILAB. Matrices will be represented by entries
between brackets, listed by rows, each element is separated by commas and the
semicolon indicates end of the rows.

We denote by ek(n) the k
th-vector of the canonical basis of Rn. In other words

for example the vector e1(n) is the column vector of length n written with our
notations e1(n) = [1; 0; · · · ; 0]. We will use the notation eend(n) for the last vector
of the canonical basis. We use the same convention to define block matrices, for
example M = [E,F ;G,H] is the block matrix

M =

[
E F
G H

]
provided the matrices E,F ,G and H have compatible dimensions. We denote
by AT the transpose of the matrix A. For a vector x of length n we denote by
diag(x) the n × n diagonal matrix with the elements of x on the diagonal. We
also consider diag(A1, · · · , An) which is a diagonal block matrix, the Ai being the
diagonal blocks.
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We can now define A, B and C of (6.15):
The matrix A is a n × n diagonal block matrix with n =

∑q
i=1 ki. A =

diag(A1, · · · , Aq). The ki × ki block Ai is

Ai =



−α1,i 0 0 · · · 0 0
γ1,i −α2,i 0 · · · 0 0
0 γ2,i −α3,i · · · 0 0
...

. . .
. . .

. . .
...

...
0 · · · 0 γki−2,i −αk 0
0 · · · 0 0 γki−1,i −αki,i


The vector B is the column vector of length n

B = [π1 e1(k1);π2 e1(k2); . . . ;πq e1(kq)]

The matrix C is a 1× n row vector

C = [γk1,1 eend(k1)
T , γk2,2 eend(k2)

T , . . . , γkq ,q eend(kq)
T ]

The block decompositions of A, B and C are compatible.

6.5.2 Hypotheses

We start to analyze the system with minimal hypothesis on φ but nevertheless
plausible from the biological point of view. The function φ(x) describes the pop-
ulation dynamics of target cells in absence of parasites. The target cells have a
finite lifetime. The function φ models in some way homeostasis. We assume that
φ is a C1 function. Since homeostasis is maintained we assume the system

ẋ = φ(x)

has a globally asymptotically stable equilibrium x∗ > 0, that is,

φ(x∗) = 0 φ(x) > 0 for 0 ≤ x < x∗, and φ(x) < 0 for x > x∗. (6.16)

6.6 Stability analysis for the one chain system

To simplify we will examine the system given by a single chain of k elements. We
will use the computations of this special case to study the complete system (6.14).
In the case of a single chain the system is reduced to

ẋ = φ(x)− β x v
ẏ = Ay + β x v B
v̇ = C y − µv v − uβ x v

(6.17)
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with

A =


−α1 0 0 · · · 0
γ1 −α2 0 · · · 0
0 γ2 −α3 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 γk−1 −αk


C = γk eend(k)

T and B = e1(k)

It is clear that the nonnegative orthant is positively invariant by (6.17). The matrix
A is a stable Metzler matrix.

6.6.1 Background

For later references we need the expression of the nonnegative matrix (−A−1) (A
is Metzler stable ). Using the fact that A = −D + N where D is the diagonal
matrix D = diag(α1, · · · , αk), N is the nilpotent matrix N = A +D. We denote
by I the identity matrix, we have (−A)−1 = D−1(I − ND−1)−1. Using the fact
that ND−1 is nilpotent we get

(I −ND−1)−1 = I +ND−1 + (ND−1)2 + · · ·+ (ND−1)k−1

Finally

−A−1 =



1
α1

0 0 · · · 0

γ1
α1 α2

1
α2

0 · · · 0

γ1 γ2
α1 α2 α3

γ2
α2 α3

1
α3

· · · 0
...

. . .
. . .

. . .
...

γ1···γk−1

α1···αk
· · · · · · γk−1

αk−1αk

1
αk


The matrix −A−1 is a lower triangular matrix, the i-term on the diagonal is given
by 1

αi
, the entry (i, j) with i > j is

(−A−1)(i, j) =
γj · · · γi−1

αj · · ·αi−1

1

αi
(6.18)

If we use the usual convention that an empty product has value 1, this expression
is also valid for the entries on the diagonal.
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6.6.2 Basic reproduction ratio and Equilibria of the system

As usual the basic reproduction number is the expected number of secondary cases
produced in a completely susceptible population, by a typical infected individual
during its entire period of infectiousness [41, 94, 25, 26]. From the structure of the
system the computation of R0 is straightforward. Indeed one parasite during the
mean duration of its life generates a Dirac input β x∗

µv+uβ x∗ in the second controlled
system ẏ = Ay + wB. Hence this input generates secondary cases given by the
formula

β x∗

µv + uβ x∗

∫ +∞

0
CetAB dt =

β x∗

µv + uβ x∗
C (−A−1)B

This proves

R0 =
β x∗

µv + uβ x∗
C (−A−1)B (6.19)

With our definition we have C(−A−1)B = γk eend(k)
T (−A−1)e1(k) which is simply

the entry of the last row , first column of −A−1 multiplied by γk. Finally

R0 =
β x∗

µv + uβ x∗
γ1 · · · γk
α1 · · ·αk

. (6.20)

We also define a threshold T0 by

T0 =
β
[
γ1···γk
α1···αk

− u
]
x∗

µv
(6.21)

We call T0 a threshold since T0 ≤ 1 is equivalent to R0 ≤ 1.
The system has two nonnegative equilibria. The first, called the parasite free

equilibrium, is (x∗, 0 · · · , 0). The second is called the endemic equilibrium and is
denoted by (x̄, ȳ, v̄).
We have necessarily ȳ = β x̄ v̄(−A−1) e1 and

µv v̄ + uβ x̄ v̄ = γk β x̄ v̄ eTend(−A−1) e1

If v̄ ̸= 0 we deduce

x̄ =
µv

β
[
γk e

T
end (−A−1) e1 − u

] = x∗

T0

With this expression we get v̄ = φ(x̄)
β x̄ . Hence, with the hypothesis (6.16), x̄ and

v̄ are positive iff T0 > 1 or equivalently iff R0 > 1. Now ȳ = φ(x̄)(−A−1) e1. In
other words ȳ is the first column of (−A−1) multiplied by φ(x̄). The first column of
(−A−1) is a positive vector, hence v is in the positive orthant, classically denoted
by v̄ ≫ 0.
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To summarize the endemic equilibrium is in the positive orthant iff R0 > 1 and it
is given by 

x̄ = µv

β
[

γ1···γk
α1···αk

−u
] = x̄

T0 < x∗

ȳ = φ(x̄) (−A)−1e1

v̄ = φ(x̄)
β x̄

(6.22)

6.6.3 Stability analysis

We give the main result of the section

Theorem 6.6.1 We consider the system (6.15) with the hypothesis on φ (6.16)
satisfied. The basic reproduction ratio of the system is given by (6.20).

1. The system (6.15) is globally asymptotically stable on Rk+2
+ at the parasite

free equilibrium (PFE) (x∗, 0, · · · , 0) if and only if R0 ≤ 1.

2. If R0 > 1 then the PFE is unstable and there exists a unique endemic equi-
librium (EE) in the positive orthant, (x̄, ȳ, v̄) ≫ 0 given by (6.22)

3. If R0 > 1, denoting α∗ = −maxx∈[0,x∗] (φ
′(x) ), and if

uβ φ(x̄) ≤ α∗ µv (6.23)

then the endemic equilibrium is globally asymptotically stable on the nonneg-
ative orthant, excepted for initial conditions on the x-axis.

Remark 6.6.1 If φ increases on some part of its domain, the relation (6.23) is
never satisfied. In this happens, it may lead to limit cycle for this model as in [23].

Remark 6.6.2 When u = 0 and φ(x) = Λ − µx x the sufficient condition is auto-
matically satisfied. This is the case of numerous models of the literature. See for
example the general model (1) of [75] or the model in [67].

Proof. We need some dissipativity properties of system (6.15). In a first step
we show that there exists in the nonnegative orthant Rk+2

+ a forward invariant
compact absorbing neighborhood Ω of the PFE (x∗, 0, · · · , 0). An absorbing set
D is a neighborhood of the PFE such that the trajectory of the system starting
from any initial condition enters and remains in D for a sufficiently large time T .
The entrance time depends on the initial condition. If the initial conditions are
contained in a compact set F then there exits a uniform T for F . A system is point
dissipative if there exists a compact absorbing set. The above definition coincides
with dissipativity given by [19].
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Let ε ≥ 0 be a given nonnegative real. With the hypothesis (6.16) on φ there
exists a time T such that, for any initial condition in the nonnegative orthant and
for t ≥ T we have x(t) ≤ x∗+ ε. Let Mφ be the maximum of the function φ(x) on
R+. Let A a positive real such that α1A > Mφ + ε.

We claim that the set Dε defined by

Dε =
{
(x, y, v) ∈ Rk+2

+ | x ≤ x∗ + ε, x+ y1 ≤ A+ x∗ + ε, and for i = 2 · · · k
yi ≤ γ2···γi−1

α2···αi
(A+ x∗ + iε), v ≤ γ1···γk

α2···αk µv
(A+ x∗ + kε) }

is a forward invariant compact absorbing set for the system for ε > 0, and that
the set D0 (ε = 0) is a forward invariant compact set.

The set Dε is the intersection of halfspaces defined by some hyperplanes. To
prove the positive invariance of a set, it is sufficient to prove that the vector field
associated to the system is tangent or pointing to the set on the boundary of
this set. See Theorem (3.1.1). This is immediate for the faces of the nonnegative
orthant and for the halfspace defined by Dε,1 = {(x, y, v) | x ≤ x∗ + ε}. From
the properties of φ this set is also clearly absorbing. We define Dε,2 = {(x, y, v) ∈
Dε,1 | x + y1 ≤ A + x∗ + 2 ε}. We have just to look at the boundary of Dε,2

contained in Dε,1. On this part of the boundary we have y1 ≥ A. Then on this
boundary we have ẋ+ ẏ1 ≤ Mφ − α1 y1 < ε. The vector is re-entrant, hence Dε,2

is positively invariant. The inequality ẋ+ ẏ1 < ε proves that Dε,2 is absorbing in
Dε,1. A finite induction process, with similar arguments, ends the proof for Dε.

In a second step we will prove that, if R0 ≤ 1, the PFE is globally asymp-
totically stable on the compact forward invariant set D0. It is well known that if
R0 > 1 then the PFE is unstable [26, 94] . Thus the condition R0 ≤ 1 is necessary.

To prove the sufficiency we consider the following Liapunov function on the
positive orthant.

VPFE(y, v) = bT y + v (6.24)

where the column vector b = [b1; b2; · · · ; bk] is the transpose of the last row of
−A−1 multiplied by γk. In other words b = γk (−A−T ) eend.

We also define for further reference a = b1 − u. If we use (6.22) we obtain for
the parameter a the equivalent relation

a = b1 − u =
µv

β x̄
=

[
γ1 · · · γk
α1 · · ·αk

− u

]
(6.25)
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If we compute the derivative of VPFE along the trajectories of (6.15) we get

V̇PFE = bT ẏ + v̇
= γk e

T
end (−A−1)Ay + γk e

T
end (−A−1)β x v e1 + v̇

= −γk yk + β x v b1 + γk yk − µv v − uβ x v
= v[(b1 − u)βx− µv] = v[a β x− µv]
= v[µv x

x̄ − µv]
= µv

x̄ (x− x̄)v

= β
[
γ1···γk
α1···αk

− u
]
(x− x̄)v

If R0 ≤ 1, or equivalently T0 ≤ 1, we distinguish two cases :

1. On one hand if ( γ1···γk
α1···αk

− u) < 0 then x̄ < 0 and all the other quantities are

nonnegative in the expression of V̇ . Therefore V̇ ≤ 0.

2. On the other hand if ( γ1···γk
α1···αk

− u) ≥ 0, then from T0 ≤ 1 and since we are in

D0 we deduce 0 ≤ x ≤ x∗ ≤ x̄ it follows that V̇ ≤ 0.

In both cases V̇ ≤ 0. It is easy to see that the maximum invariant set in {(x, y, v) ∈
D0 | V̇ = 0} is reduced to the PFE. Therefore the global asymptotic stability of
the PFE on the compact positively invariant set D0 follows from ([15], Theorem
3.7.11, page 346). Now, We will prove the global asymptotic stability on the
orthant Rk+2

+ . It is sufficient to prove that any forward trajectory converges to
the PFE. Since D1 ( i.e Dε for ε = 1 ) is a forward compact absorbing set any
trajectory entersD1. If a trajectory enters the interior ofD0 we have already proved
that it converges toward the PFE. Now assume that a trajectory, in D1 stays in
D1 ∩ {x∗ ≤ x ≤ x∗ + 1}. Consider the Liapunov function W (x) = 1

2(x − x∗)2 on
this trajectory. By the hypothesis (6.16) on φ and the hypothesis on the trajectory
we have Ẇ = (x−x∗)φ(x)−(x−x∗)βx v ≤ 0 on any point of the trajectory in D1.
By LaSalle’s principle it follows from Ẇ ≤ 0 that the PFE is the largest invariant
set contained in {x ∈ D1, x

∗ ≤ x ≤ x∗ + 1 | Ẇ = 0}. This ends the proof of the
GAS of the PFE.

Now we assume that R0 > 1. The equilibria (x̄, ȳ, v̄) of the system, different
from the PFE, is given by (6.22) is in the positive orthant since R0 > 1.

We will now prove a sufficient condition for the GAS of the EE. To this end
we define the following Liapunov function on the positive orthant.

VEE(x, y, v) = a(x− x̄ lnx) +

k∑
i=1

bi (yi − ȳi ln yi) + (v − v̄ ln v) (6.26)

where the column vector b and the coefficient a have been previously defined by
the relation (6.25). Since R0 > 1 we deduce a > 0, hence the coefficients of VEE
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are positive. In this case this function has a unique minimum, the EE, in the
positive orthant.

This function has a linear part LEE(x, y, v) = a x+
∑k

i=1 bi yi + v. This linear
part can be expressed as

LEE(x, y, v) = a x+ bT y + v = a x+ γk eend (−A−1) y + v

If we compute the derivative L̇EE of LEE along the trajectories of (6.15), consid-
ering the definition of b and the relation a+ u = b1, we get

LEE(x, y, v) = a ẋ+ γk eend (−A−1) ẏ + v̇
= a ẋ+ γk eend (−A−1)Ay + β x v eend (−A−1)B + v̇
= a ẋ− γk eend y + β x v eend (−A−1) e1 + v̇
= aφ(x)− aβxv − γk yk + b1 β x v + γk yk − µv v − uβ x v
= aφ(x)− µv v

If we collect in V̇EE the terms in v we obtain (aβx̄− µv)v. From (6.25) the terms
in v cancel . With these simplifications we can now express V̇EE

V̇EE =. aφ(x)
(
1− x̄

x

)
− b1 βȳ1

xv
y1

−
∑k

i=2 biγi−1yi−1
ȳi
yi
+

+
k∑

i=1

biαiȳi − γkyk
v̄

v
+ uβv̄x+ µvv̄.

This can also be written

V̇EE = aφ(x)
(
1− x̄

x

)
− b1 βx̄ v̄

x

x̄

v

v̄

ȳ1
y1

−
k∑

i=2

bi γi−1 ȳi−1
yi−1

ȳi−1

ȳi
yi
+

+
k∑

i=1

biαiȳi − γk ȳk
yk
ȳk

v̄

v
+ uβx̄ v̄

x

x̄
+ µvv̄

We now compare some coefficients appearing in this formula. We have φ(x̄) = β x̄v̄.
Using the fact that ȳ is the first column of −A−1 multiplied by φ(x̄), b is the
transpose of the last row multiplied by γk of the same matrix and accordingly to
the relation (6.18), we can now consider bi γi−1ȳi−1 :

bi γi−1ȳi−1 = γk (−A−1)(k, i) γi−1 φ(x̄) (−A−1)(i− 1, 1)

= φ(x̄) γk
γi · · · γk−1

αi . . . αk−1

1

αk
γi−1

γ1 · · · γi−2

α1 · · ·αi−2

1

αi−1

=
γ1 · · · γk
α1 · · · γk

φ(x̄) = b1 φ(x̄) = b1 β x̄v̄



192 6. MODELS WITH CONTINUOUS DELAYS

In the same way

bi αiȳi = γk (−A−1)(k, i)αi φ(x̄) (−A−1)(i, 1)

= φ(x̄) γk
γi · · · γk−1

αi . . . αk−1

1

αk
αi

γ1 · · · γi−1

α1 · · ·αi−1

1

αi
=

γ1 · · · γk
α1 · · · γk

φ(x̄) = b1 φ(x̄)

and γk ȳk = γk (−A−1)(k, i)φ(x̄) = φ(x̄) γk
γ1 · · · γk−1

α1 . . . αk−1

1

αk
= b1 φ(x̄).

According to (6.25) we also have µvv̄ = a β x̄ v̄ = aφ(x̄)
Using all these relations between the coefficients we get for V̇EE

V̇EE = aφ(x)
(
1− x̄

x

)
+

b1 φ(x̄)

[
k − x

x̄

v

v̄

ȳ1
y1

−
k∑

i=2

yi−1

ȳi−1

ȳi
yi

− yk
ȳk

v̄

v

]
+ uφ(x̄)

x

x̄
+ aφ(x̄)

Adding 2− x̄
x in the expression between brackets and subtracting the same expres-

sion outside the brackets, using u = b1 − a we obtain

V̇EE = aφ(x)
(
1− x̄

x

)
+

b1 φ(x̄)

[
k + 2− x̄

x
− x

x̄

v

v̄

ȳ1
y1

−
k∑

i=2

yi−1

ȳi−1

ȳi
yi

− yk
ȳk

v̄

v

]
+b1 φ(x̄)

( x̄
x
+

x

x̄
− 2
)
+ aφ(x̄)

(
1− x

x̄

)
If we factor, in this expression, x−x̄

x x̄ we obtain

V̇EE =
x− x̄

xx̄
(a x̄ φ(x)− a xφ(x̄) + b1 φ(x̄)(x− x̄))+

b1 φ(x̄)

[
k + 2− x̄

x
− x

x̄

v

v̄

ȳ1
y1

−
k∑

i=2

yi−1

ȳi−1

ȳi
yi

− yk
ȳk

v̄

v

]
Now we will use the fact that there exists ξ in the open interval ]x, x̄[ such that
φ(x) = φ(x̄) + (x− x̄)φ′(ξ). Replacing in the preceding expression gives

V̇EE =
(x− x̄)2

xx̄

(
−aφ(x̄) + a x̄ φ′(ξ) + b1 φ(x̄)

)
+

b1 φ(x̄)

[
k + 2− x̄

x
− x

x̄

v

v̄

ȳ1
y1

−
k∑

i=2

yi−1

ȳi−1

ȳi
yi

− yk
ȳk

v̄

v

]
Finally since a− b1 = u

V̇EE =
(x− x̄)2

xx̄

(
uφ(x̄) + a x̄ φ′(ξ)

)
+

b1 φ(x̄)

[
k + 2− x̄

x
− x

x̄

v

v̄

ȳ1
y1

−
k∑

i=2

yi−1

ȳi−1

ȳi
yi

− yk
ȳk

v̄

v

]
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The term between brackets in the last expression of V̇ is non positive by the
inequality between the arithmetical mean and the geometrical mean. Therefore a
sufficient condition for V̇ ≤ 0 is

uφ(x̄) + a x̄ φ′(ξ) ≤ 0

Or equivalently since ax̄ = µv

β

uβ φ(x̄) ≤ −φ′(ξ)µv

Moreover with this condition V̇ is negative excepted at the EE for the system
(6.15). If

Since VEE is a proper function on the positive orthant, this proves the GAS of
the EE on the positive orthant for the system (6.15).

The vector field associated with the system is strictly entrant on the faces of
the orthant except on the x-axis where it is tangent. The basin of attraction of the
EE is then the orthant excepted the one-dimensional face contained in the x-axis
of the orthant, which is the stable manifold of the PFE.

Setting α∗ = − max
x∈[0,x∗]

φ′(x), a sufficient condition for the GAS of the EE is

R0 > 1 and uβ φ(x̄) ≤ µvα
∗

This ends the proof of the theorem.
■

6.7 Stability for the complete system

The proof use the same line of ideas. This is proven in [50].
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Chapter 7

Identification of parameters.

7.1 Introduction

ODE has been widely used to model epidemics of infectious diseases or the intra-
host dynamics of a parasite. The analysis of such models, their simulation has
attracted a great attention and are the topics of many research papers. This
is the problem of predicting the result of measurement, modelization, simulation
problems. However, less effort has been devoted to the so-called inverse problem.
The inverse problem consists of using the actual results of some measurement to
infer the values of the parameters that characterize the system.

This problem, depending of the scientific community, has also received different
names : data assimilation, estimation of parameters or identification. In this
chapter we will use the concept emanating from control theory of identification of
parameters.

Actually, before parameter estimation algorithms can be used to an ODE model
to estimate the model parameters based measurements, a serious lock must be
overcome : how to verify whether the model parameters are identifiable based on
the measurements of output variables. In other words, with the knowledge of some
measurements, is there a unique set of parameters which gives these measures ?
Does the inverse problem have a unique solution ?

This is the problem of identifiability : whether or not is it possible to distinguish
different sets of parameters from the measurement of the output. Before the in-
troduction of precise definitions we will provide a simple example.

7.1.1 A non identifiable linear system

We consider the following system, whose flow graph is

195
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x1
k1

k2

k3

x2

x3

u(t)

y(t)
+



ẋ1 = −k1 x1 + k2 x2 + u(t)

ẋ2 = k1 x1 − (k2 + k3)x2

ẋ3 = k3 x2

y = x1 + x2

The only known quantities are the observation y(t) and the input u(t). Since y
and u are known, ẏ = −k3 x2 + u is also known.
Hence

ÿ = k3 k1 x1 − k3 (k2 + k3)x2 + u̇

= k3 k1 (y − x2)− k3 (k2 + k3)x2 + u̇

= k1 k3 y + (k1 + k2 + k3) (ẏ − u) + u̇

By induction

y(t) = y(0) + t ẏ(0)+∑
n≥2

tn

n!

[
k1 k3 y

(n−2)(0) + (k1 + k2 + k3) y
(n−1)(0) + (k1 + k2 + k3)u

(n−2)(0) + u(n−1)(0)
]

This means that for any set of parameters satisfying
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(k̃1 + k̃2 + k̃3) = (k1 + k2 + k3) and k̃1 k̃3 = k1 k3

will gives the same input-output behavior. The system is not identifiable with the
output.

7.1.2 Historical Background

For system of ODE it is Kalman [55] who, for the first time mentioned, in a rather
cryptic way, the notion of identifiability.

The paper of Belmann and Åström [12] in 1970 gives precise definitions of struc-
tural identifiability for linear control systems. The first systematic treatment in
1987 for nonlinear system is by Tunali and Tarn [93].

Identifiability is simply, as we have try in the preceding example, to express param-
eters as functions of the known quantities of the system, such as input and output.
In this aspect, an algebraic definition, its relationship to observability, and algorith-
mic procedures based on differential algebraic polynomial systems were rigorously
studied in [28, 32, 65].

7.2 Concepts from control theory

In this section we will consider the following system
ẋ = X(x, θ, u) = Xu,θ(x)

y = h(x)
(7.1)

We assume that the application X : Rn × Rp × Rk −→ Rn is C∞ or analytic as
h : Rn −→ Rm. The variable x is the state of the system in the state space Rn, θ
is a parameter in Rp, and u ∈ Rk is a control. The function h is the observation or
output of the system. For any initial state x0 we denote by Xu,θ

t (x0) the solution

at time t and by y(x0, u, t) = h(Xu,θ
t (x0)) the corresponding output.

7.2.1 Observability

Definition 7.2.1 (indistinguishability) Two states x1 and x2 are said indistinguish-
able for system (7.1) iff for any time t ≥ 0 and any input u(t)

y(x1, u(), t) = y(x2, u(), t)
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Indistinguishability I is an equivalence relation on Rn .
Two states x1, x2, x1 ̸= x2 are said to be distinguishable if there exists an ad-
missible control (or input) u and a time t ≥ 0 such that y(x1, u, t) ̸= y(x2, u, t).
An admissible input which distinguishes every pair of states is called an universal
input.
Roughly speaking, this means that the information provided by the measurable
output is not enough to tell us if the evolution of the system is given by the solution
emanating from the state x1 or by the one emanating from the state x2.

Definition 7.2.2 (Observability)
A system is said observable if any pair of distinct states (x1, x2) are distinguishable.

The system (7.1) is observable if I(x) = x on Rn

Consider the following model of a chemostat

input:rate of flow u

output

pump

pump

Sin

Biomass

Figure 7.1: Chemostat


ẋ = µ(s)x− ux

ṡ = −k µ(s)− u (s− sin)

y = x
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where x(t) and s(t) are respectively the concentration in micro-organisms and
substrate, the function µ(s) is the absorbing rate of the substrate by the micro-
organisms and k is the yield coefficient. For this system, the input is the flow rate
u and the output is usually the concentration x(t). The substrate is introduced as
u sin.

There are numerous models for the function µ. For example the Haldane function

µ(s) =
µ0 s

Km + s+ s2

KI

This function is used to model more realistic cases where an excessive concentration
of substrate can impede the growth of the biomass. The Haldane function is not
injective.

0 1 2 3 4 5 6 7 8 9 10
0

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

Figure 7.2: Haldane function

Therefore the system is not observable, even if x, u, k and sin are known.

For analytic systems there is a criteria for observability. For giving this criterium
we recall some definitions. A smooth vector field operates on C∞(Rn, the set of
functions Φ : Rn −→ R, by Lie differentiation in the following way

C∞(Rn) −−−−→ C∞(Rn)

Φ −−−−→ X.Φ

with
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X.Φ (x) =
d

dt
(Φ(Xt(x)))

∣∣∣∣
t=0

As usual Xt(x) denotes the flow of X initiating from x at time t.
The function X.Φ is called the Lie derivative of Φ along the vector field X. We

have the following relation

X.Φ (x) = ⟨∇Φ(x) | X(x)⟩

The Lie derivative of order k is defined by induction

Xk.Φ = X.(Xk−1.Φ)

Definition 7.2.3 (Observation space) The observation space O of system (7.1) is
the linear subspace over R of functions of C∞(Rn), containing the observation
function h and closed under the Lie differentiation by all elements of

X = {f(., θ, u)|u ∈ Rp}.

We have the description of O

O = spanR

{
(Xul,θ)kl . . . . (Xu1,θ)k1 .h | l ≥ 0, u1, . . . , ul ∈ U, ki ∈ N

}
Theorem 7.2.1 For analytic systems the observability is equivalent to the fact that
the observation space separates the points of Rn, i.e., if x1 ̸= x2 there exists g ∈ O
such that g(x1) ̸= g(x2).

Proof
By analyticity for one constant control u

y(x0, u, t) = h(Xu,θ
t (x0)) =

∑
n≥0

tn

n!

dn

dtn
h(Xu,θ

t (x0))

∣∣∣∣
t=0

But

d

dt
h(Xu,θ

t (x0))

∣∣∣∣
t=0

= ⟨∇h(x0)|Xu,θ(x0)⟩ = Xu,θ.h (x0)

By induction

dn

dtn
h(Xu,θ

t (x0))

∣∣∣∣
t=0

= (Xu,θ)n.h (x0)
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Then it is necessary and sufficient for two distincts initial states x1 ̸= x2, for
having different outputs, that there exists an index n such that

(Xu,θ)n.h (x1) ̸= (Xu,θ)n.h (x2)

in other words be separated by a function of O
■

Notice that observability is a global concept since it might be necessary to
travel a considerable distance or for a long time to distinguish between points
of Rn. Therefore we introduce a local concept which is stronger than observ-
ability from [40]. Let U be a subset of Rn and x1, x2 ∈ U . We say x1 is U
-indistinguishable from x2 (denoted x1 IU x2 ) if for every control u, whose trajec-

tories Xθ,u
t (x1) and Xθ,u

t (x2) both lie in U , fails to distinguish between x1 and x2.
U -indistinguishability is not, in general, an equivalence relation on U because it
fails to be transitive.

However, we can still define (7.1) to be locally observable at x0 if for every open
neighborhood U of x0, IU (x0) = {x0} and locally observable if it is so on Rn.

On the other hand one can weaken the concept of observability; in practice it may
suffice to be able to distinguish x0 from its neighbors. Therefore we define (7.1)
to be weakly observable at x0 if there exists a neighborhood U of x0 such that
I(x0) ∩ U = {x0} and (7.1) is weakly observable if it is so on Rn

Notice once again that it may be necessary to travel considerably far from U
to distinguish points of U , so we make a last definition, (7.1) is locally weakly
observable at x0 if there exists an open neighborhood U of x0 such that for every
open neighborhood V of x0 contained in U , IV (x0) = {xo} and is locally weakly
observable if it is so in Rn. Intuitively, (7.1) is locally weakly observable if one can
instantaneously distinguish each point from its neighbors.

We have the following relations between these concepts [40] :

Locally Observable Observable

Locally Weakly Observable Weakly Observable
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7.2.2 Identifiability

Definition 7.2.4
The system (7.1) is said to be locally identifiable at θ if there exists a neighborhood
Nθ of θ ∈ Rp such that for any θ1 ̸= θ2 in Nθ, there exists an admissible input u
such that for a nonnegative time t we have y(t, θ1, u) ̸= y(t, θ2, u).
If Nθ = Rp the system is said globally identifiable.

There is also a notion of identifiability almost everywhere. To introduce To intro-
duce such a concept, we need a topology for the input function space. For any
T > 0 and a positive integer n, the space Cn[0, T ] is the space of all functions on
[0, T ] which have continuous derivatives up to the order n. A topology of the space
is the one associated with following well-defined norm, for f ∈ Cn[0, T ], we define
∥f∥ =

∑n
i=1 maxt∈[0,T ] ∥f (i)(t)∥.

Definition 7.2.5
The system (7.1) is said to be structurally identifiable if there exists a time T > 0,
a positive integer n, and open and dense subset of Rn, Rp and Cn[0, T ] such that
the system is identifiable at θ for every x0, θ and u in these open dense sets.

This characterizes the one-to-one property (almost everywhere) of the map from
the parameters to the system output.

In these definitions, the initial state is unknown. However, sometimes an initial
condition is known (or partially known). Then we can define x0-identifiability
easily, the output is then limited from a common initial state x0.

7.2.3 Observability, identifiability and augmented system

The augmented system is simply the original system in an enlarged state-space
with parameters treated as constant states :

ẋ = X(x, θ, u) = Xu,θ(x)

θ̇ = 0

y = h(x)

(7.2)

The system (7.1) is said observable and identifiable iff the enlarged system (7.2) is
observable.
The algebraic identifiability is about construction of parameters from algebraic
equations of the system input and output. This concept was f defined in [28] in
the differential algebraic framework. We adapt the definition into the following
one.
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Definition 7.2.6

A system is said to be algebraically identifiable if it is possible to construct the
parameters from solving algebraic equations depending only on the information of
the input and output.

We will give a more precise definition by using the formalism of differential algebra.
Differential algebra can be seen as a generalization to differential equations of the
concepts of commutative algebra and algebraic geometry. This theory, founded
by Ritt, is an appropriate framework for the definition of algebraic observability
introduced by Diop and Fliess [28].

A differential ring R is a commutative ring, with an unity 1 ̸= 0 equipped with

one derivation R → R a → ȧ, such that
˙︷ ︸︸ ︷

(a+ b) = ȧ + ḃ and
˙︷︸︸︷

(a.b) = ȧ.b + a.ḃ. A
constant of R is an element c such that ċ = 0

Let K and L two differential fields such that K ⊂ L. If each element of L satis-
fies an algebraic differential equation with coefficients in K, then L is said to be
differential algebraic extension of K. The differential field generated by K and a
subset S of L is denoted by K⟨S⟩.
Let k a differential field. Denote byk⟨u⟩ the differential field generated by k and
a finite set u = (u1, . . . , um) of differential quantities. The set u plays the role of
control variables or input, which may be assumed to be independent. This means
that u is differentially k- algebraically independent.

A dynamic is is a finitely generated differential extension D/k⟨u⟩
This means that any element of D, satisfies an algebraic differential equation

with coefficients which are rational functions over k in the components of u and
a finite number of their derivatives. As output variables can be viewed as sensors
on the dynamics, we formally define an output as a finite set y = (y1, . . . , yp) ∈ D

Definition 7.2.7

A dynamic D/k⟨u⟩, with output y is said to be algebraically observable iff the
differentail extension D/k⟨u, y⟩ is algebraic

The intuitive meaning is the following: x the state variable can be expressed
as an algebraic function of the components of {u, y} and a finite number of their
derivatives.

Definition 7.2.8

Parameters π are algebraically identifiable if they are observable with respect to
{u, y}, i.e., if they are algebraic over k⟨u, y⟩. The parameters are rationally iden-
tifiable if they belongs to k⟨u, y⟩.
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The intuitive meaning is clear: In the algebraic case, several values of the
parameters are possible as algebraic equations must be solved, whereas in the
rational case one is always insured of a single value. This rational identifiability is
equivalent to the global identifiability of Glad and Ljung [65].

We will now give Theorems for algebraic identifiability [100].

Theorem 7.2.2 ( Xia and Moog, 2003 )

Let K the differential field consisting of meromorphix function of x, θ, u and finite
derivatives of u and define E = spanK{dK}. A vector is in E if it is a finite linear
combination of one forms dx, dθ, du, . . . , duk, . . . , with coefficients in K.

Denote Y =
⋃∞

k=0 span{dy, dẏ, · · · , dyk}, U =
⋃∞

k=0 span{du, du̇, · · · , duk} and
X = span{dx}

The system is algebraically identifiable iff

Θ ⊂ Y + U

Recall for a function h we define ḣ = Xu,θ.h. Similarly for a one form ω in E if

ω = κx dx+ κθ dθ +
∑

ηi du
i ∈ E

we define (Leibnitz rule)

ω̇ = κ̇x dx+ κ̇θ dθ +
∑

η̇i du
i + κxX

u,θ(x) +
∑

ηi du
i+1

7.3 Examples

7.3.1 Identification for an intra-host model of Malaria

We consider the intra-host model of Malaria we have already encountered in these
lectures


ẋ = Λ− µx x− β xm,

ẏ = β xm− µy y,

ṁ = r µy y − µmm− β xm.

(7.3)
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Observability and Identifiability

In case of malaria, only the concentration of infected erythrocytes are measured
[33, 35, 34]. For this system the parameters Λ, µx, µy, µm and r are known or at
least widely accepted. However the infection rate is unknown. Then the problem,
when y is measured, is to reconstruct the states x, m and identify the parameter
β.

Proposition 7.3.1

System (7.3) , with observation h(x, y,m) = y and parameters Λ, µx, µy, µm and
r known, is observable and identifiable.

We assume, in relation to the plausible biological parameters, that we have the
inequalities µx < µy < µm and r > 1.

Proof

We define h1 = y. Then

ẏ = β xm− µy y = β xm− µy h1.

We define the known function h2 by h2 = β xm = ḣ1 + µy h1.

We now have

ḣ2 = (Λ− h2)β m+ (r µy h1 − h2)β x− (µx + µm)h2

Again, setting h3 = (Λ− h2)β m+ (r µy h1 − h2)β x, we obtain

ḣ3 = −
[
µm (Λ− h2) + ḣ2

]
β m−

[
µx (r µy h1 − h2)− (r µy ḣ1 − ḣ2)

]
β x

+ 2 [(Λ− h2) (r µy h1 − h2)] β

We define two known functions A = Λ− h2 and B = r µy h1 − h2.

Consider the two equations{
Aβm+B β x = −Ȧ + (µx + µm)h2
(µmA− Ȧ)β m+ (µxB − Ḃ)β x = −ḣ3 + 2AB β

(7.4)

These equations can be considered as a linear system in β m, β x with constant
terms depending on β. Let ∆ the determinant of this system

∆ = −AḂ + ȦB + (µx − µm)AB

The function ∆ is analytic. Then either ∆ is zero or its zeroes are isolated. We
claim that ∆ cannot be zero on a trajectory of system (7.3).
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Moreover A = Λ − h2 cannot be zero an a trajectory. If it is the case then
ẋ = −µx x and x goes to zero, which is impossible for system (7.3) : x converges
either to the first component of the DFE or the endemic equilibrium, which is,
in any case, non zero. In the same spirit B = r µy h1 − h2 cannot be zero on a
trajectory, otherwise ẏ = (r − 1) y which is a contradiction with the boundedness
of the trajectories of (7.3).

If ∆ = 0, dividing by AB we have

−Ḃ

B
+

Ȧ

A
= (µm − µx).

Integrating this relation gives

ln
B0

A0

A

B
= (µm − µx) t.

Where A0 and B0 are the initial value of A and B. Then

B0

A0

A

B
= e(µm−µx) t

Since µm > µx the right hand side of this relation converges infinity, and the

left hand side converges to
B0

A0

µx x̄

µm m̄
, where we denote by (x̄, ȳ m̄) either the DFE

or the EE of system (7.3). In any case the left hand side does not converge to
infinity, a contradiction.

Now with ∆ ̸= 0 we obtain for β x and β m
βm = M +N β

βx = P +Qβ.
(7.5)

where M , N , P and Q are algebraic functions of the known functions h1, h2,
ḣ1,ḣ2, ḣ3.

From this relations we obtain, deriving one more time,

βṁ = Ṁ + Ṅ β

βṁ = (r µy h1 − h2)β − β µmm

βṁ = (r µy h1 − h2)β − µm(M +N β)

(7.6)

Hence

Ṁ + Ṅ β = (r µy h1 − h2)β − µm(M +N β)
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(
B − Ṅ − µmN

)
β = Ṁ + µmM.

Since M = [−A+ (µx + µm)h2] (µmA− Ȧ) +A ḣ3, a similar argument, as the
previous one, shows that Ṁ + µmM cannot be zero on a trajectory. Finally we
obtain an expression for β as a rational expression of the derivative of the measured
output y. Note that we derive 4 times, corresponding to 3 states and one unknown
parameter.

We prove the identifiability and observability of our system.

■

7.3.2 Identification for the Macdonald’s model of schistoso-

miasis transmission

In this section we consider the very well known model of MacDonald for the trans-
mission of Schistosomiasis [72, 11]

This model can be written as
ẇ = α y − γ w

ẏ = β (1− y)w − µ y
(7.7)

The variable w is the average burden in the definitive host (e.g; humans) and
the variable y is the prevalence of infection in snails. We assume that the average
burden w is measured and that the transmission parameters α and β are unknown.
γ the per capita death rate of parasites and µ the per capita death rate of infected
snails are known.

Observability and identifiability

Proposition 7.3.2

System (7.7), with w measured, γ and µ known, is observable and identifiable,

excepted at the equilibria (0, 0) and

(
α

γ

(
1− 1

R0

)
, 1− 1

R0

)
with R0 =

αβ

γ µ
> 1

Proof

Observation is h(w, y) = w then
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ḣ = α y − γ w (7.8)

= α y − γ h, (7.9)

therefore

α y = ḣ+ γ h (7.10)

α ẏ = αβ (1− y)h− αµ y (7.11)

= αβ (1− y)h− µ (ḣ+ γ h) (7.12)

= ḧ+ γ ḣ (7.13)

Function h is never identically zero (otherwise we are at the disease free equilib-
rium)

αβ (1− y) =
ḧ+ γ ḣ+ µ (ḣ+ γ h)

h
= g (7.14)

Function g is known and is rationally expressed with the derivatives of h. We get

−αβ ẏ = ġ (7.15)

−β (ḧ+ γ ḣ) = ġ (7.16)

Parameter β has an rational expression in the derivatives of h, up to order 3.

If ḧ + γ ḣ = 0 on a trajectory, we have ẏ = 0, hence y is constant, which gives w
constant. We are on an equilibria. Since h ̸= 0 we are at the endemic equilibrium.

w∗ =
α

γ
y∗ and y∗ = 1− µγ

αµ
= 1− 1

R0

In this case the system is non identifiable (we only know the product αβ).

Otherwise

β = − ġ

ḧ+ γ ḣ
(7.17)

Using (7.14) we obtain

αβ (1− y) = αβ − β (ḣ+ γ h) = g
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which gives

α =
g + β (ḣ+ γ h)

β
(7.18)

finally

y =
ḣ+ γ h

α
(7.19)

System (7.7 ) is rationally observable and identifiable.

■

7.3.3 Identification for Ross’ s model of malaria transmission

We consider the classical Ross model of malaria transmission
ẋ = α y (1− x)− γ x

ẏ = β (1− y)x− µ y
(7.20)

The variable x represents the prevalence of malaria in humans, variable y is the
prevalence of infection in mosquitoes. Parameter γ is the recovery rate of infected
humans and µ is the death rate of mosquitoes. Parameters α and β are composite
parameter. Classically α = mab1 where m is the vectorial density, i.e., mean
number of mosquitoes by human, a is the biting rate and b1 is the probability that
a bite by an infectious mosquito infects a susceptible human. Similarly β = a b2
with b2 is the probability that a bite by a susceptible mosquito of an infected
human gives an infected mosquito.

This is Ross model of 1911 [78, 4]. If we set α = mab1 e
−µ τ with τ the mosquito

incubation period, we obtain a version of Ross-Macdonald model.

Parameters γ and µ are known, at least locally, and α and β has to be identified.
Again we assume that x is measured.

Observability and Identifiability

Proposition 7.3.3

Ross model (7.20 ) with x measured, parameters µ and γ known is observable and
identifiable, excepted at the equilibria which are the disease free equilibrium (0, 0)
and the endemic equilibrium (if R0 > 1)
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(
R0 − 1

R0 +
β
µ

,
R0 − 1

R0 +
α
γ

)

with R0 =
αβ

γ µ
.

Proof
We set the observation h1(x, y) = x. The function h1 is never identically equal to
1, since if y = 1 then ẏ = −µ. We define

h2 = α y =
ḣ1 + γ h1
1− h1

Deriving h2 gives

ḣ2 = α ẏ = αβ(1− y)h1 − µh2 = αβ h1 − β h2 h1 − µh2.

The function h2 cannot be identically zero unless at the origin.
Then set

h3 =
ḣ2 + µh2

h1
= αβ − β h2,

then

ḣ3 = −β ḣ2.

Excepted at one of the equilibria, ḣ2 cannot be identically zero, therefore

β = − ḣ3

ḣ2
.

Finally

α =
h3 + β h2

β
and y =

h2
α

■

7.4 Identifiability and observers

7.4.1 Definition

When a system is observable initial points are distinguishable. Is it possible to
reconstruct the state of the system from the measurement ? Observability deems
to be a natural requirement.
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We consider an inout-output system
ẋ = X(x, u) = Xu(x)

y = h(x)

y

Observateur
Système

u

u

x̂

From control theory, a system which gives an estimation of the state, is called
an observer. To be more precise an observer is a dynamical system, whose input
are the known quantities fo the control system, i.e., u and y :

˙̂x = g(x̂, u, u),

with the property that

lim
t→+∞

∥x̂(t)− x(t)∥ = 0

The observer is called an asymptotic observer if the error satisfies for constants
K > 0 a > 0 and for ant t > 0

∥x̂(t)− x(t)∥ ≤ K ∥x̂(0)− x(0)∥ e−a t
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7.4.2 An example : within-host model of Malaria

We have already seen this type of model. The observation is the concentration
of infected red blood cells. Actually what is observed are the young parasites in
peripheral blood. This the phenomenon of sequestration : At the half-way point
of parasite development, the infected erythrocyte leaves the circulating blood and
binds to endothelium in the microvasculature.

Then we will distinguish two types of infected RBC

ẋ = Λ− µx x− βxm

ẏ1 = βxm− α1 y1

ẏ2 = γ1 y1 − α2 y2

ṁ = r γ2 y2 − µmm− β xm

(7.21)

We observe y1 at discrete times. y2 is the population of sequestered infected
erythrocytes. Can we estimate the system state (x, y1, y2,m) ? The answer is yes
: [16].
We rewrite the system in the following form

ż = Az + Λ e1 + d(t)E

Y = C z
(7.22)

where d(t)E = β xm is considered as an unknown input

A =


−µx 0 0 0
0 −α1 0 0
0 γ1 −α2 0
0 0 r γ2 −µm

 E =


−1
1
0
−1

 e1 =


1
0
0
0

 C =
[
0 1 0 0

]

Let Ā be

Ā = (I4 − E C)A

Then the pair (Ā, C) is detectable, i.e.,
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rank[CT , ĀT CT , (ĀT )2CT , (ĀT )3CT ] = 4

This implies that there exists a 4× 1 matrix L such that Ā−LC is Hurwitz. This
can be verified easily Let L = [l − 1, l2, l3, l4] then

Ā− LC =


−µx −α1 − l1 0 0
0 −l2 0 0
0 γ1 − l3 −α2 0
0 −α1 − l4 γ2 −µm


Eigenvalues of this matrix are −µx, −l2, −α2 a,d −µm. It is sufficient to choose
l2 > 0 to have Ā− LC is Hurwitz.
With this condition we claim that

ẇ = (Ā− LC)w +
[
L+ (Ā− LC)E

]
Y + Λ e1

ẑ = w(t) + E Y
,

To prove this claim we set the error e = ẑ − z. Some remarks are in order

E C E = E and C e1 = 0

ė = ˙̂z − ż

= ẇ + E Ẏ − ż

= ẇ + E Ẏ −Az − Λ e1 − d(t)E

= ẇ + E Ẏ − (I − LC)Az − E C [Az + Λ e1 + d(t)E]− Λ e1

= ẇ + E Ẏ − Ā z − E Ẏ − Λ e1

= ẇ − Ā z − Λ e1

= (Ā− LC)w +
[
L+ (Ā− LC)E

]
Y + Λ e1 − Ā z − Λ e1

= (Ā− LC)w +
[
L+ (Ā− LC)E

]
Y − Ā z

= (Ā− LC) ẑ + LY − Ā z

= (Ā− LC) ẑ + LC z − Ā z

= (Ā− LC) (ẑ − z)

= (Ā− LC) e

Since Ā − LC is Hurwitz this proves the claim. Our observer is asymptotic.
The speed of convergence is given by the stability modulus, namely −µx if l2 is
chosen large enough.
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This observer is known as an observer with unknown input. The state of the
system is estimated without knowledge of the parameter β. Asa by-product we
can now estimates this parameter. For this

We have

y1 = β xm− (γ1 + µ1) y1

Constant variation formula for linear system gives

y1(t) = exp (−(γ1 + µ1)(t− t0)) y1(t0) + β

∫ t

t0

x(s)m(s) exp (−(γ1 + µ1)(s− t)) ds

We replace the unknown values by their estimations

ŷ1(t) = exp (−(γ1 + µ1)(t− t0)) ŷ1(t0) + β̂

∫ t

t0

x̂(s) m̂(s) exp (−(γ1 + µ1)(s− t)) ds

therefore

exp ((γ1 + µ1)t) ŷ1(t)−exp ((γ1 + µ1) t0) ŷ1(t0) = β̂

∫ t

t0

x̂(s) m̂(s) exp (−(γ1 + µ1) s) ds

Discretizing [tinit, tf ] in [ti, ti+1] applying preceding relation and choosing tinit such
that the observer gives a good estimation (practically that means waiting a little,
giving time for the observer to converge

exp ((γ1 + µ1)ti+1) ŷ1(ti+1)− exp ((γ1 + µ1) ti) ŷ1(ti)

= β̂

∫ ti+1

ti

x̂(s) m̂(s) exp (−(γ1 + µ1) s) ds

For each i we set

Ui = exp ((γ1 + µ1)ti+1) ŷ1(ti+1)− exp ((γ1 + µ1) ti) ŷ1(ti)

and

Vi =

∫ ti+1

ti

x̂(s) m̂(s) exp (−(γ1 + µ1) s) ds

this gives
U = β̂ V

An estimation of β is obtained in solving by least square method this linear
system.
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Malariatherapy

During the pre-penicillin era, there was no efficient treatment for syphilis. During
the natural evolution of the disease, patients sometimes developed neurosyphilis
10 to 25 years after the initial infection. The curative effect of fevers has been
reported since Hippocrates’ time. Wagner-Jauregg, the father of malaria therapy,
described in detail experiments with induced fever in patients.
In 1917 the inoculation of malaria parasites, which proved to be very successful in
the case of dementia paralytica (also called general paresis of the insane), caused
by neurosyphilis, at that time a terminal disease. It had been observed that some
who develop high fevers could be cured of syphilis. Thus, from 1917 to the mid
1940s, malaria induced by the least aggressive parasite, Plasmodium vivax, was
used as treatment for tertiary syphilis because it produced prolonged and high
fevers (a form of pyrotherapy). This was considered an acceptable risk because
the malaria could later be treated with quinine, which was available at that time.
This discovery earned to Wagner-Jauregg the Nobel Prize in Medicine in 1927.
The technique was known as malariatherapy; however, it was dangerous, killing
about 15% of patients, so it is no longer in use.
Data were collected by the US Public Health Service between 1940 and 1963, when
malaria therapy was a recommended treatment for neurosyphilis. Infections with
different strains of P. falciparum, P. vivax, P. ovale, and P. malariae were induced
in patients for the treatment of neurosyphilis.
Afroamericans were however found to be refractory, and so they were treated with
different strains of P. falciparum under close medical supervision. They were in-
oculated either with sporozoites (generally through mosquito bite) or with infected
blood. Inoculations were preceded by variable sequences of blood and mosquito
passages of the strain. Microscopic examination of the blood was performed on an
almost daily basis.

Is the malaria therapy model identifiable ?

When the initial condition is partially known the system can be observable and
identifiable [93, 100].
If we consider the case of malariatherapy the initial condition is partially known.
Sporozoites are introduced and measured was performed daily.

Hence (x0 =
Λ

µ
, y2(0) = 0,m(0) = 0 are known. Only the value of y1(0) is

unknown.
Now y1(t) is known, hence ẏ1 + α1 y1 = β xm is also known. Consequently

x(t) = e−µx t

∫ t

0
(Λ− β x(s)m(s)) ds+ e−µx t x0,
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is also known.Then we know β m. Similarly

y2(t) = e−α2 t γ1

∫ t

0
y1(s) ds+ e−α2 t y2(0) = e−α2 t γ1

∫ t

0
y1(s) ds

is known. Finally

m(t) = e−µm t

∫ t

0
[r2 γ2 y2(s)− β x(s)m(s)] ds+ e−µm tm(0)

= e−µm t

∫ t

0
[r2 γ2 y2(s)− β x(s)m(s)] ds,

is known. Since we can know x, y1, y2,m and β xm, betais known.

This proves that the system (7.21) is observable and identifiable.

7.4.3 Numerical observers

If we prove that the system under consideration is observable and identifiable how
can we reconstruct the states and the unknown parameters. Dynamical observers
can be designed, but it is a difficult task. recently some advances have been
obtained [16, 24, 51, 100]. However we will propose something else.

We will consider observability, since we have seen that the identifiability can be,
with the augmented system, analyzed as an observability problem.{

ẋ = f(x, u)
y = h(x)

Measures are discrete, with a time interval of ∆t :

(y0, y1, . . . , yk),

with corresponding time

(0,∆t, · · · , k∆t)

The principle is very simple : for a initial condition (this is a guess) we compute
the ouptput

(h(x0), h(x(∆t, x0, u) ), · · · , h(x(k∆t, x0, u) ).

Then is evaluated the difference between what is predicted and what is measured
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Φ(x0) = min
x0

k∑
i=0

∥yi − y(i∆t, x0, u)∥22.

This a function of x0. Using an algorithm of minimization we compute

x̂0 = argmin
x0

Φ(x0)

By a numerical integration we obtain

x̂(t) = x(t, x̂0, u)

As the number of measurements grows, the size of the optimization increases. To
bound the size of the optimization, the least squares objective can be modified to
employ a fixed-size moving window in which the number of measurements that we
base our estimate on (and hence the size of the optimization) remains constant.

Practically that means that, if our horizon is of length N , we will estimate x0 using
the N first measures. The we will have an estimation x̂(N ∆t). This estimation
will be the guess for the next time window [(N + 1)∆t, · · · , 2N ∆t)] giving a new
x̂(N ∆t) and an estimation for x(2N ∆t) . . . .

The use of a finite horizon and moving windows is motivated by two reasons. The
first one is the limited amount of memory, which limits the size of the optimization
problem. The second one is that generally measures are corrupted by noise. Hence
taking many measures will add many noise to the data used in computation.

What is the size of the window ? This is an engineering problem, but we have some
hints. E. Sontag has proved that For differential equations with r parameters 2 r+1
experiments are enough for identification. Aeyels has shown that in n-dimensions
2n + 1 samples are necessary to observe observability [88, 1, 2]. Then for the
augmented system with n states and p parameters the size of the window should
not be less than 2 (n+ p) + 1.

A program

Here a routine, written in Scilab ( like MATLAB but free)

1 function Xob=numobs3(dyn ,output ,Tm,N,x0_est , x0_reel)

2 // Numerical observer

3 // comparion with real measures

4 //

5

6 // dyn dynamical of system

7 // output :observation
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8 //(vectorialized)

9 // The function dyn must be defined

10 // as the output function

11

12 // Tm vector of time measures

13 // N number of points in window

14 // x0_guess initial guess

15 // x0_reel real initial condition

16 // This program compute real trajectories and

17 // estimated one

18

19 // k number of windows

20 // windows are joining at their extremities

21 k=floor(( length(Tm)-1)/(N-1))

22

23 // initialzsation

24 //real values

25 Xreel=ode(x0_reel ,Tm(1),Tm,dyn)

26 // curves

27 XXreel=ode(x0_reel ,Tm(1), linspace(Tm(1),Tm($),1000),dyn)

28 // observer on frist window

29 Xest=ode(x0_est ,Tm(1),Tm(1:N),dyn)

30 Mesures=output(Xreel)

31 // Measures with noise

32 Mesuresb=Mesures+grand(1,length(Mesures),’nor’ ,0,1)

33 nb_etat=length(x0_est) // state dimension

34 x0_guess=x0_est

35 // intial conditions in memory

36 //in each window

37 X=[]

38 // curves points in memory

39 XX=[]

40 // curves times in memory

41 TT=[]

42 //

43 for i=1:k

44

45 z=1+(i-1)*(N -1):1+i*(N-1) // index window i

46

47 T=Tm(z);
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48 mesureF=Mesuresb(z)

49 x0_opt=optimize(dyn ,output ,mesureF ,x0_guess)

50 Z=ode(x0_opt ,T(1),T,dyn)

51 sol=ode(x0_opt ,T(1), linspace(T(1),T($)),dyn);

52 TT=[TT,linspace(T(1),T($))]

53 XX=[XX,sol]

54 X=[X,Z(:,1:$-1)]

55 x0_guess=Z(:,$)

56

57 end

58

59 // If the windows has not taken all the points

60 // one last window

61

62 if pmodulo(length(Tm),N -1)~=1

63 T=Tm(1+k*(N-1):$)

64 mesureFi=Mesuresb (1+k*(N-1):$)

65 x0_opt=optimize(dyn ,output ,mesureFi ,x0_guess)

66 Z=ode(x0_opt ,T(1),T,dyn)

67 sol=ode(x0_opt ,T(1), linspace(T(1),T($)),dyn);

68 TT=[TT,linspace(T(1),T($))]

69 XX=[XX,sol]

70 X=[X,Z(:,1:$)]

71 end

72

73

74 Xob=X;

75

76 for j=1: nb_etat

77 xset("window",j)

78 clf

79 plot(Tm ’,[Xreel(j,:); Xob(j,:)]’,’+’)

80 plot(TT’,XX(j,:)’,’b’)

81 plot(linspace(Tm(1),Tm($),1000)’, XXreel(j,:)’,’g:’)

82 end

83

84 xset("window",nb_etat +1)

85 clf

86 plot(Tm ’,[Mesures;Mesuresb]’,’o’)

87



220 7. IDENTIFICATION OF PARAMETERS.

88 endfunction

89

90 // ///////////////////////////////////

91 function x0_opt=optimize(fun ,output ,mesureF ,x0_guess ,T)

92 m=length(mesureF)

93 x0_opt=lsqrsolve(x0_guess ,crit ,m)

94 endfunction

95

96 // ////////////////////

97 function y=crit(x,m)

98 z=ode(x,T(1),T,fun);

99 y=output(z)

100 y=y-mesureF

101 y=y(:)

102 endfunction

Example for the Schistosome example
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Figure 7.3: Measures w : blue real measures, green with noise
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Figure 7.4: Estimation of w : noise is filtered
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Figure 7.5: Estimation of y
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[17] F. Brauer and C. Castillo-Chávez, Mathematical models in population
biology and epidemiology, vol. 40 of Texts in Applied Mathematics, Springer-
Verlag, New York, 2001.

[18] F. Brauer, J. Wu, and P. van den Driessche, eds., Mathematical
Epidemiology, no. 1945 in Lectures Notes in Math., Springer-Verlag, 2008.

[19] G. Butler and P. Waltman, Persistence in dynamical systems, J. Dif-
ferential Equations, 63 (1986), pp. 255–263.

[20] K. Cooke, P. van den Driessche, and X. Zou, Interaction of matura-
tion delay and nonlinear birth in population and epidemic models., J Math
Biol, 39 (1999), pp. 332–352.

[21] K. L. Cooke and Z. Grossman, Discrete delay, distributed delay and
stability switches, J. Math. Anal. Appl., 86 (1982), pp. 592–627.

[22] D. Cox and H. Miller, The theory of stochastic processes, Chapman and
Hall, 1965.

[23] P. De Leenheer and H. L. Smith, Virus dynamics: A global analysis.,
SIAM J. Appl. Math., 63 (2003), pp. 1313–1327.



BIBLIOGRAPHY 225

[24] M. Diaby, A. Iggidr, and M. Sy, Observer design for a schistosomiasis
model, Math. Biosci., 269 (2015), pp. 17–29.

[25] O. Diekmann and J. A. P. Heesterbeek, Mathematical epidemiology of
infectious diseases, Wiley Series in Mathematical and Computational Biol-
ogy, John Wiley & Sons Ltd., Chichester, 2000. Model building, analysis
and interpretation.

[26] O. Diekmann, J. A. P. Heesterbeek, and J. A. J. Metz, On the
definition and the computation of the basic reproduction ratio R0 in models
for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990),
pp. 365–382.

[27] O. Diekmann and M. Kretzschmar, Patterns in the effects of infectious
diseases on population growth., J Math Biol, 29 (1991), pp. 539–570.

[28] S. Diop and M. Fliess, Nonlinear observability, identifiability, and persis-
tent trajectories, in proceedings 36th IEEE-CDC, 1991, pp. 714–719.

[29] Y. Dumont and J. M. Tchuenche, Mathematical studies on the sterile
insect technique for the chikungunya disease and aedes albopictus., J Math
Biol, (2011).

[30] A. Fall, A. Iggidr, G. Sallet, and J. J. Tewa, Epidemiological models
and Lyapunov functions, Math. Model. Nat. Phenom., 2 (2007), pp. 55–73.
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