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N -body simulations are computationally expensive, so machine-learning-based emulation techniques have
emerged as a way to increase their speed. Although fast, surrogate models have limited trustworthiness
due to potentially substantial emulation errors that current approaches cannot correct for. To alleviate this
problem, we introduce COmoving Computer Acceleration (COCA), a hybrid framework interfacing machine
learning with an N -body simulator. The correct physical equations of motion are solved in an emulated frame
of reference, so that any emulation error is corrected by design. This approach corresponds to solving for the
perturbation of particle trajectories around the machine-learnt solution, which is computationally cheaper
than obtaining the full solution, yet is guaranteed to converge to the truth as one increases the number
of force evaluations. Although applicable to any machine learning algorithm and N -body simulator, this
approach is assessed in the particular case of particle-mesh cosmological simulations in a frame of reference
predicted by a convolutional neural network, where the time dependence is encoded as an additional input
parameter to the network. We find that COCA efficiently reduces emulation errors in particle trajectories,
requiring far fewer force evaluations than running the corresponding simulation without machine learning. As
a consequence, we obtain accurate final density and velocity fields for a reduced computational budget. We
demonstrate that this method shows robustness when applied to examples outside the range of the training
data. When compared to the direct emulation of the Lagrangian displacement field using the same training
resources, COCA’s ability to correct emulation errors results in more accurate predictions. Therefore, COCA
makes N -body simulations cheaper by skipping unnecessary force evaluations, while still solving the correct
equations of motion and correcting for emulation errors made by machine learning.

I. INTRODUCTION

N -body simulations represent the state-of-the-art nu-
merical method for studying the dynamics of complex
systems, including non-linear gravitational structure for-
mation in the Universe (Vogelsberger et al ., 2020; An-
gulo & Hahn, 2022). Such simulations can be incredibly
computationally expensive to run (e.g. Potter, Stadel &
Teyssier, 2017; Heitmann et al ., 2019; Ishiyama et al .,
2021; Frontiere et al ., 2022; Wang, Gao & Meng, 2022);
hence, various machine learning (ML)-based approaches
have been proposed to either remove the requirement to
run physical simulations or to reduce the complexity of
the simulator used.

The most straightforward application of ML methods
is as surrogate models, which take initial conditions as
inputs and emulate various features of the corresponding
full N -body simulation as outputs. For example, Lucie-
Smith et al . (2018) were able to predict halo properties
from the initial conditions given certain environmental
properties. Perraudin et al . (2019) used Generative Ad-
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leclercq.eu/; ORCID: 0000-0002-9339-1404; Corresponding au-
thor.

versarial Networks (GANs) to generate visually plausi-
ble three-dimensional cosmological density fields but en-
countered difficulties in reproducing the correct statisti-
cal distribution of physical density fields. Going further,
Conceição et al . (2024) built an emulator of cosmologi-
cal density fields based on a combination of dimension-
ality reduction via principal component analysis and su-
pervised ML. He et al . (2019) demonstrated that one
can replicate the full result of particle-mesh (PM) sim-
ulations (i.e., a Lagrangian displacement field) using a
deep neural network which takes the Zel’dovich approx-
imation (Zel’dovich, 1970) displacement field as input.
This work was extended to tree-based N -body simula-
tions by Alves de Oliveira et al . (2020). Such emulators
can replicate the power spectrum to the percent level up
to k ≈ 1hMpc−1. Jamieson et al . (2023) further ex-
tended these works by predicting both the displacement
and velocity fields through two separate neural networks
and by incorporating the cosmological matter density
information through the addition of a “style” parame-
ter (Karras et al ., 2020, see Section III C). The result-
ing emulator can reproduce power spectra and bispectra
to within a few percent and achieves a similar level of
cross-correlation with the true simulation run with the
same initial conditions. By adding a time variable as
an additional style parameter, Jamieson et al . (2024)
were able to eliminate the need for two separate net-
works and produce an emulator capable of predicting
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N -body outputs as a function of redshift. The speed
and differentiable nature of particle-based emulators en-
able them to be integrated within field-based inference
of initial conditions (Doeser et al ., 2023), with poste-
rior re-simulations indicating faithful reconstruction of
the initial conditions. Simulations including the effects
of massive neutrinos (Giusarma et al ., 2023) or modified
gravity (Saadeh, Koyama & Morice-Atkinson, 2024) can
also be emulated using similar neural network techniques.

Instead of completely bypassing the N -body simula-
tion, one can include ML corrections that capture unre-
solved physics in low-resolution, cheaper simulations. For
example, Lanzieri, Lanusse & Starck (2022) introduced
an additional effective force to PM simulations to cap-
ture unresolved forces between particles. Their machine-
learnt isotropic Fourier filter was extended by Payot et al .
(2023) to depend not only on time and wavenumber but
also on cosmological parameters. Super-resolution tech-
niques based on GANs (Kodi Ramanah et al ., 2020; Li
et al ., 2021) and U-nets (Zhang et al ., 2024) have also
been proposed, achieving power spectra correct within
a few percent, as well as reasonable bispectra, void size
functions, and halo mass functions correct to within 10%
for halos down to ≈ 1011 M⊙ in mass. Given the compu-
tationally demanding nature of hydrodynamical simula-
tions, Dai & Seljak (2021) introduced a light model (with
only O(10) learnable parameters) to transform the out-
put of a dark-matter-only simulation to one that resem-
bles the hydrodynamical simulation run with the same
initial conditions. Ding, Lavaux & Jasche (2024) also
presented a light and interpretable neural network to pro-
duce halo catalogues from dark matter density fields.

Accuracy and interpretability are pivotal challenges in
the application of machine learning to N -body simula-
tions. Despite the high reported accuracy of the methods
reviewed above on various tests (mainly using summary
statistics), none of these models can be expected to per-
fectly recover the truth. Are ML-accelerated simulation
algorithms sufficiently accurate to be used in real-world
applications? Without a ground-truth model to com-
pare against during actual use (since such algorithms
are designed to eliminate the need for it), current ap-
proaches have limited means of identifying the emulation
error and cannot correct for it. Since typical simulations
usually also involve simplifying assumptions and approx-
imations, perfectly accurate ML-based models may not
be required for many purposes. The question that arises
is then that of the interpretability of ML, in order to
control the approximation made with respect to a phys-
ical simulator. Unfortunately, many ML algorithms, in-
cluding (deep) neural networks, lack interpretability. If
machines predict something humans do not understand,
how can we check (and trust) the results?

In this paper, we contend that addressing the lack of
interpretability of ML is not always necessary to use an
emulator of an expensive model while maintaining con-
trol over the degree of accuracy. We elucidate this ar-
gument by constructing a framework in which emulation

of N -body simulations is made an ML-safe task by phys-
ically rectifying emulation inaccuracies. By “ML-safe,”
we mean systems that are reliable, robust, and trustwor-
thy by construction. The key idea is to find a mathe-
matically equivalent form of the system’s equations of
motion, where we solve for the (not necessarily small)
perturbation around the approximate solution provided
by ML. From a physical point of view, in N -body sim-
ulations obeying Newtonian dynamics, this is equivalent
to solving the equation of motion in an emulated frame
of reference. Since the ML solution is designed to be
approximately correct, computing corrections is numeri-
cally easier than evolving the full system, thus requiring
fewer evaluations of the forces. Through the number and
the temporal positions of force evaluations, the user con-
trols the trade-off between speed and accuracy, ranging
from fully trusting the ML solution by never correcting
particle trajectories to correcting for ML emulation er-
rors at any time step of the simulation. The system has
the theoretical guarantee of asymptotically converging to
the physical solution as the number of force evaluations
increases.

For gravitational N -body simulations of dark matter
particles, we introduce the COmoving Computer Accel-
eration (COCA) approach to running cosmological sim-
ulations within an emulated frame of reference. While
traditional emulators aim to translate initial conditions
into final particle positions, directly representing the non-
linear dark matter distribution, COCA aims to emulate
a frame of reference in which to run a physical sim-
ulation with lower computational cost. The approach
can be seen as a generalisation and improvement of the
idea behind COmoving Lagrangian Acceleration (COLA)
(Tassev, Zaldarriaga & Eisenstein, 2013). As an illus-
tration, we compare the results of COLA and COCA
simulations when forces are evaluated through a particle-
mesh (PM) scheme. We find that using our ML-enhanced
approach requires very few force evaluations (approxi-
mately 8, compared to 20 for COLA) to correct for emula-
tion errors, yielding percent-level accurate power spectra,
bispectra, and cross-correlation to a reference simulation.

This paper is organised as follows. In Section II, we re-
view the COLA approach to N -body simulations, extend
it to yield COCA, and describe the benefits of COCA in
terms of computational efficiency. A more thorough de-
scription is provided in Appendix A. We introduce our
emulator for the frame of reference in Section III and de-
scribe the training procedure and validation metrics for
the COCA simulations. In Section IV, we present our re-
sults: the performance of the emulator, the accuracy of
COCA simulations as a function of the number of force
evaluations, the generalisation to an example known to
be outside the range of the training set, the comparison
to a Lagrangian displacement field emulator, and a dis-
cussion of the computational performance. We conclude
in Section V, discussing potential future extensions and
applications of this study.
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II. THEORY

For simplicity, some of the equations in this section are
abridged. We reintroduce the omitted constants, tempo-
ral prefactors, and Hubble expansion in Appendix A.

A. Review of COLA

In a cosmological dark matter-only N -body code, one
wishes to compute the final Eulerian positions of particles
x, as a function of scale factor a, as they interact under
gravity. If the initial comoving particle positions are q,
then the Lagrangian displacement field is given by (e.g.
Bernardeau et al ., 2002, for a review)

Ψ(q, a) ≡ x(a)− q. (1)

One then must solve the equation of motion which reads
schematically

∂2aΨ(q, a) = −∇Φ(x, a), (2)

where the gravitational potential Φ satisfies the Poisson
equation sourced by the density contrast field δ(x, a),

∆Φ(x, a) = δ(x, a). (3)

In the perturbative regime, analytic solutions for
Ψ(q, a) can be derived, which are known as Lagrangian
Perturbation Theory (LPT, Zel’dovich, 1970; Buchert,
1989; Bouchet et al ., 1995; Bernardeau et al ., 2002).
These solutions are valid on large scales but become in-
accurate once shell crossing occurs, making the approx-
imation more reliable at early times. This behaviour is
illustrated in Fig. 1(a), where initially the LPT trajecto-
ries and the true trajectories are indistinguishable, but
the discrepancy increases over time.

The temporal COmoving Lagrangian Acceleration
(Tassev, Zaldarriaga & Eisenstein, 2013, tCOLA or sim-
ply COLA in the following) algorithm aims to separate
the temporal evolution of large and small scales by evolv-
ing large scales using analytic LPT results and small
scales using a numerical solver. This is accomplished by
decomposing the Lagrangian displacement field into two
components (Tassev & Zaldarriaga, 2012):

Ψ(q, a) ≡ ΨLPT(q, a) +ΨCOLA
res (q, a), (4)

where ΨLPT(q, a) represents the LPT displacement field,
and ΨCOLA

res (q, a) denotes the residual displacement of
each particle as observed from a frame comoving with
an “LPT observer,” whose trajectory is defined by
ΨLPT(q, a). Knowing ΨLPT(q, a), one does not need to
solve for the full trajectory of the particle, but just the
residual between the approximation and the truth (the
blue arrows in Fig. 1(a)).

Using Eq. (4), it is possible to rewrite Eq. (2) as

∂2aΨ
COLA
res (q, a) = −∇Φ(x, a)− ∂2aΨLPT(q, a). (5)

Therefore, one can view LPT as providing a new frame of
reference within which we solve the equations of motion.
The term ∂2aΨLPT(q, a) can be thought of as a fictitious
force acting on particles, caused by our use of a non-
inertial frame of reference.

Since particles experience lower typical accelerations
in the LPT frame compared to the natural cosmolog-
ical frame, solving the equation of motion numerically
becomes a comparatively simpler task, requiring fewer
time steps to achieve equivalent accuracy (Tassev, Zal-
darriaga & Eisenstein, 2013; Howlett, Manera & Per-
cival, 2015; Leclercq, Jasche & Wandelt, 2015; Koda
et al ., 2016; Izard, Crocce & Fosalba, 2016). In par-
ticular, COLA has been demonstrated to always yield
correct results at large scales, even with a small number
of time steps (≤ 10), unlike a basic particle-mesh (PM)
code. Given that Eq. (5) is mathematically equivalent to
Eq. (2), COLA is asymptotically equivalent to the corre-
sponding standard N -body code (e.g. a PM code if forces
−∇

(
∆−1δ

)
are evaluated via a standard PM technique),

in the limit of an infinite number of time steps.

B. COCA formalism

While the COLA formalism has proven effective in
solving the equation of motion within the frame of refer-
ence defined by LPT, there is no requirement to adhere to
LPT or any other analytic approximation in the decom-
position given by Eq. (4). According to the principle of
Galilean invariance, the equation of motion can be solved
in any frame of reference, provided appropriate fictitious
forces are introduced for non-inertial frames. Consider-
ing that the simplest scenario is the one where no motion
occurs, we aim at finding a frame of reference where par-
ticles are nearly stationary. In such a frame of reference,
solving the equation of motion numerically to reach a
given level of accuracy becomes an easier problem than
in COLA. This is the key insight that underpins the for-
malism proposed in this paper. We dub this approach
COmoving Computer Acceleration (COCA).

We propose utilising a ML algorithm, such as a neural
network, as an emulator to learn and predict the tra-
jectories of particles in N -body simulations. Since the
LPT frame already provides a good approximation of the
trajectories, particularly on large scales, we opt to learn
displacements relative to the LPT frame. Therefore, the
emulator outputs a displacement field ΨML(q, a) that ap-
proximates Ψ(q, a)−ΨLPT(q, a).

Rather than directly employing the emulator as a sur-
rogate for simulation results, we use the frame of refer-
ence corresponding to the emulated trajectories in order
to run a simulation. Following the same spirit as COLA,
we split the Lagrangian displacement field into three con-
tributions,

Ψ(q, a) ≡ ΨLPT(q, a) +ΨML(q, a) +ΨCOCA
res (q, a), (6)

where ΨML(q, a) is the ML contribution to the La-
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FIG. 1. Schematic illustration of the (a) COLA and (b) COCA formalism for cosmological simulations. In COLA, one solves
the equations of motion in the frame of reference given by LPT, so one computes the residual (“res”) between the LPT trajectory
and the true position x, of particles. In COCA, one emulates a frame of reference closer to the true trajectory by adding a ML
contribution to LPT, so one solves for the (smaller) residuals between x and the emulated frame.

grangian displacement field, and the residual displace-
ment ΨCOCA

res (q, a) represents the emulation error. Dif-
ferent contributions are shown schematically in Fig. 1(b).

Reframing Eq. (2) using Eq. (6), the equation of mo-
tion for COCA contains an extra fictitious force with re-
spect to COLA:

∂2aΨ
COCA
res (q, a) =−∇Φ(x, a)− ∂2aΨLPT(q, a)

− ∂2aΨML(q, a).
(7)

In COCA, the predicted displacement ΨLPT(q, a) +
ΨML(q, a) approximates the optimal frame of reference
in which to solve the simulation (the one where all par-
ticles are at rest). Ideally, in case of perfect emulation,
solving the equation of motion would result in no tra-
jectory adjustment (ΨCOCA

res (q, a) = 0 for any a). Other-
wise, numerically solving Eq. (7) corrects the trajectories
of particles to produce a more accurate solution.

We describe in more detail the COCA formalism in
Appendix A. Notably, while above we described the
framework in terms of an emulated displacement field
ΨML(q, a), we show that we can equivalently define the
new frame of reference by the momentum p ≡ dx/da of
particles, so that

p(a) ≡ pLPT(a) + pML(a) + pres(a), (8)

where pLPT(a) and pML(a) denote momenta predicted by
LPT and ML, respectively, and the residual momentum
pres(a) is determined by solving the equations of motion.

C. Reducing the number of force evaluations

To integrate the equations of motion in the new frame
of reference, we utilise a symplectic “kick-drift-kick”
(leapfrog) algorithm (e.g. Birdsall & Langdon, 1985).
With this method, the positions x, and momenta p, of
the particles are updated at different times, typically with

one momentum update between every two position up-
dates. A schematic illustration of the technique is given
in Fig. 2, with the full details provided in Appendix A.

At each momentum update (“kick”) we face two
choices. One can assume that the emulated frame of
reference is sufficiently accurate and thus update the par-
ticle momenta by simply evaluating the emulator, corre-
sponding to following the “emulated” (purple) trajectory
in Fig. 1(b) (equivalent to assuming that gδ(t

D) = 0
in equation (A25), using the notations of Appendix A).
Alternatively, one may deem the emulation error signif-
icant and opt to correct the trajectory, aiming to bring
the particles back to the “N -body” (black) trajectory in
Fig. 1(b). This correction involves evaluating gravita-
tional forces between particles1 (gδ(t

D) in Appendix A)
and using the complete form of the kick operator. Cor-
recting trajectories is more computationally expensive
than simply following the emulated trajectories, so the
number of force evaluations nf , should be as small as pos-
sible, but large enough to correct for emulation errors.
During time steps without force evaluations, particles
move according to trajectories defined by their respective
frames of reference (ΨLPT for COLA and ΨLPT +ΨML

for COCA). Hence, nf = 0 corresponds to the LPT solu-
tion in COLA simulations and a purely emulated one in
COCA simulations.

In COCA, the ability to reduce the number of force
evaluations introduces an additional degree of freedom
compared to PM/COLA simulations, where forces are
evaluated at every time step. Force evaluations can in
principle be placed at any of the time steps, however we

1 In a PM scheme, which we employ in this paper, forces are
computed by deriving the density field from particle positions
through cloud-in-cell binning, solving the Poisson equation in
Fourier space to obtain the gravitational potential, and then fi-
nite differencing the potential in configuration space to get the
forces.
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FIG. 2. Schematic illustration of the kick-drift-kick integra-
tion scheme employed in this study. The initial positions xi

and momenta pi are evolved to their final values xf and pf ,
with updates to these quantities occurring at different times.
Unlike traditional kick-drift-kick integration, we choose not
to evaluate forces that appear in the equations of motion at
all time steps, but only at a subset (steps 8, 9 and 10 in this
example). At all other kick steps, the momenta are updated
according to the emulated frame of reference only.

find that concentrating all evaluations towards the end of
the simulation, when structure formation is non-linear,
typically yields the most accurate results. Up until the
first force evaluation, the COCA framework consists in
predicting particle positions x and momenta p at spe-
cific times, functioning in a similar way as more tradi-
tional emulators (e.g. Jamieson et al ., 2023). In Fig. 2
we show an example of a kick-drift-kick scheme with ten
time steps, with three force evaluations at time steps 8,
9 and 10. At all other time steps, momentum updates
(kicks) rely solely on the chosen frame of reference.

III. EMULATION

We remind the reader that the field to be emulated,
pML(q, a), is the residual momentum field with respect
to the LPT momentum field, namely

p(q, a)− pLPT(q, a), (9)

at any value of a corresponding to a kick time step (see
Appendix A).

A. Training data

For the application of COCA described in this work, we
chose to emulate the frame of reference in a cubic box of
length 128h−1 Mpc with N3 = 643 dark matter particles,
resulting in a final density field at a = 1 on a grid with a
resolution of ∆x = 2h−1 Mpc. This resolution is approx-
imately the same as that used by Jamieson et al . (2023).2
Since the focus of this paper is the time evolution of

2 The number of force evaluations needed in COCA to achieve a
given accuracy likely depends on the accuracy of the frame of
reference emulator and, therefore, on the resolution. We leave
the investigation of such effects to future work.

the fields, we adopt fixed cosmological parameters equal
to the best-fit values (TT,TE,EE+lowE+lensing+BAO)
from Planck 2018 (Planck Collaboration, 2020): Ωb =
0.0490, Ωm = 0.3111, h = 0.6766, τ = 0.0561, ns =
0.9665, and σ8 = 0.8102. We assume a flat Universe and
a non-evolving equation of state for dark energy.

Although the COCA formalism can be applied to any
method of computing the forces between particles (PM,
P3M, tree-based, etc.), for this paper, we chose to work
with a PM force solver, utilising a modified version of the
publicly available Simbelmynë code3 (Leclercq, Jasche
& Wandelt, 2015; Leclercq et al ., 2020). For our simu-
lations, we generated initial conditions at a scale factor
a = 0.05 using second-order LPT and solved the equa-
tions of motion using COLA with 20 time steps equally
spaced in a and a PM grid of size 643 (see Izard, Crocce &
Fosalba, 2016; Koda et al ., 2016, for investigations on the
effect of these choices in COLA simulations). Although
we have verified that this initial scale factor and number
of time steps are appropriate to give converged results
for all k ≤ 1hMpc−1, the “reference” against which we
compare in testing refers to a COLA simulation with the
same setup, except with 100 time steps equally spaced
in a. At each time step of the simulations, we output
the difference between the computed momentum of the
particles p and the LPT momentum pLPT, which is the
quantity we must emulate.

We produce 100 simulations for training, 50 for val-
idation, and a further 50 for testing. This is a suf-
ficiently small number of training simulations that re-
training with a different resolution or specifications does
not require significant computational resources. While
one could potentially achieve higher accuracy for the em-
ulator with more training simulations, the aim of this
paper is primarily to demonstrate how to correct for em-
ulation errors rather than to produce the optimal emu-
lator. Therefore, we find 100 training simulations to be
sufficient for our purposes. For each simulation, we use
all 20 output snapshots, resulting in a total of 2000 fields
for training. In addition, we use 1000 fields for validation
and 1000 for testing.

B. Scaling of momenta

In Fig. 3, we plot a slice of the field p − pLPT as a
function of scale factor, for one of our test simulations.
From visual inspection, we find that the large-scale spa-
tial structure of the field to be emulated does not change
significantly as a function of time, particularly at late
times, but its magnitude does. We therefore choose to
rescale the momenta to be emulated by defining

pML (q, a) ≡ D(a)H(a)ϖ(a)p̃ML (q, a) , (10)

3 https://simbelmyne.florent-leclercq.eu/

https://simbelmyne.florent-leclercq.eu/
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FIG. 3. Slice of the difference between the true momenta of particles p and the LPT prediction pLPT, for a test simulation,
as a function of scale factor a. At late times, the spatial structure of the field p− pLPT remains relatively constant, with most
of the time dependence being a simple multiplicative scaling.
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FIG. 4. Scaling of the residual momentum as a function of
scale factor, as defined in Eq. (10). The points and error
bars represent the mean and standard deviation, respectively,
across the 100 training simulations. The curve represents the
best fit, as given by Eq. (11).

where p̃ML is defined to have a standard deviation of
unity, D(a) is the linear growth factor, H(a) is the con-
formal Hubble parameter in units of h, and ϖ(a) is a
time-dependent function which we wish to approximate.
Our emulator is designed to directly predict p̃ML, and
thus this scaling has the benefit of standardising the out-
put, since p̃ML has zero mean and standard deviation
unity.

To find an approximation for ϖ(a), we compute the
standard deviation of the 2000 training p − pLPT fields
and fit these as a function of a using the ESR (Bartlett,
Desmond & Ferreira, 2022) symbolic regression code. We
use a mean squared error loss function and allow func-
tions to be comprised of addition, multiplication, sub-
traction, division, the power operator, as well as free
constants, θ, and the scale factor a. Upon inspecting
the fitted equations, we find that a power law provides
a sufficiently simple yet accurate approximation for our

purposes:

ϖ(a) ≈ (θ0a)
θ1 , (11)

with parameters θ0 = 1.1415174 and θ1 = 2.3103984,
which yields a root mean squared error of 1.5×10−3. We
compare this fit to the training data in Fig. 4, from which
we see that it accurately reproduces ϖ(a) at all scale fac-
tors. Note that any error in this fit can be compensated
for by the emulator, so a perfect fit is not required.

C. Neural network architecture

To emulate p̃ML, we utilise a U-net/V-net architec-
ture (Ronneberger, Fischer & Brox, 2015; Milletari,
Navab & Ahmadi, 2016), with a similar implementation
to Alves de Oliveira et al . (2020); Jamieson et al . (2023);
Jamieson et al . (2024). Our model consists of three res-
olution levels connected in a “V” shape, using two down-
sampling (by stride-2 23 convolutions) and two upsam-
pling (by stride-1/2 23 convolutions) layers. At each level,
we apply a 33 convolution and, as in a V-Net, we apply
a 13 convolution as a residual connection (ResNet, He
et al ., 2016) within each block. A batch normalisation
is applied after each convolution, which is followed by a
leaky ReLU activation function with a negative slope of
0.01. Each layer has 64 channels, except the input (1),
output (3), and those after concatenations (128).

For every convolutional layer, we introduce a “style”
parameter4 (borrowing the nomenclature from Style-
GAN2, Karras et al ., 2020), where each convolutional

4 A style parameter in a neural network is an additional input at
each layer that encodes dependence on an important feature. In
our case, the scale factor a encodes the dependence on clustering
at various cosmological times. For more details, we refer the
interested reader to Eq. (1)–(3) of Karras et al . (2020).
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kernel is multiplied by an array of the same dimension as
the layer’s input and with values equal to the style pa-
rameter. Since we are producing a time-dependent em-
ulator, we use the scale factor a as our style parameter.
Our network is implemented and trained using a modified
version of the map2map5 package and pytorch (Paszke
et al ., 2019).

The input to the emulator is the redshift-zero linear
density field (at a = 1). This contrasts with He et al .
(2019), Alves de Oliveira et al . (2020), Jamieson et al .
(2023) and Jamieson et al . (2024), who use the three dis-
placement fields predicted by first-order LPT as input.
Given that the latter is computed deterministically from
the former, both fields contain the same amount of infor-
mation. However, the linear density field requires three
times less memory to store, making our approach more
memory efficient.

We also note that we achieve good performance for our
emulator with only N3 = 643 voxels in the input field,
whereas Jamieson et al . (2023) uses N3 = 1283 for a sim-
ilar resolution, resulting in a further factor of 8 reduction
in memory requirements. The smaller input size neces-
sitates one fewer resolution layer in our neural network
architecture, thus reducing the number of parameters in
our model to 2.4×106, compared to 3.4×106 in Jamieson
et al . (2023). It also requires less padding of the input
field: we use periodic padding of 24 voxels, compared to
48 in Jamieson et al . (2023).

Regarding the dependence of the emulation on cosmol-
ogy, we expect the sensitivity of p−pLPT to cosmological
parameters to be relatively small, since long-range fea-
tures should be captured in pLPT. Moreover, we choose
to use the linear density field as input instead of the white
noise field from which it is produced. This way, our em-
ulator of p−pLPT only depends on Ωm, as the equations
of motion depend solely on this parameter. The depen-
dence on all other cosmological parameters is contained
in the linear power spectrum, which is used to trans-
form the white noise field into the linear density field.
Thus, adding only Ωm as a second style parameter to
the network would be sufficient to capture the depen-
dence of the framework on cosmological parameters. For
simplicity, we fix Ωm and save this extension for future
work. Omitting Ωm as a second style parameter also en-
ables us to test the robustness of the COCA framework
in the case of cosmological parameter misspecification,
and hence check for ML-safety. We discuss this aspect in
Section IV C.

To summarise, our architecture is similar to that of
Jamieson et al . (2023), with three main differences: (i)
we use a single channel (linear density) input rather than
three channels (LPT displacements or velocities); (ii) we
have three resolution levels instead of four (since we work
with N3 = 643 grids as opposed to N3 = 1283); and (iii)

5 https://github.com/eelregit/map2map/

we include a as a style parameter (as in Jamieson et al .,
2024) and fix Ωm.

D. Training

As our loss function, we choose

Loss ≡ logL1 + logL2, (12)

where

Ln ≡
∑
q

∑
i

{[(pLPT + pML)i]
n − [(ptrue)i]

n}2 , (13)

and the sum runs over the Lagrangian coordinates of the
particles, q, and the three Cartesian components, i ∈
x, y, z.

This functional form is partially inspired by Jamieson
et al . (2023). The L1 term matches pML to the resid-
ual momenta ptrue −pLPT, whereas the L2 term ensures
that the full momentum field (including the LPT con-
tribution) matches ptrue. Jamieson et al . (2023) found
that terms similar to L2 are required to correctly pre-
dict redshift-space distortions. We leave the investigation
of redshift-space distortions in COCA for future work.
Both terms of our loss function use the mean square er-
ror between the fields in Lagrangian coordinates. Un-
like Jamieson et al . (2023), we do not include any term
in Eulerian coordinates. Given the computational and
memory requirements to use the displacement fields in
Eulerian coordinates, and the good performance already
achieved with our choice, we decided to omit such addi-
tional terms.

We use the Adam optimiser (Kingma & Ba, 2014) with
decoupled weight decay (AdamW) (Loshchilov & Hutter,
2017), an initial learning rate of 1.5 × 10−4, a weight
decay coefficient of 8× 10−3, and parameters β1 = 0.85,
β2 = 0.994, and ϵ = 3 × 10−9. The learning rate is
reduced on a plateau by a factor of 0.35 when the loss
does not improve by more than 10−3 over 50 epochs.
After a change in learning rate, we apply a cooldown of
30 epochs before the scheduler resumes normal operation.
We use a batch size of 5 and train on a single V100 GPU,
which has 32 GB of RAM. The entire time for generating
the training, validation, and test simulations (for which
we use 40 Intel Xeon Gold 6230 cores) and training was
120 hours, corresponding to 277 epochs, by which time
the training and validation losses had plateaued.

E. Validation metrics

To quantitatively determine the accuracy of the COCA
simulations, we compute the dark matter density field δ
using a cloud-in-cell estimator (Hockney & Eastwood,
1981) and the velocity field v using a simplex-in-cell es-
timator (Hahn, Angulo & Abel, 2015; Leclercq et al .,
2017). To work with a scalar field rather than a vector

https://github.com/eelregit/map2map/
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field, we compute the divergence of the velocity field in
Fourier space, ∇ · v.6

For both fields φ ∈ {δ,∇ · v}, we compute the (auto)
power spectrum Pφ(k) defined by

⟨φ (k)φ
(
k′)⟩ ≡ (2π)

3
δD
(
k + k′)Pφ(k), (14)

where δD is a Dirac delta distribution. For all simula-
tions, we compute the ratio of power spectra between the
simulation of interest and the reference. We also compute
the cross spectrum Pφaφb

(k) between the test simulation
and the reference simulation, defined by

⟨φa (k)φb

(
k′)⟩ ≡ (2π)

3
δD
(
k + k′)Pφaφb

(k). (15)

Thus, we obtain the cross-correlation coefficient

rφaφb
(k) =

Pφaφb
(k)√

Pφa
(k)Pφb

(k)
. (16)

One can interpret 1−r2 as the fraction of the variance in
the prediction that is not explained by the reference. In
schemes such as carpool (Chartier et al ., 2021), where
one combines exact and approximate simulations, 1− r2

is proportional to the required number of simulations.
Hence, improving r2 can dramatically reduce the required
computational resources. Just comparing r can hide the
importance of improving the cross-correlation: for exam-
ple, improving r from 0.9 to 0.99—a change of 0.09—
corresponds to explaining an additional 17% of the vari-
ance at that scale. For these reasons, in all figures, we
plot r2 rather than r, since it is more meaningful. All
two-point statistics are computed using Simbelmynë.

To assess higher-order statistics, we also compute the
bispectrum B(k1, k2, k3) of the density field, defined by

⟨δ (k1) δ (k2) δ (k3)⟩ ≡ (2π)
3
δD

(
3∑

i=1

ki

)
B(k1, k2, k3),

(17)
and, to factor out dependence on scale and cosmological
parameters, the reduced bispectrum,

Q(k1, k2, k3) ≡
B(k1, k2, k3)

P1P2 + P2P3 + P3P1
, (18)

with Pi ≡ Pδ(ki) for i ∈ {1, 2, 3}. We consider two dif-
ferent configurations in this work, which are designed to
be approximately the same as those used in Jamieson
et al . (2023); Doeser et al . (2023). First, we con-
sider a “squeezed” bispectrum, consisting of an isosce-
les triangle configuration with one small wavenumber,

6 The velocity potential is usually of greater physical interest than
the divergence of the velocity field. However, in Fourier space,
they are related by a factor of 1/k2, and since we only compare
the ratio of auto and cross spectra at a given k, all quantities
shown will be identical for both. Thus, we compute only the
divergence.

kℓ = 9.8 × 10−2 hMpc−1, and two sides of equal but
varying size, k1 = k2 = ks. For our second configuration,
we fix two of the wavenumbers, k1 = 0.1hMpc−1 and
k2 = 1.0hMpc−1, and vary the angle θ between them.
All bispectrum calculations are performed using pylians
(Villaescusa-Navarro, 2018).

IV. RESULTS

A. Emulator performance

In Fig. 5, we plot slices of the input δlinear, out-
put pML, target p − pLPT, and emulation error pres ≡
p − pLPT − pML for one of our test simulations, where
all fields are evaluated at a = 1. The target fields are ob-
tained by running COLA simulations with 20 time steps,
using initial conditions matching those of the test simu-
lations, and saving the residuals between the calculated
and LPT momenta. As described in Section III C, the in-
put is the linear density field, comprising a single channel,
whereas the output prediction is a three-component vec-
tor for each Lagrangian grid point. Since we are learning
the residuals between the true momentum and the LPT
prediction, correlations observed in p − pLPT are highly
localised, reflecting the accurate capture of large-scale
modes by LPT.

Visually, there is a notable correlation between p −
pLPT (second column of Fig. 5) and pML (third column
of Fig. 5). Leveraging the linear density field and scale
factor information, the emulator accurately identifies the
spatial structure of the pML field. The small emula-
tion errors indicate its capability to predict magnitudes
as well. We observe that the emulation error is signal-
dependent, resulting in larger values of pres in the regions
where |pML| is large. These regions are highly nonlinear
and appear as the simulation progresses. It is notewor-
thy that the emulation errors become particularly visible
when visualising the final quantities in Fig. 5, given their
lesser prevalence at earlier times.

To quantify the magnitude and time-dependence of the
emulation error, we plot the root mean squared error
(RMSE) between the true p − pLPT and pML, as pre-
dicted by the emulator, as a function of the scale factor
in Fig. 6. We present the mean and standard deviation
of the RMSE across 50 test simulations. At early times,
the trajectories of the particles are well described by per-
turbation theory. Thus, even though LPT is not a per-
fect description of the dynamics, the emulator can easily
correct for the error, maintaining a relatively constant
RMSE of less than 20 km s−1 for a < 0.5. We observe a
slight decrease in RMSE between a = 0.2 and a = 0.4,
which is understandable given Fig. 3: initially, the field
exhibits a high degree of small-scale structure, which be-
comes less significant and approximately constant over
time, making p − pLPT easier to predict during this pe-
riod. Beyond a ≈ 0.5, the small-scale dynamics become
highly non-linear, making it more challenging for the em-
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FIG. 5. Slices of the input, target, output, and error of the frame of reference emulator at the final time step (i.e., with
style parameter a = 1). The input is the (scalar) linear density field (first column). The emulator aims to predict the three
components (one per row) of its target p− pLPT (second column). The emulator’s predictions are shown in the third column,
and the emulation error pres = p − pLPT − pML is shown in the final column.

ulator to predict the correct frame of reference. Con-
sequently, we observe the behaviour schematically illus-
trated in Fig. 1: the emulation error grows at late times,
approximately doubling between a = 0.5 and a = 1.
Jamieson et al . (2023) and Jamieson et al . (2024) found
similar issues with predicting virialised motions within
collapsed regions due to their chaotic and random na-
ture. It is precisely these emulation errors that we aim
to correct using the COCA framework.

B. COCA performance

We now turn to testing the use of our frame of refer-
ence emulator within a cosmological simulation. To do
this, for each realisation of initial conditions in our test

set, we run a reference simulation (see Section III A) as
well as COCA and COLA simulations with varying spec-
ifications. For these runs, we use 20 time steps between
a = 0.05 and a = 1, spaced linearly in scale factor, but
we vary the number of force evaluations nf . After some
experimentation, we found that the best strategy to max-
imise the statistics described in Section III E is to place
all force evaluations at the end of the simulation. This
is expected, as the dynamics become more non-linear at
later times, making it crucial to accurately resolve parti-
cle trajectories during these periods, especially since the
emulation error is also largest at these times (see Fig. 6).

In Fig. 7, we plot a slice of the final density field for
one of the reference simulations in our test set, as well as
the corresponding COCA simulations with nf = 10 and
nf = 20, and their respective residuals relative to the
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FIG. 6. Root mean squared error (RMSE) of the emulated
frame of reference, pML, compared to p−pLPT, as a function
of the scale factor a. The solid line indicates the mean across
the test simulations, while the shaded band represents the
standard deviation.

reference. Both COCA simulations accurately recover
the overall structure of the cosmic web, with correctly
positioned filaments and nodes. With the smaller number
of force evaluations, there is a small residual in the final
density, but this has almost completely disappeared when
nf = 20.

To assess the relative performance of COCA and
COLA and to determine the optimal number of force
evaluations, in Fig. 8 we plot the fractional error on the
matter power spectra and the cross-correlation coefficient
for the a = 1 density field as a function of wavenumber
for both simulation frameworks on the test set. As a san-
ity check, we verify that both COLA and COCA achieve
similar performance when performing a force evaluation
at each of the 20 time steps. Our first observation is that
COCA performs dramatically better than COLA, even
when using few force evaluations. It is unsurprising that
with nf = 0 COLA performs poorly, as this is merely the
LPT prediction, which is known to be a poor description
at this redshift and on these scales. In contrast, we find
that COCA with nf = 0 is already extremely accurate:
purely following the trajectories of the emulated frame
of reference (nf = 0) produces a behaviour practically
identical to running a COLA simulation with nf = 12
force evaluations. The matter power spectrum of the
emulated field is 99% accurate up to k ≈ 0.3hMpc−1,
with r2(k) > 0.99 up to k ≈ 0.6hMpc−1. One would
expect that, if the training simulations and evolution
used a higher-accuracy gravity solver (e.g. P3M or a
tree-based approach), COCA would outperform COLA.
However, it is not possible to check this conjecture in
this example, since both the frame of reference emulator
and COCA solver are based on PM forces. Despite the
good predictions of the emulator, we see that the rela-
tive error on the power spectrum increases to more than
10% at k = 1hMpc−1 when nf = 0. However, the er-
ror is reduced to less than 1% up to k = 0.5hMpc−1 by
adding just 8 force evaluations, and less than 1% up to

k = 1hMpc−1 with 10 force evaluations, both in terms
of the power spectrum and phase accuracy. This feature
highlights the benefit of the COCA framework: we use
machine learning to provide good approximations to the
true solution and can run a physical simulation to cor-
rect for any errors made, using far fewer force evaluations
than is ordinarily required.

The same behaviour is observed when considering the
three-point statistics. In Fig. 9 we plot the bispectrum
for the COCA simulations in the configurations outlined
in Section III E. As with the power spectrum, reason-
able agreement with the reference is achieved without any
force corrections, with errors of the order of 5-10%. How-
ever, with just 8 force evaluations, one achieves close to
perfect agreement with the reference for almost all config-
urations considered, with the only discrepancy occurring
for ks > 1hMpc−1.

We now evaluate the accuracy of the simulated velocity
fields by plotting the error on the power spectrum and
cross-correlation coefficient for the final velocity potential
in Fig. 10. Velocity fields are very poorly predicted for
all COLA simulations that skip force evaluations, with
an under-prediction of power beyond k ≈ 0.1hMpc−1,
and an over-prediction as one approaches the Nyquist
frequency of our simulations. The cross-correlation be-
tween the COLA velocities and the reference is also very
low, with practically zero correlation at k = 1hMpc−1

when no force evaluations are used, and with r2(k) ≈ 0.5
at this scale for nf = 12. This is unsurprising, since this
latter case is equivalent to initialising a COLA simula-
tion with an LPT prediction at a redshift of z = 1.5 and
using 12 time steps; one would not expect the initial con-
ditions of such a simulation to be reasonable, as this is
well beyond the validity of LPT. However, this problem
is alleviated if one uses an emulated frame of reference.
Using only the emulator (nf = 0) reduces the error on
the velocity field power spectrum to approximately 5%
at a a = 1, which, although still reasonably large, is
much smaller than what is found with COLA with up to
nf = 12. The advantage of the COCA framework is par-
ticularly evident when varying nf , as the addition of just
6 force evaluations practically eliminates this error, re-
ducing it to 1%. Similarly, we find that the COCA fields
are much more correlated with the reference, even when
using far fewer force evaluations, with r2(k) > 0.8 for all
k ≲ 1hMpc−1 and for any number of force evaluations.
The degree of correlation improves as one increases nf .

In summary, we find that our emulator can reasonably
recover the density and velocity fields even without any
correction. However, emulation errors of up to O(10%)
remain, but these can be reduced to the sub-percent level
with just 8 force evaluations. Thus, COCA is able to
correct for mistakes made in the emulation of particle
trajectories by running a simulation in the corresponding
frame of reference.
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FIG. 7. Slices of the final (a = 1) matter density field for a reference simulation (first column) compared to the corresponding
COCA simulations using either 10 (second column) or 20 (fourth column) force evaluations. The residuals relative to the
reference simulation are shown in the third and fifth columns.
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FIG. 8. Ratio of the matter power spectrum (top row) and the cross-correlation (bottom row) with respect to the reference
simulation, for COLA (left column) and COCA (right column) simulations with varying numbers of force evaluations, nf . The
coloured lines represent the mean over the test set. In the COCA column, the top panel of each row is plotted on the same
scale as COLA, while the lower panel provides a zoomed-in version. The grey band indicates 1% agreement with the reference.
COCA simulations are much closer to the reference even when using far fewer force evaluations, and the agreement improves
as nf increases.

C. COCA with misspecified cosmological parameters

One of the key motivations behind the COCA frame-
work is the concept of ML-safety. Although emulation
techniques have previously been applied to predict the re-
sults of dark matter simulations (Perraudin et al ., 2019;
He et al ., 2019; Alves de Oliveira et al ., 2020; Jamieson

et al ., 2023; Jamieson et al ., 2024; Giusarma et al .,
2023; Conceição et al ., 2024; Saadeh, Koyama & Morice-
Atkinson, 2024), there may be concerns that the emu-
lated solutions might not match the truth if the initial
conditions or cosmological parameters are “unusual,” i.e.,
unlike the training data. The capacity of emulators to ex-
trapolate was tested by Jamieson et al . (2022) in the con-
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FIG. 10. Same as Fig. 8, but for velocity field two-point statistics. Again, we see that COCA performs much better than
COLA with fewer force evaluations, and that the result converges to the truth as nf increases.

text of well-understood simple matter distributions that
had not been seen during training. Furthermore, Doeser
et al . (2023) found that their emulator performed well
with initial conditions containing significantly less power
than their training examples. However, with regular em-
ulators, it is not possible to test all possible configura-
tions, and thus, in general, one can only hope that the

model extrapolates well to the application of interest. In
contrast, COCA uses a frame of reference emulator but
solves the fundamental equations of motion. Therefore,
any extrapolation mistake made in the emulation should
be automatically corrected, unlike with the use of an em-
ulator alone.

Our frame of reference emulator was trained using sim-
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FIG. 11. Performance of the COCA framework when applied outside the range of the training data. We compare the power
spectrum (top row) and cross-correlation coefficient (bottom row) of the matter density field (left column) and velocity potential
(right column) when using our emulator with a different set of cosmological parameters than it was trained on. The coloured
lines show the mean across 50 test simulations as a function of the number of force evaluations nf . The grey band indicates
99% agreement. In this test of robustness to cosmological parameter misspecification, only 8 force evaluations are required to
correct the emulation error up to k ≳ 0.6hMpc−1.

ulations run at a single cosmology. To test its out-of-
distribution behaviour and its use in the COCA formal-
ism, we ran 50 additional test simulations with a different
set of cosmological parameters: Ωb = 0.03, Ωm = 0.35,
h = 0.7, ns = 0.99, and σ8 = 0.9. These parameters are
chosen to be relatively extreme, yet still within the sup-
port of a moderately wide prior that could be used for a
cosmological analysis. We note that we use the correct
cosmological parameters for producing the initial density
field, obtaining the LPT displacement fields, and solving
the equations of motion; the only place where cosmolog-
ical parameters are misspecified is in the prediction of
pML.

In Fig. 11, we plot the fractional error on the power
spectra and the cross-correlation coefficients for the den-
sity and velocity fields in COCA simulations. The refer-
ence is the COLA simulations run with the same initial
conditions, which are not subject to model misspecifi-
cation in this scenario. Despite the relatively extreme
cosmological parameters, the uncorrected fields (nf =
0) yield reasonable power spectra and cross-correlation.
The mean error on the density power spectrum is ap-
proximately 20% by k = 1hMpc−1 with r2(k) > 0.93
at these scales, while the velocity power spectrum has
slightly smaller errors—around 10%—and r2(k) ≈ 0.85
by k = 1hMpc−1. This moderate agreement with the
truth is enabled by using the initial density field rather
than the white noise field as the input to the emula-

tor (see section III C). Indeed, even if the initial den-
sity appears different from that of the training simula-
tions, the emulator does not have to predict the relevant
initial matter power spectrum, which contains the en-
tire dependence on all cosmological parameters except
Ωm. Additionally, since one expects pML to be sourced
only by local contributions in Lagrangian coordinates,
the sensitivity to cosmological parameters should be rel-
atively small. Similar moderately accurate extrapolation
behaviour has also been observed in other cosmological
simulation emulators (He et al ., 2019; Kodi Ramanah
et al ., 2020; Alves de Oliveira et al ., 2020; Lanzieri,
Lanusse & Starck, 2022; Payot et al ., 2023; Saadeh,
Koyama & Morice-Atkinson, 2024).

Despite the moderate performance of this emulator in
the presence of cosmological parameter misspecification,
without any force evaluations (i.e., with nf = 0), the er-
ror on the matter power spectrum would be too large
for current cosmological analyses (Taylor, Kitching &
McEwen, 2018). Therefore, relying solely on an emu-
lator of particles’ trajectories (i.e., a frame of reference
emulator with nf = 0) as a forward model would produce
inappropriate results and would not be a safe use of ma-
chine learning. However, trajectories can be rectified in
the COCA framework by evaluating gravitational forces
and solving for the residual displacements with respect to
the emulated frame of reference. In our test, using just
8 force evaluations is sufficient to achieve percent-level
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agreement in both P (k) and r2(k) for the density field,
for all k < 1hMpc−1 (see Fig. 11). The same conclusion
is true for the velocity field up to k ≈ 0.6hMpc−1. Thus,
with only a small additional computational cost, we can
convert an unsafe use of machine learning in cosmology
into a well-behaved one, even when the emulator is ap-
plied outside the range of its training data. This is one
of the main benefits of COCA compared to traditional
emulators of N -body simulation results.

D. COCA versus a Lagrangian displacement field emulator

In this work, we advocate for using an emulator for
the frame of reference in N -body simulations, as it al-
lows for correcting emulation errors by introducing force
evaluations. This approach contrasts with previous emu-
lators (e.g. He et al ., 2019; Alves de Oliveira et al ., 2020;
Jamieson et al ., 2023; Jamieson et al ., 2024), which di-
rectly predict the Lagrangian displacement field, i.e., the
simulation output. This section compares the relative
accuracy of these two approaches as a function of the
number of force evaluations in COCA.

To investigate this question, we train a time-dependent
emulator for the residual displacement field ΨML(q, a),
defined as the difference between the true Lagrangian
displacement field Ψ(q, a) and that predicted by LPT,
ΨLPT(q, a). We opted to train a new Ψ-emulator rather
than directly compare COCA to existing literature re-
sults to minimise the impact of differences in gravity
solvers, training set sizes, architecture choices, and train-
ing procedures. For a fair comparison, we trained our
Ψ-emulator using the same simulations as for the frame
of reference emulator, employing the same architecture
and training procedure outlined in Section IIID (with p
replaced by Ψ in the loss function).

In a similar manner as before, we begin by normalising
the target variable by defining the function ψ(a) such
that

ΨML(q, a) ≡ ψ(a)Ψ̃ML(q, a), (19)

where Ψ̃ML(q, a) has unit standard deviation. Applying
symbolic regression to the function ψ(a), we find that it
is well approximated by

ψ(a) ≈ aϕ0 + ϕ1, (20)

with ϕ0 = 1.2412539 and ϕ1 = −0.05402543, yielding a
root mean squared error of 5× 10−4. We take the linear
density field as input, but this time output Ψ̃ML(q, a).
We evaluate this emulator on the same test simulations
as for the frame of reference emulator, and convert the
returned Lagrangian displacements into an Eulerian den-
sity field using a cloud-in-cell estimator. We compute the
power spectrum, cross-correlation coefficient, and bispec-
tra (see Section III E) and plot these in Fig. 12, where
we compare against COCA without force evaluations
(nf = 0; using solely the frame of reference emulator)

and both nf = 4 and nf = 8. We perform this analy-
sis for both the fiducial and misspecified cosmology (see
Section IV C).

When compared to COCA with nf = 0, the Lagrangian
displacement field emulator more accurately recovers the
reference density field. The power spectra of the two
methods are relatively similar with fiducial cosmological
parameters, but the difference becomes more pronounced
when the cosmology is misspecified. For all other met-
rics, the Ψ-emulator produces summary statistics that
are closer to the reference. This behaviour is expected:
the Ψ-emulator is designed to optimise the prediction of
dark matter particle positions through its loss function,
naturally resulting in an accurate density field. In con-
trast, the frame of reference emulator in COCA aims to
match particle momenta p. Consequently, without force
evaluations, emulation errors in p accumulate over time,
reducing the quality of the final density field.

Although the Ψ-emulator performs better than COCA
with no force evaluations, there is no way to correct its er-
rors, meaning its performance cannot be improved. Con-
versely, in COCA, force evaluations can be added to cor-
rect the errors made by the frame of reference emulator.
Fig. 12 shows that the addition of only four force eval-
uations results in performance nearly identical to that
of the Ψ-emulator for the bispectra, and better results
for two-point statistics with residual errors reduced by
a factor of 1.4. Residual errors almost entirely disap-
pear when eight force evaluations are used in COCA:
the final power spectrum P (k) has approximately four
to five times smaller errors than the one derived from
the Ψ-emulator at all scales for both cosmologies. Thus,
even with very limited additional computations beyond
the emulation, the COCA framework outperforms a La-
grangian displacement field emulator.

We note that our displacement emulator is slightly less
accurate than that of He et al . (2019), who also emulated
a PM-like output. They achieved errors on P (k) of 0.8%
and 4% at k = 0.4hMpc−1 and k = 0.7hMpc−1, re-
spectively, whereas our emulator is accurate to 3% and
9% at these scales. We attribute this discrepancy to our
use of fewer training simulations (2,000 fields compared
to 10,000 in He et al ., 2019), the need for our emulator
to learn time-dependence (only 100 of the 2,000 training
fields are at a = 1), and He et al . (2019) employing a
more optimised architecture and training schedule. As
mentioned in Section III A, since the aim of this paper is
to demonstrate how to correct for emulation errors rather
than produce the optimal emulator, we chose not to in-
crease the number of training simulations or fine-tune the
architecture, as our emulator is already of similar quality
to those in the literature. If a frame of reference emula-
tor with performance similar to that of He et al . (2019)
were used in COCA, fewer time steps would be needed to
correct for emulation errors, thereby achieving the same
theoretical guarantees with reduced computational ex-
pense.
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FIG. 12. Relative performance of COCA versus an emulator of the displacement field Ψ. We compute the summary statistics
outlined in Section III E for the final (a = 1) matter density field and compare results at both the training cosmology and a
misspecified one. Although directly emulating Ψ produces a more accurate density field than simply emulating the momentum
field p (with nf = 0), using the COCA framework (emulating the frame of reference and employing additional force evaluations)
yields the best performance.

E. Timing tests

To assess the computational performance of COCA, in
Fig. 13 we show the required amount of CPU/GPU time
for each of the stages of the framework. To perform the
timing tests, we use an Intel Xeon Gold 6230 processor
with 40 CPU cores and an Nvidia V100 GPU. We com-
pare the results of running COLA with 20 time steps (and
20 force evaluations) and COCA with the same number
of time steps, but with varying numbers of force evalu-
ations (0, 8, and 20). All other settings are identical to
those in section IV B.

The COLA simulation takes approximately 61 CPU-

seconds to run, with almost half of this time spent on
cloud-in-cell binning (converting particle positions to the
density field). In our test, running COCA with nf = 0
is approximately four times faster. In the current im-
plementation, the emulation and the simulation codes
are disjoint, with the frame of reference being written to
and then read from disk at each kick time step (a pro-
cess responsible for 77% of the CPU/GPU time in this
case). Separating emulation and N -body evolution is not
a fundamental requirement of the COCA framework: one
could emulate on the fly, which would effectively reduce
the input/output time to zero for a slightly higher mem-
ory cost (two pML fields need to be kept in memory for
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FIG. 13. Total CPU/GPU time for COCA with varying num-
bers of force evaluations, nf , compared to COLA. Both COCA
and COLA use 20 time steps. In the left column, we report
the total time, and in the right column, we report the relative
contributions of the various operations. Solid bars correspond
to the main computations, and hashed bars indicate inputs
and outputs. We note that the current implementation of
COCA in Simbelmynë decouples emulation and other com-
putations, which is not a requirement—emulation could occur
on the fly during N -body evolution. In this way, the cost of
input/output operations would be effectively reduced to zero.

each kick operation, see Eq. (A21). Such an approach
would make the nf = 0 case 18 times faster than the
COLA simulation, with this emulator.

To enable the safe use of an ML emulator, COCA re-
lies on including a finite number of force evaluations.
Naturally, if one uses the same number of force evalu-
ations, then COCA is more computationally expensive
than COLA, since it must perform the same steps as
COLA but with an additional emulation stage. How-
ever, because the ML correction makes the frame of ref-
erence more accurate than LPT alone, the number of
force evaluations can be reduced to approximately 8 (see
Section IV B). With the current implementation of sepa-
rate emulation and N -body evolution codes, the cost of
COCA with nf = 8 is approximately two-thirds of the
cost of the COLA simulation. If emulation were done
on the fly, the time required for inputs (36% of the to-
tal time) would be eliminated, making COCA 2.3 times
faster than COLA.

These timing improvements are expected to become
more dramatic if COCA were extended to include a more
accurate gravity solver, such as a P3M or tree-based code.
The computational expense for computing the forces in
these codes is significantly higher than in the PM-based
model used in this work. Therefore, reducing the number
of force evaluations would dramatically improve run time.
We leave such an investigation to future work.

V. DISCUSSION AND CONCLUSION

In this paper, we have introduced COmoving Com-
puter Acceleration (COCA), a hybrid formalism involv-
ing ML and N -body simulations. Unlike previous works
that directly emulate the simulation output, COCA
solves the dynamics of an N -body simulation using a
machine-learnt frame of reference. COCA can be seen
as an improvement of COLA, which solves the dynamics
of an N -body simulation in the LPT frame of reference.
By virtue of the principle of Galilean invariance, equa-
tions of motion can be solved in any frame of reference,
making COCA a ML-safe framework. COCA is the first
framework to use physics to determine the (otherwise un-
corrected) emulation error in N -body simulations using
ML and correct for it.

The concept behind COCA is entirely independent of
the N -body solver and of the ML emulation algorithm
used. For this proof-of-concept, we employed a PM ap-
proach to solving the equations of motion and a V-net
architecture for the frame of reference, with fixed cos-
mological parameters. We have demonstrated that af-
ter the ML-prediction of the optimal frame of reference
(the one in which all particles are at rest), running the
N -body simulation corrects for potential emulation er-
rors in the particle trajectories. We have quantitatively
shown that the number of force evaluations required to
achieve a given accuracy is reduced compared to COLA.
The frame of reference emulator achieves between 1%
and 10% accuracy when used in isolation, but only eight
force evaluations are needed to reduce emulation errors
to the percent level, compared to a 100-time step COLA
simulation. Therefore, COCA can be utilised as a cheap
N -body simulator. Furthermore, with eight force evalu-
ations, COCA is four to five times more accurate than a
Lagrangian displacement field emulator, when the frame
of reference emulator and the Lagrangian displacement
field emulator are trained using the same computational
resources. This increased accuracy is due to COCA’s
ability to correct emulation errors and represents one of
the main advantages of this framework compared to the
direct emulation approach explored in earlier literature.

In Section IV C, we demonstrated that our frame of
reference emulator is moderately robust to changes in
cosmological parameters (despite training at a fixed cos-
mology). However, the COCA framework can correct for
extrapolation errors arising from applying the emulator
outside the range of validity of the training simulations.
Even when the frame of reference is inaccurate (because
the ML training/prediction and the N -body evolution
use different cosmological parameters), we found that
percent-level accuracy can be reached on final density
and velocity fields up to k ≈ 0.6hMpc−1. Thus, the
COCA framework provides ML-safety even when mod-
els are required to extrapolate. There is no fundamental
reason why the emulator cannot depend on cosmological
parameters, and future implementations of COCA can
include these as additional style parameters of the neu-
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ral network.
Our example focused on relatively small simulation vol-

umes (with a side length of 128 h−1 Mpc) compared to
those required for modern-day surveys (typically several
gigaparsecs in length). With the current memory lim-
itations of GPUs, it is not possible to emulate the en-
tire volume with a single emulator at the desired resolu-
tion. As a workaround, Jamieson et al . (2023) splits the
volume into several padded sub-boxes and treats each
one separately, relying on sequential predictions for par-
ticle displacements in each sub-box to cover the full vol-
ume. Similarly, in COCA, one could predict the frame
of reference for particles in each sub-box, and then solve
the equations of motion in each sub-box independently.
This idea relates to the algorithm introduced by Leclercq
et al . (2020) for perfectly parallel N -body simulations us-
ing spatial comoving Lagrangian Acceleration (sCOLA).
There, a tiling of the simulation volume is used, and the
evolution of tiles is spatially decoupled by splitting the
Lagrangian displacement field into large and small-scale
contributions. In sCOLA, the frame of reference used in
the evolution of tiles is given by LPT, but it could be eas-
ily replaced by a frame of reference including both LPT
and an ML contribution, as introduced in this paper.
Such an approach would overcome the memory limita-
tions of GPUs, which currently limit COCA to small sim-
ulation volumes. An additional benefit of this approach
would be the inexpensive generation of light-cones. In-
deed, when using a tiling approach as with sCOLA, only
one tile needs to be evolved to a redshift of zero; the tiles
farthest from the observer only need to be evolved until
they intersect the light-cone at higher redshifts.

It is important to emphasise that the specific imple-
mentation details used in this work are not requirements
but just an example. For instance, one could use a per-
turbation theory-informed integrator for the equations of
motion (Feng et al ., 2016; List & Hahn, 2024), an ap-
proach complementary to COLA for fast generation of
approximate cosmological simulations. Furthermore, in-
stead of using training simulations run with a PM gravity
solver, one could learn the frame of reference given sim-
ulations with higher force accuracy, for example using a
P3M or tree-based gravity solver. Subsequently, solving
the equations of motion in the emulated frame of ref-
erence with the same solver would result in simulations
with similar accuracy to those of the training set, but
with significantly reduced computational cost. The guar-

antee that any emulation mistakes are removed asymp-
totically as the number of force evaluations increases—a
central feature of COCA—will remain. This ML-safety
cannot be guaranteed through direct emulation of P3M
or tree-based simulations. As with COLA, the COCA
framework could be adapted to include more extended
physical models, such as neutrinos, which induce a scale-
dependent growth factor (Wright, Winther & Koyama,
2017). Finally, although in this work we have focused on
gravitational N -body simulations in a cosmological con-
text, the approach of solving equations of motion in an
emulated frame of reference could be applied to any kind
of simulation involving interacting particles (e.g., elec-
trodynamics, hydrodynamics, radiative transfer, magne-
tohydrodynamics). We generally expect a reduction in
computational demands while retaining physical guaran-
tees of convergence to the truth.

Benefiting from its modest computational cost, COCA
could be used in analyses of cosmological data using fully
non-linear models. It could straightforwardly be used
as a forward model in implicit likelihood inference al-
gorithms such as delfi (Alsing et al ., 2019; Makinen
et al ., 2021), bolfi (Leclercq, 2018), selfi (Leclercq
et al ., 2019; Leclercq, 2022), or the LtU-ili pipeline
(Ho et al ., 2024). As COCA is an ML-safe framework,
its use as a forward model cannot bias the inference re-
sult. We also note that using a V-net emulator and a
PM force solver, the entire COCA framework is differ-
entiable. For the emulation of the frame of reference,
differentiability is achieved via automatic differentiation.
For the N -body evolution, differentiable PM simulators
already exist (Wang et al ., 2014; Jasche & Lavaux, 2019;
Modi, Lanusse & Seljak, 2021; Li et al ., 2022). Building
upon these, future work could be dedicated to writing
a differentiable COCA solver, which could be used in
Bayesian large-scale structure inference using an explicit
field-level likelihood (see Jasche & Lavaux, 2019; Doeser
et al ., 2023; Wempe et al ., 2024).

Machine learning offers great promise in the accelera-
tion of forward modelling in the physical sciences. The
output of any ML model is usually an approximation with
inevitable emulation errors. In this paper, we have shown
that emulation errors are correctable in gravitational N -
body simulations. By solving the correct physical equa-
tions while using the ML solution as an approximation,
one can exploit the speed of ML while retaining the safety
of more traditional methods.

A. THE ACTUAL EQUATIONS

1. Model equations with COCA

Using the notations of Leclercq (2015, appendix B) and Leclercq et al . (2020), we consider dark matter particles
with positions x and momenta p in comoving coordinates. Denoting the scale factor as a and the over-density field
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as δ, the equations to be solved are:

dx
da

= D(a)p with D(a) ≡ 1

a2H(a)
, (A1)

dp
da

= K (a)∇
(
∆−1δ

)
with K (a) ≡ −3

2

Ω
(0)
m H(0)2

aH(a)
, (A2)

where H(a) ≡ a′/a is the conformal Hubble factor (where a prime denotes a derivative with respect to conformal
time) and Ω

(0)
m is the matter density parameter at the present time (a = 1). For simplicity, we note ∇x = ∇, ∆x = ∆

and δ(x, a) = δ.
With x(a) = xLPT(a) + xML(a) + xres(a) (denoting the Langrangian perturbation theory, machine-learnt, and

residual contributions to the position, respectively), we note for each contribution y ∈ {LPT,ML, res}:

dxy

da
≡ D(a)py and

dpy

da
=

d

da

(
1

D(a)

dxy

da

)
≡ −K (a)V [xy](a), (A3)

where the differential operator V [·](a) is defined by

V [·](a) ≡ − 1

K (a)

d

da

(
1

D(a)

d ·
da

)
. (A4)

Analogously, one writes the momenta as p(a) = pLPT(a) + pML(a) + pres(a), and thus Eqs. (A1) and (A2) take the
form

dx
da

= D(a) {pres(a) + pLPT(a) + pML(a)} , (A5)

dpres

da
= K (a)

{[
∇
(
∆−1δ

)]
(a) + V [xLPT](a) + V [xML](a)

}
. (A6)

The analytical properties of LPT are (see e.g. Leclercq, 2015, equations (1.7), (1.96), (1.118) and appendix B):

xLPT(a) = q −D1(a)Ψ1 +D2(a)Ψ2, (A7)

D(a)pLPT = −dD1

da
Ψ1 +

dD2

da
Ψ2, (A8)

V [xLPT](a) = −D1(a)Ψ1 +
[
D2(a)−D2

1(a)
]
Ψ2, (A9)

where Ψ1 and Ψ2 are the time-independent first and second order displacements, with corresponding growth factors
D1 and D2. This gives

dx
da

= D(a) {pres(a) + pML(a)} −
dD1

da
Ψ1 +

dD2

da
Ψ2, (A10)

dpres

da
= K (a)

{[
∇
(
∆−1δ

)]
(a)−D1(a)Ψ1 +

[
D2(a)−D2

1(a)
]
Ψ2 + V [xML](a)

}
. (A11)

Furthermore, for any arbitrary positive function u of a, we can rewrite

dx
da

= D(a)u(a)

{
1

u(a)
× pres(a) +

1

u(a)
× pML(a)

}
− dD1

da
Ψ1 +

dD2

da
Ψ2, (A12)

dpres

da
=

du(a)

da

{
K (a)

du(a)/da
×
[[
∇
(
∆−1δ

)]
(a)−D1(a)Ψ1 +

[
D2(a)−D2

1(a)
]
Ψ2 + V [xML](a)

]}
. (A13)

2. Time stepping with COCA

In this paper, we adopt the second order symplectic “kick-drift-kick” algorithm, also known as the leapfrog scheme
(e.g. Birdsall & Langdon, 1985), to integrate the equations of motion, for a series of n + 1 time steps t(a) between
t0 = t(ai) and tn+1 = t(af). This algorithm relies on integrating the model equations on small time steps and
approximating the momenta and accelerations that appear in the integrands (the part between curly brackets in the
model equations) by their value at some time within the interval.
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The discrete versions of the COCA model equations (equations (A10)–(A11) or (A12)–(A13)) give the Drift and
Kick operators for COCA:

D(tDi , t
D
f , t

K) : x(tDi ) 7→ x(tDf ) = x(tDi ) + αp(t
D
i , t

D
f , t

K)pres

(
tK
)
− [D1]

tDf
tDi

Ψ1 + [D2]
tDf
tDi

Ψ2 (A14)

+ αp(t
D
i , t

D
f , t

K)pML

(
tK
)
,

K(tKi , t
K
f , t

D) : pres(t
K
i ) 7→ pres(t

K
f ) = pres(t

K
i ) + βδ(t

K
i , t

K
f , t

D)× (A15){[
∇
(
∆−1δ

)]
(tD)−D1(t

D)Ψ1 +
[
D2(t

D)−D2
1(t

D)
]
Ψ2 + gML(t

D)
}
.

Using equations (A10)–(A11), the standard discretisation of operators (Quinn et al ., 1997) gives the time prefactors
as (Leclercq et al ., 2020, equation (B3)),

αp(t
D
i , t

D
f , t

K) ≡
∫ tDf

tDi

D(t̃) dt̃ =

∫ tDf

tDi

dt̃

t̃2H(t̃)
, βδ(t

K
i , t

K
f , t

D) ≡
∫ tKf

tKi

K (t̃) dt̃ = −3

2
Ω(0)

m H(0)2

∫ tKf

tKi

dt̃

t̃H(t̃)
. (A16)

The arbitrary function u of a appearing in equations (A12)–(A13) can be used to improve upon the standard dis-
cretisation of operators (Tassev, Zaldarriaga & Eisenstein, 2013, appendix A). Indeed, if during the time step, the
terms between brackets in equations (A12)–(A13) are closer to constants than the terms between brackets in equations
(A10)–(A11), the approximation will hold better. Therefore, using equations (A12)–(A13), the modified discretisation
of operators gives the time prefactors, for any positive function u of t, as (Leclercq et al ., 2020, equation (B11)),

αp(t
D
i , t

D
f , t

K) ≡ 1

u(tK)

∫ tDf

tDi

D(t̃)u(t̃) dt̃, βδ(t
K
i , t

K
f , t

D) ≡
[
u(tKf )− u(tKi )

]
× K (tD)

[du(t)/dt](tD)
. (A17)

In this paper, consistently with earlier literature, we use u(t) ≡ anLPT with nLPT = −2.5 (Tassev, Zaldarriaga &
Eisenstein, 2013; Leclercq et al ., 2020).

The ML frame of reference gives particles an acceleration gML(t
D) which should satisfy∫ tKf

tKi

K (t)V [xML](t) dt =

∫ tKf

tKi

du(t)

dt
×
{

K (t)

du(t)/dt
V [xML](t)

}
dt ≈ βδ(t

K
i , t

K
f , t

D)gML(t
D). (A18)

In the standard discretisation, the integral can be approximated by using the value of V [xML](t) at tD (assuming
it is constant during the time step), giving βδ(t

K
i , t

K
f , t

D)V [xML](t
D) with the definition of βδ(tKi , t

K
f , t

D) given in
equation (A16). In the modified discretisation, the integral can be approximated using the value of K (t)

du(t)/dtV [xML](t)

at tD, giving also βδ(tKi , t
K
f , t

D)V [xML](t
D) but with the definition of βδ(tKi , t

K
f , t

D) given in equation (A17). In both
cases, we get

gML(t
D) ≡ V [xML](t

D). (A19)

But the integral is also:∫ tKf

tKi

K (t)V [xML](t) dt =

∫ tKf

tKi

− d

dt

(
1

D(t)

dxML

dt

)
dt =

∫ tKf

tKi

−dpML

dt
dt = pML(t

K
i )− pML(t

K
f ), (A20)

which gives the alternative form

gML(t
D) ≡ 1

βδ(tKi , t
K
f , t

D)

[
pML(t

K
i )− pML(t

K
f )
]
. (A21)

As such, to use the COCA Kick and Drift operators (Eqs. (A14) and (A16)), one does not require to emulate both
pML and gML, but one only needs a single emulator (for pML), which is evaluated at the kick time steps.

In the end, the time evolution between t0 and tn+1 is achieved by applying the following operator to the initial
state {x(t0),p(t0)}:

L+(tn+1)E(tn+1, t0)L−(t0), (A22)

where E(tn+1, t0) is the operator given by (see Fig. 2)

K(tn+1/2, tn+1, tn+1)D(tn, tn+1, tn+1/2)

[
n∏

i=0

K(ti+1/2, ti+3/2, ti+1)D(ti, ti+1, ti+1/2)

]
K(t0, t1/2, t0), (A23)

and L± will be defined in Eq. (A38).
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3. Generic Drift and Kick operators for PM, COLA and COCA

The difference between the COCA Kick and Drift operators and the corresponding COLA operators (Leclercq et al .,
2020, appendices A and B) is the last term in each operator. Therefore, we can introduce generic operators, valid for
both COLA and COCA: for any external momentum pext and acceleration gext,

D(tDi , t
D
f , t

K) : x(tDi ) 7→ x(tDf ) = x(tDi ) + αp(t
D
i , t

D
f , t

K)pres

(
tK
)
+ αLPT1(t

D
i , t

D
f , t

K)Ψ1 + αLPT2(t
D
i , t

D
f , t

K)Ψ2

+ αext(t
D
i , t

D
f , t

K)pext

(
tK
)
, (A24)

K(tKi , t
K
f , t

D) : pres(t
K
i ) 7→ pres(t

K
f ) = pres(t

K
i ) + βδ(t

K
i , t

K
f , t

D)gδ(t
D) + βLPT1(t

K
i , t

K
f , t

D)Ψ1 + βLPT2(t
K
i , t

K
f , t

D)Ψ2

+ βext(t
K
i , t

K
f , t

D)gext(t
D), (A25)

where

αLPT1(t
D
i , t

D
f , t

K) ≡ − [D1]
tDf
tDi
, (A26)

αLPT2(t
D
i , t

D
f , t

K) ≡ [D2]
tDf
tDi
, (A27)

αext(t
D
i , t

D
f , t

K) ≡ αp(t
D
i , t

D
f , t

K) for COCA or 0 for COLA, (A28)

pext(t
K) = pML(t

K) for COCA or 0 for COLA, (A29)
gδ(t

D) ≡
[
∇
(
∆−1δ

)]
(tD), (A30)

βLPT1(t
K
i , t

K
f , t

D) = −βδ(tKi , tKf , tD)D1(t
D), (A31)

βLPT2(t
K
i , t

K
f , t

D) = βδ(t
K
i , t

K
f , t

D)
[
D2(t

D)−D2
1(t

D)
]
, (A32)

βext(t
K
i , t

K
f , t

D) = βδ(t
K
i , t

K
f , t

D) for COCA or 0 for COLA, (A33)
gext(t

D) = gML(t
D) for COCA or 0 for COLA. (A34)

We note that these operators also remain valid for a standard PM algorithm, by setting αLPT1(t
D
i , t

D
f , t

K),
αLPT2(t

D
i , t

D
f , t

K), βLPT1(t
K
i , t

K
f , t

D), and βLPT2(t
K
i , t

K
f , t

D) to zero.

4. Machine learning prediction of the frame of reference in COCA

The goal in COCA is to find the frame of reference in which pres is as small as possible. Therefore, the machine
needs to predict:

1. At any “kick” time step tK,

pML

(
tK
)
≡ 1

αp(tDi , t
D
f , t

K)

[
x(tDf )− x(tDi )− αLPT1(t

D
i , t

D
f , t

K)Ψ1 − αLPT2(t
D
i , t

D
f , t

K)Ψ2

]
≡ pCOLA

res

(
tK
)
, (A35)

that is the momentum residual pCOLA
res

(
tK
)

of COLA (Leclercq et al ., 2020, equation (B5)).

2. At any “drift” time step tD,

gML(t
D) ≡ − 1

βδ(tKi , t
K
f , t

D)

[
βδ(t

K
i , t

K
f , t

D)gδ(t
D) + βLPT1(t

K
i , t

K
f , t

D)Ψ1 + βLPT2(t
K
i , t

K
f , t

D)Ψ2

]
(A36)

=
1

βδ(tKi , t
K
f , t

D)

[
pCOLA
res (tKi )− pCOLA

res (tKf )
]
≡ −gCOLA

res (tD), (A37)

that is the residual acceleration gCOLA
res (tD) of COLA (Leclercq et al ., 2020, equation (B6)), up to a minus sign.

From equations (A35) and (A37), we see that it is sufficient for the machine to predict the momentum residual
pCOLA
res

(
tK
)

of COLA at any “kick” time step tK, as the accelerations gCOLA
res (tD) can be derived from the momenta.

5. Initial and final momenta of particles in COCA

In the initial conditions, we have p(t0) = pLPT(t0) + pML(t0), which means that the momentum residual in the
COCA frame of reference, pres(t0) = p(t0) − pLPT(t0) − pML(t0), should be initialised to zero. Furthermore, if
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initial conditions are generated with LPT, the ML contribution is pML(t0) = 0 initially and we recover pres(t0) =
p(t0)− pLPT(t0), as in COLA.

At the end, the momentum pLPT(tn+1)+pML(tn+1) of the COCA frame of reference has to be added to pres(tn+1)
to recover the full momentum of particles, p(tn+1). These operations correspond respectively to the L−(t0) : p(t0) 7→
pres(t0) and L+(tn+1) : pres(tn+1) 7→ p(tn+1) operators, given by

L±(t) : p(t) 7→ p(t)± pLPT(t)± pML(t) = p(t)± 1

D(t)

(
−dD1

dt
Ψ1 +

dD2

dt
Ψ2

)
± pML(t). (A38)
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