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Data-Driven Digital Inspection of Photovoltaic
Panels Using a Portable Hybrid Model Combining

Meteorological Data and Image Processing
Ayoub Oufadel , Alae Azouzoute , Hicham Ghennioui, Chaimae Soubai, and Ibrahim Taabane

Abstract—This article proposes a novel approach to photovoltaic
panel inspection through the integration of image classification and
meteorological data analysis. Utilizing two convolutional neural
network models with distinct architectures for classifying thermal
and red, green, blue (RGB) images of photovoltaic installations, in
addition to an support vector machines model for meteorological
data classification, the results from these models are concatenated,
allowing the fusion of visual and meteorological information for
comprehensive defect detection. Data collection from photovoltaic
panels is achieved using a portable device, followed by the appli-
cation of advanced image processing techniques to identify faults
rapidly and accurately with up to 96% accuracy. The inspection
results are presented in a user-friendly format, facilitating straight-
forward interpretation and analysis. This new approach has the
potential to significantly enhance the efficiency and durability of
solar energy systems, enabling timely maintenance and repair for
photovoltaic panel issues.

Index Terms—Convolutional neural network (CNN), image pro-
cessing, innovative inspection, machine learning (ML), main-
tenance, photovoltaic.

I. INTRODUCTION

SOLAR energy is an important renewable energy source to
meet the current and future energy needs of our planet [1].

Photovoltaic panels are a key component of this technology, are
subject to defects and degradation that can affect their perfor-
mance and lifespan [2]. Therefore, it is essential to regularly
monitor the condition of these panels to ensure their optimal
operation.

Solar field inspection generally includes two main
components: manual inspection and automatic inspection.
Manual inspection of solar panels presents several major
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challenges. Difficulties in accessing panels installed at heights
or in complex locations make inspection dangerous and
time-consuming [3]. Moreover, human errors and inspector
subjectivity can lead to gaps in defect detection. Advances
in solar panel technology further complicate visual problem
detection. Lastly, periodic inspections limit the implementation
of preventive maintenance [4]. Since they typically involve
scheduled visits at fixed intervals, such as once or twice a year,
potential issues or defects in solar panels might not be detected
or addressed before the next inspection.

For automatic inspection, this approach relies on the use
of physical models or artificial intelligence (AI) models and
data-driven techniques. Inspecting solar panels using physical
models involves creating a mathematical representation of the
panel, comparing model predictions with real data to identify
anomalies, and making decisions based on simulation results.
This can be a powerful tool to monitor and optimize solar
installation performance.

By comparing simulation results with real data, it would be
possible to detect anomalies or unexpected deviations. Gen-
erally, two physical parameters are used for the inspection of
photovoltaic solar panels: power, measured by electrical panel
parameters, and compared to the ideal power that should be
produced by the installation (proportional to solar irradiation,
solar panel surface area in square meters (m2), and panel ef-
ficiency [5]). Another physical parameter that can be used to
inspect solar panels is the solar panel temperature, referring to
the temperature of the panel’s surface itself. This temperature
can differ from ambient temperature due to various factors such
as the amount of received solar radiation, wind speed affecting
convective cooling, humidity levels affecting evaporation, and
the reflectivity of the surface on which the panel is installed [6].
By measuring the panel’s temperature, emerging problems can
be identified through trends and variations.

These physical models alone face difficulties in fully mod-
eling the solar field inspection problem for several reasons.
The complexity of the system, especially interactions among
various parameters like material variations, environmental con-
ditions, and other factors, makes it challenging to model. The
natural variability of these factors can make accurate perfor-
mance prediction using purely physical models difficult. This
is why, to accurately address the solar field inspection problem,
it is often necessary to use a combination of physical models,
machine learning (ML, such as deep learning), and advanced
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data processing techniques. These approaches can capture the
complexity and variability of the system and integrate real-time
data for better problem detection and maintenance that is more
effective.

Modern solar installations typically feature monitoring sys-
tems that are commonly integrated into smart inverters. These
inverters enable the detection of certain issues such as clutch
problems, defective solar panels, wiring issues, grounding prob-
lems, and more. These defects are identified through the analysis
of the electrical characteristics of the solar panel strings and
the grounding cable. However, this technique has significant
limitations as it cannot accurately detect various solar panel
problems, especially those with minor impacts on the string.
Moreover, it fails to precisely locate or identify the issue. Due
to these constraints in inverter-based inspection and traditional
manual or physics-based inspection methods, numerous studies
in the literature have developed intelligent solutions for partial
or comprehensive inspection based on data-driven approaches.

The current state of research in this field is summarized as
follows: In a recent study [7] from 2023, the use of a ther-
mal image database from billboards revealed that ResNet18,
GoogleNet, SqueezeNet, and support vector machines (SVM)
models exhibit high accuracy, but they are limited by the size of
the database and interpretability. Another study [8] dated 2022
utilized an open-source dataset from the Solar Energy Labora-
tory with region-based convolutional neural network (RCNN)
models, achieving acceptable accuracy of 73% for soiling and
shading issues. However, the overall accuracy remains relatively
low. In 2021, research [9] based on a dataset of 398 thermal
images and CNN models provided detailed information with
11 classes, but the testing accuracy is low (0.57), suggesting
potential overfitting. Another study in 2022 [10], employing
real-time production data, indicates that CNN models offer
high precision, but hardware requirements pose deployment
challenges, with risks of invalidated overfitting. The use of you
only look once version 3 (YOLOv3) on red, green, blue (RGB)
and thermal images from two PV plants appears promising. The
application of VGG16 and RCNN models on UAV and manual
thermal images showed high accuracy (0.98) in 2022, although
evaluation gaps persist due to the limited number of classes and
the absence of new data application [11]. To summarize, the
articles cover the years from 2020 to 2023. Various datasets are
used, including thermal images, RGB images, as well as numer-
ical data such as current, voltage, temperature, and irradiation
level. Different classification models are employed, including
ResNet18, GoogleNet, SqueezeNet, SVM, RCNN, and CNN
with VGG16 architecture, saliency-constrainted deep CNN (SC-
DCNN), region of interest-DCNN (ROI-DCNN), and YOLOv3.
Anomaly detection on solar panels using data-driven methods
presents various substantial limitations. First, although these
techniques allow for accurate detection of issues, they remain
incapable of examining all potential anomalies. This restriction
stems from the precise determination of the origin and location of
problems remaining a major challenge. Data-driven approaches
might lack precise categorizations to attribute the fundamental
cause of identified problems, making effective resolution of
these anomalies difficult. For instance, the works of [12] and

[13] successfully identified the region of the faulty PV module
but did not specifically focus on the nature of the defect present
in the image. The aspect of model accuracy also poses issues.
While these models might perform well during their training, it
remains crucial to verify their ability to generalize to new data to
avoid overfitting and ensure real-world accuracy. This requires
evaluations on novel datasets, a step that is often overlooked.
Similar to paper [14], which used the difference between hot and
cold spots to estimate panel condition, lacked adequate prepro-
cessing to detect and eliminate outlines, preventing the algorithm
from considering the outline as a cold spot on the panel, thereby
reducing inspection accuracy. The reliability of results is also
compromised due to data processing. Inaccuracies in input data,
noise, and other factors can diminish the quality of predictions.
Furthermore, the lack of testing on real installations limits the
confidence that can be placed in these methods. For example,
Zefri et al. [15] developed a highly accurate model without pro-
viding details about the used database or the specific solar fields
involved, nor conducting tests on a real installation to validate
data accuracy. Ultimately, integrating this solution into portable
hardware for comprehensive solar installation inspection proves
to be complex. Constraints in terms of computational power and
memory can be significant obstacles to on-field implementation,
thereby limiting solution portability and accessibility. Similar to
the study conducted by Pratt et al. [16], where a photovoltaic
panel failure detection system was integrated with significant
accuracy using electroluminescence imaging analysis. However,
this technique cannot be incorporated into a standalone device
to inspect large-scale solar fields, primarily due to its high cost
and the need to individually adjust each panel, hindering its
large-scale implementation.

With this perspective, this article proposes a novel approach
for inspecting photovoltaic panels by combining data and image
processing. The developed portable hybrid model enables fast
and accurate detection of defects in photovoltaic panels, facili-
tating timely maintenance and repair. This innovative approach
significantly enhances the efficiency and effectiveness of pho-
tovoltaic panel inspection, resulting in improved performance
and increased durability of solar energy systems through the
digitization of the inspection process. This improvement is made
possible through simple tools that do not require extensive
expertise or special certifications while enhancing the customer
experience to make it more accessible.

In this context, the use of advanced ML techniques and image
analysis has emerged as a promising way to detect and classify
anomalies in photovoltaic systems. The data-driven approach
with AI, heavily relying on data to feed ML and AI algorithms
[17], offers promising applications for solar panel inspection.
By utilizing data analysis techniques, AI can process large
amounts of information collected from sensors, drones, thermal
and RGB images to precisely detect defects or anomalies in solar
panels. These AI systems can identify issues such as hotspots,
dirt, and abnormal temperature variations. In this study, by
comparing collected data with previously established models to
identify deviations [18], it enables accurate data interpretation,
facilitating rapid problem detection and optimization of solar
installation performance.
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We propose an approach based on a combination of meteo-
rological data for fouling rate modeling using machine-learning
classification models like logistic regression and SVM, as well
as image processing through ML and CNNs with different ar-
chitectures for both RGB and thermal data, such as AlexNet and
ResNet. Additionally, we incorporate environmental data such
as temperature, solar irradiation, wind speed, and wind direction
to enhance anomaly detection. This article combines satellite
observations from an open-source database with real images
collected from the photovoltaic installation at Mohammed VI
Polytechnic University.

This innovative fusion enables a more comprehensive mod-
eling of photovoltaic installation failures. By incorporating
weather conditions and imagery, our models can capture com-
plex relationships between environmental variables and the
system. At the same time, using CNNs specifically tailored
to RGB, and thermal data enhances prediction accuracy by
leveraging the unique features of each data type. The outcome
is a holistic approach with promising prospects for embedding
the solution in a miniaturized system based on low-power and
cost-effective microprocessors for widespread and rapid solar
field inspection. The performance of this approach has been
assessed using metrics such as precision, recall, and F-measure,
and a comparison with the latest advancements in the field. This
research has the potential to have a significant impact on the
solar industry by enabling early anomaly detection, reducing
maintenance costs, and enhancing photovoltaic installation per-
formance. Furthermore, it contributes to the transition toward
cleaner and more sustainable energy by optimizing solar energy
utilization.

II. METHODOLOGY

A. Data Acquisition and Analysis

As we mentioned in the previous chapter, the use of thermal
imaging, RGB images, and weather data is crucial for solar panel
inspection. In this section, we will describe the collection and
analysis of this data.

1) Thermal and RGB Images: Temperature significantly in-
fluences the efficiency of solar panels. Generally, as the tem-
perature increases, the panel’s efficiency decreases. This phe-
nomenon is attributed to the “temperature coefficient,” which
affects the properties of the photovoltaic cells comprising the
solar panels. Photovoltaic cells convert sunlight into electricity
using a semiconductor material, typically silicon [19]. When
the temperature rises, the electrical conductivity of the semi-
conductor material also increases, resulting in greater energy
loss as heat.

Thermal images depict the temperature distribution on the
surface of a solar panel. They are acquired using a thermal
camera that measures the infrared radiation emitted by the solar
panel. In contrast, RGB images are color images captured using a
standard camera and can be presented as regular photos. In this
study, FLIR E6xt camera is used to measure the temperature
of objects using infrared thermal imaging technology. Unlike
traditional cameras, thermal cameras not only capture visible
images, but also infrared images emitted by objects based on

their temperature. The data were collected over the course of
one year in 2022. We obtained real images from the campus
installation of Mohammed 6 Polytechnic University in Rabat,
Morocco, and organized them into folders based on their de-
fect classes manually. The samples were collected from two
types of solar panels. First, we used panels connected to the
production facility to collect data on existing phenomena or
those that we could simulate in this installation. Second, we
used test panels that were disconnected from the installation
but connected to an electrical load to simulate their actual
operation. We utilized a dc projector as the load for these test
samples.

We explore various phenomena that can influence the per-
formance of solar panels. We particularly highlight five distinct
classes, namely dirt, disconnection, shading, cracks, as well as
a class of panels without any issues and well cleaned, the details
of each class are shown in Table I. This information enhances
our understanding of the data distribution in our study and aids
in the evaluation of classification accuracy.

For the first phenomenon, soiling, a phenomenon degrades
the efficiency and lifespan of panels [20], [21]. The dirt on solar
panels acts as an insulating layer, increasing the panels’ tem-
perature and reducing their conversion efficiency. To optimize
the efficiency of photovoltaic installations, maintaining a high
level of cleanliness is crucial to prevent the deterioration and
degradation of solar equipment. to ensure optimal performance,
we aim to keep the soiling above 0.7. A threshold of 0.7 is
often chosen in the literature as the minimum threshold to
exceed before initiating cleaning, representing about 30% of
performance loss [22]. This threshold varies depending on the
meteorological conditions of the region and the cost of cleaning.
However, for an installation in this region, the majority of opera-
tors generally take 0.7 as the cleaning threshold. If this threshold
is exceeded, there is a risk of panel degradation, leading to a
significant decrease in efficiency. Additionally, there is a risk of
dust cementation, complicating the subsequent cleaning process.
Thus, maintaining a high level of cleanliness is essential for
ensuring optimal performance and facilitating the maintenance
of photovoltaic installations [23], [24]. For the disconnection
class, solar panels can be disconnected for various reasons
such as extreme weather conditions, installation problems, or
electrical issues. The third issue concerns shading, a significant
challenge to solar panel efficiency. Several factors contribute
to shading, including physical obstacles like trees, buildings, or
surrounding walls, and environmental conditions such as clouds,
snow, and the presence of dirt or debris. Additionally, installation
problems, such as incorrect panel orientation, can exacerbate
shading issues [25].

Finally, solar panels are susceptible to cracking and breaking,
which can severely compromise their performance. Mechanical
forces, such as wind, snow, hail, and physical impacts, pose
significant risks to panel integrity. Additionally, temperature
fluctuations and manufacturing defects can induce tension, lead-
ing to structural damage. These cracks and breaks render panels
vulnerable to external elements like moisture, dust, rain, snow,
and ice, exacerbating their deterioration. Ultimately, these dam-
ages can culminate in a complete loss of energy production [26].
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TABLE I
CHARACTERISTICS FOR RGB AND THERMAL IMAGE DATASET

2) Meteorological Data: Weather data, air pollution, and
external environmental factors such as the presence of buildings
or trees casting shadows on the solar panels, can have a combined
effect. That is why our model will incorporate all the necessary
data to detect the health of photovoltaic solar panels. This model
will combine meteorological data from the NASA POWER
Project database (Prediction Of Worldwide Energy Resource),
which provides high-resolution spatial and temporal climate
data to assess renewable energy potential and design sustainable
energy systems [27]. The project includes a meteorological
database called the POWER Data Access Viewer, which allows
users to access and download weather data for various regions
of the world.

Dust accumulation on photovoltaic panels can indeed have
a negative impact on their performance and energy production.
This is due to the dust’s ability to reduce the amount of solar
light reaching the photovoltaic cells. Our model will be capable

of predicting the condition of photovoltaic panels by combin-
ing both meteorological data and thermal and RGB images of
each panel. The advantage of this combination is to gather a
maximum amount of digital data, which is either available as
open-source or easy to collect. These data include temperature,
relative humidity, wind speed, wind direction, precipitation, and
cleanliness. These parameters are correlated with each other, and
we can observe the data used in our recent studies [28], [29], [30].

Data are generated by Xlsat (as it can be seen in Table II),
which uses meteorological data as input, cleans it, and then
calculates the correlation between these various parameters, with
values on the diagonal representing the correlation between each
variable and itself (always equal to 1), and values outside the
diagonal representing the correlation between two different vari-
ables. To calculate a regression matrix with one output variable
and multiple input variables, multiple linear regression is used.
The steps include preparing the data by adding a bias column
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TABLE II
CORRELATION MATRIX OF METEOROLOGICAL DATA AND CLEANLINESS

to the input variable matrix, then calculating the regression
coefficients using the following [31]:

β =
(
XTX

)−1
XTy (1)

where X is the matrix of input variables with the added bias
column and y is the output vector.

For example, the correlation between temperature and relative
humidity is –0.9122, indicating a moderate negative correlation
between these two variables. We can observe that temperature
is strongly correlated with relative humidity (0.912), suggesting
a significant impact of temperature on relative humidity.

Other interactions between variables cannot be captured by
a simple linear correlation, which is why it is necessary to
use nonlinear models like the latest multiple linear regression
(MLR) model we developed, yielding a correlation factor of
0.85. This phenomenon can be detected using normal RGB
imaging or thermal imaging, which will increase the accuracy
of dust detection and related phenomena such as soiling or snail
trails.

For the parameter “cleanliness,” it represents the inverse of
the soiling ratio (SRi), which is a parameter used to evaluate
the level of soiling or dirt accumulation on the solar panels of
a photovoltaic installation. It is determined by the ratio of the
maximum current of the soiled string to that of the clean string,
as indicated in the following:

SRi,PV = Imax_s/Imax_c (2)

where SRi,PV is the soiling ratio of the solar panels;
Imax_s represents the daily average of the maximum current

of the soiled string;
Imax_c represents the daily average of the maximum current

of the clean string.
The soiling ratio (SRi,PV) is typically expressed as a per-

centage. The higher the soiling ratio, the greater the level of dirt
or soiling on the solar panels, resulting in reduced electricity
production from the photovoltaic installation. It is therefore
important to maintain proper cleanliness of the solar panels to
maximize electricity production and ensure the efficient opera-
tion of the photovoltaic system.

According to our latest study, there is a strong correlation be-
tween the soiling ratio and meteorological data. Since measuring
and integrating this parameter into the prediction model can be

Fig. 1. Thermal image processing diagram.

challenging, we rely solely on meteorological data as inputs
for the model. Additionally, we use the minimum, maximum,
and daily average values for each meteorological parameter, as
well as images that can describe the state of dust on the panels,
through either normal RGB imaging or thermal imaging.

To ensure a more reliable inspection, it is recommended to
conduct it during peak production hours, typically between 12
and 2 P.M. when solar irradiation is high [15]. This means a
higher production current, and the heat effect will be more visible
automatically.

B. Data Processing

1) Image Processing: When preprocessing RGB and thermal
images (see Fig. 1), several essential steps are followed to ensure
accurate and consistent results. In this section, we describe these
three key steps: The first step is to eliminate any unwanted areas
present in the images. Next, we select the focal point as the center
of the thermal image. The third step is to resize the images:

a) Eliminating unwanted areas: To address the spe-
cific issue, we have adapted the techniques proposed in the
article [32].

Our approach involves analyzing the image features to iden-
tify the blemishes and their surrounding context. We then apply
advanced image processing algorithms to consistently fill the
affected areas with visually realistic data.

First, we use blemish detection techniques to locate and
identify the affected regions in the image. These techniques can
be based on color analysis, image segmentation, or CNN. This
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provides accurate information about the location and size of the
blemishes.

Once the blemishes are detected, we analyze the surrounding
context to understand the patterns and structures within the
image. We apply a mask to the image to either hide or remove the
unwanted object using pixel-by-pixel operations. If the image
and mask are in grayscale, you can simply multiply each pixel
of the image by the corresponding pixel in the mask. If the
mask pixel is white, retain the pixel value from the image. If
the mask pixel is black, replace the pixel value in the image with
a chosen value (e.g., 0 for grayscale images). If the image and
mask are in color (e.g., represented using the RGB model), you
need to apply the operations on each color channel (red, green,
blue) independently. You can multiply each color channel of the
image by the corresponding pixel of the mask in the same way
as for grayscale images. The result will be a new image in which
the unwanted object specified by the mask is either removed or
hidden.

b) Resizing images before training may be necessary for
several reasons: First, popular models have been pretrained on
224x224-sized images [33]. This requires resizing the images to
the same size for optimal use of these models. Additionally, re-
sizing can reduce the complexity of the images. High-resolution
images can be complex and require significant computational
resources during model training, especially for RGB images
with high resolution. Moreover, resizing helps normalize the
input data size. By using the “resize” function as a data pre-
processing step, it is possible to adjust the image size to fit the
model requirements or other considerations. In addition to the
size of 224x224 pixels, other dimensions can be used depending
on specific requirements.

c) Data augmentation: For data augmentation, two
essential libraries were used: Keras and scikit-image. Keras
provides functionality for generating augmented image data,
while scikit-image allows for image reading. The ImageData-
Generator function from Keras was used to augment the image
data [34]. This function is highly convenient as it allows for
defining various transformations to apply to the original image,
generating additional variations in the dataset.

Data augmentation offers several advantages. First, it helps
increase the size of the dataset, which is particularly beneficial
when data are limited. This provides more diversity to the
model and can improve its ability to generalize and recognize
new images. By subjecting the model to variations such as
rotations, deformations, zooms, horizontal flips, and changes
in brightness, data augmentation can also enhance the model’s
robustness. This diversity helps the model adapt to real-world
scenarios where images may exhibit such variations.

Lastly, data augmentation helps reduce the risk of overfitting.
When the model becomes too specific to the training data, it may
struggle to generalize to new data. By introducing variations
in the dataset through augmentation, we assist the model in
developing better generalization capabilities [35].

The program utilizes the libraries Keras, skimage, Tensor-
Flow, NumPy, Matplotlib, and cv2 to perform data augmentation
on images. It traverses the specified directory, and for each file,

Fig. 2. Multimodal anomaly detection in photovoltaic systems using thermal
and RGB images with meteorological data integration.

it loads the image, applies specific transformations using Im-
ageDataGenerator, generates batches of augmented images, and
saves them to specific directories. This allows for the creation
of an augmented dataset for each type of anomaly.

2) Weather Data Processing: Preprocessing meteorological
data are crucial steps to ensure accurate and reliable results in
subsequent analysis or modeling. In this article, we describe
two main steps in preprocessing CSV-format meteorological
data: normalization and handling missing values. These steps
are essential in preparing meteorological data for tasks such as
weather prediction or climate trend analysis.

a) Normalization of data: Data normalization is a crucial
step in preprocessing meteorological data. It aims to bring all
variables to the same scale, preventing certain variables from
dominating others in terms of magnitude. This ensures that all
variables contribute to the analysis in a balanced manner. Various
techniques can be used for normalization, including scaling
values between 0 and 1. This step standardizes the data and
facilitates comparisons between different variables.

b) Handling-missing values: Missing values in meteoro-
logical data can pose challenges during analysis. They can
introduce biases or errors in the obtained results. There are
several approaches to handling missing values, such as removing
rows or columns with missing values, imputing missing values
using techniques like mean, median, or regression, or utilizing
more advanced methods based on ML models. In our case, we
chose to handle missing values by removing the affected rows or
columns. However, it is important to ensure the overall integrity
of the dataset is maintained during this step.

C. Model Description

The proposed model (see Fig. 2) has a specific objective: to
detect and classify thermal leaks in solar panels using thermal
and RGB images, while also making anomaly predictions based
on weather data. It is divided into four sections, each playing a
distinct role. The first section focuses on loading a pretrained
model that specializes in classifying thermal images. To ac-
complish this task, it utilizes the powerful ResNet architecture,
which has been proven effective in image classification. Moving
on to the second section, it handles the loading of a pretrained
model designed for classifying RGB images. Here, the widely
recognized AlexNet architecture is employed, which is known
for its exceptional performance in image classification tasks.
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Fig. 3. Workflow for thermal image-based anomaly detection in photovoltaic
systems using ResNet50.

The third section is dedicated to anomaly prediction, utilizing
weather data. In this case, the program reads the relevant data
from a CSV or Excel file.

Preprocessing steps are applied to the weather data, and
predictions are made using a specialized model that corresponds
to this type of input. Finally, the fourth section combines the
predictions generated by the three aforementioned models. To
achieve this, predefined weights are assigned to each model.
The thermal and RGB images are preprocessed, and predictions
are made using their respective models. Similarly, the weather
data are also preprocessed, and predictions are made using the
corresponding model. These probabilities are then weighted ac-
cording to the predefined weights, and the class with the highest
weighted probability determines the final predicted outcome.
The ultimate goal of this program is to consolidate the pre-
dictions made by different models, including those for thermal
images, RGB images, and weather data. By leveraging multiple
sources of information, the program enhances the accuracy of
anomaly predictions, providing a comprehensive assessment of
potential anomalies present in the images.

1) ResNet50 for Thermal Images: The ResNet50 model (see
Fig. 3) is a deep CNN architecture that was introduced by
Microsoft Research in 2015. ResNet50 belongs to the family
of ResNet models (residual networks), which were designed to
address the problem of performance degradation with increasing

network depth. One of the key features of ResNet models,
including ResNet50, is the use of residual blocks. These blocks
introduce skip connections to bypass certain layers of the net-
work, allowing information to propagate more easily through the
network. This helps alleviate the issue of vanishing or exploding
gradients during the training of deep networks [36], [37].

The ResNet50 model consists of 50 convolutional layers,
pooling operations, and fully connected layers. It utilizes 3x3
convolutions and pooling layers with a subsampling factor of
2 to reduce the spatial dimension of features. The ResNet50
architecture has been pretrained on a large dataset of images
called ImageNet. ResNet50 can be finetuned for specific tasks by
adding additional layers for classification or regression, depend-
ing on the problem at hand. It has been widely used in areas such
as object recognition, object detection, image segmentation, and
other computer vision tasks.

The model uses libraries such as TensorFlow and Keras, which
are popular libraries for building and training deep learning mod-
els. Next, the training and testing data directories are defined.
Data preprocessing is performed using the ImageDataGenera-
tor class from Keras. This class allows generating batches of
augmented and preprocessed images from the data directories.
The images are resized, their value scale is normalized, and
transformations such as rotation, zoom, and horizontal flipping
are applied to increase the diversity of the training data. The
pretrained ResNet50 model is then loaded using the ResNet50
function from Keras, with weights pretrained on the ImageNet
dataset. The fully connected layers are excluded, and the weights
of the layers in the pretrained model are frozen to avoid gradient
backpropagation during training. The classification model is
built by adding additional layers on top of the ResNet50 model.
A Flatten layer is used to flatten the outputs of the ResNet50
model, followed by two Dense (fully connected) layers with
ReLU and softmax activation functions. The output layer has
a softmax activation to perform classification into four classes.
The model is then compiled by specifying the optimizer (Adam),
the loss function (sparse_categorical_crossentropy), and the
evaluation metrics (accuracy). The model is trained using the fit
method with the previously defined training and testing data gen-
erators and the specified number of epochs. Finally, the trained
model can be evaluated using a separate test dataset. The model
predictions are obtained using the predict_generator method,
and the confusion matrix is computed from the predictions and
the true labels. The confusion matrix can be visualized using the
matplotlib library to evaluate the model’s performance.

2) AlexNet for RGB Images: AlexNet model (see Fig. 4) is
one of the most popular architectures for CNNs. It is known for
introducing several innovative concepts when it was presented
in 2012. The AlexNet architecture is characterized by the direct
stacking of multiple convolutional layers, which allows the
network to capture complex features and use them for accurate
classifications [38].

The first convolutional layer in AlexNet is an input layer that
processes input images of size 227x227x3. Here, “227x227”
refers to the spatial size of the image, and “3” indicates the
three-color channels (red, green, blue) in the RGB image. The
first convolutional layer uses 96 filters of size 11x11x3. Each

ACCEPTED MANUSCRIPT / CLEAN COPY



8 IEEE JOURNAL OF PHOTOVOLTAICS

Fig. 4. Workflow for RGB image-based anomaly detection in photovoltaic
systems using AlexNet.

filter is a small weight matrix that is applied to the input image
to extract specific features. The filter size, in this case, is 11x11,
and it is applied to all three-color channels of the image. The
result of this convolution produces 96 filter maps. The stride of
4 pixels indicates that the filter moves 4 pixels at a time during
convolution. This means that the extracted features are sampled
at intervals of 4 pixels, which reduces the spatial resolution of
the filter maps produced by this layer.

The filters in the second, fourth, and fifth convolutional layers
in AlexNet are connected only to the filter maps from the
previous layer residing on the same graphics processing unit
(GPU). This means that these layers efficiently exploit paral-
lelization using multiple GPUs to accelerate computations. The
third convolutional layer in AlexNet is connected to all the filter
maps from the second convolutional layer. This means that the
features extracted in this layer consider information from all the
filter maps of the previous layer.

Finally, the neurons in the fully connected layers in AlexNet
are connected to all the neurons in the previous layer. This allows
for global communication between neurons, which is important
for classification tasks.

In summary, AlexNet is a CNN architecture that introduced
innovative concepts in the field of computer vision. It uses

stacked convolutional layers, filters of different sizes, and spe-
cific connections between layers to extract features and perform
accurate classifications on RGB images.

3) Decision Tree: In the CSV dataset containing weather
data, the decision tree ML algorithm is used. It is a nonparametric
supervised learning algorithm used for both classification and
regression tasks. It has a hierarchical structure, and tree-like
structure, consisting of a root node, branches, internal nodes,
and leaf nodes [39].

The program imports necessary libraries such as pandas and
matplotlib.pyplot to work with the data and generate visual-
izations. Then, it loads the data from an Excel file using the
“pd.read_excel()” function. The data are stored in a DataFrame
object called “data.” Next, the program splits the data into
independent variables “X” and dependent variable “Y.” The
columns in “X” contain all the features or explanatory vari-
ables, except for the last column which contains the target
labels or classes in “Y.” The program displays the first few
rows of “X” and “Y” to provide an overview of the data. It
also shows information about “X” using the “info()” method,
showing the total number of entries, data types, and memory
consumption. Additionally, it checks for any null values in “X”
using “isnull().sum().sort_values(ascending = False).” Then,
the program performs feature scaling using “MinMaxScaler”
from “sklearn.preprocessing.” The values in each column of
“X” are scaled to the range [0,1] using the “fit_transform()”
method. The scaled data are stored in a new DataFrame called
“min_max_Scalar_df.” In summary, the program loads the data,
splits it into independent and dependent variables, performs
feature scaling, and displays information about the data before
and after scaling. This prepares the data to be used in ML models
or for further analysis.

4) Weighted Voting: We are exploring a weighted voting ap-
proach for multiclass classification using three different models.
The objective is to combine the predictions of these models
by assigning them weights based on their performance and
reliability. To begin, we evaluate the performance of each model
on a validation set [40]. This allows us to determine the weights
to assign to each model. Models that achieve better results are
assigned higher weights, reflecting their confidence and accu-
racy. Once the weights are assigned, we weigh the predictions of
each model by multiplying each prediction by its corresponding
weight. For example, if Model 1 has a weight of 0.4, Model
2 has a weight of 0.3, and Model 3 has a weight of 0.3, we
adjust the predictions of Model 1 by multiplying them by 0.4,
Model 2 predictions by 0.3, and Model 3 predictions by 0.3. By
combining the weighted predictions from each model, we obtain
a final prediction for each data instance. This weighted voting
approach allows us to leverage the individual strengths of each
model while compensating for any potential weaknesses they
may have.

III. RESULTS

This section describes the results for kernel frag-
mentation and overlength recognition using the Faster
R-CNN variants. We compare our model variants against a
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TABLE III
THERMAL AND RGB IMAGE CLASSIFICATION RESULTS

baseline naive Faster R-CNN trained with standard parameters
as defined in Section II-C. This way we can evaluate and compare
against a standard practice of deep learning development of
simply training on a large dataset. The naive models are denoted
Baseline for kernel fragmentation and all for overlengths.

A. Image Processing

Table III presents the evaluation results of two machine-
learning models applied to different types of images: AlexNet
for RGB images and ResNet for thermal images. The models’
performances are measured in terms of accuracy on the training
and test sets, as well as the loss during training and testing.

For the AlexNet model, the accuracy is 0.9287 on both the
training and test datasets. This indicates that the model is able
to predict approximately 92.87% of the samples in both sets.
The loss values during training and testing are 0.033706 and
0.033707 respectively, suggesting that the model has success-
fully minimized errors during training.

Regarding the ResNet model applied to thermal images, the
accuracy is 0.9793 on the training dataset and 0.97934 on the
test dataset. This indicates that the model is able to predict ap-
proximately 97.93% of the samples in both sets. The loss values
during training and testing are 0.0552 and 0.05524, respectively,
suggesting low error during both the training and testing phases.

This suggests that both models are capable of generalizing
well and providing accurate predictions for the specific types of
images on which they were trained.

For the ResNet model, the training and validation perfor-
mances of a neural network model are provided for 500 epochs.
The architecture and objective of the model are not specified,
but we can provide a general analysis based on the given
information.

The model starts with a training loss of 1.3929 and an accuracy
of 0.3349 (see Fig. 5). Over the initial epochs, the loss and
accuracy values fluctuate, but there is an overall improvement in
both metrics. The validation loss and accuracy follow a similar
pattern.

As the subsequent epochs progress, the model appears to
further improve. The training and validation losses decrease,
indicating that the model is learning and better fitting the data.
The accuracy values also increase, suggesting that the model is
making more accurate predictions.

Similarly, for the AlexNet model illustrated in Fig. 6, it seems
that the model’s performance improves with each epoch, as both
the training loss and validation loss decrease, while the accuracy

Fig. 5. Accuracy convergence graph images for ResNet model.

Fig. 6. Accuracy convergence graph images for AlexNet model.

TABLE IV
METEOROLOGICAL DATA CLASSIFICATION RESULTS

increases. This suggests that the model is learning and enhancing
its ability to classify the provided data.

B. Machine Learning

After running tests on four ML models, the results are as
follows in Table IV.

The accuracy, precision, and recall values are all identical,
indicating that the model’s predictions are balanced between
positive and negative classes. In other words, the model makes
an equal number of correct predictions for both positive and
negative cases. Among the four models, the SVM performs the
best; therefore, we choose to model this problem using the SVM
model.

ACCEPTED MANUSCRIPT / CLEAN COPY



10 IEEE JOURNAL OF PHOTOVOLTAICS

Fig. 7. Example of sample prediction results.

C. Model Exploitation

The program loads pretrained models, performs predictions
on thermal images, and combines weighted predictions to ob-
tain a final prediction. It uses three different models (ResNet,
AlexNet, and a classification model), loads the weights of the
models, and preprocesses the images before feeding them into
the models for predictions. The accuracies of the models are
used as weights to weigh the predictions, and the predictions
from each model are combined using these weights. Finally, the
predicted final class and the probabilities associated with each
class are displayed.

Example in Fig. 7, we tested an image from the shadowing
class. The program searched for the class with the highest
probability among the weighted predictions. The results are
displayed, showing the predicted final class and the probabilities
associated with each class.

The prediction speed is 0.3 s, demonstrating the swiftness of
our prediction program. When we have high percentages for two
or more classes, this may be due to issues in the panel, especially
regarding soiling problems. The model can detect both dust and
another issue, such as offline status, and assign them significant
percentages compared to others. This implies a potential coexis-
tence of multiple problems in the panel, significantly influencing
the results.

IV. DISCUSSION

The article presents an innovative approach for inspecting
photovoltaic panels using a portable hybrid model that combines
digital data processing and image analysis. The goal of this
approach is to detect defects quickly and accurately in pho-
tovoltaic panels, enabling timely maintenance and repair. The
approach involves collecting data from the photovoltaic panels
using a portable device, which is then processed using image
processing techniques to identify any defects. The inspection
results are presented in a user-friendly format, allowing for easy
interpretation and analysis. This approach has the potential to
significantly improve the efficiency and effectiveness of photo-
voltaic panel inspections, leading to enhanced performance and
increased durability of solar energy systems. This technology is
important as photovoltaic panels are a key component of solar
energy infrastructure, and defects in these panels can reduce their
performance and lifespan. Regular inspection of photovoltaic
panels is therefore crucial to ensure efficient and reliable energy
production. However, there are challenges to overcome with

this approach. First, the quality of the data collected from the
photovoltaic panels can be affected by various environmental
factors, such as sunlight, weather conditions, and dirt. Addition-
ally, the accuracy of defect identification relies on the quality of
the image processing algorithm used. Finally, it is important to
note that this approach requires technical skills and training for
the use of the portable device and image processing algorithm.
Therefore, adequate training and awareness among operators
will be necessary to ensure effective and safe utilization of this
technology.

A. Benefits of Combining Data and Images

Temperature and its distribution are crucial parameters for
diagnosing the condition of solar panels and for classifying faults
based on temperature distribution. Other phenomena can also be
detected through RGB imaging. However, the connection to the
external environment of the panel facilitates the detectability of
faults. That is why we have integrated a ML model, which can
detect phenomena that are only detectable through this data.

The combination of imaging and data processing helps reveal
the relationships between different types of data in order to better
classify problems. Therefore, the use of a SVM model helps to
better understand how different parameters affect the tempera-
ture and performance of the solar panel. These relationships can
then be used to classify different problems with an acceptable
accuracy of 0.64 when combined with the two classification
models for thermal and RGB imaging, which achieve a high
accuracy of up to 0.98.

In the existing literature, various studies utilize image pro-
cessing and modeling techniques for anomaly classification in
photovoltaic systems. However, the distinctiveness of our study
lies in the flexibility to integrate three types of data with varying
accuracies depending on data quality and model adaptability.
For instance, the performance of ML models applied to thermal
images has been explored in several studies like [41] tested
Faster R-CNN, SSD, and SSD FPN on three PV plants, re-
vealing that Faster R-CNN achieved test accuracies ranging
from 95.81% to 98.97%, while SSD and SSD FPN showed
significant performance variations across different sites (e.g.,
73.54% to 99.23% for SSD), indicating potential instability
of the models in varying environments. Additionally, a study
in Procedia Computer Science [42] applied models such as
ResNet-50 and Faster R-CNN for hotspot detection in thermal
images, where ResNet-50 achieved an F1-Score of 85.37%,
outperforming other models like DenseNet-169 (F1-Score of
0.72), and Faster R-CNN achieved a mean average precision of
0.67. Conversely, for RGB images, a study [43] demonstrated
the use of a simple DCNN architecture and VGG-16 model for
classifying healthy and faulty classes, achieving accuracies of
98.39% and 99.91%, respectively, with VGG-16 maintaining
similar accuracy for five-class segmentation (99.80%). More-
over, another study published [44] utilized WEKA for feature
selection and fault classification in photovoltaic modules us-
ing k-Nearest Neighbor (kNN), J48 decision tree, and SVM,
where ensemble models combining these classifiers improved
classification accuracy, with the two-class ensemble of kNN
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and SVM achieving 98.30%. These findings emphasize the
importance of selecting models tailored to specific data types
and conditions, highlighting the innovative aspect of our study in
combining different data types and models to enhance accuracy
and robustness.

B. Integrating Data-Driven Solutions

A data-driven system based on a Raspberry Pi board is used
for data acquisition, preprocessing, and prediction using the
generated model. This data-driven solution relies on specific
hardware, including a Flir camera capable of simultaneously
capturing thermal and RGB images. Additionally, downloading
satellite observations is essential for this embedded system,
which is frequently used in similar studies [45].

A human–machine interface facilitates the management of
this system by allowing the triggering of data acquisition, pre-
processing, and applying the model to generate predictions
corresponding to the sample’s class. The compatibility of the
Raspberry Pi board with the Python programming language is
a major advantage of this approach. The model, developed in
Python, can be deployed, and executed directly on the Rasp-
berry Pi board thanks to support for popular libraries such
as TensorFlow, PyTorch, or Keras. This compatibility and the
accessibility of Python libraries fully leverage the computational
power of the Raspberry Pi board [46], ensuring efficient model
execution and accurate results. This integration also simplifies
the development, deployment, and execution process of the
model on the Raspberry Pi board, providing an integrated and
convenient solution for our data-driven system.

The Raspberry Pi board and the FLIR camera are connected
to the local WiFi network, facilitating the solution’s portability.
The camera can be moved during inspections, powered by an
integrated lithium battery with a 4-h autonomy. As for the
Raspberry Pi board, it can be powered by either a wall outlet
or a 5 V battery. A notable advantage of this board is its low
power consumption, which is around 6 W.

This approach comes with a total cost of US$ 2000, resulting
in a significant reduction in operational expenses compared to
the traditional manual inspection method. The latter takes more
than five times the inspection time compared to the method
described here, which allows for an average of 5 s per panel
inspection. This efficiency translates to an 80% reduction in
labor costs.

C. Time Integration (Time Series and Real-Time Inverter Data)

As a perspective for our study, we propose integrating models
based on time series analysis, which can be used to detect solar
panel issues by analyzing energy production data over time, as
the majority of problems are cumulative phenomena that change
over time, such as dust accumulation.

Trend detection, seasonality analysis, prediction, and event
impact evaluation: The time dimension allows for the analysis
of event impacts on data. Volatility analysis in the data: On
the other hand, time series models are specifically designed
for analyzing data that varies over time, such as annual data.
These models are capable of capturing trends, seasonal patterns,

and recurring cycles in the data, enabling accurate forecasting
and understanding of temporal fluctuations. Time series models
can be used to analyze various features of annual data, such as
the overall trend, seasonal effects, volatility, and correlations
between different years. This provides real-time information
on the installation’s state using past and current measurements.
This method allows for the rapid detection of variations and
anomalies, facilitating the diagnosis of potential problems and
enabling necessary actions to improve installation efficiency.

We can also include in our inputs the data from inverters,
which provide real-time production information, such as in-
put voltage and current for each string, cumulative produc-
tion, inverter output power, and overall equipment consump-
tion. This provides a better understanding of the installation’s
state, particularly by comparing real-time predicted production
with meteorological data and the estimated installation state,
which considers factors such as tilt angle, dust, and shading,
using real-time energy measurements from the inverter. This
technique also expands the scope of installation inspection to
other unaddressed issues, such as electrical and connectivity
problems, overvoltage, and overloading. Furthermore, it enables
better production management by leveraging the installation’s
state to optimize energy efficiency, as demonstrated in our recent
study [47], where we used IoT to manage the issue of excess
production in the same installation at Mohammed 6 Polytechnic
University.

V. CONCLUSION

In conclusion, this article presents a novel and innovative
approach for the inspection of photovoltaic panels by combining
data and image processing. This approach enables the rapid and
accurate detection of panel defects, facilitating timely mainte-
nance and repair. Regular inspection of photovoltaic panels is
crucial to ensure their proper functioning, enhance their perfor-
mance, and prolong their lifespan.

The proposed approach in this article offers numerous advan-
tages for improving the efficiency and effectiveness of photo-
voltaic panel inspection, as well as enhancing the performance
and durability of solar energy systems. It can be applied to
various types of solar installations, including residential, com-
mercial, or industrial, based on new AI approaches.

We have employed two CNN models, AlexNet and ResNet, to
classify thermal and RGB images of photovoltaic systems. The
performance of our models has been evaluated using accuracy,
loss, and a weighted voting scheme. We have utilized a large
dataset collected from the solar installation at Mohammed 6
Polytechnic University in Rabat, Morocco, along with mete-
orological observations from NASA POWER database. Our
results have been compared with other state-of-the-art methods,
demonstrating comparable or better performance.

Furthermore, we have discussed the challenges associated
with training and evaluating CNN models for fault detection
in photovoltaic systems. These challenges include acquiring a
diverse and extensive dataset of images, avoiding overfitting
the models to the training data, and deploying the models in
real-world scenarios.
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We believe that our methodology shows promise in fault
detection for photovoltaic systems. Our future work involves
further improving the performance of our models, addressing
the challenges, and deploying them in real-world scenarios.

APPENDIX

A. Classification by Machine Learning

ML is a branch of AI that focuses on the development of
algorithms and models capable of learning from data and making
decisions or predictions without being explicitly programmed.
Classification is one of the most common tasks in ML, where
the goal is to predict the class or label of a data sample based
on its features. Classification involves training a model on a
training dataset where each sample is labeled with a known
class. The model learns from these examples to find patterns
or relationships between the features and the corresponding
classes. Once the model is trained, it can be used to predict
the classes of new, unlabeled samples.

There are different types of classification algorithms in ML,
such as logistic regression, decision trees, SVM, neural net-
works, etc. Each algorithm has its own strengths, weaknesses,
and underlying assumptions, and it is important to choose the
appropriate model based on the data characteristics and the
objectives of the classification problem.

The performance evaluation of a classification model is typ-
ically done using metrics such as accuracy, recall, F-measure,
and the confusion matrix. These metrics measure the accuracy of
the model’s predictions and its ability to correctly discriminate
between different classes.

B. CNN Model

Convolutional layers are capable of learning visual features
from raw images by applying convolution filters. These filters
are weight matrices that are applied to adjacent areas of the
image to detect specific patterns and features.

The CNN model is composed of multiple layers, each of
which is responsible for a specific step in the processing of
the input image. The first layer is typically a convolutional
layer that applies filters to the input image [45]. This layer
is followed by an activation layer that adds nonlinearity to
the model by applying an activation function to the output of
the convolutional layer. Several CNN architectures have been
developed and used for computer vision tasks. Here are some
of the most popular architectures: LeNet-5, AlexNet, VGGNet,
GoogleNet, and ResNet. For our study, we have chosen two
models that are most suitable for this type of problem, namely
AlexNet for RGB images and ResNet for thermal images. The
main difference between AlexNet and ResNet lies in their ar-
chitecture. AlexNet is simpler and less deep, while ResNet is
deeper and uses residual connections to facilitate learning in
deep networks. Since thermal images contain more details and
it can be challenging to distinguish between different anomalies,
we have opted for a more complex model that is better suited
for classifying the various anomalies.

C. Model Performance

To calculate the metrics of a CNN classification model, we use
the following formulas. They will be the same for ML models,
except for ML, where we include three metrics: Accuracy,
Precision, and Recall, which are equal in our case because there
are no false positives, false negatives, or misclassifications in
the model’s outputs [48].

1) Accuracy (Precision): Accuracy measures the proportion
of correct predictions made by the model compared to the total
number of predictions.

Accuracy = TP/ (TP + FP) (3)

TP: Number of correct predictions on the training set for the
5 classes (shaded, no anomaly, dust, etc.)

FP: Number of incorrect predictions on the training set for the
5 classes (shaded, no anomaly, dust, etc.).

It is applied to both the training and test datasets, which
are split before training. These datasets allow for a realistic
estimation of the model’s performance on new data. This eval-
uation helps determine whether the model is good enough to
be deployed in a production environment or if it still requires
improvements.

2) Loss: Loss is a measure of the model’s error when making
predictions. It quantifies the quality of the model’s predic-
tions and provides necessary feedback to adjust the model’s
weights during training. In our models, we have used the
sparse_categorical_crossentropy function, which offers advan-
tages in terms of memory efficiency, simplicity of data flow, and
similar performance to categorical_crossentropy. The following
formula clarifies this calculation, where S refers to samples, C
refers to classes, and (S&C) represents the samples belonging
to class C [49]:

Loss = − log p (S&C) . (4)

These metrics are calculated using TensorFlow, a numerical
computation library.

3) Final Model Performance: The final model is a combi-
nation of three models using weighted voting, which assigns
more weight to optimal predictions. The final prediction is a
combination of classes based on the assigned weights. There-
fore, the final performance of the model will fall between that
of the least performing model and the optimal model, with
convergence toward the optimal model in most cases. Weighted
voting allows the final model to leverage the strengths of each
individual model, improving the overall performance by con-
sidering their expertise. However, it is important to note that
the final performance of the combined model will depend on
the individual performances of the underlying models and the
quality of the assigned weights

Ŷ = mode {C1 (x) , C2 (x) , . . . , Cm (x)} . (5)

We predict the label Ŷ of the case by voting of each classifier
Ci using (1), we compute a weighted majority vote by associating
a weight Wj with classifier Cj: where Xi is the characteristic
function [Cj(X) = I ∈ A], and A is the set of unique class
labels [21].
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While the final model typically outperforms the least perform-
ing model, it may not reach the same level of performance as
the optimal model. The final performance will depend on the
quality of predictions from individual models and the weights
assigned to each mode.
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