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Abstract

The elasto-viscoplastic response of irradiated bainitic steels for pressure vessels of light water reactors is de-
scribed by a multiscale micromechanical model. The model relies on a simplified set of complex constitutive
equations describing intragranular flow under a wide range of temperatures, strain rates, and irradiation
levels. These equations were themselves partially calibrated by multiscale analyses based on dislocation
dynamics calculations, atomistic calculations, and experimental measurements. They include the contribu-
tion of jog drag, lattice friction, evolution of dislocation microstructures, and irradiation hardening. The
scaling up of these intragranular laws to polycrystalline samples relies on a computational homogenization
method which solves the field equations within periodic representative volume elements by means of Fast
Fourier Transforms. This computational method proves advantageous relative to the finite element method
in handling the complex microstructural morphology of the model required to achieve overall constitutive
isotropy. Macroscopic simulations for uniaxial curves under different irradiation levels are first confronted to
experimental curves to identify certain microscopic material parameters employed to describe the evolution
of the mean-free path of dislocations with deformation. Subsequent comparisons for the evolution of the
yield stress, irradiation hardening and the response to sudden strain-rate variations are then reported for
a class of steels with various chemical compositions under wide ranges of temperature, loading rate and
irradiation level. Good agreement is obtained in all cases. Finally, simulations are employed to explore
the influence of the initial dislocation density on the intragranular stress and strain fields. An appreciable
influence on the fields is observed during the elasto-viscoplastic transition but not deep in the plastic range.

Keywords: steels, neutron radiation, crystal plasticity, computational homogenization

1. Introduction1

The mechanical integrity of pressure vessels is a critical issue in the long-term safety assessment of light2

water reactors. These vessels are made of bainitic steels which undergo progressive embrittlement with3
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neutron radiation. Accounting for this embrittlement in advanced failure criteria requires knowledge of the4

entire elastoplastic response of the steels for a wide range of deformation rates, temperatures, and radiation5

doses [1]. Such a range of working conditions hampers the use of purely phenomenological descriptions of6

material behavior and calls for physically-based descriptions that explicitly account for the micromechanisms7

responsible for the behavior.8

At the microscopic scale, bainitic steels exhibit a polycrystalline structure of a small grain size, mainly9

composed of ferritic laths packages and cementite inclusions [2, 3]. At smaller scales, a high density of10

dislocations, intragranular carbides and irradiation defects, such as solute clusters and dislocation loops,11

are observed [1]. Monnet et al. [4] have recently adapted the crystal plasticity law reported in [5] for12

pure iron to bainitic steels. The law accounts for multiple physical phenomena and follows from multi-13

scale analyses based on dislocation dynamics calculations, atomistic calculations, as well as on experimental14

observations. It considers two contributions to the intragranular plastic slip rate through a harmonic sum,15

each one depending on the resolved stress and on dislocation densities in a strongly nonlinear manner, and16

furthermore, involve critical resolved stresses which depend on the strain rate. Recent experience suggests17

that certain simplications to this crystal plasticity law, such as a reduction in the number of internal18

variables employed, can be introduced without appreciably altering its descriptive capabilities. The first19

purpose of this work is to put forward such simplified law, which is spelled out in Section 2. To assess their20

descriptive capabilities, crystal plasticity laws must be scaled up by some homogenization procedure. The21

second purpose of this work is to report on the suitability of a computational homogenization method based22

on the Fast Fourier Transform (FFT) to scale up crystal plasticity laws. The method has recently proved23

successful in scaling up a subclass of this crystal plasticity law wherein one of the two contributions to the24

plastic slip rate dominates [6]. From its inception [7], FFT methods have been widely used for computing25

the overall mechanical response of heterogeneous materials with complex microstructures, see [8] for a recent26

review. Compared to the finite elements method [9, 10], the advantage of using a FFT method generally27

lies in a more rapid computation and in a complexity reduction due to the absence of the mesh and the28

natural way to incorporate the periodicity conditions. Lebensohn [11] used for the first time the iterative29

scheme proposed by Moulinec and Suquet in the context of polycrystalline materials, followed by many30

other works, see [12] for a recent review about computational simulations of the mechanical behavior of31

polycrystalline materials. It was remarked that the classical FFT scheme is less accurate in the case of low32

rate-sensitivity materials or in the case of composite materials with high contrast between phases [13]. To33

overcome this limitation, but also in order to accelerate the convergence of the iterative method, different34

improved FFT formulations were proposed [13, 14, 15] and compared in [16]. In the present work, the basic35

scheme spelled out in Section 3 is employed. Homogenized models exhibiting overall constitutive isotropy36

follow from representative volume elements with the required microstructural complexity. A third purpose37

of this work is to confront model predictions with experimental measurements on a class of bainitic steels,38

and thus infer certain material parameters employed by the simplified crystal plasticity law to describe39

the evolution of intragranular mean-free path of dislocations during deformation. Comparisons for a wide40

range of scenarios are reported in Section 4. In addition, the homogenized model is employed to explore the41

influence of initial dislocation densities on the intragranular stress and strain fields. Finally, Section 5 closes42

the exposition with a summary of the main conclusions.43

2. A simplified crystal plasticity law for irradiated bainitic steels44

Central to the multiscale model developed in this work is a simplified version of the physically-based45

crystal plasticity law of [4] for bainitic steels. Compared to the original version, it involves fewer equations46

and simpler expressions, and therefore eases numerical implementations. In the following, the upper indexes47

(s) refer to the slip system number, while the lower indexes refer to the nature of the variable.48

The crystal law assumes an additive decomposition of the infinitesimal strain into elastic and viscoplastic49

parts such that50

ε̇ = C−1 : σ̇ +

N∑

s=1

γ̇(s)µ(s), (1)
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or equivalently51

σ̇ = C :

(
ε̇−

N∑

s=1

γ̇(s)µ(s)

)
, (2)

where the symbol ”:” represents the doubly contracted tensor product, ε and σ are the total strain and52

Cauchy stress tensors, respectively, while γ̇(s) and µ(s) are the slip rate and Schmid tensor of system s.53

The elastic deformation is fully characterized by the stiffness tensor C, which is assumed isotropic with54

shear modulus µ and Poisson’s ratio ν. The viscoplastic deformation, in turn, is assumed to occur by55

slip along twelve slip systems (N = 12) belonging to the family ⟨111⟩ {110}. In this connection, it should56

be remarked that the original crystal law [4] admitted slip over {112} planes also. However, simulations57

suggested that the contribution of these additional slip planes to the overall deformation was not significant58

even for temperatures for which {112} slip is theoretically likely to be activated.59

2.1. Slip rates60

The crystal law further assumes that each slip rate γ̇(s) is the harmonic mean of a slip rate γ̇
(s)
drag controlled61

by jog-drag and a slip rate γ̇
(s)
friction controlled by lattice friction. In bainitic steels, two types of dynamic62

obstacles control the effective stress: the lattice friction at low temperature resulting from the non-planar63

core structure of screw dislocations and jog drag induced by the thermally activated motion of jogs formed64

by intersection of mobile screw dislocations with forest dislocations whose Burgers vector is outside the slip65

plane. The harmonic sum66

γ̇(s) =

(
1

γ̇
(s)
drag

+
1

γ̇
(s)
friction

)−1

(3)

reflects the fact that the slip occurs according to the characteristic times of the two physical phenomena.67

Each slip rate is given by68

γ̇
(s)
drag = γ̇0,drag sinh

(
pdrag

τ
(s)
eff

τ
(s)
c

)
sgn

(
τ (s)

)
(4)

and69

γ̇
(s)
friction = γ̇0,friction exp

(
−∆G0

kT

)
sinh


∆G0

kT

√
τ
(s)
eff

τ0


 sgn

(
τ (s)

)
, (5)

where k is the Boltzmann constant, T is the absolute temperature, τ (s) = σ : µ(s) is the resolved shear70

stress, τ
(s)
eff is an effective shear stress defined below, and the remaining symbols refer to material param-71

eters characterizing slip. At high temperatures or low rates the flow is controlled by (4), whereas at low72

temperatures or high rates the flow is controlled by (5). For both regimes, a hyperbolic sine function is73

introduced to account for the probability, at low stress, of thermal activation in the opposite direction. This74

is an important improvement of the original model, since it allows to avoid discontinuity of slip rate at zero75

effective stress.76

Given the common microstructural features in all bainitic steels, only the term τ
(s)
c varies between specific77

steels and increase with deformation in expressions (4) and (5). In these two equations, τ
(s)
eff is the effective78

shear stress for each slip system, that is, the net driving force for dislocation motion79

τ
(s)
eff = max

(
|τ (s)| − τ (s)c , 0

)
. (6)

The shear stress for each slip system is split into the critical shear stress, τ
(s)
c , representing the yield surface80

at the given strain rate, and the effective shear stress τ
(s)
eff necessary to force screw dislocations to move at81

the velocity required to accommodate the imposed strain rate.82
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2.2. Critical shear stresses83

In bainitic steels, the flow stress is controlled by a low-alloy Fe-C solid solution, intragranular carbide84

particles, high density of dislocations, small grain size (large Hall-Petch effet) and, if irradiated, irradiation85

defects such as dislocations loops (DLs) and solute clusters (SCs). These features can be classified into86

two families: local obstacles (dislocations, carbides, SC, etc.) and diffuse (or long-range) obstacles inducing87

solid solution and the Hall-Petch effect. Since solid solution and carbide contributions to the flow stress88

are substantially lower than the Hall-Petch effect and forest hardening, respectively, we incorporate the89

contribution of solid solution into that of the Hall-Petch effect (through a slight decrease in grain size)90

and we incorporate the carbide contribution into that of forest dislocations (through a small increase in91

dislocation density). This is a second simplification of the original model [4]. Thus, the critical stress is92

reduced to93

τ (s)c =

√(
τ
(s)
auto

)2
+
(
max

(
τ
(s)
forest − τ

(s)
eff , 0

))2
+ (τDL)

2
+ (τSC)

2
+ τHP , (7)

where the components94

τ
(s)
auto = µb

√
a(s)(s)ρ(s) and τ

(s)
forest = µb

√∑

s ̸=j

a(s)(j)ρ(j)

account for the interactions of the dislocations belonging to the same slip system and for interactions of the95

dislocations belonging to different slip systems, respectively, while the remaining components96

τDL = µb
√
aDL dDL cDL,

τSC = µ

√
pSC,1 (dSC)

2.3
(cSC)

1.14
, (dSC in nm and cSC in 1022 ×m−3),

τHP =
µ

µ300K

KHP√
d

,

do not depend on the internal variables —and hence on the mechanical process— and refer, respectively,97

to the resistance of dislocation loops, solute clusters, and finally the contribution of the Hall-Petch effect98

—including solid solution— which depends on the average ferrite lath package size d. The internal variables99

ρ(s) refer to the dislocation densities on each active slip system. The Hall-Petch effect is here only described100

by a mean grain size d. It has been shown that the sizes of the ferrite lath packages and old austenitic101

grains are proportional [17], which justify the choice of a single parameter to describe the microstructure.102

The added value of our work is to show that we can isolate the Hall-Petch effect and obtain a flow stress103

while respecting both the experimentally measured dislocation densities and the Hall-Petch law with an104

experimentally measured Hall-Petch constant, which was not a foregone conclusion. In turn, the volume105

densities of irradiation defects cDL and cSC and their sizes dDL and dSC are material parameters that106

can be predicted by microstructure models or measured in experiment. The interaction coefficients a(s)(j)107

are defined such that, taking into account the results of dislocation dynamics simulations and by making108

a first order approximation on the strength of the junctions, two different values are considered: 0.7 for109

the collinear interactions (system sharing the same Burgers vector) and 0.1 for all other configurations.110

The remaining symbols in these expressions are defined in Table 1, unless some parameter values which111

are obtained by comparison with experimental data and will be given further. As pointed out in [4], an112

important modification to the original model is that the contributions of DL and SC are now outside the113

max() term in expression (7). The reason was discussed in [4]. This modification is significant and must be114

taken into account.115

2.3. Evolution of dislocation densities116

Physically-based crystal plasticity laws include equations for the evolution of the internal variables de-117

scribing the microstructure (dislocations, dislocations loops, solutes clusters, among others). It is assumed118

that only the dislocation density on each slip system can vary (dislocation loops and solute cluster densities119
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Symbol Parameter Value Units

µ shear modulus
82819.0− 8.17 T (K)

−0.0213 T 2(K)
MPa

ν Poisson ratio 0.3 –

γ̇0,drag reference slip rate for the jog drag contribution 10−5 s−1

γ̇0,friction reference slip rate for the lattice friction contribution 109 s−1

pdrag parameter adjusted from experimental results 200.0 –

∆G0 parameter adjusted from experimental results 0.84 eV

k Boltzmann constant 8.6× 10−5 eV.K−1

τ0 reference critical shear stress 300.0 MPa

KHP constant related to the Hall-Petch effect 0.28 MPa.m1/2

b Burger vector norm 0.248 nm

aDL interaction coefficient for dislocation loops 0.25 –

pSC,1 parameter related to the solute clusters 0.3722× 10−12.38 m1.12

pd parameter related to the ferrite lath package size 3.455 –

pSC,2 parameter related to the solute clusters 4.0775× 1011 m−5/4

T0 characteristic temperature 217.4 K

ρ
(s)
init initial dislocation density on each slip system * m−2

d average ferrite lath package size * µm

Kauto number of obstacles (dislocation of the same system) * –

Kforest number of obstacles (dislocation of a different system) * –

KDL number of obstacles (dislocation loops) * –

KSC number of obstacles (solute clusters) * –

py parameter related to the annihilation distance * nm

dDL characteristic diameter of dislocation loops * nm

cDL concentration of dislocation loops * m−3

dSC characteristic diameter of solute clusters * nm

cSC concentration of solute clusters * m−3

Table 1: Material parameters of the crystal plasticity law. Numerical values correspond to steels resembling A508 cl.3 RPV
available from the literature. Starred values are determined in this work.

remain fixed). According to the Kocks-Mecking classical theory [18], the storage of dislocations results120

from their immobilization after sliding over a distance λ, called mean free path. On the other hand, when121

the density increases sharply, spacing between dislocations decreases strongly. Below a critical spacing y122

(the annihilation distance), it is assumed that dipoles are no longer stable and annihilate spontaneously by123

thermal activation. The classical Kocks-Mecking formulation [18] can be written as124

ρ̇(s) =
|γ̇(s)|
b

(
1

λ(s)
− yρ(s)

)
(8)
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with the total mean free path of dislocations125

1

λ(s)
=

pd
d

+

√
a(s)(s)ρ(s)

Kauto
+

√∑
s̸=j a

(s)(j)ρ(j)

Kforest
+

(
cSC

pSC,2

)4/7

KSC
+

√
aDL dDL cDL

KDL
. (9)

Each term in this last expression corresponds to a different class of obstacles to dislocation movement. The126

constants Ki represent the number of obstacles of the family i that can be overcome by a dislocation before127

its immobilization. In other words, equation (9) means that a dislocation is immobilized when it reaches128

a grain boundary and each time it encounters Ki obstacles of the family i. The values for the parameters129

Ki therefore influence hardening. A notable consequence of this approach is the presence of irradiation130

defects which modify the rate of the hardening in the irradiated materials. Due to thermal activation, the131

annihilation distance y depends on temperature according to132

y = py min(1, 0.255 eT/T0). (10)

The remaining material parameters entering expressions (2) to (10) are described in table 1. The numerical133

values reported in that table correspond to steels resembling A508 cl.3 RPV steels of interest in this work.134

The starred values will be chosen later for specific steels and determined from comparisons with experimental135

uniaxial curves.136

3. Computational homogenization method137

The macroscopic behavior of polycrystalline aggregates is characterized by the relation between the138

volume averages over the representative volume element of the local stress field, denoted σ̄(t), and the local139

strain field, denoted ε̄(t), where t is the time. To compute the stress and strain fields for a given loading140

condition, the constitutive equations presented in Section 2 are implemented in the computer code CraFT [19]141

which solves the mechanical field equations by means of a Fast Fourier Transform (FFT) based algorithm142

proposed in [20], [7], and [21] to determine the effective properties of periodic composites with complex143

microstructures. As in studies [22] and [23] devoted to the effective behavior of porous viscoplastic crystals144

and polycrystals, the so-called ”basic” iterative scheme is adopted, which ensures the strain compatibility.145

At each time step CraFT determines the local stress and strain fields (σ, ε) by a fixed point algorithm146

{
εi+1 = εi − Γ0 ∗ σi

σi+1 = F(εi+1, εi,vint)
(11)

where at each iteration step i of the iterative scheme, the system of constitutive equations of the model,147

giving the function F , is integrated in time using a fully implicit scheme (vint corresponds to the internal148

variables). In (11) the operator Γ0 is the Green operator associated to an elasticity tensor C0 of an infinite149

medium (∗ denotes the convolution operator). The choice of C0 can depend on the local constitutive behavior150

being simulated and plays an important role in the convergence rate of the algorithm. The present work151

relies on the choice already implemented in the code CraFT.152

3.1. Convergence criteria153

Since the ”basic” scheme used in the computations presented in this work ensures the compatibility of154

the strain, only two convergence criteria are checked, one for the equilibrium condition and the other for the155

macroscopic stress direction (see Figure 1 of [24] for an intuitive representation of the convergence path).156

At each iteration i of the general algorithm in CraFT, the error relative to the local equilibrium condition157

is given by158 √
⟨∥div(σi)∥2⟩
∥⟨σi⟩∥ (12)
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Algorithm inputs: ε̇n, σn−1, γ̇n−1, τn−1
c and ρn−1

1 Initialization of the stress and the internal variables

σn,0 = σn−1, γ̇n,0 = γ̇n−1, τn,0c = τn−1
c and ρn,0 = ρn−1

2 Initialization of the error ϵ = tol + 1

3 While ϵ > tol

3.1 Calculation of σn,i, γ̇n,i, τn,ic and ρn,i

σn,i = σn−1 +∆t f1
(
γ̇n,i−1, ε̇n

)
, f1 corresponds to (2)

γ̇n,i = f2
(
τn,i−1
c , σn,i−1

)
, f2 corresponds to (3)

τn,ic = f3
(
τn,i−1
c , ρn,i−1, σn,i−1

)
, f3 corresponds to (7)

ρn,i = ρn−1 +∆t f4
(
ρn,i−1, γ̇n,i−1

)
, f4 corresponds to (8)

3.2 Calculation of the error

ϵσ = 2
∥∥σn,i − σn,i−1

∥∥ /
∥∥σn,i + σn,i−1

∥∥

ϵγ̇ = 2
∥∥γ̇n,i − γ̇n,i−1

∥∥ /
∥∥γ̇n,i + γ̇n,i−1

∥∥

ϵτc = 2
∥∥τn,i

c − τn,i−1
c

∥∥ /
∥∥τn,i

c + τn,i−1
c

∥∥

ϵρ = 2
∥∥ρn,i − ρn,i−1

∥∥ /
∥∥ρn,i + ρn,i−1

∥∥

ϵ = max (ϵσ, ϵγ̇ , ϵτc , ϵρ)

3.3 Updating variables, affected by a weight w ∈ [0, 1] (in order to facilitate the convergence)

σn,i = w σn,i−1 + (1− w) σn,i

γ̇n,i = w γ̇n,i−1 + (1− w) γ̇n,i

τn,ic = w τn,i−1
c + (1− w) τn,ic

ρn,i = w ρn,i−1 + (1− w) ρn,i

Algorithm output: σn

Table 2: Algorithm used for the numerical integration of the local crystal plasticity law in CraFT

where ⟨σi⟩ denotes the volume average of the field σi and ∥.∥ denotes the Frobenius norms of a vector or159

a second-order tensor. This error is computed in the Fourier space. The error relative to the prescribed160

direction of the macroscopic stress is defined by161

||⟨σi⟩ −Σ0 ki||
||Σ0 ki|| . (13)

where Σ0 is the direction of the macroscopic stress and ki indicates the level of macroscopic stress. In162

this work, the tolerances for both criteria are set to 10−3 (see also the general presentation of the two163

corresponding convergence tests in [25]).164

3.2. Time integration of the local crystal plasticity law165

The set of equations associated with the crystal plasticity law is highly nonlinear. A fully implicit scheme166

is chosen (implicit Euler scheme resolved by a fixed point algorithm) in order to determine the stress σi+1
167

for a given strain εi+1, at each CraFT iteration. The numerical procedure is presented in Table 2. In this168
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C S P Si Cr Mo Mn Ni V Al Co Cu

A 0.139 0.004 0.006 0.19 0.21 0.49 1.33 0.73 < 0.01 0.025 0.020 0.06

B 0.160 0.004 0.008 0.22 0.22 0.51 1.33 0.76 < 0.01 / 0.017 0.07

C 0.140 / 0.005 0.23 / 0.55 1.44 0.86 / / / 0.41

D 0.150 0.006 0.013 0.22 0.19 0.52 1.31 0.70 0.009 0.022 0.020 0.07

Table 3: Chemical composition in weight % of the various steels considered in this study

table, the index n and n− 1 respectively refer to the current and previous times (∆t is the time step) and169

the index i and i− 1 respectively refer to the current and previous iteration of the fixed point algorithm.170

4. Results and discussion171

The predictive capabilities of the homogenized model are assessed by confronting predictions with ex-172

perimental uniaxial curves of four bainitic steels of a common class. Each steel is identified with letters A173

through D for ease of presentation; their chemical compositions are displayed in Table 3. Types A and D174

refer to a low copper steel and a 16MND5 steel, both resembling an A508 cl.3 steel. Type B refers to a175

16MND5 steel employed in vessels for pressurized water reactors and manufactured by Framatome; it was176

subject to two austenitizing treatments followed by water quenching and tempering, and a final stress relief177

treatment to obtain a tempered bainitic microstructure. Finally, type C refers to RPV steel. For these178

steels, it is reasonable to assume that the influence of dislocation loops is negligible compared to that of179

solute clusters. Therefore, we set cDL = 0 henceforth, and ignore the irrelevant parameters KDL and dDL.180

The reminder of the unquantified material parameters of Table 1 are identified by comparisons of predictions181

with experiments. To that end, uniaxial curves are simulated by applying mixed loading conditions of the182

form183

σ(t) = k(t)Σ0 and Σ0 : ˙̄ε = Ė, (14)

where k(t) is an unknown scalar function, evolving in time, ε and σ are the macroscopic strain and stress,184

E(t) = Ė t is the prescribed projected macroscopic strain in the Σ0 direction. We begin by identifying a185

suitable microstructural morphology for the computational model such that the simulated uniaxial curve186

produced by (14) is insensitive to loading direction Σ0. In the following, the tolerance tol is set to 10−4 and187

the weight w is set to 0.9.188

4.1. Microstructural morphology189

The microstructural morphology of bainitic steels is idealized as a periodic aggregate of grains defining a190

Voronoi tessellation. Note that the FFT method can also be used to perform computations on other types191

of tessellations, such as those of Johnson-Mehl-Avrami-Kolmogorov and Laguerre, see [26]. A Voronoi tes-192

sellation is generated from random grain seeds using a minimal distance algorithm. Crystalline orientations193

within grains are randomly generated from a Sobol sequence (e.g. [27]) in order to approach an isotropic194

polycrystal while optimizing the number of grains. The number of grains and voxels taken for the unit cell195

follows from the two parametric studies in order to determine the ”optimal” configuration, with a good196

compromise between the computation time and the representativeness of the polycrystal. Simulations are197

performed on unirradiated specimens at a temperature of 25◦C and a constant strain rate of Ė = 5×10−4s−1.198

The following parameters are considered, ρ
(s)
init = 4.5× 1012 m−2, d = 7.6 µm, Kauto = 72, Kforest = 24 and199

py = 2.6 nm.200

First, a convergence study for the spatial discretization is carried out. A polycrystal with 125 grains is201

considered. A total of seven spatial discretizations (in voxels per grain) are tested: 23, 43, 63, 83, 103, 123202

and 143. For each discretization level, ten microgeometries for the Voronoi tesselation are generated. The203

stabilization of the macroscopic response is evaluated with respect to the highest resolution (considered as204
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Figure 1: Unit cell with 729 grains and 373,248 voxels employed in the numerical simulations.

a reference and denoted hereafter k143) by two relative errors, corresponding to the Hölder mean of order205

1 and infinity, respectively. For defining these two errors a discretization of the time interval is considered,206

0s = t1 < t2 < . . . < tN = 200s and the two relative errors are defined by207

δ1 =
1

N

N∑

p=1

|k143(tp)− kα(tp)|
|k143(tp)|

and δ∞ = max
p

{ |k143(tp)− kα(tp)|
|k143(tp)|

}
, (15)

where the index α refers to the spatial discretization. Figure 2 displays the values of these two errors with208

respect to the ten microgeometries considered for each discretization. Through these results, it appears209

that a good compromise between size and precision is obtained for 83 or 512 voxels per grain. From this210

discretization, low values of the two relative errors are observed, as well as a low dispersion of results. This211

discretization is retained in what follows. Taking as reference the results for the highest resolution (143212

voxels per grain) does not allow to characterize how close the results obtained for 512 voxels per grain are213

from the exact solution of the problem. A recent convergence result [28] shows that for linear heterogeneous214

materials the effective moduli obtained by the basic scheme converge to the theoretical effective moduli215

(as defined by the linear homogenization theory) when the resolution tends to infinity. To the best of our216

knowledge, there is no similar result for nonlinear materials, but it is reasonable to suppose that a higher217

resolution allows to better approximate the exact solution of the problem.218

Second, the number of grains of the RVE plays a role in the macroscopic isotropy of the polycrystal.219

A study was carried out in order to characterize the isotropy of the polycrystal through its response to220

simple tensile type loadings in three different orthogonal directions. Nine numbers of grains in the RVE are221

considered: 23, 33, 43, 53, 63, 73, 83, 93 and 103 and for each, five microgeometries are used. As for the222

previous study, the mechanical response for each tensile direction is characterized by the stress level k(t)223

versus time t. The deviation from the macroscopic isotropy is evaluated by two values, corresponding to the224

Hölder mean of order 1 and infinity and defined as225

∆1 =
1

N

N∑

p=1

|kmax(tp)− kmin(tp)|
|kavg(tp)|

and ∆∞ = max
p

{ |kmax(tp)− kmin(tp)|
|kavg(tp)|

}
, (16)

where kmax(tp) = max
{
k[100](tp), k[010](tp), k[001](tp)

}
, kmin(tp) = min

{
k[100](tp), k[010](tp), k[001](tp)

}
,226

and kavg(tp) =
1
3

(
k[100](tp) + k[010](tp) + k[001](tp)

)
. The subscript [100], [010] or [001] refers to the loading227

direction. Figure 3 displays the value of ∆1 and ∆∞ over the five microgeometries, for each number of228

grains. The isotropy of the polycrystal seems rather well respected from 93 = 729 grains, with values of ∆1229

and ∆∞ less than 1% and a low dispersion of results.230

In conclusion, a satisfactory unit cell results with 729 grains, each of which is discretized by about 512231

voxels. The cell is shown in Figure 1. With this cell, smooth convergence of the algorithm is observed.232
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4.2. Macroscopic response233

A collection of uniaxial curves for specimens of steel type A under various conditions was generated234

with the homogenized model to infer the material parameters Kauto, Kforest, KSC and py characterizing235

the evolution of the intragranular mean-free path of dislocations with deformation. Specifically, we consider236

unirradiated and irradiated specimens deforming at four different temperature levels (−100◦C, −60◦C,237

25◦C or 28◦C, 200◦C). Irradiated specimens were subject to intermediate (3.6×1023 n.m−2) and high (7.5×238

1023 n.m−2) fluences typical of RPV steels in pressurized water reactors. In all cases, the microstructural239

parameters ρ
(s)
init = 4.5 × 1012 m−2 and d = 7.6 µm are adopted. In the case of irradiated specimens, the240

irradiation parameters dSC = 3 nm and cSC = 20.3/31.5 × 1022 m−3 for the intermediate/high fluence are241

adopted. Several collections of curves were obtained by sweeping the material parameters Kauto, Kforest,242

KSC and py across expected ranges of values. Figure 4 shows comparisons between the experimental curves243

of [1] and the predictions for a constant strain rate Ė = 5× 10−4s−1 obtained with the parameters reported244

in Table 4. The main observation in the context of this figure is that good agreement is obtained for245

all twelve scenarios. Indeed, the homogenized model is seen to accurately reproduce both the elastic and246

viscoplastic regimes at all temperatures and irradiation conditions considered. By contrast, the model is247

seen to miss entirely the peak stress upon yielding observed in the experimental curves. In this connection,248

it is recalled that peak stresses in steels have been attributed to the unpinning of Cottrel atmospheres of249

dislocations, which is known as static ageing. Thus, values of peak stresses tend to be highly sensitive to the250

thermomechanical history of the specimen and therefore show strong variability. This is one of the reasons251

why engineering models usually omit their description. A second reason for omitting their description is that252

the subsequent softening can induce localized deformations and therefore result in mesh-dependent structural253
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Figure 3: Quantitative estimates for the gap to the
macroscopic isotropy versus the number of grains

ρ
(s)
init (m

−2) d (µm) Kauto Kforest KSC py (nm)

A 4.5× 1012 7.6 72 24 30 2.6

B 3.5× 1012 5.25 72 24 30 2.6

C 3.7× 1012 7.6 72 24 30 2.6

D 4.5× 1012 7.6 72 24 30 2.6

Table 4: Parameters identified for the various types of steel considered in this study
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Figure 4: Comparison between experimental data and numerical simulations results of the macroscopic response of a polycrystal,
under simple traction loading, for three levels of fluence : non-irradiated steel (left), intermediate fluence (center), high fluence
(right)

simulations. Interestingly, recent multiscale simulations coupling the dynamics of irradiation defects and254

dislocation assembles at different spatial and temporal scales in steels suggest that, while present in the post-255

irradiated mechanical response, peak stresses may be absent from the mechanical response during irradiation256

[29]. In any event, the model can be employed to generate predictions for the evolution of a yield stress with257

temperature and strain rate by following common practice and defining the yield stress as the stress defined258

by the intercept between the tangent of the tensile curve at a deformation of 0.02 and the straight line259

representing the elastic part of the curve. Experimental values for a yield stress so defined in unirradiated260

steel specimens of type B at different strain rates have been reported in [30] (experimental values obtained261

from quasi-static tensile tests as well as dynamic tests using Hopkinson split bars). The values are plotted in262

Figure 5 versus temperature. Model predictions were generated with the parameters specified in Table 4 and263

imposed strain rates Ė1 = 4.0×10−4 s−1, Ė2 = 17.6 s−1 and Ė3 = 4000 s−1. A very good agreement between264

experimental and numerical results is observed for the low and moderate strain rates, and fair agreement is265

observed for the highest strain rate. Thus, the model successfully captures the nonlinear decrease of yield266

stress with temperature at the lower strain rates. Similarly, experimental results reported in [31] for steel267

specimens of type C can be employed to assess the capabilities of the model to describe the influence of268

irradiation on hardening. Corresponding simulations are performed with the material parameters of Table 4269

at T = 25◦C, Ė = 5×10−4 s−1, and three different irradiation fluxes (3×1015, 8×1015, 1×1018 n.m−2.s−1).270

To each flux correspond certain values of concentration and size of solute clusters. The values employed271

in the simulations are those experimental values reported in [31] and reproduced in Table 5. Experimental272

and simulated results for the magnitude ∆Rp0.2 = σirr
11 − σunirr

11

∣∣
εvp
11=0.002

are compared in Figure 6. An273

excellent correlation in all cases is observed. Finally, the concurrent influence of temperature and strain rate274

on the macroscopic response can be investigated by imposing sudden strain rate variations and measuring the275

induced stress jumps. Experimental measurements on steel specimens of type D have been reported in [32].276

Corresponding simulations are generated with the material parameters of Table 4 by considering two pairs of277

strain rate variations (5×10−4 s−1 – 5×10−3 s−1) and (5×10−5 s−1 – 5.0×10−4 s−1), for five temperatures278

spanning the range −100◦C to 100◦C, and two fluences (non-irradiated and 10 × 1023 n.m−2). This steel279

was subjected to irradiation in the Material Testing Reactor OSIRIS (CEA). Accelerating irradiation results280

from a flux which is approximately forty times higher than the flux seen by a RPV in a French pressurized281

water reactor [32]. At this irradiation levels the solute cluster size and concentration are dSC = 3 nm and282

cSC = 35.1 × 1022 m−3, respectively. The simulated macroscopic tensile curves are reported in Figures 7283

and 8. Two series of jumps are performed for each pair of strain rates. At 2% of viscoplastic deformation,284

a positive strain rate jump is imposed and the strain rate value is maintained until 4% of viscoplastic285

deformation, followed by a negative strain rate jump, with the same amplitude. The same procedure is286

repeated between 6% and 8% of viscoplastic strain. In order to investigate the effect of the history of the287

strain rate on the macroscopic response, the low value of the pair (5 × 10−4 s−1 – 5 × 10−3 s−1) and the288
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high value of the pair (5× 10−5 s−1 – 5.0× 10−4 s−1) has been chosen equal. The simulated tensile curves289

reported in Figures 7 and 8 show that the behaviors of both unirradiated and irradiated specimens are290

almost insensitive to the strain rate history. Moreover, the strain-hardening rate (slope of the stress-strain291

curve) right after the jump is the same as the strain-hardening rate observed before the jump. The flow292

stress increases with strain rate, but the amplitude of the induced stress jumps decreases with temperature,293

to the extent that at T = 100◦C, for the unirradiated material, the jump is about 0.2% of the flow stress,294

and for the irradiated material this ratio is almost twice. The stress jump, simply defined as an absolute295

difference of two stress values, is then recorded for each curve of Figures 7 and 8 and is compared with296

the experimental results of [32]. Figures 9 and 10 show the numerical and experimental stress jumps as a297

function of the temperature, according to the considered fluence. A good agreement is observed between the298

experimentally measured jumps and those predicted by the simulations, over the entire range of temperature299

considered, whether for the non-irradiated or the irradiated 16MND5 steel.300

It is concluded that the model confected in this work with a simplified crystal plasticity law and a301

computational homogenization method based on Fast Fourier Transforms has the capability to accurately302

describe the response of irradiated bainitic steels under a wide range of temperatures, irradiation levels and303

strain rates.304

4.3. Effects of the initial dislocation densities305

In almost all simulations of crystalline agreggates reported in the litterature, the initial values of the306

material parameters (in our case the dislocation density and grain size) are taken identically for all integration307

points. However, several microstructure investigations have confirmed that dislocation distribution is quite308

heterogenious [33]. For the first time, to the knowledge of the authors, we study the influence of the309

heterogeneity of dislocation distribution of the local fields and macroscopic response in an unirradiated310

RPV steels. Numerical simulations are carried out considering a polycrystal composed of 216 grains and311

discretized by 1253 voxels. This discretization value is adopted by a convergence study carried out on312

the average value per phase of the Von Mises equivalent viscoplastic strain, where different resolutions are313

considered from 253 to 2503 voxels. The imposed loading corresponds to a simple traction in the direction314

[1, 0, 0] for a strain rate equal to 5× 10−4 s−1 and for a temperature of 25◦C. The following parameters are315

fixed in this study ρ
(s)
init = 4.5 × 1012 m−2, d = 7.6 µm, Kauto = 72, Kforest = 24 and py = 2.6 nm. The316

convergence with respect to the resolution is evaluated by comparison with the highest considered resolution317
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Ė = 5×
(
10−5/10−4

)
s−1

Exp for 0n.m−2

Exp for 10× 1023n.m−2

FFT for 0n.m−2

FFT for 10× 1023n.m−2

Figure 10: Stress jump as a function of the temperature
for 5×10−5 s−1 / 5×10−4 s−1 strain rate variation (each
solid line corresponds to a quadratic fit of the FFT re-
sults)

by a relative error δ, corresponding to the Hölder mean of order 1, as previously. The relative error in each318

phase is defined by319

δ =

∣∣∣∣
(
εeqvp

(r)
)

250

−
(
εeqvp

(r)
)

α

∣∣∣∣
∣∣∣∣
(
εeqvp

(r)
)

250

∣∣∣∣
(17)

where r refers to the phase, εeqvp
(r)

denotes the average value per phase of the Von Mises equivalent viscoplastic320

strain εeqvp and α refers to the considered resolution. The results are presented in Figure 11 for a viscoplastic321
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Figure 11: Relative errors with respect to the highest resolution versus total number of voxels

strain field obtained at 0.004 of total macroscopic strain in the tensile direction and for 4 different phases322

corresponding to the slowest convergence. Finally, a discretization of 1253 voxels is chosen, corresponding323

to a relative error δ less than 1% and allowing then a good compromise between precision and calculation324

time.325

In this study, the initial dislocation densities consists in a field defined over the polycristal domain. Three326

distributions of the initial dislocation densities are considered:327

1. an uniform distribution, where the initial dislocation densities are constant (equal to ρ
(s)
init) in the328

whole polycrystal,329

2. a homogeneous per phase distribution, where the initial dislocation densities are uniform in each phase,330

flux

(n.m−2.s−1)

dSC

(nm)

cSC

(1022 m−3)

exp hard

(MPa)

flux

(n.m−2.s−1)

dSC

(nm)

cSC

(1022 m−3)

exp hard

(MPa)

8× 1015 2.0 16.72 50.0 3× 1015 2.5 25.68 110.0

8× 1015 2.4 19.35 75.0 3× 1015 2.7 32.04 155.0

8× 1015 2.6 21.74 115.0 3× 1015 2.85 33.43 168.0

8× 1015 2.6 30.44 145.0 3× 1015 3.1 28.86 185.0

8× 1015 2.7 32.04 150.0 3× 1015 3.2 27.41 195.0

8× 1015 2.8 31.34 155.0 1× 1018 2.15 40.38 125.0

8× 1015 2.86 33.49 175.0 1× 1018 2.2 50.25 163.0

8× 1015 3.1 30.79 193.0 1× 1018 2.2 62.81 210.0

3× 1015 2.0 9.55 40.0 1× 1018 2.2 87.93 258.0

3× 1015 2.1 26.82 66.0

Table 5: Experimental hardening according to the size and concentration of solute clusters
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Figure 12: Initial dislocation densities fields: homogeneous (left), homogeneous per phase (center) and heterogeneous (right)

but different from one phase to another,331

3. a heterogeneous distribution, where each voxel has a different initial dislocation density, regardless of332

the phase in which it is located.333

Except for the case of a uniform distribution, the value of the initial dislocation density is a random variable334

and, in order to be able to compare the results obtained for these three distributions, its mean is the same for335

the three distributions and equal to µinit = ρ
(s)
init. Moreover, the standard deviation of this random variable336

is fixed to σinit = 5µinit. The values of the initial dislocation densities are randomly drawn according to a337

probability distribution law (18) and (19) of the log-normal type. The choice of this law was determined by338

three requirements dictated by physical requirements: drawn values should be positive, the maximum value339

of initial dislocation densities should be close to the average value ρ
(s)
init and the range of values between the340

maximal one and its half should be large enough.341

The probability density for a log-normal law is given by342

p(x, µlog, σlog) =
1

xσlog

√
2π

exp

(
− (ln(x)− µlog)

2

2σ2
log

)
, (18)

where the parameters µlog and σlog are related to the mean µinit and standard deviation σinit by343

µlog = ln(µinit)−
1

2
ln

(
σ2
init

µ2
init

+ 1

)
and σlog =

√
ln

(
σ2
init

µ2
init

+ 1

)
. (19)

The values of the initial dislocation densities are obtained using a random variable with uniform distribution.344

The three initial dislocation densities fields obtained by this procedure are presented in Figure 12 for a specific345

cross section.346

The macroscopic response and the evolution of the total dislocation density obtained for each distribution347

of the initial dislocation densities are presented in Figure 13 for three temperatures, -100◦C, 25◦C and 200◦C,348

considering the same parameters than previously. The total dislocation density is defined as349

ρ =

216∑

r=1

12∑

s=1

c(r)ρ(r,s) (20)

where c(r) represents the volume fraction of the phase r. The initial value of ρ is denoted by ρinit. For the350

macroscopic response, very small differences are observed between the three distribution configurations over351

the strain range studied and for the three temperatures considered. At -100◦C, the macroscopic responses352

are superposed, while at 25◦C and 200◦C, small differences are observed at the beginning of the viscoplastic353

domain between the homogeneous distribution and the two others. Nevertheless these differences tend to354
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Figure 13: Macroscopic response (a) and total dislocation density, normalized by its initial value (b), for three distributions of
the initial dislocation densities and for three temperatures, -100◦C, 25◦C and 200◦C

reduce as the macroscopic strain increase. Concerning the evolution of the total dislocation density, it seams355

that the distribution of the initial dislocation densities has almost no effect on this macroscopic variable.356

The results for 25◦C and 200◦C are superimposed and this is probably due to the fact that the annihilation357

distance y as given by (10) no longer depends on the temperature if this one is greater than 25◦C. The358

temperature level has a notable effect on the evolution of the total dislocation density with respect to the359

macroscopic strain; at low temperatures (-100◦C) this evolution is less non linear and more rapidly increasing360

than at high temperatures (25◦C and 200◦C). This could be explained by the increasing of the annihilation361

distance (10) with the temperature which leads a diminution of the dislocation densities rates (8).362

The effects of the initial dislocation densities are observed by analysing the Von Mises equivalent vis-363

coplastic strain and the maximum principal stress value, which are respectively defined by364

εeqvp =

√
2

3
εdvp : εdvp, and σmax

p = max (σ1, σ2, σ3) , (21)

where εdvp represents the deviatoric part of the viscoplastic strain tensor and σi, i = 1, 2, 3 are the principal365

stresses. The local fields retained for this analysis are obtained for two effective strain values in the loading366

direction: ε11 = 0.004 (which corresponds to εvp11
= 0.002, i.e. the value considered for the determination367

of the conventional yield stress) and ε11 = 0.1. The first value of the macroscopic strain corresponds to the368

situation where the macroscopic response (Figure 13) presents the most significant difference between the369

three distributions considered, whereas for the second value this difference is completely smeared out.370

Figure 14 presents the equivalent viscoplastic strain fields obtained for a uniform distribution, at ε11 =371

0.004 for three resolutions, 573, 1253 and 2503 voxels. Deformation bands can be seen in the grains circled372

in red, but this aspect is theoretically impossible for the case of a homogeneous distribution because the373

considered crystal plasticity law is not supposed to induce localizations. Furthermore, the width and number374

of bands evolve with the resolution, which means that this problem clearly corresponds to an artifact of375

the FFT method. In fact, it is here the non-respect of the grain boundaries geometry (seen as staircases)376

which favours the appearance of non-physical deformation bands. The work of [34] focuses on this problem377

and shows that the appearance of strain bands is greatly reduced by using a non regular Fourier grid, in378

order to correctly match the grain boundaries geometry. This aspect is therefore a prospect of this work.379

However, in the analysis presented hereafter the values of the local filds have no particular meaning, the380

analysis being purely qualitative.381
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Figure 14: Von Mises equivalent viscoplastic strain fields (homogeneous distribution at ε11 = 0.004) for three resolutions: 573

(left), 1253 (center) and 2503 (right) voxels

Figure 15: Von Mises equivalent viscoplastic strain fields: at ε11 = 0.004 (up) and ε11 = 0.1 (down)

Figures 15 and 16 present respectively the Von Mises equivalent viscoplastic strain field and the maximum382

principal stress field, for the three distributions: homogeneous (left), homogeneous per phase (center) and383

heterogeneous (right). At ε11 = 0.004, three distinct field profiles are clearly identified, both for the equiva-384

lent viscoplastic strain and for the maximum principal stress value. Comparing the equivalent viscoplastic385

strain maps, between the homogeneous and homogeneous per phase distributions a strong correlation is386

observed between the level of the initial dislocation densities of the grains and the overall viscoplastic strain387

of the grains. For instance, for the grains denoted (1) and (2) on the Figure 15 the initial dislocation density388

is lower (for grain (1)) or higher (for grain (2)) than the mean value (affected to all grains in the case of an389

homogeneous distribution) and the overall viscoplastic strain is higher in grain (1) or lower in the grain (2)390

than the corresponding values obtained for the same grains in the case of an homogeneous distribution. Also,391

in the case of the homogeneous per phase distribution, notable strain localization are observed at the grain392

boundaries (3), (4) or at triple points (5). When comparing the maps corresponding to the homogeneous393

and heterogeneous distributions, the main differences are observed for the fields profiles, inside each grain,394
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Figure 16: Maximum principal stress value fields: at ε11 = 0.004 (up) and ε11 = 0.1 (down)

due to the significant difference in initial dislocation densities from one voxel to the other nearby ones for the395

heterogeneous distribution. Similar conclusions can be drawn for the maximum principal stress value. The396

major differences between homogeneous and heterogeneous distributions are observed in the field profiles397

within each grain. In contrast, between homogeneous and homogeneous per phase distributions, higher (6)398

or lower (7) overall grain viscoplastic strain can be observed, similarly for stress concentrations (8).399

Deep in the plastic range the observed differences between the local fields corresponding to different initial400

dislocation densities distributions tend to gradually fade away as the loading evolves during the simulation,401

to finally converge towards a common configuration. In particular, at ε11 = 0.1, the local fields present402

similar profiles for the two results of interest, whatever the type of initial dislocation densities distribution403

considered.404

As explained in the previous section, the local values of the fields could be not very accurate, but as405

shown on the Figure 11 the average value per phase of the Von Mises equivalent viscoplastic strain has an406

asymptotic behavior when the resolution increases. Therefore it is pertinent to compare these mean values407

for the three types of the initial dislocation densities distributions. The results are reported in Figure 17.408

In these figures, we select the first 50 phases which present the maximum difference value observed between409

the three distributions at ε11 = 0.004 and the average values per phase are ordered (on the x-axis) in a410

decreasing manner with respect to this difference value. These results show, as previously, that the impact411

of the distribution of initial dislocation densities for a low strain (ε11 = 0.004) is more prononced than for a412

high strain (ε11 = 0.1). Furthermore, these results also highlight that the homogeneous and heterogeneous413

distributions give very closed values for the average value per phase compared to analogous result for the414

homogeneous per phase distribution. This could be the consequence of a statistical effect. Each grain415

contains sufficiently voxels such way that the mean value of the initial dislocation density in each grain is416

close to the mean value of the same variable on the whole domain, so close to the value of the uniform417

distribution.418
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Figure 17: Average value per phase of the Von Mises equivalent viscoplastic strain: at ε11 = 0.004 (up) and ε11 = 0.1 (down)

5. Conclusion419

A multi-scale model has been proposed by combining a crystal plasticity law for irradiated RPV steels420

and numerical full-field simulations on polycrystals based on Fast Fourier Transforms. Comparisons between421

numerical and experimental results have been performed on four types of macroscopic results in order to show422

the relevance of the crystal plasticity law. First, the macroscopic tensile curves are accurately reproduced423

by the numerical simulations, for a temperature range from -100◦C to 200◦C and for three fluences. Second,424

the strain rate sensitivity induced by a fast variation in imposed macroscopic strain rate shows a good425

agreement with the experimental results for a temperature range from -200◦C to 100◦C and for two strain-426

rate variations 5 × 10−3 s−1 / 5 × 10−4 s−1 and 5 × 10−4 s−1 / 5 × 10−5 s−1. Third, the evolution of427

the yield stress is generally better reproduced for low and high strain rates (4 × 10−4 s−1 and 17.6 s−1)428

than for a very high strain rate (4000 s−1). Finally, the irradiation-induced hardening is well reproduced by429

numerical simulations, over a wide range of fluences and fluxes. In these simulations, all input parameters are430

within typical values of grain size, dislocation densities and solute cluster size and density, characteristic of431

a irradiated low alloy RPV steels. The main advantage of this physically-based model is that when the yield432

stresses before and after irradiation are known at a given temperature and strain rate, the model can predict433

the yield stress at any temperature and strain rate. In addition, intragranular stress and strain fields are434

also investigated in the case of heterogeneous distribution of initial dislocation densities. The results led to435

differences in local fields between the three distributions at the beginning of the viscoplastic domain, which436

tend to reduce and basically converge towards a common configuration deep in the viscoplastic domain.437

However, the presence of non-physical strain bands are observed representing an artifact of the FFT method438

and more precisely concerning the discretization process which not respect the grain boundaries geometry.439

Finally, the macroscopic response and the evolution of the total dislocation density seem to be very weakly440

influenced by the heterogeneity of dislocation density.441
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