

Computational homogenization of a physically-based crystal plasticity law for irradiated bainitic steels

Loïc Chaix, Mihail Gărăjeu, Martín Idiart, Ghiath Monnet, Pierre-Guy

Vincent

► To cite this version:

Loïc Chaix, Mihail Gărăjeu, Martín Idiart, Ghiath Monnet, Pierre-Guy Vincent. Computational homogenization of a physically-based crystal plasticity law for irradiated bainitic steels. Computational Materials Science, 2025, 10.1016/j.commatsci.2024.113316. hal-04688578

HAL Id: hal-04688578 https://hal.science/hal-04688578v1

Submitted on 5 Sep 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Computational homogenization of a physically-based crystal plasticity law for irradiated bainitic steels

Loïc Chaix^{a,b}, Mihail Garajeu^{a,*}, Martín I. Idiart^{c,d}, Ghiath Monnet^e, Pierre-Guy Vincent^b

^aAix-Marseille Univ, CNRS, Centrale Marseille, LMA, 4 Impasse Nikola Tesla, CS 40006, 13453 Marseille Cedex 13, France.

^bInstitut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES/SEMIA/LSMA, B.P. 3, 13115 Saint-Paul-lez-Durance Cedex, France.

^cCentro Tecnológico Aeroespacial/Departamento de Ingeniería Aeroespacial, Facultad de Ingeniería, Universidad Nacional de La Plata, Avda. 1 esq. 47 S/N, La Plata B1900TAG, Argentina.

^dConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT La Plata, Calle 8 N° 1467, La Plata B1904CMC, Argentina.

^eEDF - R&D, MMC, Avenue des Renardières, Moret sur Loing, France.

Abstract

The elasto-viscoplastic response of irradiated bainitic steels for pressure vessels of light water reactors is described by a multiscale micromechanical model. The model relies on a simplified set of complex constitutive equations describing intragranular flow under a wide range of temperatures, strain rates, and irradiation levels. These equations were themselves partially calibrated by multiscale analyses based on dislocation dynamics calculations, atomistic calculations, and experimental measurements. They include the contribution of jog drag, lattice friction, evolution of dislocation microstructures, and irradiation hardening. The scaling up of these intragranular laws to polycrystalline samples relies on a computational homogenization method which solves the field equations within periodic representative volume elements by means of Fast Fourier Transforms. This computational method proves advantageous relative to the finite element method in handling the complex microstructural morphology of the model required to achieve overall constitutive isotropy. Macroscopic simulations for uniaxial curves under different irradiation levels are first confronted to experimental curves to identify certain microscopic material parameters employed to describe the evolution of the mean-free path of dislocations with deformation. Subsequent comparisons for the evolution of the yield stress, irradiation hardening and the response to sudden strain-rate variations are then reported for a class of steels with various chemical compositions under wide ranges of temperature, loading rate and irradiation level. Good agreement is obtained in all cases. Finally, simulations are employed to explore the influence of the initial dislocation density on the intragranular stress and strain fields. An appreciable influence on the fields is observed during the elasto-viscoplastic transition but not deep in the plastic range.

Keywords: steels, neutron radiation, crystal plasticity, computational homogenization

1 1. Introduction

The mechanical integrity of pressure vessels is a critical issue in the long-term safety assessment of light water reactors. These vessels are made of bainitic steels which undergo progressive embrittlement with

martin.idiart@ing.unlp.edu.ar (Martín I. Idiart), ghiath.monnet@edf.fr (Ghiath Monnet), pierre-guy.vincent@irsn.fr (Pierre-Guy Vincent)

^{*}Corresponding author:

Email addresses: lchaix@lma.cnrs-mrs.fr (Loïc Chaix), mihai.garajeu@univ-amu.fr (Mihail Garajeu),

neutron radiation. Accounting for this embrittlement in advanced failure criteria requires knowledge of the
entire elastoplastic response of the steels for a wide range of deformation rates, temperatures, and radiation
doses [1]. Such a range of working conditions hampers the use of purely phenomenological descriptions of
material behavior and calls for physically-based descriptions that explicitly account for the micromechanisms
responsible for the behavior.

At the microscopic scale, bainitic steels exhibit a polycrystalline structure of a small grain size, mainly q composed of ferritic laths packages and cementite inclusions [2, 3]. At smaller scales, a high density of 10 dislocations, intragranular carbides and irradiation defects, such as solute clusters and dislocation loops, 11 are observed [1]. Monnet et al. [4] have recently adapted the crystal plasticity law reported in [5] for 12 pure iron to bainitic steels. The law accounts for multiple physical phenomena and follows from multi-13 scale analyses based on dislocation dynamics calculations, atomistic calculations, as well as on experimental 14 observations. It considers two contributions to the intragranular plastic slip rate through a harmonic sum, 15 each one depending on the resolved stress and on dislocation densities in a strongly nonlinear manner, and 16 furthermore, involve critical resolved stresses which depend on the strain rate. Recent experience suggests 17 that certain simplications to this crystal plasticity law, such as a reduction in the number of internal 18 variables employed, can be introduced without appreciably altering its descriptive capabilities. The first 19 purpose of this work is to put forward such simplified law, which is spelled out in Section 2. To assess their 20 descriptive capabilities, crystal plasticity laws must be scaled up by some homogenization procedure. The 21 second purpose of this work is to report on the suitability of a computational homogenization method based 22 on the Fast Fourier Transform (FFT) to scale up crystal plasticity laws. The method has recently proved 23 successful in scaling up a subclass of this crystal plasticity law wherein one of the two contributions to the 24 plastic slip rate dominates [6]. From its inception [7], FFT methods have been widely used for computing 25 the overall mechanical response of heterogeneous materials with complex microstructures, see [8] for a recent 26 review. Compared to the finite elements method [9, 10], the advantage of using a FFT method generally 27 lies in a more rapid computation and in a complexity reduction due to the absence of the mesh and the 28 natural way to incorporate the periodicity conditions. Lebensohn [11] used for the first time the iterative 29 scheme proposed by Moulinec and Suquet in the context of polycrystalline materials, followed by many 30 other works, see [12] for a recent review about computational simulations of the mechanical behavior of 31 polycrystalline materials. It was remarked that the classical FFT scheme is less accurate in the case of low 32 rate-sensitivity materials or in the case of composite materials with high contrast between phases [13]. To 33 overcome this limitation, but also in order to accelerate the convergence of the iterative method, different 34 improved FFT formulations were proposed [13, 14, 15] and compared in [16]. In the present work, the basic 35 scheme spelled out in Section 3 is employed. Homogenized models exhibiting overall constitutive isotropy 36 follow from representative volume elements with the required microstructural complexity. A third purpose 37 of this work is to confront model predictions with experimental measurements on a class of bainitic steels, 38 and thus infer certain material parameters employed by the simplified crystal plasticity law to describe 39 the evolution of intragranular mean-free path of dislocations during deformation. Comparisons for a wide 40 41 range of scenarios are reported in Section 4. In addition, the homogenized model is employed to explore the influence of initial dislocation densities on the intragranular stress and strain fields. Finally, Section 5 closes 42 the exposition with a summary of the main conclusions. 43

44 2. A simplified crystal plasticity law for irradiated bainitic steels

⁴⁵ Central to the multiscale model developed in this work is a simplified version of the physically-based ⁴⁶ crystal plasticity law of [4] for bainitic steels. Compared to the original version, it involves fewer equations ⁴⁷ and simpler expressions, and therefore eases numerical implementations. In the following, the upper indexes ⁴⁸ (s) refer to the slip system number, while the lower indexes refer to the nature of the variable.

The crystal law assumes an additive decomposition of the infinitesimal strain into elastic and viscoplastic parts such that

$$\dot{\boldsymbol{\varepsilon}} = \mathbb{C}^{-1} : \dot{\boldsymbol{\sigma}} + \sum_{s=1}^{N} \dot{\gamma}^{(s)} \boldsymbol{\mu}^{(s)}, \tag{1}$$

or equivalently 51

$$\dot{\boldsymbol{\sigma}} = \mathbb{C} : \left(\dot{\boldsymbol{\varepsilon}} - \sum_{s=1}^{N} \dot{\boldsymbol{\gamma}}^{(s)} \boldsymbol{\mu}^{(s)} \right), \tag{2}$$

where the symbol ":" represents the doubly contracted tensor product, ε and σ are the total strain and 52 Cauchy stress tensors, respectively, while $\dot{\gamma}^{(s)}$ and $\mu^{(s)}$ are the slip rate and Schmid tensor of system s. 53 The elastic deformation is fully characterized by the stiffness tensor \mathbb{C} , which is assumed isotropic with 54 shear modulus μ and Poisson's ratio ν . The viscoplastic deformation, in turn, is assumed to occur by 55 slip along twelve slip systems (N = 12) belonging to the family $\langle 111 \rangle \{110\}$. In this connection, it should 56 be remarked that the original crystal law [4] admitted slip over $\{112\}$ planes also. However, simulations 57 suggested that the contribution of these additional slip planes to the overall deformation was not significant 58 even for temperatures for which $\{112\}$ slip is theoretically likely to be activated. 59

2.1. Slip rates 60

The crystal law further assumes that each slip rate $\dot{\gamma}^{(s)}$ is the harmonic mean of a slip rate $\dot{\gamma}^{(s)}_{drag}$ controlled 61 by jog-drag and a slip rate $\dot{\gamma}_{friction}^{(s)}$ controlled by lattice friction. In bainitic steels, two types of dynamic obstacles control the effective stress: the lattice friction at low temperature resulting from the non-planar 62 63 core structure of screw dislocations and jog drag induced by the thermally activated motion of jogs formed 64 by intersection of mobile screw dislocations with forest dislocations whose Burgers vector is outside the slip 65 plane. The harmonic sum 66

$$\dot{\gamma}^{(s)} = \left(\frac{1}{\dot{\gamma}_{drag}^{(s)}} + \frac{1}{\dot{\gamma}_{friction}^{(s)}}\right)^{-1} \tag{3}$$

reflects the fact that the slip occurs according to the characteristic times of the two physical phenomena. 67 Each slip rate is given by 68

$$\dot{\gamma}_{drag}^{(s)} = \dot{\gamma}_{0,drag} \quad \sinh\left(p_{drag}\frac{\tau_{eff}^{(s)}}{\tau_c^{(s)}}\right) \operatorname{sgn}\left(\tau^{(s)}\right) \tag{4}$$

and 69

$$\dot{\gamma}_{friction}^{(s)} = \dot{\gamma}_{0,friction} \exp\left(-\frac{\Delta G_0}{kT}\right) \sinh\left(\frac{\Delta G_0}{kT}\sqrt{\frac{\tau_{eff}^{(s)}}{\tau_0}}\right) \operatorname{sgn}\left(\tau^{(s)}\right),\tag{5}$$

where k is the Boltzmann constant, T is the absolute temperature, $\tau^{(s)} = \boldsymbol{\sigma} : \boldsymbol{\mu}^{(s)}$ is the resolved shear stress, $\tau_{eff}^{(s)}$ is an effective shear stress defined below, and the remaining symbols refer to material param-70 71 eters characterizing slip. At high temperatures or low rates the flow is controlled by (4), whereas at low 72 temperatures or high rates the flow is controlled by (5). For both regimes, a hyperbolic sine function is 73 introduced to account for the probability, at low stress, of thermal activation in the opposite direction. This 74 is an important improvement of the original model, since it allows to avoid discontinuity of slip rate at zero 75 effective stress. 76

Given the common microstructural features in all bainitic steels, only the term $\tau_c^{(s)}$ varies between specific 77 steels and increase with deformation in expressions (4) and (5). In these two equations, $\tau_{eff}^{(s)}$ is the effective 78 shear stress for each slip system, that is, the net driving force for dislocation motion 79

$$\tau_{eff}^{(s)} = \max\left(|\tau^{(s)}| - \tau_c^{(s)}, 0\right).$$
(6)

The shear stress for each slip system is split into the critical shear stress, $\tau_c^{(s)}$, representing the yield surface 80 at the given strain rate, and the effective shear stress $\tau_{eff}^{(s)}$ necessary to force screw dislocations to move at the velocity required to accommodate the imposed strain rate. 81 82

⁸³ 2.2. Critical shear stresses

In bainitic steels, the flow stress is controlled by a low-alloy Fe-C solid solution, intragranular carbide 84 particles, high density of dislocations, small grain size (large Hall-Petch effet) and, if irradiated, irradiation 85 defects such as dislocations loops (DLs) and solute clusters (SCs). These features can be classified into 86 two families: local obstacles (dislocations, carbides, SC, etc.) and diffuse (or long-range) obstacles inducing 87 solid solution and the Hall-Petch effect. Since solid solution and carbide contributions to the flow stress 88 are substantially lower than the Hall-Petch effect and forest hardening, respectively, we incorporate the 89 contribution of solid solution into that of the Hall-Petch effect (through a slight decrease in grain size) 90 and we incorporate the carbide contribution into that of forest dislocations (through a small increase in 91 dislocation density). This is a second simplification of the original model [4]. Thus, the critical stress is 92 reduced to 93

$$\tau_c^{(s)} = \sqrt{\left(\tau_{auto}^{(s)}\right)^2 + \left(\max\left(\tau_{forest}^{(s)} - \tau_{eff}^{(s)}, \ 0\right)\right)^2 + \left(\tau_{DL}\right)^2 + \left(\tau_{SC}\right)^2} + \tau_{HP},\tag{7}$$

⁹⁴ where the components

$$\tau^{(s)}_{auto} = \mu b \sqrt{a^{(s)(s)} \rho^{(s)}} \qquad \text{and} \qquad \tau^{(s)}_{forest} = \mu b \sqrt{\sum_{s \neq j} a^{(s)(j)} \rho^{(j)}}$$

account for the interactions of the dislocations belonging to the same slip system and for interactions of the
 dislocations belonging to different slip systems, respectively, while the remaining components

$$\begin{aligned} \tau_{DL} &= \mu b \sqrt{a_{DL} \ d_{DL} \ c_{DL}}, \\ \tau_{SC} &= \mu \sqrt{p_{SC,1} \ (d_{SC})^{2.3} \ (c_{SC})^{1.14}}, \qquad (d_{SC} \text{ in nm and } c_{SC} \text{ in } 10^{22} \times \text{m}^{-3}), \\ \tau_{HP} &= \frac{\mu}{\mu_{300K}} \frac{K_{HP}}{\sqrt{d}}, \end{aligned}$$

do not depend on the internal variables — and hence on the mechanical process— and refer, respectively, 97 to the resistance of dislocation loops, solute clusters, and finally the contribution of the Hall-Petch effect 98 -including solid solution— which depends on the average ferrite lath package size d. The internal variables 99 $\rho^{(s)}$ refer to the dislocation densities on each active slip system. The Hall-Petch effect is here only described 100 by a mean grain size d. It has been shown that the sizes of the ferrite lath packages and old austenitic 101 grains are proportional [17], which justify the choice of a single parameter to describe the microstructure. 102 The added value of our work is to show that we can isolate the Hall-Petch effect and obtain a flow stress 103 while respecting both the experimentally measured dislocation densities and the Hall-Petch law with an 104 experimentally measured Hall-Petch constant, which was not a foregone conclusion. In turn, the volume 105 densities of irradiation defects c_{DL} and c_{SC} and their sizes d_{DL} and d_{SC} are material parameters that 106 can be predicted by microstructure models or measured in experiment. The interaction coefficients $a^{(s)(j)}$ 107 are defined such that, taking into account the results of dislocation dynamics simulations and by making 108 a first order approximation on the strength of the junctions, two different values are considered: 0.7 for 109 the collinear interactions (system sharing the same Burgers vector) and 0.1 for all other configurations. 110 The remaining symbols in these expressions are defined in Table 1, unless some parameter values which 111 are obtained by comparison with experimental data and will be given further. As pointed out in [4], an 112 important modification to the original model is that the contributions of DL and SC are now outside the 113 $\max()$ term in expression (7). The reason was discussed in [4]. This modification is significant and must be 114 taken into account. 115

116 2.3. Evolution of dislocation densities

Physically-based crystal plasticity laws include equations for the evolution of the internal variables describing the microstructure (dislocations, dislocations loops, solutes clusters, among others). It is assumed that only the dislocation density on each slip system can vary (dislocation loops and solute cluster densities

Symbol	Parameter	Value	Units
μ	shear modulus	82819.0 - 8.17 T(K) -0.0213 $T^{2}(K)$	MPa
ν	Poisson ratio	0.3	_
$\dot{\gamma}_{0,drag}$	reference slip rate for the jog drag contribution	10^{-5}	s^{-1}
$\dot{\gamma}_{0,friction}$	reference slip rate for the lattice friction contribution	10^{9}	s^{-1}
p_{drag}	parameter adjusted from experimental results	200.0	_
ΔG_0	parameter adjusted from experimental results	0.84	eV
k	Boltzmann constant	8.6×10^{-5}	$eV.K^{-1}$
$ au_0$	reference critical shear stress	300.0	MPa
K_{HP}	constant related to the Hall-Petch effect	0.28	$MPa.m^{1/2}$
b	Burger vector norm	0.248	nm
a_{DL}	interaction coefficient for dislocation loops	0.25	_
$p_{SC,1}$	parameter related to the solute clusters	$0.3722 \times 10^{-12.38}$	$m^{1.12}$
p_d	parameter related to the ferrite lath package size	3.455	_
$p_{SC,2}$	parameter related to the solute clusters	4.0775×10^{11}	$m^{-5/4}$
T_0	characteristic temperature	217.4	Κ
$ ho_{init}^{(s)}$	initial dislocation density on each slip system	*	m^{-2}
d	average ferrite lath package size	*	μm
K_{auto}	number of obstacles (dislocation of the same system)	*	_
K_{forest}	number of obstacles (dislocation of a different system)	*	_
K_{DL}	number of obstacles (dislocation loops)	*	_
K_{SC}	number of obstacles (solute clusters)	*	_
p_y	parameter related to the annihilation distance	*	nm
d_{DL}	characteristic diameter of dislocation loops	*	nm
c_{DL}	concentration of dislocation loops	*	m^{-3}
d_{SC}	characteristic diameter of solute clusters	*	nm
c_{SC}	concentration of solute clusters	*	m^{-3}

Table 1: Material parameters of the crystal plasticity law. Numerical values correspond to steels resembling A508 cl.3 RPV available from the literature. Starred values are determined in this work.

remain fixed). According to the Kocks-Mecking classical theory [18], the storage of dislocations results from their immobilization after sliding over a distance λ , called mean free path. On the other hand, when the density increases sharply, spacing between dislocations decreases strongly. Below a critical spacing y(the annihilation distance), it is assumed that dipoles are no longer stable and annihilate spontaneously by thermal activation. The classical Kocks-Mecking formulation [18] can be written as

$$\dot{\rho}^{(s)} = \frac{|\dot{\gamma}^{(s)}|}{b} \left(\frac{1}{\lambda^{(s)}} - y\rho^{(s)}\right) \tag{8}$$

¹²⁵ with the total mean free path of dislocations

$$\frac{1}{\lambda^{(s)}} = \frac{p_d}{d} + \frac{\sqrt{a^{(s)(s)}\rho^{(s)}}}{K_{auto}} + \frac{\sqrt{\sum_{s\neq j} a^{(s)(j)}\rho^{(j)}}}{K_{forest}} + \frac{\left(\frac{c_{SC}}{p_{SC,2}}\right)^{4/7}}{K_{SC}} + \frac{\sqrt{a_{DL} \ d_{DL} \ c_{DL}}}{K_{DL}}.$$
(9)

Each term in this last expression corresponds to a different class of obstacles to dislocation movement. The constants K_i represent the number of obstacles of the family *i* that can be overcome by a dislocation before its immobilization. In other words, equation (9) means that a dislocation is immobilized when it reaches a grain boundary and each time it encounters K_i obstacles of the family *i*. The values for the parameters K_i therefore influence hardening. A notable consequence of this approach is the presence of irradiation defects which modify the rate of the hardening in the irradiated materials. Due to thermal activation, the annihilation distance *y* depends on temperature according to

$$y = p_{\mu} \min(1, \ 0.255 \ e^{T/T_0}). \tag{10}$$

The remaining material parameters entering expressions (2) to (10) are described in table 1. The numerical values reported in that table correspond to steels resembling A508 cl.3 RPV steels of interest in this work. The starred values will be chosen later for specific steels and determined from comparisons with experimental

¹³⁶ uniaxial curves.

137 3. Computational homogenization method

The macroscopic behavior of polycrystalline aggregates is characterized by the relation between the 138 volume averages over the representative volume element of the local stress field, denoted $\bar{\sigma}(t)$, and the local 139 strain field, denoted $\bar{\boldsymbol{\varepsilon}}(t)$, where t is the time. To compute the stress and strain fields for a given loading 140 condition, the constitutive equations presented in Section 2 are implemented in the computer code CraFT [19] 141 which solves the mechanical field equations by means of a Fast Fourier Transform (FFT) based algorithm 142 proposed in [20], [7], and [21] to determine the effective properties of periodic composites with complex 143 microstructures. As in studies [22] and [23] devoted to the effective behavior of porous viscoplastic crystals 144 and polycrystals, the so-called "basic" iterative scheme is adopted, which ensures the strain compatibility. 145 At each time step CraFT determines the local stress and strain fields (σ, ε) by a fixed point algorithm 146

$$\begin{cases} \varepsilon^{i+1} = \varepsilon^{i} - \Gamma^{0} * \boldsymbol{\sigma}^{i} \\ \sigma^{i+1} = \mathcal{F}(\varepsilon^{i+1}, \varepsilon^{i}, \boldsymbol{v}_{int}) \end{cases}$$
(11)

where at each iteration step *i* of the iterative scheme, the system of constitutive equations of the model, giving the function \mathcal{F} , is integrated in time using a fully implicit scheme (v_{int} corresponds to the internal variables). In (11) the operator Γ^0 is the Green operator associated to an elasticity tensor \mathbb{C}_0 of an infinite medium (* denotes the convolution operator). The choice of \mathbb{C}_0 can depend on the local constitutive behavior being simulated and plays an important role in the convergence rate of the algorithm. The present work relies on the choice already implemented in the code CraFT.

¹⁵³ 3.1. Convergence criteria

Since the "basic" scheme used in the computations presented in this work ensures the compatibility of the strain, only two convergence criteria are checked, one for the equilibrium condition and the other for the macroscopic stress direction (see Figure 1 of [24] for an intuitive representation of the convergence path). At each iteration i of the general algorithm in CraFT, the error relative to the local equilibrium condition is given by

$$\frac{\sqrt{\langle \| div(\boldsymbol{\sigma}^i) \|^2 \rangle}}{\| \langle \boldsymbol{\sigma}^i \rangle \|} \tag{12}$$

Algorithm inputs: $\dot{\varepsilon}^n$, σ^{n-1} , $\dot{\gamma}^{n-1}$, τ_c^{n-1} and ρ^{n-1} 1 Initialization of the stress and the internal variables $\sigma^{n,0} = \sigma^{n-1}$, $\dot{\gamma}^{n,0} = \dot{\gamma}^{n-1}$, $\tau_c^{n,0} = \tau_c^{n-1}$ and $\rho^{n,0} = \rho^{n-1}$ 2 Initialization of the error $\epsilon = tol + 1$ 3 While $\epsilon > tol$

3.1 Calculation of
$$\boldsymbol{\sigma}^{n,i}$$
, $\dot{\gamma}^{n,i}$, $\tau_c^{n,i}$ and $\rho^{n,i}$
 $\boldsymbol{\sigma}^{n,i} = \boldsymbol{\sigma}^{n-1} + \Delta t f_1(\dot{\gamma}^{n,i-1}, \dot{\boldsymbol{\varepsilon}}^n), f_1 \text{ corresponds to (2)}$

 $\dot{\gamma}^{n,i} = f_2 \left(\tau_c^{n,i-1}, \, \boldsymbol{\sigma}^{n,i-1} \right), \, f_2 \text{ corresponds to } (3)$ $\tau_c^{n,i} = f_3 \left(\tau_c^{n,i-1}, \, \rho^{n,i-1}, \, \boldsymbol{\sigma}^{n,i-1} \right), \, f_3 \text{ corresponds to } (7)$ $\rho^{n,i} = \rho^{n-1} + \Delta t \, f_4 \left(\rho^{n,i-1}, \, \dot{\gamma}^{n,i-1} \right), \, f_4 \text{ corresponds to } (8)$

3.2 Calculation of the error

$$\begin{aligned} \epsilon_{\boldsymbol{\sigma}} &= 2 \left\| \boldsymbol{\sigma}^{n,i} - \boldsymbol{\sigma}^{n,i-1} \right\| / \left\| \boldsymbol{\sigma}^{n,i} + \boldsymbol{\sigma}^{n,i-1} \right\| \\ \epsilon_{\dot{\gamma}} &= 2 \left\| \dot{\gamma}^{n,i} - \dot{\gamma}^{n,i-1} \right\| / \left\| \dot{\gamma}^{n,i} + \dot{\gamma}^{n,i-1} \right\| \\ \epsilon_{\tau_c} &= 2 \left\| \boldsymbol{\tau}^{n,i}_c - \boldsymbol{\tau}^{n,i-1}_c \right\| / \left\| \boldsymbol{\tau}^{n,i}_c + \boldsymbol{\tau}^{n,i-1}_c \right\| \\ \epsilon_{\rho} &= 2 \left\| \rho^{n,i} - \rho^{n,i-1} \right\| / \left\| \rho^{n,i} + \rho^{n,i-1} \right\| \\ \epsilon &= \max\left(\epsilon_{\boldsymbol{\sigma}}, \ \epsilon_{\dot{\gamma}}, \ \epsilon_{\tau_c}, \ \epsilon_{\rho} \right) \end{aligned}$$

3.3 Updating variables, affected by a weight $w \in [0, 1]$ (in order to facilitate the convergence)

$$\begin{split} & \boldsymbol{\sigma}^{n,i} = w \; \boldsymbol{\sigma}^{n,i-1} + (1-w) \; \boldsymbol{\sigma}^{n,i} \\ & \dot{\gamma}^{n,i} = w \; \dot{\gamma}^{n,i-1} + (1-w) \; \dot{\gamma}^{n,i} \\ & \tau_c^{n,i} = w \; \tau_c^{n,i-1} + (1-w) \; \tau_c^{n,i} \\ & \rho^{n,i} = w \; \rho^{n,i-1} + (1-w) \; \rho^{n,i} \end{split}$$

Algorithm output: σ^n

Table 2: Algorithm used for the numerical integration of the local crystal plasticity law in CraFT

where $\langle \sigma^i \rangle$ denotes the volume average of the field σ^i and $\|\cdot\|$ denotes the Frobenius norms of a vector or a second-order tensor. This error is computed in the Fourier space. The error relative to the prescribed direction of the macroscopic stress is defined by

$$\frac{||\langle \boldsymbol{\sigma}^i \rangle - \boldsymbol{\Sigma}_0 \ k^i||}{||\boldsymbol{\Sigma}_0 \ k^i||}.$$
(13)

where Σ_0 is the direction of the macroscopic stress and k^i indicates the level of macroscopic stress. In this work, the tolerances for both criteria are set to 10^{-3} (see also the general presentation of the two corresponding convergence tests in [25]).

¹⁶⁵ 3.2. Time integration of the local crystal plasticity law

The set of equations associated with the crystal plasticity law is highly nonlinear. A fully implicit scheme is chosen (implicit Euler scheme resolved by a fixed point algorithm) in order to determine the stress σ^{i+1} for a given strain ε^{i+1} , at each CraFT iteration. The numerical procedure is presented in Table 2. In this

	С	S	Р	Si	\mathbf{Cr}	Mo	Mn	Ni	V	Al	Со	Cu
А	0.139	0.004	0.006	0.19	0.21	0.49	1.33	0.73	< 0.01	0.025	0.020	0.06
В	0.160	0.004	0.008	0.22	0.22	0.51	1.33	0.76	< 0.01	/	0.017	0.07
\mathbf{C}	0.140	/	0.005	0.23	/	0.55	1.44	0.86	/	/	/	0.41
D	0.150	0.006	0.013	0.22	0.19	0.52	1.31	0.70	0.009	0.022	0.020	0.07

Table 3: Chemical composition in weight % of the various steels considered in this study

table, the index n and n-1 respectively refer to the current and previous times (Δt is the time step) and the index i and i-1 respectively refer to the current and previous iteration of the fixed point algorithm.

171 4. Results and discussion

The predictive capabilities of the homogenized model are assessed by confronting predictions with ex-172 perimental uniaxial curves of four bainitic steels of a common class. Each steel is identified with letters A 173 through D for ease of presentation; their chemical compositions are displayed in Table 3. Types A and D 174 refer to a low copper steel and a 16MND5 steel, both resembling an A508 cl.3 steel. Type B refers to a 175 16MND5 steel employed in vessels for pressurized water reactors and manufactured by Framatome; it was 176 subject to two austenitizing treatments followed by water quenching and tempering, and a final stress relief 177 treatment to obtain a tempered bainitic microstructure. Finally, type C refers to RPV steel. For these 178 steels, it is reasonable to assume that the influence of dislocation loops is negligible compared to that of 179 solute clusters. Therefore, we set $c_{DL} = 0$ henceforth, and ignore the irrelevant parameters K_{DL} and d_{DL} . 180 The reminder of the unquantified material parameters of Table 1 are identified by comparisons of predictions 181 with experiments. To that end, uniaxial curves are simulated by applying mixed loading conditions of the 182 form 183

$$\overline{\boldsymbol{\sigma}}(t) = k(t)\boldsymbol{\Sigma}_0 \quad \text{and} \quad \boldsymbol{\Sigma}_0 : \dot{\overline{\boldsymbol{\varepsilon}}} = \dot{E},$$
(14)

where k(t) is an unknown scalar function, evolving in time, $\overline{\varepsilon}$ and $\overline{\sigma}$ are the macroscopic strain and stress, $E(t) = \dot{E} t$ is the prescribed projected macroscopic strain in the Σ_0 direction. We begin by identifying a suitable microstructural morphology for the computational model such that the simulated uniaxial curve produced by (14) is insensitive to loading direction Σ_0 . In the following, the tolerance *tol* is set to 10^{-4} and the weight w is set to 0.9.

189 4.1. Microstructural morphology

The microstructural morphology of bainitic steels is idealized as a periodic aggregate of grains defining a 190 Voronoi tessellation. Note that the FFT method can also be used to perform computations on other types 191 of tessellations, such as those of Johnson-Mehl-Avrami-Kolmogorov and Laguerre, see [26]. A Voronoi tes-192 sellation is generated from random grain seeds using a minimal distance algorithm. Crystalline orientations 193 within grains are randomly generated from a Sobol sequence (e.g. [27]) in order to approach an isotropic 194 polycrystal while optimizing the number of grains. The number of grains and voxels taken for the unit cell 195 follows from the two parametric studies in order to determine the "optimal" configuration, with a good 196 compromise between the computation time and the representativeness of the polycrystal. Simulations are 197 performed on unirradiated specimens at a temperature of 25°C and a constant strain rate of $\dot{E} = 5 \times 10^{-4} s^{-1}$. The following parameters are considered, $\rho_{init}^{(s)} = 4.5 \times 10^{12} m^{-2}$, $d = 7.6 \mu m$, $K_{auto} = 72$, $K_{forest} = 24$ and 198 199 $p_u = 2.6 \ nm.$ 200

First, a convergence study for the spatial discretization is carried out. A polycrystal with 125 grains is considered. A total of seven spatial discretizations (in voxels per grain) are tested: 2³, 4³, 6³, 8³, 10³, 12³ and 14³. For each discretization level, ten microgeometries for the Voronoi tesselation are generated. The stabilization of the macroscopic response is evaluated with respect to the highest resolution (considered as

Figure 1: Unit cell with 729 grains and 373,248 voxels employed in the numerical simulations.

a reference and denoted hereafter k_{14^3}) by two relative errors, corresponding to the Hölder mean of order 1 and infinity, respectively. For defining these two errors a discretization of the time interval is considered, $0s = t_1 < t_2 < \ldots < t_N = 200s$ and the two relative errors are defined by

$$\delta_1 = \frac{1}{N} \sum_{p=1}^{N} \frac{|k_{14^3}(t_p) - k_\alpha(t_p)|}{|k_{14^3}(t_p)|} \quad \text{and} \quad \delta_\infty = \max_p \left\{ \frac{|k_{14^3}(t_p) - k_\alpha(t_p)|}{|k_{14^3}(t_p)|} \right\},\tag{15}$$

where the index α refers to the spatial discretization. Figure 2 displays the values of these two errors with 208 respect to the ten microgeometries considered for each discretization. Through these results, it appears 209 that a good compromise between size and precision is obtained for 8^3 or 512 voxels per grain. From this 210 discretization, low values of the two relative errors are observed, as well as a low dispersion of results. This 211 discretization is retained in what follows. Taking as reference the results for the highest resolution (14^3) 212 voxels per grain) does not allow to characterize how close the results obtained for 512 voxels per grain are 213 from the exact solution of the problem. A recent convergence result [28] shows that for linear heterogeneous 214 materials the effective moduli obtained by the basic scheme converge to the theoretical effective moduli 215 (as defined by the linear homogenization theory) when the resolution tends to infinity. To the best of our 216 knowledge, there is no similar result for nonlinear materials, but it is reasonable to suppose that a higher 217 resolution allows to better approximate the exact solution of the problem. 218

Second, the number of grains of the RVE plays a role in the macroscopic isotropy of the polycrystal. A study was carried out in order to characterize the isotropy of the polycrystal through its response to simple tensile type loadings in three different orthogonal directions. Nine numbers of grains in the RVE are considered: 2^3 , 3^3 , 4^3 , 5^3 , 6^3 , 7^3 , 8^3 , 9^3 and 10^3 and for each, five microgeometries are used. As for the previous study, the mechanical response for each tensile direction is characterized by the stress level k(t)versus time t. The deviation from the macroscopic isotropy is evaluated by two values, corresponding to the Hölder mean of order 1 and infinity and defined as

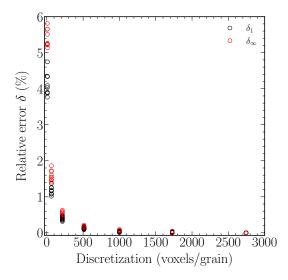
$$\Delta_1 = \frac{1}{N} \sum_{p=1}^{N} \frac{|k_{max}(t_p) - k_{min}(t_p)|}{|k_{avg}(t_p)|} \quad \text{and} \quad \Delta_\infty = \max_p \left\{ \frac{|k_{max}(t_p) - k_{min}(t_p)|}{|k_{avg}(t_p)|} \right\},$$
(16)

where $k_{max}(t_p) = \max \{k_{[100]}(t_p), k_{[010]}(t_p), k_{[001]}(t_p)\}, k_{min}(t_p) = \min \{k_{[100]}(t_p), k_{[010]}(t_p), k_{[001]}(t_p)\}, k_{1001}(t_p)\}, k_{1001}(t_p), k_{1001}(t_p), k_{1001}(t_p)\}, k_{1001}(t_p)\}$ and $k_{avg}(t_p) = \frac{1}{3} (k_{[100]}(t_p) + k_{[010]}(t_p) + k_{[001]}(t_p))$. The subscript [100], [010] or [001] refers to the loading direction. Figure 3 displays the value of Δ_1 and Δ_{∞} over the five microgeometries, for each number of grains. The isotropy of the polycrystal seems rather well respected from $9^3 = 729$ grains, with values of Δ_1 and Δ_{∞} less than 1% and a low dispersion of results.

In conclusion, a satisfactory unit cell results with 729 grains, each of which is discretized by about 512 voxels. The cell is shown in Figure 1. With this cell, smooth convergence of the algorithm is observed.

233 4.2. Macroscopic response

A collection of uniaxial curves for specimens of steel type A under various conditions was generated 234 with the homogenized model to infer the material parameters K_{auto} , K_{forest} , K_{SC} and p_y characterizing 235 the evolution of the intragranular mean-free path of dislocations with deformation. Specifically, we consider 236 unirradiated and irradiated specimens deforming at four different temperature levels (-100°C, -60°C, 237 25°C or 28°C, 200°C). Irradiated specimens were subject to intermediate $(3.6 \times 10^{23} n.m^{-2})$ and high $(7.5 \times 10^{23} n.m^{-2})$ 238 $10^{23} n.m^{-2}$) fluences typical of RPV steels in pressurized water reactors. In all cases, the microstructural 239 parameters $\rho_{init}^{(s)} = 4.5 \times 10^{12} m^{-2}$ and $d = 7.6 \ \mu m$ are adopted. In the case of irradiated specimens, the irradiation parameters $d_{SC} = 3 \ nm$ and $c_{SC} = 20.3/31.5 \times 10^{22} m^{-3}$ for the intermediate/high fluence are 240 241 adopted. Several collections of curves were obtained by sweeping the material parameters K_{auto} , K_{forest} , 242 K_{SC} and p_y across expected ranges of values. Figure 4 shows comparisons between the experimental curves 243 of [1] and the predictions for a constant strain rate $\dot{E} = 5 \times 10^{-4} s^{-1}$ obtained with the parameters reported 244 in Table 4. The main observation in the context of this figure is that good agreement is obtained for 245 all twelve scenarios. Indeed, the homogenized model is seen to accurately reproduce both the elastic and 246 viscoplastic regimes at all temperatures and irradiation conditions considered. By contrast, the model is 247 seen to miss entirely the peak stress upon yielding observed in the experimental curves. In this connection, 248 it is recalled that peak stresses in steels have been attributed to the unpinning of Cottrel atmospheres of 249 dislocations, which is known as static ageing. Thus, values of peak stresses tend to be highly sensitive to the 250 thermomechanical history of the specimen and therefore show strong variability. This is one of the reasons 251 why engineering models usually omit their description. A second reason for omitting their description is that 252 the subsequent softening can induce localized deformations and therefore result in mesh-dependent structural 253



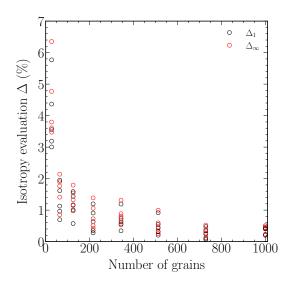


Figure 2: Relative errors with respect to the highest resolution versus voxels per grain

Figure 3: Quantitative estimates for the gap to the macroscopic isotropy versus the number of grains

	$\rho_{init}^{(s)}~(m^{-2})$	$d~(\mu m)$	K_{auto}	K_{forest}	K_{SC}	$p_y \ (nm)$
А	4.5×10^{12}	7.6	72	24	30	2.6
В	3.5×10^{12}	5.25	72	24	30	2.6
С	3.7×10^{12}	7.6	72	24	30	2.6
D	4.5×10^{12}	7.6	72	24	30	2.6

Table 4: Parameters identified for the various types of steel considered in this study

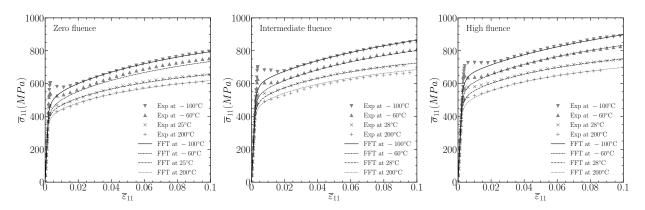
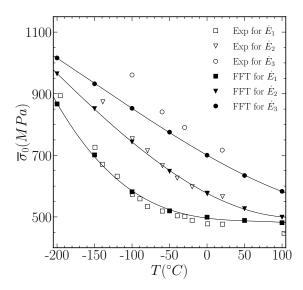


Figure 4: Comparison between experimental data and numerical simulations results of the macroscopic response of a polycrystal, under simple traction loading, for three levels of fluence : non-irradiated steel (left), intermediate fluence (center), high fluence (right)

simulations. Interestingly, recent multiscale simulations coupling the dynamics of irradiation defects and 254 dislocation assembles at different spatial and temporal scales in steels suggest that, while present in the post-25 irradiated mechanical response, peak stresses may be absent from the mechanical response during irradiation 256 [29]. In any event, the model can be employed to generate predictions for the evolution of a yield stress with 257 temperature and strain rate by following common practice and defining the yield stress as the stress defined 258 by the intercept between the tangent of the tensile curve at a deformation of 0.02 and the straight line 259 representing the elastic part of the curve. Experimental values for a yield stress so defined in unirradiated 260 steel specimens of type B at different strain rates have been reported in [30] (experimental values obtained 261 from quasi-static tensile tests as well as dynamic tests using Hopkinson split bars). The values are plotted in 262 Figure 5 versus temperature. Model predictions were generated with the parameters specified in Table 4 and imposed strain rates $\dot{E}_1 = 4.0 \times 10^{-4} \ s^{-1}$, $\dot{E}_2 = 17.6 \ s^{-1}$ and $\dot{E}_3 = 4000 \ s^{-1}$. A very good agreement between 263 264 experimental and numerical results is observed for the low and moderate strain rates, and fair agreement is 265 observed for the highest strain rate. Thus, the model successfully captures the nonlinear decrease of yield 266 stress with temperature at the lower strain rates. Similarly, experimental results reported in [31] for steel 267 specimens of type C can be employed to assess the capabilities of the model to describe the influence of 268 irradiation on hardening. Corresponding simulations are performed with the material parameters of Table 4 269 at $T = 25^{\circ}$ C, $\dot{E} = 5 \times 10^{-4} s^{-1}$, and three different irradiation fluxes $(3 \times 10^{15}, 8 \times 10^{15}, 1 \times 10^{18} n.m^{-2}.s^{-1})$. 270 To each flux correspond certain values of concentration and size of solute clusters. The values employed 271 in the simulations are those experimental values reported in [31] and reproduced in Table 5. Experimental and simulated results for the magnitude $\Delta R_{p0.2} = \overline{\sigma}_{11}^{irr} - \overline{\sigma}_{11}^{unirr} |_{\overline{\varepsilon}_{11}^{vp}=0.002}$ are compared in Figure 6. An 272 273 excellent correlation in all cases is observed. Finally, the concurrent influence of temperature and strain rate 274 on the macroscopic response can be investigated by imposing sudden strain rate variations and measuring the 275 induced stress jumps. Experimental measurements on steel specimens of type D have been reported in [32]. 276 Corresponding simulations are generated with the material parameters of Table 4 by considering two pairs of 277 strain rate variations $(5 \times 10^{-4} \text{ s}^{-1} - 5 \times 10^{-3} \text{ s}^{-1})$ and $(5 \times 10^{-5} \text{ s}^{-1} - 5.0 \times 10^{-4} \text{ s}^{-1})$, for five temperatures 278 spanning the range -100° C to 100° C, and two fluences (non-irradiated and $10 \times 10^{23} n.m^{-2}$). This steel 279 was subjected to irradiation in the Material Testing Reactor OSIRIS (CEA). Accelerating irradiation results 280 from a flux which is approximately forty times higher than the flux seen by a RPV in a French pressurized 281 water reactor [32]. At this irradiation levels the solute cluster size and concentration are $d_{SC} = 3 nm$ and 282 $c_{SC} = 35.1 \times 10^{22} m^{-3}$, respectively. The simulated macroscopic tensile curves are reported in Figures 7 283 and 8. Two series of jumps are performed for each pair of strain rates. At 2% of viscoplastic deformation, 284 a positive strain rate jump is imposed and the strain rate value is maintained until 4% of viscoplastic 285 deformation, followed by a negative strain rate jump, with the same amplitude. The same procedure is 286 repeated between 6% and 8% of viscoplastic strain. In order to investigate the effect of the history of the 287 strain rate on the macroscopic response, the low value of the pair $(5 \times 10^{-4} s^{-1} - 5 \times 10^{-3} s^{-1})$ and the 288



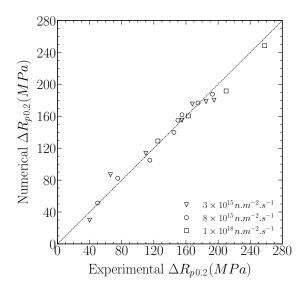


Figure 5: Evolution of the yield stress according to the temperature and the strain rate (each solid line corresponds to a quadratic fit of the FFT results)

Figure 6: Comparison between experimental and numerical irradiation hardening for a total of 19 fluences through 3 fluxes

high value of the pair $(5 \times 10^{-5} s^{-1} - 5.0 \times 10^{-4} s^{-1})$ has been chosen equal. The simulated tensile curves 289 reported in Figures 7 and 8 show that the behaviors of both unirradiated and irradiated specimens are 290 almost insensitive to the strain rate history. Moreover, the strain-hardening rate (slope of the stress-strain 291 curve) right after the jump is the same as the strain-hardening rate observed before the jump. The flow 292 stress increases with strain rate, but the amplitude of the induced stress jumps decreases with temperature, 293 to the extent that at $T = 100^{\circ}$ C, for the unirradiated material, the jump is about 0.2% of the flow stress, 294 and for the irradiated material this ratio is almost twice. The stress jump, simply defined as an absolute 295 difference of two stress values, is then recorded for each curve of Figures 7 and 8 and is compared with 296 the experimental results of [32]. Figures 9 and 10 show the numerical and experimental stress jumps as a 297 function of the temperature, according to the considered fluence. A good agreement is observed between the 298 experimentally measured jumps and those predicted by the simulations, over the entire range of temperature 299 considered, whether for the non-irradiated or the irradiated 16MND5 steel. 300

It is concluded that the model confected in this work with a simplified crystal plasticity law and a computational homogenization method based on Fast Fourier Transforms has the capability to accurately describe the response of irradiated bainitic steels under a wide range of temperatures, irradiation levels and strain rates.

305 4.3. Effects of the initial dislocation densities

In almost all simulations of crystalline agreggates reported in the litterature, the initial values of the 306 material parameters (in our case the dislocation density and grain size) are taken identically for all integration 307 points. However, several microstructure investigations have confirmed that dislocation distribution is quite 308 heterogenious [33]. For the first time, to the knowledge of the authors, we study the influence of the 309 heterogeneity of dislocation distribution of the local fields and macroscopic response in an unirradiated 310 RPV steels. Numerical simulations are carried out considering a polycrystal composed of 216 grains and 311 discretized by 125^3 voxels. This discretization value is adopted by a convergence study carried out on 312 the average value per phase of the Von Mises equivalent viscoplastic strain, where different resolutions are 313 considered from 25^3 to 250^3 voxels. The imposed loading corresponds to a simple traction in the direction 314 [1, 0, 0] for a strain rate equal to $5 \times 10^{-4} s^{-1}$ and for a temperature of 25°C. The following parameters are 315 fixed in this study $\rho_{init}^{(s)} = 4.5 \times 10^{12} \ m^{-2}$, $d = 7.6 \ \mu m$, $K_{auto} = 72$, $K_{forest} = 24$ and $p_y = 2.6 \ nm$. The convergence with respect to the resolution is evaluated by comparison with the highest considered resolution 316 317

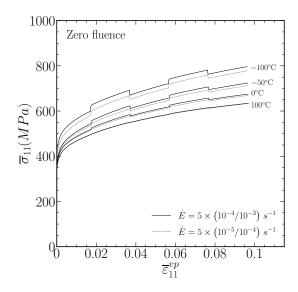


Figure 7: Simple tension behavior with a brupt strain rate variations for a non-irradiated $16\mathrm{MND5}$ steel

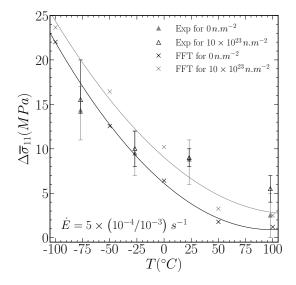


Figure 9: Stress jump as a function of the temperature for $5 \times 10^{-4} \ s^{-1} \ / \ 5 \times 10^{-3} \ s^{-1}$ strain rate variation (each solid line corresponds to a quadratic fit of the FFT results)

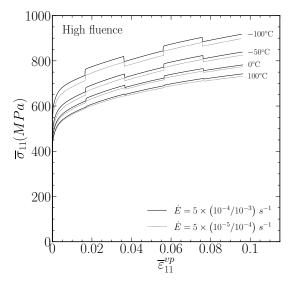


Figure 8: Simple traction behavior with abrupt strain rate variations for an irradiated 16MND5 steel

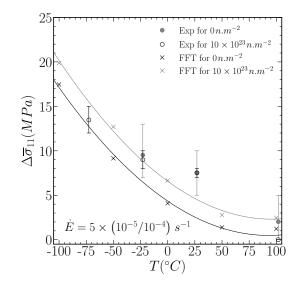


Figure 10: Stress jump as a function of the temperature for $5 \times 10^{-5} \ s^{-1} \ / \ 5 \times 10^{-4} \ s^{-1}$ strain rate variation (each solid line corresponds to a quadratic fit of the FFT results)

³¹⁸ by a relative error δ , corresponding to the Hölder mean of order 1, as previously. The relative error in each ³¹⁹ phase is defined by

$$\delta = \frac{\left| \left(\overline{\varepsilon_{vp}^{eq}}^{(r)} \right)_{250} - \left(\overline{\varepsilon_{vp}^{eq}}^{(r)} \right)_{\alpha} \right|}{\left| \left(\overline{\varepsilon_{vp}^{eq}}^{(r)} \right)_{250} \right|} \tag{17}$$

where r refers to the phase, $\overline{\varepsilon_{vp}^{eq}}^{(r)}$ denotes the average value per phase of the Von Mises equivalent viscoplastic strain ε_{vp}^{eq} and α refers to the considered resolution. The results are presented in Figure 11 for a viscoplastic

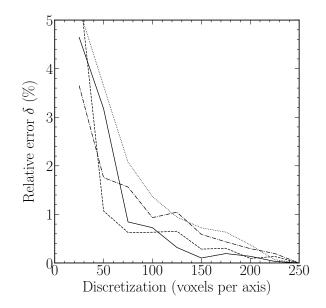


Figure 11: Relative errors with respect to the highest resolution versus total number of voxels

strain field obtained at 0.004 of total macroscopic strain in the tensile direction and for 4 different phases corresponding to the slowest convergence. Finally, a discretization of 125^3 voxels is chosen, corresponding to a relative error δ less than 1% and allowing then a good compromise between precision and calculation time.

In this study, the initial dislocation densities consists in a field defined over the polycristal domain. Three distributions of the initial dislocation densities are considered:

1. an uniform distribution, where the initial dislocation densities are constant (equal to $\rho_{init}^{(s)}$) in the whole polycrystal,

2. a homogeneous per phase distribution, where the initial dislocation densities are uniform in each phase,

flux	d_{SC}	c_{SC}	exp hard	flux	d_{SC}	c_{SC}	exp hard
$(n.m^{-2}.s^{-1})$	(nm)	$(10^{22} m^{-3})$	(MPa)	$(n.m^{-2}.s^{-1})$	(nm)	$(10^{22} m^{-3})$	(MPa)
8×10^{15}	2.0	16.72	50.0	3×10^{15}	2.5	25.68	110.0
8×10^{15}	2.4	19.35	75.0	3×10^{15}	2.7	32.04	155.0
8×10^{15}	2.6	21.74	115.0	3×10^{15}	2.85	33.43	168.0
8×10^{15}	2.6	30.44	145.0	3×10^{15}	3.1	28.86	185.0
8×10^{15}	2.7	32.04	150.0	3×10^{15}	3.2	27.41	195.0
8×10^{15}	2.8	31.34	155.0	1×10^{18}	2.15	40.38	125.0
8×10^{15}	2.86	33.49	175.0	1×10^{18}	2.2	50.25	163.0
8×10^{15}	3.1	30.79	193.0	1×10^{18}	2.2	62.81	210.0
3×10^{15}	2.0	9.55	40.0	1×10^{18}	2.2	87.93	258.0
3×10^{15}	2.1	26.82	66.0				

Table 5: Experimental hardening according to the size and concentration of solute clusters

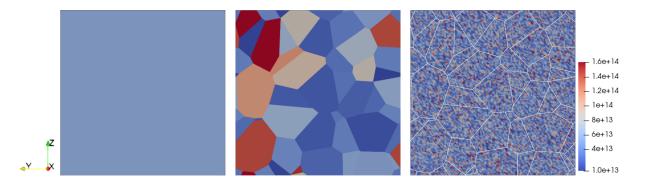


Figure 12: Initial dislocation densities fields: homogeneous (left), homogeneous per phase (center) and heterogeneous (right)

³³¹ but different from one phase to another,

332 3. a heterogeneous distribution, where each voxel has a different initial dislocation density, regardless of
 333 the phase in which it is located.

Except for the case of a uniform distribution, the value of the initial dislocation density is a random variable and, in order to be able to compare the results obtained for these three distributions, its mean is the same for the three distributions and equal to $\mu_{init} = \rho_{init}^{(s)}$. Moreover, the standard deviation of this random variable is fixed to $\sigma_{init} = 5\mu_{init}$. The values of the initial dislocation densities are randomly drawn according to a probability distribution law (18) and (19) of the log-normal type. The choice of this law was determined by three requirements dictated by physical requirements: drawn values should be positive, the maximum value of initial dislocation densities should be close to the average value $\rho_{init}^{(s)}$ and the range of values between the maximal one and its half should be large enough.

³⁴² The probability density for a log-normal law is given by

$$p(x, \ \mu_{log}, \ \sigma_{log}) = \frac{1}{x\sigma_{log}\sqrt{2\pi}} \ \exp\left(-\frac{(\ln(x) - \mu_{log})^2}{2\sigma_{log}^2}\right),\tag{18}$$

where the parameters μ_{log} and σ_{log} are related to the mean μ_{init} and standard deviation σ_{init} by

$$\mu_{log} = \ln(\mu_{init}) - \frac{1}{2} \ln\left(\frac{\sigma_{init}^2}{\mu_{init}^2} + 1\right) \quad \text{and} \quad \sigma_{log} = \sqrt{\ln\left(\frac{\sigma_{init}^2}{\mu_{init}^2} + 1\right)}.$$
(19)

The values of the initial dislocation densities are obtained using a random variable with uniform distribution.

The three initial dislocation densities fields obtained by this procedure are presented in Figure 12 for a specific cross section.

The macroscopic response and the evolution of the total dislocation density obtained for each distribution of the initial dislocation densities are presented in Figure 13 for three temperatures, -100°C, 25°C and 200°C, considering the same parameters than previously. The total dislocation density is defined as

$$\overline{\rho} = \sum_{r=1}^{216} \sum_{s=1}^{12} c^{(r)} \overline{\rho}^{(r,s)}$$
(20)

where $c^{(r)}$ represents the volume fraction of the phase r. The initial value of $\overline{\rho}$ is denoted by $\overline{\rho}_{init}$. For the macroscopic response, very small differences are observed between the three distribution configurations over the strain range studied and for the three temperatures considered. At -100°C, the macroscopic responses are superposed, while at 25°C and 200°C, small differences are observed at the beginning of the viscoplastic domain between the homogeneous distribution and the two others. Nevertheless these differences tend to

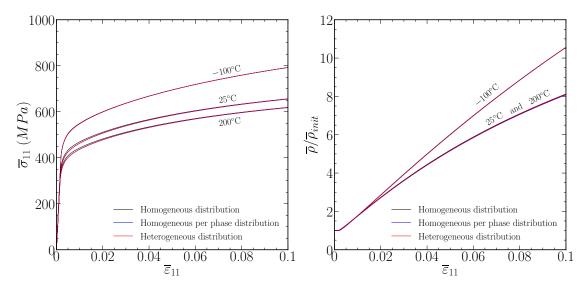


Figure 13: Macroscopic response (a) and total dislocation density, normalized by its initial value (b), for three distributions of the initial dislocation densities and for three temperatures, -100° C, 25° C and 200° C

reduce as the macroscopic strain increase. Concerning the evolution of the total dislocation density, it seams 355 that the distribution of the initial dislocation densities has almost no effect on this macroscopic variable. 356 The results for 25°C and 200°C are superimposed and this is probably due to the fact that the annihilation 357 distance y as given by (10) no longer depends on the temperature if this one is greater than 25° C. The 358 temperature level has a notable effect on the evolution of the total dislocation density with respect to the 350 macroscopic strain; at low temperatures (-100°C) this evolution is less non linear and more rapidly increasing 360 than at high temperatures $(25^{\circ}C \text{ and } 200^{\circ}C)$. This could be explained by the increasing of the annihilation 361 distance (10) with the temperature which leads a diminution of the dislocation densities rates (8). 362

The effects of the initial dislocation densities are observed by analysing the Von Mises equivalent viscoplastic strain and the maximum principal stress value, which are respectively defined by

$$\varepsilon_{vp}^{eq} = \sqrt{\frac{2}{3}} \, \varepsilon_{vp}^d : \varepsilon_{vp}^d, \quad \text{and} \quad \sigma_p^{max} = \max\left(\sigma_1, \, \sigma_2, \, \sigma_3\right),$$
(21)

where ε_{vp}^{d} represents the deviatoric part of the viscoplastic strain tensor and σ_i , i = 1, 2, 3 are the principal stresses. The local fields retained for this analysis are obtained for two effective strain values in the loading direction: $\overline{\varepsilon}_{11} = 0.004$ (which corresponds to $\overline{\varepsilon}_{vp_{11}} = 0.002$, *i.e.* the value considered for the determination of the conventional yield stress) and $\overline{\varepsilon}_{11} = 0.1$. The first value of the macroscopic strain corresponds to the situation where the macroscopic response (Figure 13) presents the most significant difference between the three distributions considered, whereas for the second value this difference is completely smeared out.

Figure 14 presents the equivalent viscoplastic strain fields obtained for a uniform distribution, at $\overline{\varepsilon}_{11} =$ 371 0.004 for three resolutions, 57^3 , 125^3 and 250^3 voxels. Deformation bands can be seen in the grains circled 372 in red, but this aspect is theoretically impossible for the case of a homogeneous distribution because the 373 considered crystal plasticity law is not supposed to induce localizations. Furthermore, the width and number 374 of bands evolve with the resolution, which means that this problem clearly corresponds to an artifact of 375 the FFT method. In fact, it is here the non-respect of the grain boundaries geometry (seen as staircases) 376 which favours the appearance of non-physical deformation bands. The work of [34] focuses on this problem 377 and shows that the appearance of strain bands is greatly reduced by using a non regular Fourier grid, in 378 order to correctly match the grain boundaries geometry. This aspect is therefore a prospect of this work. 379 However, in the analysis presented hereafter the values of the local filds have no particular meaning, the 380 analysis being purely qualitative. 381

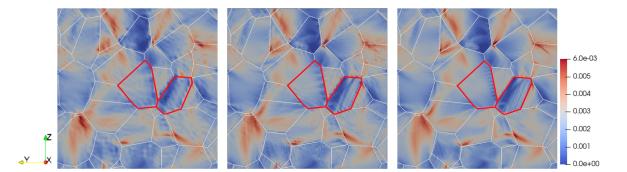


Figure 14: Von Mises equivalent viscoplastic strain fields (homogeneous distribution at $\bar{\epsilon}_{11} = 0.004$) for three resolutions: 57³ (left), 125³ (center) and 250³ (right) voxels

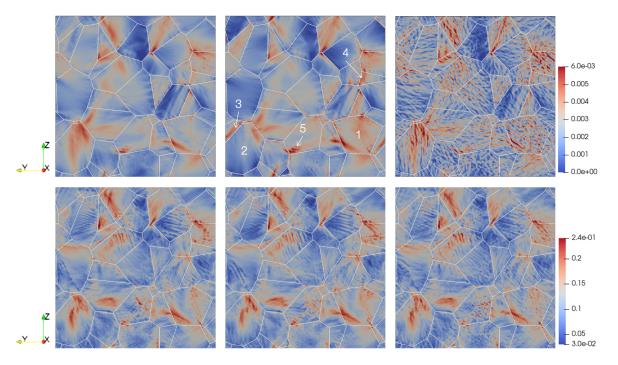


Figure 15: Von Mises equivalent viscoplastic strain fields: at $\bar{\epsilon}_{11} = 0.004$ (up) and $\bar{\epsilon}_{11} = 0.1$ (down)

Figures 15 and 16 present respectively the Von Mises equivalent viscoplastic strain field and the maximum 382 principal stress field, for the three distributions: homogeneous (left), homogeneous per phase (center) and 383 heterogeneous (right). At $\overline{\varepsilon}_{11} = 0.004$, three distinct field profiles are clearly identified, both for the equiva-384 lent viscoplastic strain and for the maximum principal stress value. Comparing the equivalent viscoplastic 385 strain maps, between the homogeneous and homogeneous per phase distributions a strong correlation is 386 observed between the level of the initial dislocation densities of the grains and the overall viscoplastic strain 387 of the grains. For instance, for the grains denoted (1) and (2) on the Figure 15 the initial dislocation density 388 is lower (for grain (1)) or higher (for grain (2)) than the mean value (affected to all grains in the case of an 380 homogeneous distribution) and the overall viscoplastic strain is higher in grain (1) or lower in the grain (2) 390 than the corresponding values obtained for the same grains in the case of an homogeneous distribution. Also, 391 in the case of the homogeneous per phase distribution, notable strain localization are observed at the grain 392 boundaries (3), (4) or at triple points (5). When comparing the maps corresponding to the homogeneous 393 and heterogeneous distributions, the main differences are observed for the fields profiles, inside each grain, 394

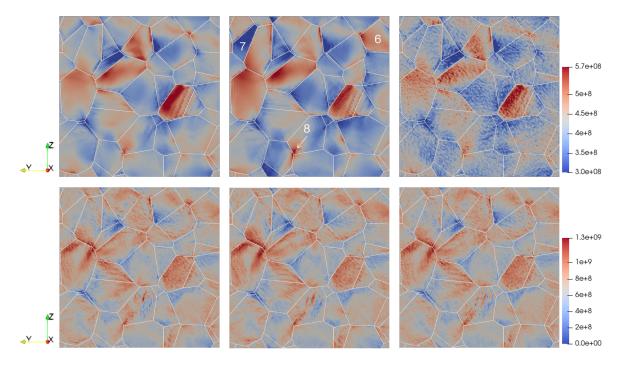


Figure 16: Maximum principal stress value fields: at $\overline{\varepsilon}_{11} = 0.004$ (up) and $\overline{\varepsilon}_{11} = 0.1$ (down)

³⁹⁵ due to the significant difference in initial dislocation densities from one voxel to the other nearby ones for the ³⁹⁶ heterogeneous distribution. Similar conclusions can be drawn for the maximum principal stress value. The ³⁹⁷ major differences between homogeneous and heterogeneous distributions are observed in the field profiles ³⁹⁸ within each grain. In contrast, between homogeneous and homogeneous per phase distributions, higher (6) ³⁹⁹ or lower (7) overall grain viscoplastic strain can be observed, similarly for stress concentrations (8).

⁴⁰⁰ Deep in the plastic range the observed differences between the local fields corresponding to different initial ⁴⁰¹ dislocation densities distributions tend to gradually fade away as the loading evolves during the simulation, ⁴⁰² to finally converge towards a common configuration. In particular, at $\bar{\varepsilon}_{11} = 0.1$, the local fields present ⁴⁰³ similar profiles for the two results of interest, whatever the type of initial dislocation densities distribution ⁴⁰⁴ considered.

As explained in the previous section, the local values of the fields could be not very accurate, but as 405 shown on the Figure 11 the average value per phase of the Von Mises equivalent viscoplastic strain has an 406 asymptotic behavior when the resolution increases. Therefore it is pertinent to compare these mean values 407 for the three types of the initial dislocation densities distributions. The results are reported in Figure 17. 408 In these figures, we select the first 50 phases which present the maximum difference value observed between 409 the three distributions at $\overline{\varepsilon}_{11} = 0.004$ and the average values per phase are ordered (on the x-axis) in a 410 decreasing manner with respect to this difference value. These results show, as previously, that the impact 411 of the distribution of initial dislocation densities for a low strain ($\overline{\varepsilon}_{11} = 0.004$) is more prononced than for a 412 high strain ($\bar{\varepsilon}_{11} = 0.1$). Furthermore, these results also highlight that the homogeneous and heterogeneous 413 distributions give very closed values for the average value per phase compared to analogous result for the 414 homogeneous per phase distribution. This could be the consequence of a statistical effect. Each grain 415 contains sufficiently voxels such way that the mean value of the initial dislocation density in each grain is 416 close to the mean value of the same variable on the whole domain, so close to the value of the uniform 417 distribution. 418

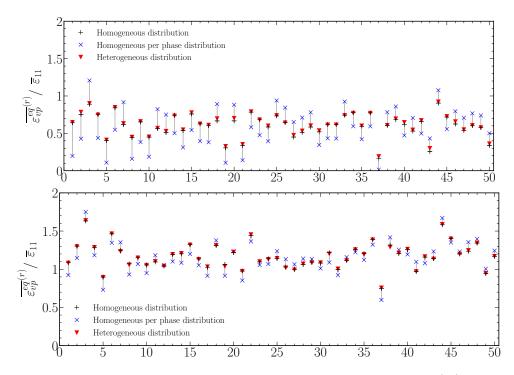


Figure 17: Average value per phase of the Von Mises equivalent viscoplastic strain: at $\bar{\epsilon}_{11} = 0.004$ (up) and $\bar{\epsilon}_{11} = 0.1$ (down)

419 5. Conclusion

A multi-scale model has been proposed by combining a crystal plasticity law for irradiated RPV steels 420 and numerical full-field simulations on polycrystals based on Fast Fourier Transforms. Comparisons between 421 numerical and experimental results have been performed on four types of macroscopic results in order to show 422 the relevance of the crystal plasticity law. First, the macroscopic tensile curves are accurately reproduced 423 by the numerical simulations, for a temperature range from -100°C to 200°C and for three fluences. Second, 424 the strain rate sensitivity induced by a fast variation in imposed macroscopic strain rate shows a good 425 agreement with the experimental results for a temperature range from $-200^{\circ}C$ to $100^{\circ}C$ and for two strain-426 rate variations $5 \times 10^{-3} s^{-1} / 5 \times 10^{-4} s^{-1}$ and $5 \times 10^{-4} s^{-1} / 5 \times 10^{-5} s^{-1}$. Third, the evolution of 427 the yield stress is generally better reproduced for low and high strain rates $(4 \times 10^{-4} s^{-1} \text{ and } 17.6 s^{-1})$ 428 than for a very high strain rate (4000 s^{-1}). Finally, the irradiation-induced hardening is well reproduced by 429 numerical simulations, over a wide range of fluences and fluxes. In these simulations, all input parameters are 430 within typical values of grain size, dislocation densities and solute cluster size and density, characteristic of 431 a irradiated low alloy RPV steels. The main advantage of this physically-based model is that when the yield 432 stresses before and after irradiation are known at a given temperature and strain rate, the model can predict 433 the yield stress at any temperature and strain rate. In addition, intragranular stress and strain fields are 434 also investigated in the case of heterogeneous distribution of initial dislocation densities. The results led to 435 differences in local fields between the three distributions at the beginning of the viscoplastic domain, which 436 tend to reduce and basically converge towards a common configuration deep in the viscoplastic domain. 437 However, the presence of non-physical strain bands are observed representing an artifact of the FFT method 438 and more precisely concerning the discretization process which not respect the grain boundaries geometry. 439 Finally, the macroscopic response and the evolution of the total dislocation density seem to be very weakly 440 influenced by the heterogeneity of dislocation density. 441

Acknowledgments 442

The work was funded by the Institute of Fusion and Instrumentation Sciences in Nuclear Environments 443

(ISFIN) and by the Institut de Radioprotection et de Sûreté Nucléaire (IRSN). Additional funds from the 444 Universidad Nacional de La Plata (UNLP) were received by M.I.I. through grant I281/2024. The authors 445

gratefully acknowledge Hervé Moulinec for his assistance in using CraFT and useful discussions about FFT 446

methods. 447

Data availability 448

This study has no part providing observations or experimentation data. All experimental results used 449 in order to validate research findings presented in this article are public data, available from cited research 450 publications and owned by their respective authors. 451

References 452

464

466

467

- [1] G. Monnet, Analytical flow equation for irradiated low-alloy steels established by multiscale modeling, Journal of Nuclear 453 Materials 586 (2023) 154647. 454
- J.-P. Mathieu, Analyse et modélisation micromécanique du comportement et de la rupture fragile de l'acier 16MND5: [2]455 prise en compte des hétérogénéités microstructurales, Ph.D. thesis (2006). 456
- E. Bouyne, H. Flower, T. Lindley, A. Pineau, Use of EBSD technique to examine microstructure and cracking in a bainitic [3] 457 steel, Scripta Materialia (1998) 295-300. 458
- G. Monnet, L. Vincent, L. Gélébart, Multiscale modeling of crystal plasticity in reactor pressure vessel steels: Prediction 459 of irradiation hardening, Journal of Nuclear Materials 514 (2019) 128-138. 460
- G. Monnet, L. Vincent, B. Devincre, Dislocation-dynamics based crystal plasticity law for the low- and high-temperature 461 [5]deformation regimes of bcc crystal, Acta Materialia 61 (16) (2013) 6178-6190. 462
- L. Chaix, M. Gărăjeu, P.-G. Vincent, G. Monnet, M. I. Idiart, Homogenized descriptions for the elastoplastic response of [6] 463 polycrystalline solids with complex hardening laws: Application to neutron-irradiated bainitic steels, European Journal of Mechanics - A/Solids 105 (2024) 105258. 465
 - H. Moulinec, P. Suquet, A fast numerical method for computing the linear and nonlinear properties of composites, C. R. [7]Acad. Sc. Paris II 318 (1994) 1417-1423.
- M. Schneider, A review of nonlinear FFT-based computational homogenization methods, Acta Mech 232 (2021) 2051–2100. 468 469 [9] A. Prakash, R. Lebensohn, Simulation of micromechanical behavior of polycrystals: Finite elements versus fast Fourier transforms, Modelling Simul. Mater. Sci. Eng (2009) 64010–16.
- 470 S. El Shawish, P.-G. Vincent, H. Moulinec, L. Cizelj, L. Gélébart, Full-field polycrystal plasticity simulations of neutron-[10]471 irradiated austenitic stainless steel: A comparison between FE and FFT-based approaches, Journal of Nuclear Materials 472 529 (2020) 151927. 473
- [11] R. Lebensohn, N-site modeling of a 3d viscoplastic polycrystal using Fast Fourier Transform, Acta Materialia 49 (2001) 474 2723-2737. 475
- J. Segurado, R. Lebensohn, J. Llorca, Computational homogenization of polycrystals, Adv. Appl. Mech. 51 (2018) 1–114. [12]476
- 477 |13|J. Michel, H. Moulinec, P. Suquet, A computational method based on augmented lagrangians and Fast Fourier Transforms for composites with high contrast, Computer Modeling in Engineering & Sciences 1 (2) (2000) 79-88. 478
- D. Eyre, G. Milton, A fast numerical scheme for computing the response of composites using grid refinement, The European 479 14 Physical Journal Applied Physics 6 (1999) 41-47. 480
- [15] V. Monchiet, G. Bonnet, A polarization-based FFT iterative scheme for computing the effective properties of elastic 481 composites with arbitrary contrast, Int. J. Numer. Meth. Engng 89 (2012) 1419-1436. 482
- H. Moulinec, F. Silva, Comparison of three accelerated FFT-based schemes for computing the mechanical response of 483 [16]composite materials, International Journal for Numerical Methods in Engineering 97 (13) (2014) 960–985. 484
- A. M. P. Brozzo, G. Buzzichelli, M. Mirabile, Microstructure and cleavage resistance of low-carbon bainitic steels, Metal 485 |17|Science 11 (1977) 123–130. 486
- [18] F. Kocks, H. Mecking, Physics and phenomenology of strain hardening: The fcc case, Progress in Materials Science 48 487 (2003) 171-273. doi:10.1016/S0079-6425(02)00003-8. 488
- [19] CRAFT, Composite Response and Fourier Transforms (free software). 489 490 URL https://lma-software-craft.cnrs.fr
- 491 [20]P. Suquet, A simplified method for the prediction of homogenized elastic properties of composites with a periodic structure, C. R. Acad. Sc. Paris, II 311 (1990) 769-774. 492
- H. Moulinec, P. Suquet, A numerical method for computing the overall response of nonlinear composites with complex [21]493 microstructure, Computer Methods in Applied Mechanics and Engineering 157 (1) (1998) 69-94. 494
- L. Joëssel, P.-G. Vincent, M. Gărăjeu, M. I. Idiart, Viscoplasticity of voided cubic crystals under hydrostatic loading, [22]495 International Journal of Solids and Structures 147 (2018) 156 - 165. 496

- ⁴⁹⁷ [23] P.-G. Vincent, H. Moulinec, L. Joëssel, M. I. Idiart, M. Gărăjeu, Porous polycrystal plasticity modeling of neutron ⁴⁹⁸ irradiated austenitic stainless steels, Journal of Nuclear Materials 542 (2020) 152463.
- [24] C. Bellis, P. Suquet, Geometric variational principles for computational homogenization, Journal of Elasticity 137 (2019)
 119–149.
- [25] K. Wojtacki, P.-G. Vincent, P. Suquet, H. Moulinec, G. Boittin, A micromechanical model for the secondary creep of
 elasto-viscoplastic porous materials with two rate-sensitivity exponents: Application to a mixed oxide fuel, International
 Journal of Solids and Structures 184 (2020) 99–113.
- [26] G. Boittin, P.-G. Vincent, H. Moulinec, M. Gărăjeu, Numerical simulations and modeling of the effective plastic flow surface
 of a biporous material with pressurized intergranular voids, Computer Methods in Applied Mechanics and Engineering
 323 (2017) 174–201.
- [27] R. Lebensohn, M. Idiart, P. Ponte Castañeda, P.-G. Vincent, Dilatational viscoplasticity of polycrystalline solids with
 intergranular cavities, Phil. Mag. 91 (2011) 3038–3067.
- 509 [28] Y. Changqing, E. T. Chung, Convergence of trigonometric and finite-difference discretization schemes for FFT-based 510 computational micromechanics, BIT Numerical Mathematics 63 (1) (2023) 11.
- [29] C. Ji, Y. Cui, Y. Li, N. Ghoniem, A concurrent irradiation-mechanics multiscale coupling model, Journal of the Mechanics
 and Physics of Solids 167 (2022) 105005.
- [30] B. Tanguy, J. Besson, R. Piques, A. Pineau, Ductile to brittle transition of an a508 steel characterized by Charpy impact
 test: Part i: experimental results, Engineering Fracture Mechanics 72 (1) (2005) 49–72.
- [31] P. B. Wells, T. Yamamoto, B. Miller, T. Milot, J. Cole, Y. Wu, G. R. Odette, Evolution of manganese-nickel-silicondominated phases in highly irradiated reactor pressure vessel steels, Acta Materialia 80 (2014) 205-219.
- [32] J. Hure, C. Vaille, P. Wident, D. Moinereau, C. Landron, S. Chapuliot, C. Benhamou, B. Tanguy, Warm prestress effect
 on highly irradiated reactor pressure vessel steel, Journal of Nuclear Materials 464 (2015) 281–293.
- [33] C. Robertson, K. Obrtlik, B. Marini, Dislocation structures in 16mnd5 pressure vessel steel strained in uniaxial tension
 at different temperatures from -196°c up to 25°c, Journal of Nuclear Materials 366 (2007) 58–69.
- 521 [34] M. Zecevic, R. Lebensohn, Recent advances in fft-based methods for polycrystalline materials, 2024.