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Abstract

In recent decades, neuroscience has advanced with increasingly sophisticated strategies for recording and analyzing brain

activity, enabling detailed investigations into the roles of functional units, such as individual neurons, brain regions, and their

interactions. Recently, new strategies for the investigation of cognitive functions regard the study of higher-order interactions—

that is, the interactions involving more than two brain regions or neurons. While methods focusing on individual units and

their interactions at various levels offer valuable and often complementary insights, each approach comes with its own set of

limitations. In this context, a conceptual map to categorize and locate diverse strategies could be crucial to orient researchers

and guide future research directions. To this end, we define the spectrum of orders of interaction, namely a framework that

categorizes the interactions among neurons or brain regions based on the number of elements involved in these interactions. We

use a simulation of a toy model and a few case studies to demonstrate the utility and the challenges of the exploration of the

spectrum. We conclude by proposing future research directions aimed at enhancing our understanding of brain function and

cognition through a more nuanced methodological framework.
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Abstract. In recent decades, neuroscience has advanced with increasingly sophisticated
strategies for recording and analyzing brain activity, enabling detailed investigations into the
roles of functional units, such as individual neurons, brain regions, and their interactions.
Recently, new strategies for the investigation of cognitive functions regard the study of
higher-order interactions—that is, the interactions involving more than two brain regions or
neurons. While methods focusing on individual units and their interactions at various levels
offer valuable and often complementary insights, each approach comes with its own set of
limitations. In this context, a conceptual map to categorize and locate diverse strategies
could be crucial to orient researchers and guide future research directions. To this end, we
define the spectrum of orders of interaction, namely a framework that categorizes the
interactions among neurons or brain regions based on the number of elements involved in
these interactions. We use a simulation of a toy model and a few case studies to
demonstrate the utility and the challenges of the exploration of the spectrum. We conclude
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by proposing future research directions aimed at enhancing our understanding of brain
function and cognition through a more nuanced methodological framework.

1. Introduction

In recent decades, neuroscience has been characterized by an increasing ability to intervene
in or record the activity of the brain across various levels of organization, utilizing a growing
range of techniques and methodologies (1,2). These developments fostered investigations
into the roles of neurons and brain regions, as well as the interactions between them, in
relation to various cognitive and pathological conditions. New computational methods have
been developed to study these interactions, extending the range of tools available to
neuroscientists to an unprecedented degree (3–5).

Within this evolving landscape, certain techniques concentrate on studying individual
functional units, such as genes (6–8), neurons (9–11), or brain regions (12,13). These
techniques aim to elucidate the roles of individual functional units in cognitive functions or
pathological conditions, in line with the principles of localism and modularism, which imply
that specific cognitive functions or dysfunctions can be associated with neural activity in
specific brain areas (14,15).

Other methods move instead the focus from the functional units to the study of their
interactions, which are examined through various approaches, such as utilizing
computational simulations or analyzing interdependencies between different brain recordings
(5). Within this research line, functional connectivity (FC) has become a standard method to
represent brain activity as a network in which nodes correspond to functional units, e.g.
genes, neurons or brain regions, and edges to statistical interdependencies between the
recorded activity. This approach has unveiled new insights into brain function across a wide
range of pathological and cognitive studies (16–19).

Recent research suggests that a more nuanced description of brain activity can be achieved
by considering higher-order interactions, i.e. interactions taking place between more than
two functional units simultaneously (20,21). This idea traces back to Hebb’s theory of cell
assemblies (22), sustaining that despite structural connections being by definition pairwise,
brain functions may include group mechanisms involving multiple functional units at once.
The study of high order interactions has recently gained momentum and provided new
insights in different research contexts, such as aging, neurodegenerative disorders, neonatal
development, and more (23–33).

These lines of research focusing on individual functional units and different orders of
interaction come with distinct and often complementary advantages and limitations.
Techniques targeting single functional units, such as genes, neurons, or brain regions
typically involve direct manipulation of these variables (9,11,34). In this way, they usually
offer a clear and precise understanding of how specific neural elements contribute to
cognitive processes or pathologies (35). However, they may miss crucial aspects related to
the brain's systemic organization and the interaction patterns among different brain
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structures (5). On the other hand, techniques that concentrate on pairwise interactions, such
as FC, provide insights into the system's organization of neural activity, while maintaining a
relatively straightforward interpretation (36). Yet, these methods may overlook the complexity
of neural networks, where multiple units interact simultaneously in ways that pairwise
analyses cannot fully capture (27,37,38). Conversely, higher-order interaction methods,
which examine the simultaneous involvement of multiple functional units, have the potential
to uncover more complex and integrative aspects of brain function (20,29,39), but this often
comes at the cost of less interpretable results and absence of clear mechanistic
explanations (21).

Combining the explanatory power of different strategies, whether focusing on individual
functional units or on different orders of interaction, may be essential for advancing our
understanding of the brain. To this end, a conceptual map to categorize and locate these
different approaches is central and could orient researchers and guide future research
directions, facilitating interdisciplinarity and the integration across different methodologies.
Here we illustrate a new dimension on which different research strategies can be
categorized and neuroscientific research can grow: the spectrum of order of interactions. In
this conceptual map, strategies are categorized based on the order of interaction they study,
facilitating the exploration and integration of approaches focused on different interaction
orders, towards a more complete understanding of the brain.

The plan of the article is the following: In the first part of the paper, we define the spectrum of
interaction orders, and illustrate how it can serve as a conceptual map to guide the
exploration of different research practices. Then, we present its application in the study of
higher-order interactions, bringing different examples to highlight the relevance of spectrum
exploration (26,27,40). In the third section, we discuss opportunities and challenges arising
from exploring the spectrum, highlighting that information-theoretic approaches often fall
short in providing mechanistic explanations (21,41), and propose future research directions.

2. A spectrum of research strategies

Neuroscience employs a diverse array of research strategies, each tailored to specific
methods and focused on different aspects of the brain and its connection to cognition.
Naturally, these strategies come with distinct advantages and limitations. In this section, we
present the spectrum of orders of interaction, which serves as a conceptual framework for
categorizing different research approaches. Before delving into a more detailed explanation
of the spectrum of orders of interaction, we provide examples of various investigative
strategies, highlighting the order of interactions each employs, using the simulation of a
horse named Artemis as a toy model to illustrate these ideas.

Artemis the horse. Let us consider a simple deterministic model of a horse, named Artemis,
within an elementary environment. Artemis navigates a simulated corridor, encountering
various stimuli at each time step until she successfully reaches her home. These stimuli are
randomly generated in front of Artemis at each time step (Fig.1.B). By default, at each time
step, the horse advances forward. When she encounters a tree, she dodges; when she
comes across chocolate or bad carrots, she jumps to avoid them; when she finds a bridge to
her home, with singing ducks and with an open gate, she proceeds and reaches her home. If
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the bridge is either not leading to her home, lacks ducks singing, or has a closed gate, she
turns back and continues the simulation.

Artemis’ brain is organized into two layers of neurons: the first layer receives information
from the sensory system (neurons 1, 2, 3, 4, 5, 6 in Fig 1.A), while the second layer
generates responses (neurons 7, 8, 9, 10, and 11 in Fig 1.A). Brain activity supports
behavior in the following ways:

- When she sees a tree (green and brown stimuli), neuron 1 and 7 fire, and
consequently she dodges the tree;

- When she sees some fresh food, but not green and orange, only neuron 3 fires,
followed by neuron 8 and so she avoids the food;

- When she sees green and red, but does not smell fresh food, only neuron 2 fires,
followed by neuron 8, hence she avoids the food;

- When she sees a possibly dangerous bridge, some, but not all neurons in the triplet
(4,5,6) fire, and consequently neuron 9 fires and she turns. Note: there are five
possible cases of possible dangerous bridge, reported in fig.S1.A;

- When she finds a good carrot, neurons 2 and 3 fire together consequently neuron 8
and 9 fire and since the activity of neuron 9 is suppressed by neuron 8 Artemis goes
ahead;

- When she finds the bridge to his home, with ducks singing, with open gate, neurons
4,5 and 6 fire together consequently neuron 10 and 11 fire and since the activity of
neuron 11 is suppressed by neuron 10 Artemis moves forward.

Now, suppose that we can only record a limited subset of neurons, specifically neurons 1 to
6, and we use that data to investigate how the brain of Artemis generates behavior. In this
scenario, a possible strategy would attempt to associate the behavior of each neuron with a
specific stimulus or response of Artemis, treating the rest of the system as an irrelevant
background. Adopting this strategy, we could identify neuron 1 as important for dodging
trees, as it consistently fires when preceded by the visual stimulus of a tree and followed by
the dodging action. However, for the other neurons, we would not find a clear relationship
with Artemis' behavior. For instance, when neuron 2 fires, it may lead to avoiding food half
the time and eating a carrot the other half. Similarly, neurons 3, 4, 5, and 6 do not lead
individually to a specific behavior and are not triggered individually by a specific stimulus.
Proceeding in this way we might reveal that neurons 2 and 3 are related to eating and
neurons 4, 5, and 6 are related to recognizing home. However, for neurons 2, 3, 4, 5 and 6
we could not assess clearly the functional relationship between single neural activation and
behavior.

Let us now consider another approach that focuses on pairwise interactions, which suggests
analyzing how behavior is associated with the activity of each pair of neurons. In doing so,
we might observe that the joint activity of neurons 2 and 3 represents a distributed encoding
of carrots, bad carrots, and chocolate, which relates to the horse's ability to avoid potentially
toxic food. In fact, Artemis performs the action of avoiding food only when one of these
neurons is active, but not when both are active or inactive. This behavior can only be
understood by analyzing the pair of neurons together, not separately. Again, one could not
understand the function of neuron 1 by relying solely on pairwise approaches, and the same
applies to neurons 4, 5, and 6. A clearer picture of the function of this triplet of neurons
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emerges only when considering them as a whole. In this case, one could observe that the
joint state of neurons 4, 5, and 6 represents all possible cases of dangerous bridges (see
fig.S1.A). Finally, one would note that the horse does not turn back only when all three
neurons either fire or do not fire; in all other cases, it turns back.

Figure 1. A toy model of the brain of Artemis the horse. (A) The mechanisms behind
Artemis are based on one XORgate and one all-or-nothing gate organized in two layers of
neurons. In the scheme, black arrows correspond to synaptic weight 1, gray arrows to weight
0.5, light gray arrows to weight 0.4 and red arrows to weight -1. Circle denotes single
neurons, diagonal line denotes pairwise interaction and the triangle a high-order (triplet)
interaction. (B) Examples of sensory input and actions taken by Artemis in response to them.

Spectrum of orders of interaction. The case of Artemis the horse is surely very simplistic
and idealized. In neuroscience practices, in fact, researchers develop a variety of different
experimental paradigms to inquire about the function of different neurons, and the results are
gradually compared to build a coherent picture of brain properties. However, the example of
Artemis can be effective in conveying the idea that a successful strategy to study the brain,
given a set of experimental conditions, involves investigating brain activity across different
orders of interactions, ranging from single functional units to groups of two, three, and higher
numbers of them. By focusing on increasing numbers of neurons and their activity, one can
obtain novel insights in Artemis’ behavior, such as the ability of recognizing home, that can
not be explained when relying solely on couples or single neurons. To provide a general
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framework for contextualizing the different strategies, we introduce the notion of a spectrum
of different orders of interactions, starting from order 1 to many.

Order 1. At the beginning of the spectrum, we locate methodologies that focus on
single functional units. These approaches, in line with localism and modularism
(42,43), go with the idea that specific brain functions are implemented by brain
structures specialized in sustaining it (11,44–47). Similarly, they are in line with
Barlow's “neuron doctrine”, which posits that understanding the brain can be
achieved by single nerve cell recordings (11). In this part of the spectrum, we locate
all approaches that decode the information that neurons, neuron population or brian
regions related to a certain cognitive function in an univariate fashion, i.e. considering
variables of brain activity individually (48,49). Historically, a notable finding of these
strategies, at the neuronal level, is the identification of neurons that fire in response
to specific stimuli in the cat’s striate cortex (34). Always at the neuronal level, a more
recent discovery is the identification of the 'Jennifer Aniston neuron,' a neuron that
selectively activates in response to images of this particular actress while remaining
unresponsive to images of other individuals or objects (9). Similarly, at the level of
brian regions, for instance, BOLD signals recorded with fMRI in human orbitofrontal
cortex were notably associated with specific aspects of reward and punishment (12).
At the genetic level, many studies focusing on single genes unveiled notable insights
about their role in shaping neural activity and behavior (6,7,35,50). A typical result of
this kind of analysis would look like: in condition A the functional units R is presenting
a significantly higher/lower activation with respect to condition B.

Order 2. Moving up along the spectrum, we encounter approaches which focus on
pairwise interactions. When it is not possible to gather data about interactions and
connections directly, these approaches often make use of statistical measures, such
as correlations between two time series, to estimate interactions from neural
recording. Typically, interactions between pairs of functional units are analyzed and
compared across various cognitive or pathological conditions to determine the role of
these interactions in relation to specific pathologies or cognitive functions. For
instance, using fMRI, Furman and colleagues (51) studied how the correlation
between brain activity recorded in the striatum and other cortical regions, varies
across health and severe depression. Other findings come from the study of pairwise
interactions at the neuronal levels, for instance it has been shown that learning
induces changes in the interactions between neurons that are stable after learning
(52). A result of a pairwise analysis on the line of the ones mentioned above would
look like: the interaction between regions R1 and R2 in condition A is
stronger/weaker compared to condition B.
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Figure 2. Spectrum of order of interactions. Each point of the spectrum corresponds to a
set of strategies investigating a specific interaction order. Methodologies are ordered
following a continuum from red to blue, going from order 1 to N (the number of elements
under investigation). In A), three examples of studies focusing on first, second, and
higher-order analyses are presented. The univariate analysis example is from O'Doherty et
al. (12), who found an association between activation in the orbitofrontal cortex and the
presence of a reward during a cognitive task. The second-order analysis example is from
Hong et al. (53), who reported a decrease in functional connectivity in adolescents with
internet addiction. The higher-order interaction example, specifically orders three and four, is
from Santos et al. (54), who investigated information patterns among groups of three or four
brain regions. In B) the spectrum is depicted in relationship with the example of Artemis. A
spectrum of interaction orders can be identified from single neurons (order one) to the whole
brain. Similarly the spectrum can be applied to other levels, for example from 1 molecule to
the whole set of molecules composing a neuron or from one horse to a collective of many
horses.

Third, fourth, and higher orders. Moving to higher order of interactions, existing
approaches involve the characterization of wider multiplets and networks of interest,
focusing on groups of more than 2 brain regions, neurons or genes (23–30,55).
Although this area is still developing, several studies have explored interactions of
order three and higher, both at the level of brain regions (26–28,56,57) and at the
neuronal level (31–33,58,59). For instance in (56), the role of different triangular
motifs between brain regions was evaluated and studied with respect to the
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whole-brain network dynamics. Similarly, in (57), the authors focused on the effect of
order three interactions in shaping the dynamics of neuronal populations observed in
electrophysiological recordings. At the neuronal level, it has been highlighted the role
of higher-order interactions for the emergence of synchronization (31,32) or
information transmission (58). Notable contributions on this line include recent
studies, which have focused on the investigation of interactions at several orders
beyond pairwise, using fMRI and EEG data (26,27,60). A result of a higher-order
analysis on the line of the one mentioned above would look like: the interaction
between regions R1, R2, and R3 in condition A is stronger/weaker compared to
condition B. We will have a more detailed account about this line of research in the
next section.

Entire neural system under study. At the far end of the spectrum, approaches
explore cognitive and pathological phenomena by examining the topological and
informational properties of the entire neural system under analysis. These
approaches often draw from complexity sciences (61) and focus on collective
phenomena such as neuronal cascade-like events (62,63) or network-level properties
(64); (65). This end of the spectrum also includes methods based on multivariate
pattern analysis, which aim to measure the information conveyed by a group of brain
regions to predict behavioral variables of interest (48,66). These techniques provide
insights into how complex interactions across multiple regions contribute to cognitive
functions and pathological states. Often they are based on pairwise representation,
but focusing on the topological property of the map of interactions and not on the role
of single pairwise or higher-order interactions. For instance, a notable result of this
kind of analysis is the presence of well-known topological properties both at the
whole brain level (64,67) and at the level of neurons (68–70). A result of a
higher-order analysis on the line of the one mentioned above would look like: brain
recording presents the topological property X during condition A, but not during
condition B.

We posit that the exploration of the full spectrum of methodological approaches, i.e.
investigating interactions at various orders, is essential for developing a comprehensive
understanding of the phenomena under study. In effect, different orders of interaction can
reveal distinct aspects of brain properties and functions. For instance, in the example of
Artemis the horse, understanding how the brain enables the decision to avoid certain foods
requires examining pairwise interactions rather than triplets or individual neurons.
Conversely, recognizing a bridge, which involves a more complex decision, can only be
effectively studied by investigating third-order interactions, while simple dodging actions can
be analyzed already at the first order. Geometrically, these different interaction orders can be
represented as a point (first order), a line segment (pairwise interactions), and the surface of
a triangle (third-order interactions), as illustrated in Fig. 1A. In the Artemis’ example,
interactions at orders higher than three may not yield additional insights. However, one could
easily modify the neural mechanisms inside the horse’s brain to add interactions at order
higher than 3, using similar mechanisms to the ones underpinning order 1, 2 and 3.

Another illustrative example of the importance of exploring different orders of interactions for
understanding a system comes from computer science. Consider a laptop: traditionally,
multiple organizational levels can be identified, ranging from the electric gates —that
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constitute the hardware— to the software functions and programs executed by the user. At
each level, exploring different orders of interactions is crucial. For instance, at the software
level, if we are interested in understanding the function of the keyboard, investigating each
key individually would allow us to understand how simple characters are produced. However,
by examining only single keys and ignoring the interaction effects of pressing combinations
of two, three, or more keys, we overlook functions such as copy-paste and typing uppercase
letters. Similarly, at the hardware level, neglecting the interactions among pairs or groups of
electric gates would cause us to miss essential mechanisms, which are fundamental to the
operation of processors. For example, logic gates in which one unit activates only when an
odd number of connected units activate could be accounted for only using a higher-order
description (71). See Supplementary for a more detailed explanation.

Notably, the spectrum of orders of interactions, as a conceptual framework, can be applied
to any situation in which (i) a whole and its component parts can be identified, (ii) it is
meaningful to study different degrees of interactions between those parts (iii) in principle the
whole is reducible to its components parts and their interaction. That said, it is worth noting
that what counts as whole and component parts may be defined differently depending on the
methodological context, and therefore may comprise different types of functional units in
different types of analyses. What is whole and what are parts is decided depending on the
question and the level at which a system is studied.

While our simulation specifically focuses on the activities of neurons, functional units can
encompass a wide range of variables, such as genes, neurons, and brain regions (3,5). At
each of these levels, the whole, its parts, and the interactions between them are defined
uniquely. Levels and orders can thus be conceptualized as two orthogonal dimensions: an
order of interaction can be explored across multiple levels, and within a single level, different
orders can be investigated using a single dataset or multiple dataset Fig.2B. For example, at
the level of brain regions, one can examine interactions between pairs of regions
(second-order interactions), triplets of regions (third-order interactions), or even higher-order
combinations, and these interactions may emerge from a single experimental setup or
across different experimental contexts. Similarly, interactions among groups of genes,
neurons, or neuronal populations can be studied at different orders (31,54,55). In fact,
current computational methods allow for the analysis of different interactions across various
orders by applying different statistical techniques to the same type of data. In summary,
various techniques are available to study multiple orders of interactions across different
levels of analysis, and each order can be examined through different techniques in the same
or different set of data collected at different levels.

For instance, one could study the whole brain using fMRI data, in this case, the whole is the
brain, while the component parts are modules of brain regions. In this example, the
interactions under investigation are often statistical interdependencies between the BOLD
recordings. There are techniques based on information theory that allow to explore multiple
orders of interactions analyzing the same fMRI data. However, it also holds that at the same
level of analysis, each order of interactions can be studied through different computational
tools and eventually different types of data.

The conceptual framework of the spectrum of interaction orders can serve as a philosophical
tool to guide and shape future research in this methodological landscape. It also can
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facilitate the exploration and integration of results obtained across different interaction orders
and experimental modalities. However, data and results obtained through various methods,
techniques, and experimental designs can be challenging to generalize, leading to difficulties
in constructing coherent interpretations of neurocognitive properties and functions (72). In
the following sections, we will delve deeper into these ideas, focusing on the study of
higher-order interactions (20).

3. Applying the spectrum to the study of
higher-order interactions

In the previous section, we used a toy model (Artemis the horse) to illustrate the notion of a
spectrum of interaction orders. Building on that simulation, in this section we demonstrate
how the conceptual framework of the spectrum applies to a collection of recent approaches
based on information and graph theory that have found application in various neuroscience
domains. Unlike traditional network methods limited to pairwise interactions, these
techniques address higher-order interactions involving more than two units of a system (20).
The following section introduces key concepts behind these methods using the above
principles as a unifying framework, and explains how they can uncover complex interaction
patterns observed in neural systems.

General background. A long-standing tradition in computational neuroscience literature
focuses on characterizing and quantifying higher-order interactions (HOIs) from neural
recordings, and investigating their role in shaping brain function. Modeling and measuring
these higher-order/group effects have been the ultimate goal of much research over the past
few decades (59,73–76).

Information theory (IT) provides a principled framework to characterize higher-order
interactions among neural units, particularly through multivariate generalizations of
Shannon’s entropy and mutual information (77). By analyzing the statistical properties of
groups and individual neural variables, the Partial Information Decomposition (PID)
framework (78) extends traditional information-theoretic tools to identify two qualitatively
different ways in which a group of functional units can hold information (40) :

● Redundancy — refers to information held simultaneously by several variables, and
thus accessible from any of the units within a group. In neural dynamics, redundancy
provides robustness, as information is preserved even if individual functional units
fail. For example, adding a neuron X with the same function as neuron 1 in Artemis’
brain would create redundancy between neuron 1 and X. This ensures that the
behavior of dodging a tree would remain intact in case one of these neurons is lost.

● Synergy — occurs when a group of variables together provides information that
cannot be obtained from any subset in isolation. In neural dynamics, synergy
highlights the cooperative processing of information by all neural units. For instance,
in Artemis’ example, synergy is seen in the combined activity of neurons 2 and 3 or
among neurons 4, 5, and 6. The activity of these neurons, when considered together,
offers a more comprehensive understanding of the horse's actions with respect to
when the neurons are considered individually.
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Studying these informational properties is particularly important for understanding the
collective operations of neural populations, and the presence of synergy and redundancy
can offer new insights into their interactions (78–81).

In neuroscience, higher-order information patterns can be studied in two main contexts.
Directed information theoretic metrics quantify the information that a group of neural
variables (sources) holds about an external behavioral variable (target). For instance, in the
horse example, examining the information that neurons 2 and 3 convey about the horse's
behavior could reveal strong synergy, indicating a significant gain of information when
considering both neurons together. Conversely, in contexts like resting state activity,
undirected metrics evaluate whether brain signals are dominated by synergy or redundancy,
independently of any external target (40,82). In both these contexts, graph theory and its
extensions come into play to represent and study the structure of such higher-order
interactions. These can be represented in a hypergraph, i.e. a mathematical object that
consists of a set of nodes and a set of edges and hyperedges (edges connecting more than
two nodes). In this representation, nodes represent functional units, as brain regions or
neurons, while hyper-edges connecting groups of nodes illustrate the presence of synergy or
redundancy between their activity.

Overall, these lines of research can be seen as a natural extension of the FC framework,
with the aim of describing and including interactions between more than 2 functional units of
the neural system under exam. The spectrum of interactions as described above serves as a
philosophical framework in which to locate these methodologies that investigate different
orders, fig. 2.A.

Topological data analysis (TDA), within the field of topology, provides another set of
powerful tools to understand higher-order interactions (83–85). These methods are
grounded in the mathematical study of the properties of spaces that are preserved under
continuous transformations. In the context of neuroscience, such methods allow for the
characterization of the brain's structure and function in ways that traditional pairwise
methods cannot. By focusing on the shape of data, topological metrics can capture the
intricate, often high-dimensional relationships between neural elements.

One of the key tools in TDA, persistent homology (86,87) has been successfully applied to
analyze collective dynamics of neuronal populations, uncovering robust topological features
that correlate with different cognitive states or behavioral tasks (88–90). Moreover,
topological approaches have been used to investigate the structural organization of the
brain. By applying TDA to neuroimaging data, researchers have identified topological
invariants that distinguish between healthy and diseased states, such as in the case of
Alzheimer's disease or schizophrenia (91–93). By mapping neural activity onto topological
spaces, researchers can identify critical points where the system undergoes significant
changes, offering insights into the underlying neural mechanisms.

The philosophical framework of the spectrum of interaction orders is particularly well-suited
to encompass topological methods. Unlike traditional network analysis, which often focuses
on pairwise connections, topology inherently captures the higher-order relationships among
groups of neural elements. Furthermore, the unifying principles of topology provide a
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common language for describing these interactions, facilitating the comparison and
integration of findings across different studies and experimental modalities.

Evidence of the importance of exploration of the spectrum. The broad availability of
neural multivariate data and the computational methods provided by information theory (IT)
and topology (TDA) allow for the exploration of a wide range of interaction orders. Typically,
this line of work involves systematically measuring the interactions among groups of
variables of different size present in the brain data of interest, such as gene expression
data, fMRI recordings, or EEG data. We call these groups of variables multiplets, following
the nomenclature for duplets, triplets, quadruplets, and so on. This entails exploring a broad
portion of the spectrum of interaction orders, usually order 2 and above. In the following
section, we present two examples of findings that support the exploration of the spectrum of
interaction orders in neuroscience.

Herzog et al (27), show how the performance of the classification between healthy controls
and patients diagnosed with behavioral variant of frontotemporal dementia (bvFTD) or
Alzheimer's disease (AD) depends on the order of interaction considered. For each order n
from 2 to 20, the authors used IT to examine the statistical interactions among multiplets of n
variables in fMRI and EEG recordings from both patients and control subjects. Subsequently,
for each order and recording modality, these interactions were used as features to classify
between controls and patients. The authors observed that the classifier's performance varied
with the order of interactions studied and, in particular, that pairwise interactions could never
reach a classification performance as high as the one obtained with higher-order ones.
Moreover, the order that allows the optimal classification between health and disease is
different for the different pathologies and for recording modality. This suggests that, as in the
example of the horse, different orders might be the relevant ones for different pathologies
and neural phenomena of interest.

A similar approach has been used by Gatica et al in (26,37), in which the differences across
age have been analyzed in terms of redundancy and synergy at different orders of
interactions. In this context, Gatica et al found that redundancy increases with the order of
interactions and at all orders was higher in the older part of the population. The synergy,
instead, only for some specific orders was significantly higher in the younger part of the
population.

Another example comes from the work of Petri et al. (92), where the authors used persistent
homology to analyze brain functional connectivity during psilocybin administration—the main
psychoactive component of magic mushrooms. Persistent homology examines data
structures across various orders, measuring and comparing properties of groups of
functional units at different interaction orders. Through this approach, the authors identified a
significant topological shift in the brain’s functional patterns post-psilocybin. Notably, these
changes were not captured as effectively by traditional pairwise methods, such as classical
functional connectivity (FC). This case exemplifies how exploring the spectrum of interaction
orders is necessary to provide a novel understanding of psilocybin’s effects on brain
function.
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These examples support the utility of exploring the spectrum of interaction orders,
suggesting that this framework can be fruitfully employed in other contexts with different
types of data and methodologies.

4. Opportunities and challenges of the spectrum
exploration

Exploring different orders of interactions presents the challenge of integrating results and
data obtained from approaches that focus on various interaction orders. This integration is
essential for developing comprehensive explanations that account for analyses across
different orders. For instance, are higher-order effects merely byproducts of pairwise
interactions or could it be that pairwise interactions are byproducts of high-order? How does
stimulating a single brain region influence information patterns at higher orders? These
questions remain largely open and can be addressed through the integration of multiple
methods and datasets.

Crucially, at each level of organization—e.g. genes, neurons, or brain regions—different
orders can be investigated by applying the same statistical technique to the same dataset or
by employing different statistical techniques on the same or different datasets. Hence,
cross-order integration may involve combining various techniques and datasets. This form of
integration is particularly valuable when merging diverse methodological perspectives, each
offering unique explanations or descriptions. For example, in the cases presented below,
strategies that focus on different orders and are grounded on distinct explanatory principles
are combined and integrated toward a deeper methodological understanding. In the first
example, the relationship between pairwise functional connectivity, higher-order information
metrics, and transcranial ultrasound stimulation (TUS) is examined (94–96). In the second
example, cross-order integration is used to explore the relationship between the
mechanisms that govern interactions among different functional units and their patterns of
statistical interdependencies (21).

The case of transcranial brain stimulation. Non-invasive brain neuromodulation,
developed to alter neural activity in patients safely, has been advancing in the treatment of
different conditions, such as depression (97–99), Alzheimer's (100,101) and epilepsy
(102,103). A noteworthy stimulation method is the low-frequency focused transcranial
ultrasound stimulation (TUS), which can precisely and safely reach both cortical and
subcortical specific brain regions (94–96). However, this type of methodological advance
produced a struggle between specialists on how to design stimulation protocols to obtain the
desired change in neural trajectories. TUS enables targeted investigation of specific brain
regions, thus strategies employing this technique can be classified as first-order approaches
with respect to the spectrum we proposed. Examining the effects of stimulating a single
region on interaction patterns among pairs or higher-order groups of regions offers a means
to reconcile and integrate findings across different orders of interaction (cross-order
integration).
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Studies investigating pairwise interactions have shown changes in deep brain regions in
macaques, lasting more than an hour after TUS (104). For instance, pairs of brain regions
exhibit increased or decreased FC depending on the strength of their anatomical connection
to the stimulation target (105). However, this effect is observed at the populational level, and
it blurs when the analyses are performed individually on single subjects. Here the study of
synergy and redundancy makes a difference in the assessment of the effects of the
stimulation. Analyzing high-order interactions makes it possible in fact to move from
population to individual characterization (37), identifying both networks that change
independently of the target, and target-specific networks that are consistent across
individuals. Individual characterization is key here, because it could enable tailoring
therapies to individuals, a critical ingredient for external stimulation techniques.

Intriguingly, this study revealed that interventions at order 1 produce distinct effects on both
pairwise functional connectivity, and higher-order informational properties. This finding
underscores the importance of integrating various methodologies to assess and characterize
these different orders of analysis effectively.

Studying the Mechanisms Underpinning Higher-Order Phenomena. While
information-theoretic and topological approaches offer valuable insights into data, enhancing
our ability to classify different cognitive and health conditions, they fall short in delivering
clear mechanistic explanations. These approaches primarily reveal statistical
interdependencies and coordination patterns, rather than causal mechanisms in the sense of
Craver et al (41). Specifically, the information character of neural units or their topological
properties indicates statistical relationships, but do not directly translate into causal
mechanisms between them. Moreover, functional units, e.g in fMRI studies, often represent
fluctuations in BOLD signals from parcels of brain volume, rather than discrete entities,
“working parts”, as conceptualized by Craver et al. (41). This distinction has been the subject
of various philosophical discussions (21,41,106,107). In essence, the distinction is between
(i) methodologies that measure and analyze statistical interdependencies and correlation
patterns, and (ii) approaches that seek to provide causal explanations for the mechanisms
underlying brain dynamics and functions. The methods discussed in this paper clearly fall
into the former category. Understanding the mechanisms responsible for these higher-order
properties remains an unresolved challenge.
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Figure 3. The situation in which we can only measure information properties from brain
signals, but we have no access to the underlying structure of mechanistic interactions (A). A
graphical representation of the daunting task of studying the relationship between
informational properties and mechanisms. This implies cross-order integration since
mechanistic interactions at a certain order can inflate information properties at other orders
(B).

Understanding the mechanisms supporting synergy and redundancy and other informational
or topological properties would enable us to formulate more precise hypotheses about neural
phenomena, in which higher-order effects cannot be ignored. For example, in the integrative
horse example, if only neurons 1 to 6 are observable, we would seek to hypothesize
mechanisms sustaining their information properties (Fig. 3.A). Uncovering these neural
mechanisms could significantly enhance our ability to predict, control, and treat the brain.
Notably, elucidating the relationship between higher-order information and the underlying
mechanisms requires integrating across different orders of interactions, since higher-order
mechanisms can influence lower-order effects and vice versa (21,108), Fig. 3.B.

Few promising progress has been made in addressing this daunting task. From a theoretical
perspective, using a generalized Ising model, it has been shown that statistical synergy
within a group of variables indicates significant higher-order coupling (mechanism) beyond
pairwise interactions (108). Additionally, in (109), the authors developed a mechanistic
model bridging structural changes in connectomics with functional changes in higher-order
interdependencies. Referring to the idea of the spectrum, both these studies perform
cross-order integration: information patterns are analyzed across different orders of
interactions in both studies and the model accounts for pairwise structural connections in
(109), and for pairwise and order three interactions in (108). Other insights come from a
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recent work by Gelens et al, (110), in which the authors demonstrated that long-range
connections are crucial for understanding synergy during behavioral tasks. These
advancements underscore the potential of integrating multiple interaction orders to bridge
gaps between observed phenomena and underlying neural mechanisms.

The challenge of multiple integration. The broad applicability of the spectrum of
interaction orders—to various levels and methodologies for collecting data and analyzing
interactions—also relates to the challenge of integrating findings and data across different
levels and methods. A clear example of this challenge was provided by Sejnowsky (1) :
“Decision-making, for example, might be studied at the level of populations of single-cell
recordings in monkeys or by fMRI in humans or by lesions in rats or by molecular and optical
techniques in mice. These differences mean that standardization in neuroscience must be
made relative to a technique and that cross-level and cross-technique data integration
cannot easily be automated.” Indeed, the spectrum of interaction orders highlights a novel
challenge: cross-order integration. This introduces a new axis along which results and data
must be integrated (Fig. 4). In our representation, techniques refer to both the techniques
used in data collection and the methodologies applied to study interactions, levels to the
spatial scale of the investigation. For example, when analyzing the information properties of
fMRI data at different orders, it is crucial to integrate these findings with the biological
components of the regions under investigation (cross-level integration) and with results
obtained from other methods, such as brain stimulation or topological data analysis of EEG
recordings (cross-technique integration).

Preliminar progresses have been made on this line, such as associating synergy observed in
brain recordings with increased synaptic activity or more complex cognitive functions
(40,111,112). In the example mentioned before of Herzog et al (27), the authors also perform
classification between control and patients integrating multiplets from different orders of
interactions and from both recording modalities (EEG and fMRI). Doing so, they achieved
the best classification, exemplifying how cross-order and cross-technique integration can
enhance our ability of classifying. However, fully reconciling and integrating across different
levels, techniques and orders remains an open question for future work (Fig.4). Addressing
this challenge is crucial for achieving a comprehensive understanding of neural dynamics
and their underlying mechanisms.
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Figure 4. A schematic representation of the integration challenges for future developments
in computational neuroscience. The arrows represent the integration trajectories that are
challenging future steps in the study of interactions between different units at different
orders. Orange arrows represent trajectories that have already been highlighted by past
studies, the blue arrow represents the challenge we present of cross-order integration. The
blue dotted arrow instead points towards the challenge of integrating across different
techniques, orders and levels.

5. Discussion and conclusion

In this paper we develop a conceptual framework, based on the spectrum of interaction
orders, to help scientists position and contextualize their research strategies. We introduced
the possible benefits of the proposed framework through a simple toy model, and supported
with several examples the idea that exploration of the spectrum represents a fundamental
avenue to future advances. Finally, we discussed these ideas with respect to the growing
focus of higher-order interactions, with a particular focus on information theory.

The proposal of a spectrum of interaction orders is closely related to the concept of causal
composition, which posits that any group of units receiving inputs and producing outputs
could, in principle, constitute a distinct mechanism within the system (113). The key
distinction here is that our focus is on the methodological level of analysis. While there may
not always be a direct causal mechanistic structure underlying higher-order interactions, a
methodology based on the exploration of these interactions can still provide valuable
insights. Integrating findings from the study of higher-order interactions, with insights coming
from other methods may contribute to a more comprehensive understanding of the
phenomena of interest, even in the absence of a clearly defined causal higher-order effect.
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The investigation of the spectrum of interaction orders also relates to Simon’s formulation of
near-decomposability (114,115). This idea posits that within a system, it is possible to identify
groups of strongly interacting units that exhibit relatively independent dynamics from the rest
of the system on short time scales. The spectrum of interaction orders we have outlined
provides a framework for exploring these interactions and characterizing such subsystems.
By examining interactions at different orders, researchers can more effectively identify and
analyze subsystems beyond strong form of reduction. For instance, information-theoretic
metrics enable the study of a community of nodes as an integrated whole, rather than
focusing only on individual nodes and their pairwise interactions, while topological methods
can describe the coordinated activity of such communities across different orders of
interactions (116).

In some accounts, reductionist strategies are described as those focusing solely on
individual elements of the system under study, while holistic strategies consider the system
as a whole (11,117,118). Following these definitions, the spectrum of orders of interaction
can be viewed as a continuum of research strategies, ranging from reductionist to holistic
approaches. This perspective supports the idea that both, reductionist and holistic strategies
can coexist on a methodological level. It emphasizes the importance of exploring all possible
approaches between these two extremes and highlights the necessity of integrating different
perspectives, a challenge that must be addressed for a comprehensive understanding of the
system.

In conclusion, the primary motivation behind our work is the development of the spectrum of
interactions orders as a tool to guide future research toward a deeper understanding of
neural functions. We propose that adopting this framework could be pivotal for advancing
neuroscience, as it enhances both methodological rigor and the comprehension of complex
neural phenomena. By enabling researchers to critically evaluate underlying assumptions,
integrate diverse methodologies, and promote interdisciplinary collaboration, this approach
has the potential to significantly contribute to the field's progress.

Data availability
The article does not have additional data.

Authors
Conflict of interest: The authors declare no competing interests.

Author contribution: M.N.: Conceptualization, writing - original draft, writing - review and
editing, figures design and preparation; A.B.: Conceptualization, writing - review and editing;
S.C.: Conceptualization, writing - original draft ; F.F.: Conceptualization, writing - review and
editing; M.G.: Conceptualization, writing - review and editing; R.H.: Conceptualization,
writing - review and editing; P.A.M.M.: Conceptualization, writing - review and editing; I.M.:
Conceptualization, writing - review and editing; G.P.: Conceptualization, writing - review and
editing; D.B.: Conceptualization, writing - review and editing; F.E.R.: Conceptualization,
writing - review and editing; A.T.: Conceptualization, writing - review and editing; M.E.:
Conceptualization, writing - review and editing.

18

https://sciwheel.com/work/citation?ids=16581279,16581276&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=10438602&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1778477,11741805,2238799&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0


Acknowledgements: M.N. has received funding from the French government under the
“France 2030” investment plan managed by the French National Research Agency
(reference : ANR-16-CONV000X / ANR-17-EURE-0029) and from Excellence Initiative of
AixMarseille University - A*MIDEX (AMX-19-IET-004).

References

1. Sejnowski TJ, Churchland PS, Movshon JA. Putting big data to good use in
neuroscience. Nat Neurosci. 2014 Nov;17(11):1440–1.

2. Jorgenson LA, Newsome WT, Anderson DJ, Bargmann CI, Brown EN, Deisseroth K,
et al. The BRAIN Initiative: developing technology to catalyse neuroscience
discovery. Philos Trans R Soc Lond B Biol Sci. 2015 May 19;370(1668).

3. Sporns O. Network neuroscience. … Brain: Essays by the World’s Leading
Neuroscientists. 2014;

4. Sporns O. Networks of the Brain. 2016;

5. Bassett DS, Sporns O. Network neuroscience. Nat Neurosci. 2017 Feb
23;20(3):353–64.

6. Nelson RJ, Young KA. Behavior in mice with targeted disruption of single genes.
Neurosci Biobehav Rev. 1998 May;22(3):453–62.

7. Keene AC, Waddell S. Drosophila olfactory memory: single genes to complex neural
circuits. Nat Rev Neurosci. 2007 May;8(5):341–54.

8. Kennedy BW, Quinton M, van Arendonk JA. Estimation of effects of single genes on
quantitative traits. J Anim Sci. 1992 Jul;70(7):2000–12.

9. Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I. Invariant visual representation by
single neurons in the human brain. Nature. 2005 Jun 23;435(7045):1102–7.

10. O’Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence
from unit activity in the freely-moving rat. Brain Res. 1971 Nov;34(1):171–5.

11. Barlow HB. Single units and sensation: a neuron doctrine for perceptual psychology?
Perception. 1972;1(4):371–94.

12. O’Doherty J, Kringelbach ML, Rolls ET, Hornak J, Andrews C. Abstract reward and
punishment representations in the human orbitofrontal cortex. Nat Neurosci. 2001
Jan;4(1):95–102.

13. Freedman DJ, Riesenhuber M, Poggio T, Miller EK. Categorical representation of
visual stimuli in the primate prefrontal cortex. Science. 2001 Jan
12;291(5502):312–6.

14. Northoff G. Localization versus holism and intrinsic versus extrinsic views of the
brain: A neurophilosophical approach. Minerva Psichiatrica. 2014;

15. Levelt WJM. Localism versus holism. Historical origins of studying language in the
brain. Sartoniana vol 29. 2016;

16. Damoiseaux JS, Greicius MD. Greater than the sum of its parts: a review of studies

19

https://sciwheel.com/work/bibliography/429918
https://sciwheel.com/work/bibliography/429918
https://sciwheel.com/work/bibliography/106888
https://sciwheel.com/work/bibliography/106888
https://sciwheel.com/work/bibliography/106888
https://sciwheel.com/work/bibliography/16186652
https://sciwheel.com/work/bibliography/16186652
https://sciwheel.com/work/bibliography/16186651
https://sciwheel.com/work/bibliography/3191713
https://sciwheel.com/work/bibliography/3191713
https://sciwheel.com/work/bibliography/1833819
https://sciwheel.com/work/bibliography/1833819
https://sciwheel.com/work/bibliography/228961
https://sciwheel.com/work/bibliography/228961
https://sciwheel.com/work/bibliography/5758527
https://sciwheel.com/work/bibliography/5758527
https://sciwheel.com/work/bibliography/140689
https://sciwheel.com/work/bibliography/140689
https://sciwheel.com/work/bibliography/24363
https://sciwheel.com/work/bibliography/24363
https://sciwheel.com/work/bibliography/2238799
https://sciwheel.com/work/bibliography/2238799
https://sciwheel.com/work/bibliography/148748
https://sciwheel.com/work/bibliography/148748
https://sciwheel.com/work/bibliography/148748
https://sciwheel.com/work/bibliography/83275
https://sciwheel.com/work/bibliography/83275
https://sciwheel.com/work/bibliography/83275
https://sciwheel.com/work/bibliography/16732324
https://sciwheel.com/work/bibliography/16732324
https://sciwheel.com/work/bibliography/16730354
https://sciwheel.com/work/bibliography/16730354
https://sciwheel.com/work/bibliography/445648


combining structural connectivity and resting-state functional connectivity. Brain
Struct Funct. 2009 Oct;213(6):525–33.

17. Anderson JS, Nielsen JA, Froehlich AL, DuBray MB, Druzgal TJ, Cariello AN, et al.
Functional connectivity magnetic resonance imaging classification of autism. Brain.
2011 Dec;134(Pt 12):3742–54.

18. Wang K, Liang M, Wang L, Tian L, Zhang X, Li K, et al. Altered functional
connectivity in early Alzheimer’s disease: a resting-state fMRI study. Hum Brain
Mapp. 2007 Oct;28(10):967–78.

19. Zhou X, Ma N, Song B, Wu Z, Liu G, Liu L, et al. Optimal Organization of Functional
Connectivity Networks for Segregation and Integration With Large-Scale Critical
Dynamics in Human Brains. Front Comput Neurosci. 2021 Mar 31;15:641335.

20. Battiston F, Amico E, Barrat A, Bianconi G, Ferraz de Arruda G, Franceschiello B, et
al. The physics of higher-order interactions in complex systems. Nat Phys. 2021
Oct;17(10):1093–8.

21. Rosas FE, Mediano PAM, Luppi AI, Varley TF, Lizier JT, Stramaglia S, et al.
Disentangling high-order mechanisms and high-order behaviours in complex
systems. Nat Phys. 2022 Mar 21;

22. Hebb DO. The organization of behavior; A neuropsychological theory. Am J Psychol.
1949 Oct;63(4):633.

23. Varley TF, Pope M, Faskowitz J, Sporns O. Multivariate information theory uncovers
synergistic subsystems of the human cerebral cortex. Commun Biol. 2023 Apr
24;6(1):451.

24. Varley TF, Sporns O, Stevenson NJ, Welch MG, Myers MM, Vanhatalo S, et al.
Emergence of a synergistic scaffold in the brains of human infants. BioRxiv. 2024
Feb 23;

25. Gatica M, Rosas FE, Mediano PAM, Diez I, Swinnen SP, Orio P, et al. High-order
functional interactions in ageing explained via alterations in the connectome in a
whole-brain model. BioRxiv. 2021 Sep 17;

26. Gatica M, Cofré R, Mediano PAM, Rosas FE, Orio P, Diez I, et al. High-Order
Interdependencies in the Aging Brain. Brain Connect. 2021 Nov;11(9):734–44.

27. Herzog R, Rosas FE, Whelan R, Fittipaldi S, Santamaria-Garcia H, Cruzat J, et al.
Genuine high-order interactions in brain networks and neurodegeneration. Neurobiol
Dis. 2022 Dec;175:105918.

28. Santoro A, Battiston F, Petri G, Amico E. Higher-order organization of multivariate
time series. Nat Phys. 2023 Jan 2;

29. Varley TF, Pope M, Puxeddu MG, Faskowitz J, Sporns O. Partial entropy
decomposition reveals higher-order information structures in human brain activity.
Proc Natl Acad Sci USA. 2023 Jul 25;120(30):e2300888120.

30. Varley TF, Sporns O, Schaffelhofer S, Scherberger H, Dann B.
Information-processing dynamics in neural networks of macaque cerebral cortex
reflect cognitive state and behavior. Proc Natl Acad Sci USA. 2023 Jan
10;120(2):e2207677120.

20

https://sciwheel.com/work/bibliography/445648
https://sciwheel.com/work/bibliography/445648
https://sciwheel.com/work/bibliography/3023222
https://sciwheel.com/work/bibliography/3023222
https://sciwheel.com/work/bibliography/3023222
https://sciwheel.com/work/bibliography/161781
https://sciwheel.com/work/bibliography/161781
https://sciwheel.com/work/bibliography/161781
https://sciwheel.com/work/bibliography/15007438
https://sciwheel.com/work/bibliography/15007438
https://sciwheel.com/work/bibliography/15007438
https://sciwheel.com/work/bibliography/11969853
https://sciwheel.com/work/bibliography/11969853
https://sciwheel.com/work/bibliography/11969853
https://sciwheel.com/work/bibliography/16183039
https://sciwheel.com/work/bibliography/16183039
https://sciwheel.com/work/bibliography/16183039
https://sciwheel.com/work/bibliography/10470351
https://sciwheel.com/work/bibliography/10470351
https://sciwheel.com/work/bibliography/15287085
https://sciwheel.com/work/bibliography/15287085
https://sciwheel.com/work/bibliography/15287085
https://sciwheel.com/work/bibliography/16568896
https://sciwheel.com/work/bibliography/16568896
https://sciwheel.com/work/bibliography/16568896
https://sciwheel.com/work/bibliography/16309002
https://sciwheel.com/work/bibliography/16309002
https://sciwheel.com/work/bibliography/16309002
https://sciwheel.com/work/bibliography/16183058
https://sciwheel.com/work/bibliography/16183058
https://sciwheel.com/work/bibliography/14051114
https://sciwheel.com/work/bibliography/14051114
https://sciwheel.com/work/bibliography/14051114
https://sciwheel.com/work/bibliography/14149608
https://sciwheel.com/work/bibliography/14149608
https://sciwheel.com/work/bibliography/15213659
https://sciwheel.com/work/bibliography/15213659
https://sciwheel.com/work/bibliography/15213659
https://sciwheel.com/work/bibliography/16533124
https://sciwheel.com/work/bibliography/16533124
https://sciwheel.com/work/bibliography/16533124
https://sciwheel.com/work/bibliography/16533124


31. Parastesh F, Mehrabbeik M, Rajagopal K, Jafari S, Perc M. Synchronization in
Hindmarsh–Rose neurons subject to higher-order interactions. Chaos: An
Interdisciplinary Journal of Nonlinear Science. 2022 Jan 1;32(1).

32. Ramasamy M, Devarajan S, Kumarasamy S, Rajagopal K. Effect of higher-order
interactions on synchronization of neuron models with electromagnetic induction.
Appl Math Comput. 2022 Dec;434:127447.

33. Shimazaki H, Sadeghi K, Ishikawa T, Ikegaya Y, Toyoizumi T. Simultaneous silence
organizes structured higher-order interactions in neural populations. Sci Rep. 2015
Apr 28;5:9821.

34. Hubel DH, Wiesel TN. Receptive fields of single neurones in the cat’s striate cortex. J
Physiol (Lond). 1959 Oct;148:574–91.

35. Tramacere A, Bickle J. Neuroepigenetics in philosophical focus: A critical analysis of
the philosophy of mechanisms. Biol Theory. 2024 Mar;19(1):56–71.

36. Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting
brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA.
2003 Jan 7;100(1):253–8.

37. Gatica M, Atkinson-Clement C, Mediano PAM, Alkhawashki M, Ross J, Sallet J, et al.
Transcranial ultrasound stimulation effect in the redundant and synergistic networks
consistent across macaques. BioRxiv. 2023 Nov 3;

38. Battiston F, Cencetti G, Iacopini I, Latora V, Lucas M, Patania A, et al. Networks
beyond pairwise interactions: Structure and dynamics. Physics Reports. 2020 Jun;

39. Shimazaki H, Amari S-I, Brown EN, Grün S. State-space analysis of time-varying
higher-order spike correlation for multiple neural spike train data. PLoS Comput Biol.
2012 Mar 8;8(3):e1002385.

40. Luppi AI, Rosas FE, Mediano PAM, Menon DK, Stamatakis EA. Information
decomposition and the informational architecture of the brain. Trends Cogn Sci
(Regul Ed). 2024 Apr;28(4):352–68.

41. Craver CF. The explanatory power of network models. Philos Sci. 2016
Dec;83(5):698–709.

42. Nazarova M, Blagovechtchenski E. Modern Brain Mapping - What Do We Map
Nowadays? Front Psychiatry. 2015 Jun 16;6:89.

43. Tramacere A. About leaving the neuroscience lab. Advances in neurophilosophy.
2024;

44. Greenblatt SH. Phrenology in the science and culture of the 19th century.
Neurosurgery. 1995 Oct;37(4):790–804; discussion 804.

45. Glickstein M. Golgi and Cajal: The neuron doctrine and the 100th anniversary of the
1906 Nobel Prize. Curr Biol. 2006 Mar 7;16(5):R147-51.

46. Bickle J. Reducing mind to molecular pathways: explicating the reductionism implicit
in current cellular and molecular neuroscience. Synthese. 2006 Aug;151(3):411–34.

47. Bickle J. Marr and reductionism. Top Cogn Sci. 2015 Apr;7(2):299–311.

48. Hebart MN, Baker CI. Deconstructing multivariate decoding for the study of brain

21

https://sciwheel.com/work/bibliography/16745211
https://sciwheel.com/work/bibliography/16745211
https://sciwheel.com/work/bibliography/16745211
https://sciwheel.com/work/bibliography/16745210
https://sciwheel.com/work/bibliography/16745210
https://sciwheel.com/work/bibliography/16745210
https://sciwheel.com/work/bibliography/213697
https://sciwheel.com/work/bibliography/213697
https://sciwheel.com/work/bibliography/213697
https://sciwheel.com/work/bibliography/1456927
https://sciwheel.com/work/bibliography/1456927
https://sciwheel.com/work/bibliography/16557388
https://sciwheel.com/work/bibliography/16557388
https://sciwheel.com/work/bibliography/138044
https://sciwheel.com/work/bibliography/138044
https://sciwheel.com/work/bibliography/138044
https://sciwheel.com/work/bibliography/16309003
https://sciwheel.com/work/bibliography/16309003
https://sciwheel.com/work/bibliography/16309003
https://sciwheel.com/work/bibliography/9359476
https://sciwheel.com/work/bibliography/9359476
https://sciwheel.com/work/bibliography/212710
https://sciwheel.com/work/bibliography/212710
https://sciwheel.com/work/bibliography/212710
https://sciwheel.com/work/bibliography/16183057
https://sciwheel.com/work/bibliography/16183057
https://sciwheel.com/work/bibliography/16183057
https://sciwheel.com/work/bibliography/8153413
https://sciwheel.com/work/bibliography/8153413
https://sciwheel.com/work/bibliography/10470298
https://sciwheel.com/work/bibliography/10470298
https://sciwheel.com/work/bibliography/16687135
https://sciwheel.com/work/bibliography/16687135
https://sciwheel.com/work/bibliography/16364604
https://sciwheel.com/work/bibliography/16364604
https://sciwheel.com/work/bibliography/243637
https://sciwheel.com/work/bibliography/243637
https://sciwheel.com/work/bibliography/16185818
https://sciwheel.com/work/bibliography/16185818
https://sciwheel.com/work/bibliography/8309417
https://sciwheel.com/work/bibliography/5407161


function. Neuroimage. 2018 Oct 15;180(Pt A):4–18.

49. Friston KJ, Holmes AP, Poline JB, Grasby PJ, Williams SC, Frackowiak RS, et al.
Analysis of fMRI time-series revisited. Neuroimage. 1995 Mar;2(1):45–53.

50. Weaver ICG, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, et al.
Epigenetic programming by maternal behavior. Nat Neurosci. 2004 Aug;7(8):847–54.

51. Furman DJ, Hamilton JP, Gotlib IH. Frontostriatal functional connectivity in major
depressive disorder. Biol Mood Anxiety Disord. 2011 Dec 8;1(1):11.

52. Baeg EH, Kim YB, Kim J, Ghim J-W, Kim JJ, Jung MW. Learning-induced enduring
changes in functional connectivity among prefrontal cortical neurons. J Neurosci.
2007 Jan 24;27(4):909–18.

53. Hong S-B, Zalesky A, Cocchi L, Fornito A, Choi E-J, Kim H-H, et al. Decreased
functional brain connectivity in adolescents with internet addiction. PLoS ONE. 2013
Feb 25;8(2):e57831.

54. Santos FAN, Tewarie PKB, Baudot P, Luchicchi A, Barros de Souza D, Girier G, et al.
Emergence of High-Order Functional Hubs in the Human Brain. BioRxiv. 2023 Feb
12;

55. Baudot P, Tapia M, Bennequin D, Goaillard J-M. Topological information data
analysis. Entropy. 2019 Sep 6;21(9):869.

56. Chambers B, MacLean JN. Higher-Order Synaptic Interactions Coordinate Dynamics
in Recurrent Networks. PLoS Comput Biol. 2016 Aug 19;12(8):e1005078.

57. Yu S, Yang H, Nakahara H, Santos GS, Nikolić D, Plenz D. Higher-order interactions
characterized in cortical activity. J Neurosci. 2011 Nov 30;31(48):17514–26.

58. Ince RAA, Montani F, Arabzadeh E, Diamond ME, Panzeri S. On the presence of
high-order interactions among somatosensory neurons and their effect on
information transmission. J Phys: Conf Ser. 2009 Dec 1;197:012013.

59. Martignon L, Von Hasseln H, Grün S, Aertsen A, Palm G. Detecting higher-order
interactions among the spiking events in a group of neurons. Biol Cybern. 1995
Jun;73(1):69–81.

60. Herzog R, Mediano PAM, Rosas FE, Lodder P, Carhart-Harris R, Perl YS, et al. A
whole-brain model of the neural entropy increase elicited by psychedelic drugs. Sci
Rep. 2023 Apr 17;13(1):6244.

61. Turkheimer FE, Rosas FE, Dipasquale O, Martins D, Fagerholm ED, Expert P, et al.
A complex systems perspective on neuroimaging studies of behavior and its
disorders. Neuroscientist. 2022 Aug;28(4):382–99.

62. Neri M, Runfola C, te Rietmolen NAG, Sorrentino P, Schon D, Morillon B, et al.
Neuronal avalanches in naturalistic speech and music listening. BioRxiv. 2023 Dec
16;

63. Priesemann V, Valderrama M, Wibral M, Le Van Quyen M. Neuronal avalanches
differ from wakefulness to deep sleep--evidence from intracranial depth recordings in
humans. PLoS Comput Biol. 2013 Mar 21;9(3):e1002985.

64. Sporns O, Betzel RF. Modular Brain Networks. Annu Rev Psychol. 2016;67:613–40.

22

https://sciwheel.com/work/bibliography/5407161
https://sciwheel.com/work/bibliography/1345654
https://sciwheel.com/work/bibliography/1345654
https://sciwheel.com/work/bibliography/60319
https://sciwheel.com/work/bibliography/60319
https://sciwheel.com/work/bibliography/3994499
https://sciwheel.com/work/bibliography/3994499
https://sciwheel.com/work/bibliography/6281647
https://sciwheel.com/work/bibliography/6281647
https://sciwheel.com/work/bibliography/6281647
https://sciwheel.com/work/bibliography/1352291
https://sciwheel.com/work/bibliography/1352291
https://sciwheel.com/work/bibliography/1352291
https://sciwheel.com/work/bibliography/14402407
https://sciwheel.com/work/bibliography/14402407
https://sciwheel.com/work/bibliography/14402407
https://sciwheel.com/work/bibliography/16691774
https://sciwheel.com/work/bibliography/16691774
https://sciwheel.com/work/bibliography/5289494
https://sciwheel.com/work/bibliography/5289494
https://sciwheel.com/work/bibliography/302365
https://sciwheel.com/work/bibliography/302365
https://sciwheel.com/work/bibliography/4528231
https://sciwheel.com/work/bibliography/4528231
https://sciwheel.com/work/bibliography/4528231
https://sciwheel.com/work/bibliography/6996277
https://sciwheel.com/work/bibliography/6996277
https://sciwheel.com/work/bibliography/6996277
https://sciwheel.com/work/bibliography/16094613
https://sciwheel.com/work/bibliography/16094613
https://sciwheel.com/work/bibliography/16094613
https://sciwheel.com/work/bibliography/10532049
https://sciwheel.com/work/bibliography/10532049
https://sciwheel.com/work/bibliography/10532049
https://sciwheel.com/work/bibliography/16036993
https://sciwheel.com/work/bibliography/16036993
https://sciwheel.com/work/bibliography/16036993
https://sciwheel.com/work/bibliography/716997
https://sciwheel.com/work/bibliography/716997
https://sciwheel.com/work/bibliography/716997
https://sciwheel.com/work/bibliography/3045416


65. Liao X, Vasilakos AV, He Y. Small-world human brain networks: Perspectives and
challenges. Neurosci Biobehav Rev. 2017 Jun;77:286–300.

66. Ritchie JB, Kaplan DM, Klein C. Decoding the brain: neural representation and the
limits of multivariate pattern analysis in cognitive neuroscience. Br J Philos Sci. 2019
Jun;70(2):581–607.

67. Bassett DS, Bullmore E. Small-world brain networks. Neuroscientist. 2006
Dec;12(6):512–23.

68. Akarca D, Dunn AWE, Hornauer PJ, Ronchi S, Fiscella M, Wang C, et al. Homophilic
wiring principles underpin neuronal network topology in vitro. BioRxiv. 2022 Mar 10;

69. Han Y, Zhu H, Zhao Y, Lang Y, Sun H, Han J, et al. The effect of acute glutamate
treatment on the functional connectivity and network topology of cortical cultures.
Med Eng Phys. 2019 Sep;71:91–7.

70. Poli D, Pastore VP, Massobrio P. Functional connectivity in in vitro neuronal
assemblies. Front Neural Circuits. 2015 Oct 7;9:57.

71. Brown SD, Vranesic ZG. Fundamentals of digital logic with VHDL design. 2000;

72. Tramacere A. Triangulating tools in the messiness of cognitive neuroscience. The
tools of neuroscience experiment: philosophical and scientific perspectives. New
York: Routledge; 2021. p. 176–94.

73. Abeles M, Gerstein GL. Detecting spatiotemporal firing patterns among
simultaneously recorded single neurons. J Neurophysiol. 1988 Sep;60(3):909–24.

74. Gansel KS, Singer W. Detecting multineuronal temporal patterns in parallel spike
trains. Front Neuroinformatics. 2012 May 22;6:18.

75. Gütig R, Aertsen A, Rotter S. Analysis of higher-order neuronal interactions based on
conditional inference. Biol Cybern. 2003 May;88(5):352–9.

76. Montangie L, Montani F. Higher-order correlations in common input shapes the
output spiking activity of a neural population. Phys A: Stat Mech Appl. 2017
Apr;471:845–61.

77. Shannon CE. A mathematical theory of communication. Bell System Technical
Journal. 1948 Jul;27(3):379–423.

78. Williams PL, Beer RD. Nonnegative decomposition of multivariate information. arXiv
preprint arXiv:10042515. 2010;

79. Timme NM, Lapish C. A tutorial for information theory in neuroscience. eNeuro. 2018
Sep 11;5(3).

80. Rosas FE, Mediano PAM, Gastpar M, Jensen HJ. Quantifying high-order
interdependencies via multivariate extensions of the mutual information. Phys Rev E.
2019 Sep;100(3–1):032305.

81. Panzeri S, Moroni M, Safaai H, Harvey CD. The structures and functions of
correlations in neural population codes. Nat Rev Neurosci. 2022 Sep;23(9):551–67.

82. Rosas FE, Mediano PAM, Gastpar M. Characterising directed and undirected metrics
of high-order interdependence. arXiv preprint arXiv:240407140. 2024;

83. Wasserman L. Topological Data Analysis. Annu Rev Stat Appl. 2018 Mar

23

https://sciwheel.com/work/bibliography/3446163
https://sciwheel.com/work/bibliography/3446163
https://sciwheel.com/work/bibliography/5900399
https://sciwheel.com/work/bibliography/5900399
https://sciwheel.com/work/bibliography/5900399
https://sciwheel.com/work/bibliography/22998
https://sciwheel.com/work/bibliography/22998
https://sciwheel.com/work/bibliography/16745343
https://sciwheel.com/work/bibliography/16745343
https://sciwheel.com/work/bibliography/16745342
https://sciwheel.com/work/bibliography/16745342
https://sciwheel.com/work/bibliography/16745342
https://sciwheel.com/work/bibliography/5164066
https://sciwheel.com/work/bibliography/5164066
https://sciwheel.com/work/bibliography/16702593
https://sciwheel.com/work/bibliography/16705459
https://sciwheel.com/work/bibliography/16705459
https://sciwheel.com/work/bibliography/16705459
https://sciwheel.com/work/bibliography/979079
https://sciwheel.com/work/bibliography/979079
https://sciwheel.com/work/bibliography/598587
https://sciwheel.com/work/bibliography/598587
https://sciwheel.com/work/bibliography/138713
https://sciwheel.com/work/bibliography/138713
https://sciwheel.com/work/bibliography/16187605
https://sciwheel.com/work/bibliography/16187605
https://sciwheel.com/work/bibliography/16187605
https://sciwheel.com/work/bibliography/852065
https://sciwheel.com/work/bibliography/852065
https://sciwheel.com/work/bibliography/16585319
https://sciwheel.com/work/bibliography/16585319
https://sciwheel.com/work/bibliography/5515171
https://sciwheel.com/work/bibliography/5515171
https://sciwheel.com/work/bibliography/10882774
https://sciwheel.com/work/bibliography/10882774
https://sciwheel.com/work/bibliography/10882774
https://sciwheel.com/work/bibliography/13219793
https://sciwheel.com/work/bibliography/13219793
https://sciwheel.com/work/bibliography/16581980
https://sciwheel.com/work/bibliography/16581980
https://sciwheel.com/work/bibliography/5747662


7;5(1):501–32.

84. Giusti C, Ghrist R, Bassett DS. Two’s company, three (or more) is a simplex :
Algebraic-topological tools for understanding higher-order structure in neural data. J
Comput Neurosci. 2016 Aug;41(1):1–14.

85. Patania A, Vaccarino F, Petri G. Topological analysis of data. EPJ Data Sci. 2017
Dec;6(1):7.

86. Ghrist R. Barcodes: The persistent topology of data. Bull Amer Math Soc. 2007 Oct
26;45(01):61–76.

87. Zomorodian A, Carlsson G. Computing persistent homology. Proceedings of the
twentieth annual symposium on Computational geometry - SCG ’04. New York, New
York, USA: ACM Press; 2004. p. 347.

88. Curto C, Itskov V. Cell groups reveal structure of stimulus space. PLoS Comput Biol.
2008 Oct 31;4(10):e1000205.

89. Giusti C, Pastalkova E, Curto C, Itskov V. Clique topology reveals intrinsic geometric
structure in neural correlations. Proc Natl Acad Sci USA. 2015 Nov
3;112(44):13455–60.

90. Gardner RJ, Hermansen E, Pachitariu M, Burak Y, Baas NA, Dunn BA, et al. Toroidal
topology of population activity in grid cells. Nature. 2022 Feb;602(7895):123–8.

91. Chung MK, Hanson JL, Ye J, Davidson RJ, Pollak SD. Persistent homology in sparse
regression and its application to brain morphometry. IEEE Trans Med Imaging. 2015
Sep;34(9):1928–39.

92. Petri G, Expert P, Turkheimer F, Carhart-Harris RL, Nutt D, Hellyer PJ, et al.
Homological scaffolds of brain functional networks. J R Soc Interface. 2014 Dec
6;11(101):20140873.

93. Stolz BJ, Emerson T, Nahkuri S, Porter MA, Harrington HA. Topological data analysis
of task-based fMRI data from experiments on schizophrenia. J Phys Complex. 2021
Sep 1;2(3):035006.

94. Darmani G, Bergmann TO, Butts Pauly K, Caskey CF, de Lecea L, Fomenko A, et al.
Non-invasive transcranial ultrasound stimulation for neuromodulation. Clin
Neurophysiol. 2022 Mar;135:51–73.

95. Darrow DP. Focused ultrasound for neuromodulation. Neurotherapeutics. 2019
Jan;16(1):88–99.

96. Tufail Y, Yoshihiro A, Pati S, Li MM, Tyler WJ. Ultrasonic neuromodulation by brain
stimulation with transcranial ultrasound. Nat Protoc. 2011 Sep 1;6(9):1453–70.

97. Berlim MT, Van den Eynde F, Jeff Daskalakis Z. Clinically meaningful efficacy and
acceptability of low-frequency repetitive transcranial magnetic stimulation (rTMS) for
treating primary major depression: a meta-analysis of randomized, double-blind and
sham-controlled trials. Neuropsychopharmacology. 2013 Mar;38(4):543–51.

98. Berlim MT, van den Eynde F, Tovar-Perdomo S, Daskalakis ZJ. Response, remission
and drop-out rates following high-frequency repetitive transcranial magnetic
stimulation (rTMS) for treating major depression: a systematic review and
meta-analysis of randomized, double-blind and sham-controlled trials. Psychol Med.

24

https://sciwheel.com/work/bibliography/5747662
https://sciwheel.com/work/bibliography/5702025
https://sciwheel.com/work/bibliography/5702025
https://sciwheel.com/work/bibliography/5702025
https://sciwheel.com/work/bibliography/14224919
https://sciwheel.com/work/bibliography/14224919
https://sciwheel.com/work/bibliography/2740165
https://sciwheel.com/work/bibliography/2740165
https://sciwheel.com/work/bibliography/480198
https://sciwheel.com/work/bibliography/480198
https://sciwheel.com/work/bibliography/480198
https://sciwheel.com/work/bibliography/376303
https://sciwheel.com/work/bibliography/376303
https://sciwheel.com/work/bibliography/879459
https://sciwheel.com/work/bibliography/879459
https://sciwheel.com/work/bibliography/879459
https://sciwheel.com/work/bibliography/12261523
https://sciwheel.com/work/bibliography/12261523
https://sciwheel.com/work/bibliography/14500096
https://sciwheel.com/work/bibliography/14500096
https://sciwheel.com/work/bibliography/14500096
https://sciwheel.com/work/bibliography/924495
https://sciwheel.com/work/bibliography/924495
https://sciwheel.com/work/bibliography/924495
https://sciwheel.com/work/bibliography/16735155
https://sciwheel.com/work/bibliography/16735155
https://sciwheel.com/work/bibliography/16735155
https://sciwheel.com/work/bibliography/12274810
https://sciwheel.com/work/bibliography/12274810
https://sciwheel.com/work/bibliography/12274810
https://sciwheel.com/work/bibliography/6126767
https://sciwheel.com/work/bibliography/6126767
https://sciwheel.com/work/bibliography/1804011
https://sciwheel.com/work/bibliography/1804011
https://sciwheel.com/work/bibliography/1410438
https://sciwheel.com/work/bibliography/1410438
https://sciwheel.com/work/bibliography/1410438
https://sciwheel.com/work/bibliography/1410438
https://sciwheel.com/work/bibliography/3618828
https://sciwheel.com/work/bibliography/3618828
https://sciwheel.com/work/bibliography/3618828
https://sciwheel.com/work/bibliography/3618828


2014 Jan;44(2):225–39.

99. Reznik SJ, Sanguinetti JL, Tyler WJ, Daft C, Allen JJB. A double-blind pilot study of
transcranial ultrasound (TUS) as a five-day intervention: TUS mitigates worry among
depressed participants. Neurology, Psychiatry and Brain Research. 2020
Sep;37:60–6.

100. Beisteiner R, Matt E, Fan C, Baldysiak H, Schönfeld M, Philippi Novak T, et al.
Transcranial Pulse Stimulation with Ultrasound in Alzheimer’s Disease-A New
Navigated Focal Brain Therapy. Adv Sci (Weinh). 2020 Feb;7(3):1902583.

101. Boggio PS, Valasek CA, Campanhã C, Giglio ACA, Baptista NI, Lapenta OM, et al.
Non-invasive brain stimulation to assess and modulate neuroplasticity in Alzheimer’s
disease. Neuropsychol Rehabil. 2011 Oct;21(5):703–16.

102. Brinker ST, Preiswerk F, White PJ, Mariano TY, McDannold NJ, Bubrick EJ. Focused
ultrasound platform for investigating therapeutic neuromodulation across the human
hippocampus. Ultrasound Med Biol. 2020 May;46(5):1270–4.

103. Fisher RS, Velasco AL. Electrical brain stimulation for epilepsy. Nat Rev Neurol. 2014
May;10(5):261–70.

104. Folloni D, Verhagen L, Mars RB, Fouragnan E, Constans C, Aubry J-F, et al.
Manipulation of subcortical and deep cortical activity in the primate brain using
transcranial focused ultrasound stimulation. Neuron. 2019 Mar
20;101(6):1109-1116.e5.

105. Verhagen L, Gallea C, Folloni D, Constans C, Jensen DE, Ahnine H, et al. Offline
impact of transcranial focused ultrasound on cortical activation in primates. eLife.
2019 Feb 12;8.

106. Ross LN, Bassett DS. Causation in neuroscience: keeping mechanism meaningful.
Nat Rev Neurosci. 2024 Feb;25(2):81–90.

107. Zednik C. Models and mechanisms in network neuroscience. Philos Psychol. 2019
Jan 2;32(1):23–51.

108. Robiglio T, Neri M, Coppes D, Agostinelli C. Synergistic signatures of group
mechanisms in higher-order systems. arXiv preprint arXiv …. 2024;

109. Gatica M, E Rosas F, A M Mediano P, Diez I, P Swinnen S, Orio P, et al. High-order
functional redundancy in ageing explained via alterations in the connectome in a
whole-brain model. PLoS Comput Biol. 2022 Sep 2;18(9):e1010431.

110. Gelens F, Äijälä J, Roberts L, Komatsu M, Uran C, Jensen MA, et al. Distributed
representations of prediction error signals across the cortical hierarchy are
synergistic. Nat Commun. 2024 May 10;15(1):3941.

111. Nurisso M, Morandini M, Lucas M, Vaccarino F. Higher-order Laplacian
Renormalization. arXiv preprint arXiv …. 2024;

112. Luppi AI, Mediano PAM, Rosas FE, Holland N, Fryer TD, O’Brien JT, et al. A
synergistic core for human brain evolution and cognition. Nat Neurosci. 2022
Jun;25(6):771–82.

113. Albantakis L, Tononi G. Causal Composition: Structural Differences among
Dynamically Equivalent Systems. Entropy. 2019 Oct 11;21(10):989.

25

https://sciwheel.com/work/bibliography/3618828
https://sciwheel.com/work/bibliography/15193889
https://sciwheel.com/work/bibliography/15193889
https://sciwheel.com/work/bibliography/15193889
https://sciwheel.com/work/bibliography/15193889
https://sciwheel.com/work/bibliography/8154038
https://sciwheel.com/work/bibliography/8154038
https://sciwheel.com/work/bibliography/8154038
https://sciwheel.com/work/bibliography/3163340
https://sciwheel.com/work/bibliography/3163340
https://sciwheel.com/work/bibliography/3163340
https://sciwheel.com/work/bibliography/16372435
https://sciwheel.com/work/bibliography/16372435
https://sciwheel.com/work/bibliography/16372435
https://sciwheel.com/work/bibliography/856412
https://sciwheel.com/work/bibliography/856412
https://sciwheel.com/work/bibliography/6449094
https://sciwheel.com/work/bibliography/6449094
https://sciwheel.com/work/bibliography/6449094
https://sciwheel.com/work/bibliography/6449094
https://sciwheel.com/work/bibliography/6450046
https://sciwheel.com/work/bibliography/6450046
https://sciwheel.com/work/bibliography/6450046
https://sciwheel.com/work/bibliography/15877188
https://sciwheel.com/work/bibliography/15877188
https://sciwheel.com/work/bibliography/8301296
https://sciwheel.com/work/bibliography/8301296
https://sciwheel.com/work/bibliography/16308956
https://sciwheel.com/work/bibliography/16308956
https://sciwheel.com/work/bibliography/16289499
https://sciwheel.com/work/bibliography/16289499
https://sciwheel.com/work/bibliography/16289499
https://sciwheel.com/work/bibliography/16578614
https://sciwheel.com/work/bibliography/16578614
https://sciwheel.com/work/bibliography/16578614
https://sciwheel.com/work/bibliography/16734975
https://sciwheel.com/work/bibliography/16734975
https://sciwheel.com/work/bibliography/13068839
https://sciwheel.com/work/bibliography/13068839
https://sciwheel.com/work/bibliography/13068839
https://sciwheel.com/work/bibliography/9905969
https://sciwheel.com/work/bibliography/9905969


114. Simon HA. The architecture of complexity. Proceedings of the American
philosophical society. 1962;

115. Morowitz HJ. Near decomposability and complexity: how a mind resides in a brain.
In: Morowitz H, Singer JL, editors. The mind, the brain, and complex adaptive
systems. Routledge; 2018. p. 25–44.

116. Stramaglia S, Scagliarini T, Daniels BC, Marinazzo D. Quantifying Dynamical
High-Order Interdependencies From the O-Information: An Application to Neural
Spiking Dynamics. Front Physiol. 2020;11:595736.

117. Barabási A-L. The network takeover. Nat Phys. 2011 Dec 22;8(1):14–6.

118. Grasso M, Albantakis L, Lang JP, Tononi G. Causal reductionism and causal
structures. Nat Neurosci. 2021 Oct;24(10):1348–55.

26

https://sciwheel.com/work/bibliography/16581279
https://sciwheel.com/work/bibliography/16581279
https://sciwheel.com/work/bibliography/16581276
https://sciwheel.com/work/bibliography/16581276
https://sciwheel.com/work/bibliography/16581276
https://sciwheel.com/work/bibliography/10438602
https://sciwheel.com/work/bibliography/10438602
https://sciwheel.com/work/bibliography/10438602
https://sciwheel.com/work/bibliography/1778477
https://sciwheel.com/work/bibliography/11741805
https://sciwheel.com/work/bibliography/11741805


Supplementary

XOR. XOR (exclusive OR) gate is a digital logic gate that outputs true (1) if and only if an
odd number of its inputs are true. For a two-input XOR gate, this means the output is true
when one input is true and the other is false. The truth table for a two-input XOR gate is:

Input A Input B Output

0 0 0

0 1 1

1 0 1

1 1 0

This gate is fundamental in digital circuits, playing a crucial role in arithmetic operations,
error detection and correction, and various cryptographic applications (71). In the example of
Artemis, we simulated a XOR logic gate between neuron 2, 3 and the behavior of food
avoidance.

Figure S1. All the possible combinations of input output of the integrative horse are reported
here.
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Figures

Figure 1. A toy model of the brain of Artemis the horse. (A) The mechanisms behind
Artemis are based on one XORgate and one all-or-nothing gate organized in two layers of
neurons. In the scheme, black arrows correspond to synaptic weight 1, gray arrows to weight
0.5, light gray arrows to weight 0.4 and red arrows to weight -1. Circle denotes single
neurons, diagonal line denotes pairwise interaction and the triangle a high-order (triplet)
interaction. (B) Examples of sensory input and actions taken by Artemis in response to them.
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Figure 2. Spectrum of order of interactions. Each point of the spectrum corresponds to a
set of strategies investigating a specific interaction order. Methodologies are ordered
following a continuum from red to blue, going from order 1 to N (the number of elements
under investigation). In A), three examples of studies focusing on first, second, and
higher-order analyses are presented. The univariate analysis example is from O'Doherty et
al. (12), who found an association between activation in the orbitofrontal cortex and the
presence of a reward during a cognitive task. The second-order analysis example is from
Hong et al. (53), who reported a decrease in functional connectivity in adolescents with
internet addiction. The higher-order interaction example, specifically orders three and four, is
from Santos et al. (54), who investigated information patterns among groups of three or four
brain regions. In B) the spectrum is depicted in relationship with the example of Artemis. A
spectrum of interaction orders can be identified from single neurons (order one) to the whole
brain. Similarly the spectrum can be applied to other levels, for example from 1 molecule to
the whole set of molecules composing a neuron or from one horse to a collective of many
horses.
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Figure 3. The situation in which we can only measure information properties from brain
signals, but we have no access to the underlying structure of mechanistic interactions (A). A
graphical representation of the daunting task of studying the relationship between
informational properties and mechanisms. This implies cross-order integration since
mechanistic interactions at a certain order can inflate information properties at other orders
(B).
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Figure 4. A schematic representation of the integration challenges for future developments
in computational neuroscience. The arrows represent the integration trajectories that are
challenging future steps in the study of interactions between different units at different
orders. Orange arrows represent trajectories that have already been highlighted by past
studies, the blue arrow represents the challenge we present of cross-order integration. The
blue dotted arrow instead points towards the challenge of integrating across different
techniques, orders and levels.
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Figure S1. All the possible combinations of input output of the integrative horse are reported
here.
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