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Abstract
Road transportation accounts for up to 35% of carbon dioxide and 49% of nitrogen oxides
emissions in the Paris region. However, estimates of city traffic patterns are often incomplete and
of coarse spatio-temporal resolution, even where extensive networks of sensors exist. This study
uses a machine learning approach to analyze data from 2086 magnetic road sensors across Paris,
generating a detailed dataset of hourly traffic flow and road occupancy covering 6846 road
segments from 2018 to 2022. Our model captures flow and occupancy with a symmetric mean
absolute percentage error of 37% and 54% respectively, providing high-resolution insights into
traffic patterns. These insights allow for the creation of a comprehensive map of hourly
transportation patterns in Paris, offering a robust framework for assessing traffic variables for each
significant road link in the city. The model’s ability to incorporate an emission factor based on the
mean speed of the vehicle fleet, derived from flow and occupancy data, holds promise for
developing a detailed CO2 and pollutant inventory. This methodology is not limited to Paris; it can
be applied to other urban centers with similar data availability, highlighting its potential as a
versatile tool for sustainable urban monitoring.

1. Introduction

The road transport sector is a major contributor to greenhouse gas emissions in France [1]. Despite efforts to
reduce its emissions in recent decades, the sector has seen little improvement, with the COVID-19 crisis
providing a temporary drop followed by a rebound. With the European Parliament announcing a ban on the
sale of carbon dioxide (CO2)-emitting vehicles by 2035 [2], the need for decarbonization of the transport
sector has become even more pressing. Cities are hotspots of traffic emissions and, in addition to their long
term CO2 emissions reduction goals and policies, they face air-quality challenges related to pollutants
(typically nitrogen oxides (NOx), carbon monoxide (CO) and particulate matter (PM)) co-emitted with
CO2 by on-road combustion engines [3, 4]. In this context, we focus on mapping traffic variables that
control transport emission in the mega-city of Paris. According to the city official statistics, its road traffic
represents 3018 million of vehicule.km with an associated 1.15 megatons of CO2 emitted in 2018 [5]. The
reduction of vehicle.km and emissions were respectively about 26% and 36% compared to 2004, the other
relative reduction of emissions being explained by improved motorisation of the city’s vehicle fleet.
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To better understand how emissions from road transport are controlled by traffic variables, methods that
go beyond city-wide average estimates are needed. In particular, high temporal resolution maps of variables
are required. The IPCC recommends the use of top-down methods based for instance on fuel sales for
national inventories [6], but such methods only give city-wide changes, may fail to capture sudden
perturbations like the COVID-19 crisis or local changes, and can be problematic for cities where vehicles
buying fuel outside emit in the city area. The COPERT methodology [7] suggested that approaches based on
vehicle-kilometers and traveling speeds are preferable to methods based on fuel consumption. Pinto et al [3]
provide a large review of traffic variables estimation used for computing on-road transportation emissions,
distinguishing top-down and bottom-up approaches, static and dynamical application of an emission factor.
They stressed the need of having high-quality and local dynamic inventories to support policymakers to
develop relevant strategies for reducing emissions. Here we present a new bottom-up approach that aims to
provide continuous maps of traffic flow and occupancy at hourly time step for the main streets of the city of
Paris by upscaling point scale measurements collected from road sensors at a limited number of locations [8].

2. Previous studies

2.1. Mobility and traffic variables estimation
Mobility data can be gathered from sources like surveys, in-situ sensor measurements [9], and activity proxies
like geolocation data of individual people or vehicles. Lenormand et al [10] explored the connections between
regular surveys, cell phone data, and Twitter (X) posts, and found potential biases in Twitter data related to
user age. In a Dallas-specific study, Xu et al [11] combined location-based data and surveys to investigate
how vehicle drivers respond to traffic congestion. While surveys and census data cover a large area with little
detail, they remain valuable for understanding movement patterns over extensive regions, as demonstrated in
Île-de-France by Hörl and Balac [12]. During the COVID-19 pandemic, big data approaches relying on
geolocation however demonstrated considerable promise to understand sudden mobility changes [13].

Sensor-based in-situmeasurements of vehicle speed, numbers and even types from cameras or counting
devices provide direct measurements of key traffic variables—such as flow, occupancy, density, and
speed—on specific road segments at a specific point, but they do not cover all the streets. In less-monitored
areas, where sensors are scarce, survey data proves complementary for estimating traffic [14]. Moreover,
some types of sensors such as inductive loop detectors may produce non-representative data for instance
during lane closures or openings. Additionally, sensor maintenance problems or malfunctions can lead to
gaps in the data, emphasizing the need for methods to gap-fill sensor data and predict traffic variables on
unmonitored road segments. Tarunesh and Chung [15] proposed the use of neural networks to address these
issues. Xing et al [16] conducted a comprehensive review of methods for predicting missing traffic
information, citing various machine learning examples for this predictive task. They proposed to distinguish
three categories of research applications: the estimation of traffic under different scenarios of missing data,
fusion with different types of detectors, and use of different data types (for instance mobile phone data and
GPS). Our study falls in the first category as we aim to scale up traffic variables on non monitored roads with
in-situ sensor-based measurements at fixed locations.

2.2. From traffic variables to road transport emissions
The estimation of emissions from road transportation with traffic variables has been a subject of extensive
research, in particular with the emergence of the use of new activity proxies such as geolocation datasets.
Uncertainties arise from the fact that some activity data are not directly related to traffic as highlighted in
recent studies [17]. For instance, Guevera et al [18] utilized a combination of Google Mobility Index [19]
which describes people’s time spent in different locations rather than road traffic, along with reports from
national transport agencies, in order to compute changes in pollutant emissions on a daily and country level
during the COVID-19 crisis in Europe. Huo et al [20] estimated CO2 emissions in many cities for road
transportation, using a daily TomTom congestion index data [21] averaged at city scale, without information
about the area being covered by the index and with a simple model calibrated only for one city using
aggregates of sensor data.

Biswal et al [22] computed pollutant emissions at an hourly level in Delhi, with a speed-flow traffic
model and car flow measurements at 72 locations between 08:00–14:00. The COPERT [23] method was used
to determine mean speed dependent emission factors for pollutants. Li et al [24] applied the MOVES [25]
model in Beijing for these emission factors with a speed-flow model that takes into account Greenshields
Speed-Density hypothesis. These studies illustrate the diversity of bottom-up methodologies to estimate
emissions from road transportation sensors, but they also highlight the need for careful consideration of data
sources, spatial scales, and modeling techniques to reduce uncertainties in emissions inventories at city and
road link scale.
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2.3. The city of Paris and its road sensors data used in this study
The city of Paris has a dense network of roads and high vehicle traffic with a peripheral motorway around the
entire city and intra-city roads with different importances. Since 2002, the local mobility agency using this
sensor data has reported a significant decrease of vehicle-kilometers [26]. Nevertheless, both pollution and
greenhouse gasses emissions remain a concern for the city as new measures are being instituted to further
limit vehicle usage [27]. In the city of Paris like in many other cities, changes in mobility due to COVID-19,
new remote working habits, the construction of recent infrastructure such as cycle paths and low emission
zones have changed traffic patterns since 2018, and yet, these changes are poorly understood [28] because of
the lack of continuous traffic data covering all roads.

The city of Paris traffic monitoring system is based on a network of magnetic sensors beneath the roads,
measuring two key parameters of vehicle traffic: the flow (Q, number of vehicles per hour) and the
occupancy (O, the percentage of time when the sensor was covered by a vehicle). The data is available
through the city open data platform [8] with hourly aggregation and is used by Poste Central d’exploitation
Lutèce to monitor the traffic and plan infrastructure works. This network of sensors covers 3350 road
segments and only samples a small subset of the 14 010 total road segments reported by OpenStreetMap [29]
(OSM). Therefore, a model is needed to upscale the sparse sensors’ data to map space and time patterns of Q
and O within the entire city.

Agence de la mobilité is using the information from this network of sensors to release quarterly bulletins
on mobility habits [26]. Air Parif, the regional air quality agency, also uses sensor data to calibrate [30] an
emission model for monitoring air quality in the area. Combined with Uber speed data [31], this dataset was
also employed by Mahajan et al [32] who used a transfer learning method to predict the road flow from Paris
data in the city of Madrid in 2019. The Uber speed data is no longer available since October 2023 [33]. The
lack of continuous availability of activity proxies such as from Uber and Google stresses the necessity to
develop robust methods based on publicly available data to build a historical traffic inventory and derive the
associated emissions.

3. Research question

Although some of the previous studies used only one traffic variable like the flow of vehicles as a predictor for
traffic emission change, combining flow (Q) and Occupancy (O) can be used to compute speed. Intuitively,
the duration of vehicles’ presence on a sensor directly reflects their density or concentration. When the
concentration of vehicles increases, more vehicles pass through a sensor, resulting in longer time coverage
readings. For this reason, the Occupancy is a proxy to measure the concentration level K, the number of
vehicles per kilometer, that leads to congestion. The two variables O and K share a proportional relationship
if we assume that the length of vehicles is uniform [34] (see supplementary information 3). Subsequently,
because the ratio between Q and K provides the mean harmonic speed of the vehicle fleet on the road
segment containing a sensor during hourly periods, it follows that the ratio of Q and O exhibits a near
proportional relationship with the spatial average speed on a road segment (the relation between these
variables is illustrated figure 3). Quantifying the relationship between Q and O is therefore essential to
subsequently derive information on vehicle speed, which is needed to calculate emissions.

In the following, we aim to combine the road link scale sensor data from Paris available only on a limited
number of roads with a new machine learning model to derive a high-resolution road-level mapping of Q
and O for all the main roads of the whole city of Paris at hourly scale. This approach is particularly valuable
to understand how perturbations may have a different impact on traffic between road types, such as the
perturbations experienced by the city due to COVID and recent limitations on car usage. We will leave the
construction and application of a relevant carbon dioxide emission factor for future work. Our approach
aims to predict variables on main road segments of the urban network. Extrapolating traffic patterns to
smaller roads not covered by the sensors used to train the model may introduce bias. To avoid this, additional
monitoring data focused on these smaller road segments is needed. However, according to our discussion
with PC Lutèce, such data is not publicly available. Consequently, our model is derived only for about 50% of
the 14 010 road segments and will not cover small living streets in dense residential districts, for which a low
traffic is expected.

Our first research question is ‘How can we derive the hourly traffic flow and occupancy for all main road
segments of a city from sparse local sensor data?’. This question deals with data extrapolation and
homogeneity within a city. We aim at predicting flow and occupancy on an hourly and road-link level using
the network of point-scale sensor data in Paris [8] for the 2018–2022 period. Our model is built to learn the
spatio-temporal patterns of these variables using exogenous features such as hours or lanes number.

Our second research question is: ‘How can Machine Learning models be used as a tool to find relevant
attributes explaining changes in traffic variables?’. By providing insights on the influence of various attributes
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Figure 1. Flow chart of traffic variables processing from the network of sensors.

to predict the Q and O, our machine learning model can then be used in an explanatory way to help
understand the relative importance of time-related features such as holidays or health crises, as well as the
effect of spatial features like infrastructure. This information can be later used for policymakers as it brings
knowledge about influential variables and how they could be adjusted for possible solutions to mitigate
emissions.

In the following, we present our methodology for preprocessing and analyzing traffic sensor data
(section 2), evaluate the method performances, and discuss our main findings in terms of model explanative
features (section 3). We conclude with a discussion of the implications of our findings for policymakers and
future research directions.

4. Data andmethods

Figure 1 provides a graphical summary about the methodology of this study. The Paris open data sensor data
is filtered and gap filled in order to be used as an input of a machine learning model predicting traffic on
main roads and for explaining observed changes.

4.1. Data presentation and preprocessing
The sensor data from the Paris open data platform [8] comes from magnetic sensors beneath roads and
monitors the hourly city traffic in real time. These data have outlier values and missing timestamps (point
wise missing but mostly linear wise missing [16]) due to maintenance, unusual behavior like a vehicle
parking on a sensor, or construction works that destroy the magnetic loop. The city of Paris is slowly
converting those magnetic sensors to cameras that can be more reliable as well as more precise with
distinction between vehicle types. Not all the sensors are maintained on a permanent basis: only 2086 road
links were present in the entire 2018–2022 dataset out of the 3350 initial locations with a geographical
reference. Moreover, sensors come with a variable rate of missing values, as described in Supplementary
Information section 2. We observed in figure 13 showing the data density that there are less gaps for
peripheral roads (located in the outer ring) compared to roads within the city, which might be explained by
the involvement of another entity responsible for maintenance and monitoring of these peripheral road
sensors. We therefore developed a method to remove outliers and fill missing data rather than dropping out a
sensor with low coverage or many outliers for the whole period, in order to achieve better results and
generalization for our machine learning traffic upscaling model (figure 1).

Outliers are identified by analyzing the distribution of Q and O for each road link and hour. Specifically,
forQ, the distribution is fitted using a normal distribution, and values outside the 0.5th and 99.5th percentile
range are excluded. Regarding the occupancy variable (O), a Gumbel distribution [35] is fitted to the data,
and only values within the 3rd and 97th theoretical percentiles are retained. Data filtering based on the
choice of these distributions gives the best results in terms of average maximum likelihood for fitting the
corresponding data. The years 2018, 2019, and 2022 were treated separately from 2020 and 2021 that were
strongly impacted by the COVID-19 crisis. For those two years only, values above the high threshold were

4
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Figure 2. Spatial repartition of dropped road segment due to data preprocessing. The majority of the road links are removed due
to abandonment throughout the years (dashed black lines). Many roads are also removed because of difficulties to fill accurately
their missing timestamps (dashed red and blue lines). The violin diagrams depict cross validation (k= 5) performance
distribution of our gap filling model on test data for Q (left) and O (right). A threshold of

√
0.4 and 0.4 was respectively applied

for normalized RMSE and SMAPE to select road links to fill up.

eliminated. As a result, our removal of outliers filtered 1.5% and 5% of the available data for Q and O
respectively.

4.2. Filling missing timestamps
Both Q and O traffic variables in Paris exhibit temporal variations that are predominantly driven by a diurnal
cycle of activities. Q tends to have a relatively flat peak throughout the day, while O displays sharper peaks
during the morning and evening rush hours on busy days, especially for peripheral road, a highway that
circles around the city (supplementary information section 1 figure 12). Other temporal features such as
weekdays, seasons, holidays, and crises also show up in the temporal behavior of both traffic variables (see
for instance figure 4) but to a lesser extent. The magnitude of diurnal changes is dependent on road
link-specific characteristics and significance.

It is also clear that the variability illustrated in figure 12 is higher among intracity roads than the
peripheral, indicative of their more diverse traffic patterns. Furthermore, these roads may have been subject
to various interventions during the time range of the study (e.g. building of bus lanes, cycle paths, closures),
influencing traffic conditions and potentially resulting in increased variability of traffic.

To fill the data gaps, we used random forest regression models that include as predictors hour, weekday,
month, year, and the average stringency index during the COVID-19 crisis years [36]. We built one random
forest model for each road link. Firstly, we performed the prediction of missing values for the flow (Q)
variable. Subsequently, we extended this prediction to the occupancy (O) variable, utilizing the flow variable
as a feature. Our results (section 3 figure 2) demonstrate a significant enhancement in the performance of
occupancy prediction by incorporating the flow variable as a feature.

4.3. Spatio-temporal features used as predictor of traffic variables
For predicting Q and O across all the road links with machine learning models (figure 1), we chose a number
of relevant features, which are described below and summarized in table 1. We have in total 11 temporal
features including COVID-19 stringency, and 4 spatial features.
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Table 1. Summary of features used to train the model.

Type of feature Description Source

Temporal attributes Hour Computed from timestamp value
Week day
Month
Year

COVID-19 Stringency index [36]
Holidays French bank holidays [37]

French school holidays (5 types)
OpenStreetMap attributes Lanes: lanes number [29]

Speed_kph: speed limitation
(km/h)
Highway: indicates the relative
importance of the road link

Betweenness Centrality Normalized number of shortest
paths going through the edge

[38]

4.3.1. Characteristics of each road
Three characteristics of each road link used to predict Q and O are the number of lanes, the speed limitation,
and the road type category (table 1). Unfortunately, no information on such characteristics comes from the
Paris open data platform apart from a line string geometry. Thus, the geometry characteristics were matched
with an independent road geospatial database to obtain the characteristics of each road link. As in Mahajan
et al [32], we matched the geometries to OpenStreetMap [29] data using PyTrack [39] rather than
SharedStreets [40] which seems to be no longer maintained. This Python toolkit uses Hidden Markov Model
[41] to detect the most probable path of points retrieved from the Paris open data geometry through the
OSM network. An example of the map matching is represented in supplementary information section 5. As a
result, we obtain valuable characteristics, including road category, lane counts, and speed limits for each road
segment. Road segments which lack values for the lanes parameter are filled in with the mean number of
lanes for their respective road category.

4.3.2. Betweenness centrality
The betweenness centrality metric [38] quantifies the frequency with which an edge is utilized to connect
two nodes by their shortest path within the network. An edge (here road link) of a network (here road
network) is one of the connections between the nodes (here road intersections) of the network. We
hypothesized that this feature can help to predict Q and O and computed it for each road link utilizing the
OSM network. Each road link was weighted using the theoretical time to cross it using the speed limitation
and length attributes from OSM. Roads with high betweenness centrality serve as critical connecting points
between different parts of the network, making them attractive routes for vehicles to cross [42]. To ensure
fair evaluation, we employed a 500-meter buffer around the city, thereby avoiding potential bias against outer
edges, including the peripheral areas to calculate the betweenness centrality as given by:.

BC(e) =
∑
u̸=v

σuv (e)

(N− 1)(N− 2)

u, v are a couple of nodes from the graph.
σuv (e) returns 0 if the shortest path from u to v does not cross the edge e and else 1.
N the total number of nodes.
Equation (1): normalized betweenness centrality definition.

4.3.3. Temporal profiles of human activity
Days off and periods of leave have an impact on people’s mobility and were used as a predictor (table 1).
Holidays were separated into bank holidays when most businesses and administrations are closed (11 d per
year in France) and school holidays (5 different periods per year) when some households may stop working
but not necessarily. This information was retrieved from the open data platform of the government [37] and
used as a predictor for mapping the traffic across all Paris’ streets.

4.3.4. COVID-19 induced changes in traffic variables
During the course of our analysis period, the COVID-19 crisis strongly affected France and Paris. The
government took strong measures such as curfew, business and school closures, as well as lockdowns for
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instance from 17th March to 11 May 2020, which strongly impacted people’s mobility and reduced traffic
patterns. To investigate the COVID-19 perturbation, we use the database of governments response from Hale
et al [36] which provides a government stringency index. This index consists of an average of scores derived
from 9 indicators:

- Closing of schools, workplaces, public transport.
- Cancelation of public events.
- Limits on gatherings size.
- Orders of confinement.
- Restriction on internal movements between regions and international travel.
- Presence of public information campaign.

4.4. Model selection and evaluation
We built a model of target labels Q and O using all the predictors of table 1. We chose ensemble methods for
our machine learning model because they are effective for tabular data and can leverage various features.
Boosting-based approaches, like XGBoost, can outperform deep learning models with less tuning required
[43]. While we implemented XGBoost, we also tried Random Forest, a related technique that uses
randomization. We found comparable results with much less computational expense, which is why we chose
Random Forest for the study. For comparison, Mahajan et al [32] used LSTM and XGBoost algorithms.
However, LSTM requires past data for predictions, which does not align with our goal of generalizing
predictions for non-monitored road segments.

Random forest regression is a widely-used technique that deals well with correlated features and big
datasets. Training was conducted on all road links available after the gap filling method, without road type
distinctions, and with hourly records available for the flow and occupancy variables spanning the period
from 2018 to 2022. The results are presented separately for peripheral roads and intra-city roads, as they
exhibit distinct magnitudes and form well-separated clusters.

Performance evaluation of the random forest predictions was conducted using the normalized root mean
squared error (RMSE), and symmetric mean absolute percentage error (SMAPE) for comparison with other
studies [32]. The standard deviation-based normalized RMSE is closely linked to the R2 score as it represents
the ratio between the variation not explained by the model versus the overall variation in the data. SMAPE is
a scale-independent error metric that assesses the relative accuracy of predictions, making it suitable for cases
where the absolute magnitude of the target variable differs significantly among sensor types

RMSEnormalized =
RMSE

σx
=
√
1−R2

SMAPE=
2

n

n∑
i=1

|xi− x̂i|
|xi|+ |x̂i|

.

Equation (2): metrics to assess model performances.
Performance evaluation was also conducted using the decomposition of mean squared error (MSE) into

three components [44]: standard bias (SB), standard deviation error (SDSD), and lack of correlation (LCS).
These components sum up to the value of the MSE, and thus explain the origins of the quadratic error

SB=
(
x−− x̂

)2

SDSD= (sd(x)− sd(x̂))2

LCS= 2sd(x) sd(x̂) (1− ρ(x, x̂))

MSE= SB+ SDSD+ LCS.

Equation (3): decomposition of the MSE.
To determine the optimal number of estimators and max depth, we performed a grid search analysis

using k-fold cross-validation, specifically with k set to 5. The couple of parameters (number of trees, max
depth) yielding the best performance on the cross-validated results was determined to be respectively (20,
40) for Q and (20, 30) for O. The number of estimators did not have a significant influence on the
performances of the prediction, in opposition to the max depth parameter. Gradient boosting did not give
significant improvements compared to random forests, and was more computationally intensive.
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Figure 3. Fundamental diagram of rue La Fayette in 2018. This fundamental diagram represents for each hour of 2018 the value of
Q versus the value of O. The scatter points are colored depending on the hour of the day. Night: 20:00–07:00. Morning rush:
07:00–11:00. Midday: 11:00–16:00. Evening rush: 16:00–20:00.

5. Results and discussion

5.1. Gap filling of road sensors time series
In this section, we first evaluate the performance of our temporal gap filling method for each road. To do so,
we compute a 5-fold cross validation in terms of normalized RMSE and SMAPE defined in equation (2).
Only roads with a normalized RMSE below

√
0.4 (corresponding to R2> 0.6) together with a SMAPE below

0.4, and at least 15 000 records (nearly 2 years of data) are kept as target for the machine learning model.
Figure 2 shows the test prediction performances using violin diagrams of the two metrics. Out of the 2086
sensors that were maintained through 2018–2022, 1397 showed satisfactory performances on Q predictions
according to the RMSE and SMAPE thresholds. For the gap filling of the O variable, 871 road links were kept
at the end of the same process. Figure 2 displays the spatial repartition of road segments that were not kept as
not predictable enough to be gap filled up by our methodology. These 871 road links with good quality
gap-filling were used for the training of our machine learning model.

5.2. Traffic flux and vehicles occupancy relationships
We should note that Q and O are strongly linked through traffic processes, which defines the so-called
‘fundamental diagrams’ [34, 45, 46]. The fundamental diagram represents an emerging relation between the
flow Q and the congestion K, for which O is a good proxy. An example of fundamental diagram is shown in
figure 3 from one sensor located in Rue Lafayette (inside the city). The left-hand part of the figure shows Q
increasing with O quasi linearly. The corresponding slope is linked to the speed limitation as this left-hand
part of the fundamental diagram represents the free-flow regime. The right-hand part shows that Q is stable
or decreases when O further increases above a critical O threshold of about 12%, denoting a congested traffic
regime where average speed decreases when O further increases. It is important to note that each road link
has a specific fundamental diagram, and that this diagram evolves through the day with different congestion
levels, as evidenced by different relationships between night, morning, midday and evening (figure 3).

5.3. Observed traffic changes from 2018 to 2022 at city scale and ability of the model to capture them
To present the results of the model that predicts Q and O in each road link, we first give a qualitative
description of the main changes that were observed in these two variables, which can guide the evaluation of
the model for its ability to capture those changes. Both Q and O are subject to periodical cycles with the
influence of weekends, holidays and seasons, and experienced a strong drop during the COVID-19 period.
This behavior is illustrated in figure 4 for the average of Q and O of the Paris roads. The most important
perturbation clearly occurred during the first lockdown during the COVID-19 crisis. Smaller perturbations
such as other lockdowns, summer or Christmas holidays can be observed as well in the data presented in
figure 4.

Figure 4 also displays the same information simulated by our model on a 5-fold cross validation. The
model accurately replicates weekly averages of Q and O over the whole study period, with a normalized
RMSE of 0.105 (R2= 0.989) for Q and 0.173 (R2= 0.970) for O. Noteworthy changes due to the pandemic
and the seasonal holiday effects are well represented by the model. Lower performances for the occupancy
variable are explained by the failure to capture short term intra seasonal variations as depicted by figure 4.

Figure 5 displays changes in the average of observed Q and O relative to 2019 for subsequent years. Only
values corresponding to working days (Monday to Friday) were selected for illustration. In 2020, a large
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Figure 4.Weekly rolling average time series of mean flow Q (blue) and occupancy O (red) for observed values (light solid curves)
and modeled values (dashed curves). Examples of COVID perturbations are highlighted in the back ellipses. Other seasonal
reduction patterns due to holidays are highlighted by orange and green ellipses. Modeled values are based on test data from a
5-fold cross-validation of our model.

decline in traffic variables by about 10%–25% for Q, and 10%–30% for O is observed during busy hours,
attributed to the first COVID-19 lockdown (17 March to 11 May) and other restrictions that followed. These
COVID 19 induced reductions in traffic are particularly pronounced during night time hours due to the
curfew measures. In 2021, there was a partial recovery, but lower values of Q and O persisted during night
time hours due to continuing curfew restrictions (until 9 June). In 2022, a global recovery in traffic is evident
with the disappearance of all COVID-19 mobility constraints, but there is an intriguing pattern of persisting
lower Q and O values during morning (07:00–10:00) and evening (17:00–22:00) rush hours than in 2019.
This reduction in morning traffic compared to pre-crisis conditions may be attributed to the widespread
adoption of remote working [47].

The average temporal patterns depicted in figures 4 and 5 are faithfully replicated by our machine
learning model, confirming its reliability for computing spatial averages over time. Notably the comparison
of hourly median values between observations and the model shows a normalized RMSE of 0.033
(R2= 0.999) for Q and 0.077 (R2= 0.994) for O. Other quantiles of the distribution are also faithfully
replicated by out model as depicted in figure 5. This underscores the model’s minimal bias in predictions as
we aggregate roads.

5.4. Machine learning model performances for predicting traffic variables across main road links
To answer our first research question about whether our machine learning model (based on the predictors
described in table 1 can simulate the sensors observed Q and O time series at road level, we analyze in table 2
and table 3 the model cross validation performances using the SMAPE, RMSE error metrics and the
decomposition of the MSE into additive terms. Overall, the mean RMSE on test data is 33% for Q and 81%
for O, respectively. The R2 score is 0.89 for Q and 0.34 for O. In terms of SMAPE, our model predicts values
within the rate of 60% even for the O variable which exhibits lower performances. The intracity clusters
demonstrate poorer results than the peripheral, occasionally reaching an RMSE above 100% in the case of O
prediction for 38% of the roads. While normalized quadratic errors on O variables can become important,
the SMAPE score suggests that these errors might be reasonable in terms of absolute values.

The previous study conducted by Mahajan et al [19] employed a XGBoost model to predict Q for the year
2019, utilizing comparable data. In our study, spanning a duration of five years and encompassing
perturbations associated with the COVID-19 crisis, we observed in table 2 substantial improvement in
SMAPE compared to their model (0.35± 0.03 versus 0.52± 0.05 on test data).

While the temporal error magnitudes, respectively around 37% and 54% of SMAPE for Q and O, remain
relatively consistent throughout the years, increased local uncertainty becomes evident during the
COVID-19 outbreak, possibly because our use of a stringency index for the entire France did not allow the
capture of local reductions in traffic across road segments (figure 6). The normalized RMSE displays more
pronounced fluctuations compared to the SMAPE (figure 6), with particularly significant deteriorations
during the COVID-19 period (normalized RMSE exceeding 1 in some cases). This misfit can be attributed to
the lower traffic flow and occupancy levels during the COVID crisis, when the model encounters limitations
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Figure 5.Workdays (Monday—Friday) traffic changes since 2019 for flow Q (left) and occupancy O (right) on observed values
(top) and modeled values (bottom) shown as a relative difference (%) between each year and 2019. Boxplots show median,
quartiles, 10th and 90th percentile values over the road links distribution for each hour. Modeled values are based on test data
from a 5-fold cross validation of our model.

Table 2. Summary of performances result on Q target variable based on a 5-fold cross validation (mean±max deviation from mean).

Type Metric Train data Test data

All Normalized RMSE 0.1± 0.0 0.33± 0.03
SMAPE 0.11± 0.0 0.35± 0.03

Peripheral Normalized RMSE 0.17± 0.01 0.48± 0.07
SMAPE 0.07± 0.0 0.19± 0.02

Intracity Normalized RMSE 0.16± 0.01 0.73± 0.09
SMAPE 0.11± 0.0 0.38± 0.02

in accurately discerning traffic patterns due to reduced data volume. In this context, where individual
random behaviors hold increased significance, metrics that emphasize variation explainability experience
more pronounced penalization in contrast to those based on absolute percentage errors.
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Table 3. Summary of performances result on O target variable based on a 5-fold cross-validation (mean±max deviation from mean).

Type Metric Train data Test data

All Normalized RMSE 0.32± 0.01 0.81± 0.12
SMAPE 0.21± 0.0 0.53± 0.04

Peripheral Normalized RMSE 0.31± 0.01 0.71± 0.07
SMAPE 0.13± 0.0 0.31± 0.02

Intracity Normalized RMSE 0.37± 0.01 0.96± 0.16
SMAPE 0.22± 0.0 0.56± 0.04

Figure 6. Error metrics time series on a 5-fold cross validation of our model for flux (Q) in blue and occupancy (O) in green,
across all roads together. Dark lines show daily aggregated values, and shaded areas represent hourly aggregated values.

Figure 7. Temporal aggregates of metrics on a test dataset from the cross-validation (k= 5) for flux (Q) in blue and occupancy
(O) in green, all roads together. Dark lines represent average values whereas shaded areas represent minimum and maximum
values on the cross-validation split.

Looking at temporal patterns on figure 7, we can see that errors magnitude are mainly driven by original
values magnitudes (slightly better scores during night hours, weekend, August). Busy hours occupancy
values seem to be the hardest ones to predict accurately.
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Figure 8. Spatial repartition of quadratic errors for Q (top) and O (bottom) prediction. The results are based on a 5-fold
cross-validation. The spatial patterns show the normalized RMSE (line and point width), as well as the relative additive
contributions (colors) to the total MSE: the standard bias (SB), the standard deviation error (SDSD), and the lack of correlation
(LCS). These relative contributions are displayed with a color scheme based on a triangle diagram where colors are linked to the
relative distribution of each component. Note that road links with lower normalized RMSE are plotted above the others.

Figure 8 represents the spatial distribution of the normalized RMSE between model and the sensor data.
The RMSE is proportional to the the width of each road segment in the figure and the colors of each road
refer to the relative contributions of each additive term explaining the model MSE error (equation (3)). The
results show that the MSE for Q is dominated by SB (bias) and LCS (lack of correlation between predicted
and observed time series). The highest errors are attributed to a large SB values (i.e. more than 50% of MSE),
particularly concerning critical connections between the city and its outskirts (e.g. Porte de Gentilly, Porte de
Bagnolet, Porte de la Chapelle, near Porte d’Auteuil/Saint-Cloud, etc). These discrepancies can be attributed
to the model’s limited ability to accurately recognize such road categories or behaviors. One can note that the
significance of the contribution of SDSD (predicted variability magnitude difference from observed one) to
the total MSE error is more pronounced in the context of O, where the highest errors are attributed to both a
failure in predicting the mean value (SB) but also the variability (SDSD) of the occupancy on these road
links.

Comparing the performances, it is evident that our model performs better on peripheral roads than on
intra-city road links. The behavior of peripheral roads appears to be more predictable, contributing to more
favorable prediction outcomes. By comparison, the variability of Q and O illustrated in figure 12 is of greater
importance for intra-city roads. Additionally, the quality of the OSM data used to define road features may
be called into question, as it may lead to incorrect map matching results and subsequent conclusions. This is
because intra-city roads undergo more frequent design modifications (e.g. lane closures, cycle paths, bus
paths), making the OSM data less reliable for such road links than for the peripheral. The presence of
outdated information in OSM for intra-city roads might thus partly explain their less accurate predictions, as
shown in figure 8.

Our model is predicting the variable O with a lesser accuracy than Q. This result can be attributed to the
fact that information related to O is more susceptible to perturbations, such as a car parking on the sensor or
misplacement of the sensor on the lane (e.g. questions regarding proximity to traffic signals and the choice of
monitored lane). Unlike Q, which benefits from multiple sensors (2×Nlanes − 1) to detect vehicles straddling
two lanes, O relies on only one sensor, making it more vulnerable to disruptions. The increasing deployment
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Figure 9. Relative contribution to the mean absolute Shapley values per feature ranked by order of decreasing importance for the
prediction of flow Q (left) and occupancy O (right) on a significant sample of the dataset (80 road links, 1000 timestamps). The
results are presented separately for peripheral road links and intra city ones.

of cameras as monitoring devices holds promise for improving data quality and, consequently, input data
accuracy.

Additionally, the relative variance in the distribution of O is larger than that of Q for a similar hour
(figure 12). This higher variability in O data poses additional complexities for the model, as it must account
for larger fluctuations and uncertainties in the observations, making accurate predictions more challenging.

Ourmodel lacks consideration for the spatial interdependencies among distinct road segments, wherein
information at the onset of a road influences conditions at its terminus. Algorithms such as Graph Neural
Networks could potentially mitigate this issue, yielding superior predictive capabilities for variables Q and O,
as demonstrated in previous applications like the prediction of arrival times in Google Maps [48].

Exploring temporal factors, alternative approaches were considered, including the incorporation of strike
data, construction activities leading to lane closures, and adverse weather conditions. However, integrating
these data sources were challenging and failed to enhance model performance commensurate with the
complexity of the task, resulting in their exclusion from the scope of this study.

5.5. Explaining traffic variations
To answer our second research question about the main features that contribute significantly to the
predictions of Q and O patterns generated by our model, we calculate Shapley values [49] and compare their
mean absolute values across features, as depicted in figure 9. Sampling is made by randomly selecting specific
road links and timestamps, because the model size together with the number of observations were too heavy
to compute Shapley values on all the dataset. Thus, we computed the global feature importance multiple
times with a random sampling to first compute the model (150 road links, 6000 timestamps) and then
another random sampling (80 road links, 1000 timestamps) to compute the Shapley values. This approach
showed an absence of major changes between the different random samplings, allowing us to propose a
representative result for the whole dataset with a reasonable computation time (figure 9).

Figure 9 shows two distinct spatial clusters of roads, namely peripheral road links and intracity ones.
Notably, the ‘lanes’ variable (stating for the number of lanes) obviously emerges as a potent explanatory
factor for both Q and O predictions on intra city road links, being respectively the third and fourth feature in
terms of relative importance for such segments. We could attribute that to the greater diversity of
infrastructure and importance on this cluster, characterized by its road width and sizes.

We found that spatial features taken together (betweenness-centrality, lanes, speed, highway) carry
greater importance for Q than temporal features (hour, COVID-19 stringency, weekday) while it is nearly the
case for O. The hour feature yet emerges as of key importance, given that human behavior is predominantly
influenced by diurnal cycles. The hour of the day and weekday number show a greater importance for
predicting O (linked to traffic congestion) than Q. Obviously, the ‘lanes’ and ‘speed’ features show greater
importance for Q than for O. In a nutshell, figure 9 indicates that while both Q and O values are mainly
related to infrastructure-related features, temporal proxies play a greater role in explaining congestion than
the magnitude of the traffic.

Of notable interest is the result that Betweenness centrality seems to surpass all other features in terms of
importance (roughly 30%–55% of mean(|Shapley value|)) within our dataset, providing richer insights than
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Figure 10. Normalized edge betweenness centrality of the road links network (extracted from OSM) in Paris. Edge’s width is
proportional to their normalized betweenness centrality value. A 500 m buffer was implemented to prevent the penalization of
roads situated on the outer ring.

Figure 11.Map of retrieved road links for the cross-validation (left) and comparison between time series (right) of our model
output for Q variable (blue) and TomTom rescaled ‘sampleSize’ variable (red) in 2020.

the classifications derived from OpenStreetMap. Figure 10 is depicting the values of normalized betweenness
centrality for the whole OSM network of the city of Paris, where main axes for road traffic can easily be
observed. Consequently, one could argue that this particular feature holds significant explanatory power,
making it relevant for tasks such as urban planning modelization.

5.6. Cross-validation on non-monitored road links
To validate the results of our model using independent data, we conducted an additional analysis acquiring
daily data from the TomTom traffic stats API [50] for four distinct road links that were not part of our initial
dataset. These selected cross-validation road segments encompassed a peripheral route, a ramp leading to the
peripheral road, a bustling boulevard, and a typical city street. In figure 11, we compared the rescaled
‘sampleSize’ variable (unique vehicles traveling on segments) to the model’s predictions for the year 2020 on
the flow variable Q. The results of this comparison indicate a successful replication of temporal correlations,
capturing essential aspects such as lockdown periods and seasonal traffic patterns.

However, the proportionality between the two signals exhibit inconsistencies in some cases. For instance,
Boulevard Sebastopol exhibits higher Tomtom signal before the pandemic than after compared to the model
(figure 11). This could potentially be attributed to variations in data providers that TomTom relies upon for
the computation of their statistics. Additionally, our results for this evaluation reveal that the coefficient
linking the two signals differed between the various street types. In this particular example, the share of road
users relying on TomTom data ranged roughly between 20% and 50%. These heterogeneous shares are
consistent with other comparisons with input data (SI section 6) that indicate potential challenges pertaining
to spatial homogeneity in the context of this type of floating car data.
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6. Conclusion

We presented a comprehensive transportation model for each non-residential road segment in the city of
Paris, based on the upscaling of sensor’s point scale measurements, and operating at an hourly time scale
throughout the period from 2018 to 2022. This transportation model captures the flow and the occupancy
variables, indicating respectively the magnitude of traffic and the level of congestion on road segments. We
analyzed the performances and the limitations of the approach used here, and discussed the relative
relevancy of the employed features. In future work, the next logical step is to develop a comprehensive CO2

and pollutant inventory for the entire city with a similar high resolution. Thus, our model will be used to
gain insight on traffic variables for each road link in the city. A new emission model should incorporate an
emission factor that considers the associated mean speed of the vehicle fleet, derived from both flow and
occupancy data. By considering both flow and occupancy information, we expect to capture
speed-dependent emission factors, thus providing a more robust estimation of CO2 and pollutant emissions.
We already observed that calculating mean speed from the flow-to-occupancy ratio can introduce significant
errors, primarily arising from uncertainties linked to these two variables. Therefore, implementing a capping
mechanism may be necessary to mitigate the risk of substantial errors in speed, which could consequently
result in elevated errors in emission factor estimations.

Moreover, the methodology employed in this study is not limited to Paris alone. With access to
comparable data from other urban centers (for instance Madrid [51], Los Angeles [52], Berlin [53] or
Auckland [54]) this methodology can be replicated and applied to assess transportation dynamics as well as
pollutant inventories. We recommend using a model trained with these local datasets in order to prevent
biases, as related road segments in different cities may exhibit distinct traffic patterns. This cross-applicability
underscores its potential as a versatile tool for sustainable monitoring on an urban scale. Nonetheless, it is
important to acknowledge that this approach may require methodological adjustments or calibration efforts,
such as rescaling with census data, to ensure the accurate modeling of these traffic variables in different
urban contexts.

By integrating various predictor features with hourly road link data, we established a robust framework
that can be harnessed to evaluate the potential effects of proposed changes to the road infrastructure, such as
the introduction of new road types or access gates. The model’s accuracy in capturing transportation
patterns can guide decision-makers in crafting policies that align with the goals of reducing environmental
impact, enhancing public health, and improving the overall quality of life in urban areas. Furthermore, the
approach offers a dynamic framework that can adapt to changing circumstances, making it well-suited for
evaluating scenarios in response to unforeseen events like pandemics, climate change, or shifts in
transportation behavior. The versatility of this model positions it as a valuable asset for shaping the future of
Paris and other cities committed to sustainable urban development.
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[10] Lenormand M, Picornell M, Cantú-Ros O G, Tugores A, Louail T, Herranz R, Barthelemy M, Frías-Martínez E and Ramasco J J
2014 Cross-checking different sources of mobility information PLoS One 9 e105184

[11] Xu Y, Clemente R D and González M C 2021 Understanding vehicular routing behavior with location-based service data EPJ Data
Sci. 10 12

[12] Hörl S and Balac M 2021 Synthetic population and travel demand for Paris and Île-de-France based on open and publicly available
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