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Abstract

We consider a shape optimization problem in the framework of the thermoelas-
ticity model under uncertainty. The uncertainty is supposed to be located in the
Robin boundary condition of the heat equation. The purpose of considering this
model is to account for thermal residual stresses or thermal deformations, which
may hinder the mechanical properties of the final design in case of a high environ-
mental temperature. In this situation, the presence of uncertainty in the external
temperature must be taken into account to ensure the correct manufacturing and
performance of the device of interest. The objective functional under consideration
is based on volume minimization in the presence of an inequality constraint for a
quadratic shape functional. Exemplarily, we consider the L2-norm of the von Mises
stress and demonstrate that the robust constraint and its derivative are completely
determined by low order moments of the random input, thus computable by means
of low-rank approximation. The resulting shape optimization problem is discretized
by using the finite element method for the underlying partial differential equations
and the level-set method to represent the sought domain. Numerical results for a
model case in structural optimization are given.

1 Introduction

If we consider the mechanical parts in a car, plane, or helicopter engine, they are subject
to significant heat flows, high temperatures generated by the explosion of fuel or the
evacuation of hot gases. Depending on the operating mode of the engine, these heat
flows can vary significantly. Typically, they are higher when the engine is under heavy
load, for example at start-up, and lower at idle. We aim to incorporate knowledge of
this life cycle and its variability into the design of the structure. To do so, we want to
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attack this problem through the prism of shape optimization by incorporating a priori
known information about thermal loads to derive a volume shape that has a certain
robustness to these loads. Consequently, our shape optimization problem must take into
account two phenomena, mechanical and thermal, where we neglect the heat sources
generated by the mechanical phenomena. It must take into account temporal effects and
uncertainties about the temperature of the external environment.

Shape optimization under uncertainty is a topic of growing interest, see for exam-
ple [1, 2, 6, 8, 10, 11, 12, 21] and the references therein. Less work has been done on
shape optimization taking into account time evolution and thermoelasticity. We should
mention the work [4] in the context of modeling residual stresses in additional manu-
facturing. Compared with these previous works, the main novelty of this article lays
in the combination of the time dependency of the state and the objective with the ac-
count of uncertainties. Our main contribution is the expression of the shape derivatives
for both, the time-averaged criterion and the value of the criterion at the final instant.
We also demonstrate a two-dimensional configuration that our approach leads to effec-
tive calculations, where we see the importance and the impact of time-dependency and
uncertainties on the environmental temperature.

The content of this article is as follows. In Section 2, our thermo-elastic evolution
model is described in detail. The model consists of two partial differential equations,
the time-dependent heat equation coupled to the quasi-static thermoelastic equation.
Irreversible plastic deformations are neglected and not taken into account. We first define
the model in the deterministic case assuming knowledge of the heat wave. Then, we
present the shape optimization problem under consideration, namely the minimization
of the volume of the structure under the constraint on the spatial L2-norm of the von
Mises stress. The constraint accounts for the thermoelastic model during the given
time interval as well as the final state and depends on the applied thermal loading.
Finally, we introduce the uncertainties on the applied thermal field which is seen as a
given stochastic process. We consider the expectation of the objective and provide its
deterministic expression by means of correlation operators.

From an application point of view, the L∞-norm of von Mises stress would be of
more interest. However, such a functional is not differentiable, so the Lp-norm is usually
considered instead. To simplify further analysis, we restricted ourselves to the case p = 2.
Nonetheless, the method presented in this article is not limited to this specific case but
applies also to arbitrary p, see [7] for example.

Section 3 is the core of this article. It contains the shape calculus for the state equa-
tions and the respective shape functionals. Our main result is Theorem 3.8, providing
effective formulae to compute the shape derivatives. The corresponding adjoint problems
are introduced, allowing us to calculate the shape derivative of the constraint. In Section
4, we present the numerical setting and comment on the implementation. We perform
numerical experiments in two spatial dimensions, validating our theoretical findings and
showing the feasibility of the method. Finally, in Section 5, we state concluding remarks.
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2 Problem formulation

We begin by introducing the necessary notation and defining the thermoelastic elasticity
model, which consists of two systems of boundary values problems: one is the heat
equation and one is the linear thermoelasticity system. A weak coupling is considered:
while the effect of the temperature field on stresses is taken into account, the influence of
mechanics on thermics is neglected. The elastic body is subjected to volume and surface
loads. We assume that this body is placed in an external medium with which it exchanges
heat. The heat exchange between the elastic body and the environment is modeled
by the Robin boundary condition modeling the fact that the heat flux through the
interface is proportional to the difference between their temperatures. We assume that
the mechanical loads are known but that the temperature of the external environment
varies significantly and randomly both in time and space. This section aims to establish
a deterministic shape optimization problem constraint by a partial differential equation
with random input.

2.1 Notation

First, we introduce some general notation. Let D ⊂ Rd, d = 2, 3, be a bounded and
connected domain with smooth boundary ∂D, which is divided into three subsets ΓD,
ΓN and ΓF satisfying

|ΓD|, |ΓN |, |ΓF | > 0 such that ∂D = ΓD ∪ ΓN ∪ ΓF .

Hereinafter, we denote by n the outward pointing unit normal vector on ∂D.
We consider a thermoelastic body, represented by the region D, that undergoes heat-

ing and deformation over the time interval (0, tf ). The state of the body is determined
by the scalar field T of temperature and the vector field u of displacements:

T (t,x) : (0, tf )×D → R, u(t,x) : (0, tf )×D → Rd.

The properties of the body are completely characterized by the constant symmetric
fourth-order stiffness tensor C and the matrix B, which incorporate the material para-
meters: Young modulus E > 0, Poisson ratio −1 < ν < 1/2, and the thermal expansion
coefficient α > 0.

Throughout the article, we use the following notation for the deformation tensor

ε(u) :=
1

2
(∇u+∇u⊤), where [∇u]i,j :=

∂ui
∂xj

and, according to the Duhamel-Neumann postulate, for the stress tensor

σ(u, T ) := σel(u) + σth(T ), σel(u) := C : ε(u), σth(T ) := (T − Tin)B,

where
C : ε(u) = 2µε(u) + λ div(u)I and B = −α(3λ+ 2µ)I.
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Here, I is the identity matrix, Tin ≥ 0 is the initial temperature and the Lamé constants
are

µ =
E

2(1 + ν)
and λ =

Eν

(1 + ν)(1− 2ν)
.

Finally, we shall introduce the spaces of admissible solutions. To this end, we define the
Sobolev space H1

D(D) :=
{
u ∈ H1(D) : u = 0 on ΓD

}
of H1-smooth functions which

vanish on ΓD and set H−1(D) :=
(
H1

D(D)
)′
.

Let (Ω,Σ,P) be a complete probability space, and X and Y two Hilbert spaces.
Then, the expectation of a random field u ∈ L2

P[X] is given by

E[u](x) =
∫
Ω
u(x, ω)P(dω) ∈ X,

while the two-point correlation function for two random fields u ∈ L2
P[X] and v ∈ L2

P[Y ]
is given by

Cor[u, v](x, y) := E[u⊗ v](x, y) =

∫
Ω
u(x, ω)v(y, ω)P(dω) ∈ X ⊗ Y.

2.2 Governing equations

We want to consider a model of the thermoelastic body D. First, we consider the de-
terministic case: the temperature T̃ is assumed to be given and deterministic. To this
end, we employ the heat equation and the equations of linear elasticity (see [25]). The
mechanical unknowns of the model are the temperature field T ∈ L2((0, tf );H

1(D)) ∩
H1

(
(0, tf );H

−1(D)) and the displacement field u ∈ L2((0, tf );H
1(D)d), which are de-

scribed by the following equations.

• Heat equation. 

ρ
∂T

∂t
− div(k∇T ) = Q in (0, tf )×D,

(k∇T ) · n = −β(T − T̃ ) on (0, tf )× ΓN ∪ ΓF ,

T = Tin on (0, tf )× ΓD,

T = Tin in {t = 0} ×D.

(2.1)

Here, ρ > 0 is the product of the mass density by the specific heat capacity, k > 0 is
the thermal conductivity coefficient, and β > 0 is the heat transfer coefficient. The
thermal exchange with the environment is taken into account through the Robin
boundary conditions with external temperature T̃ ∈ L2((0, tf );L

2(ΓN ∪ΓF )). Ad-
ditionally, the body is influenced by a thermal body source Q ∈ L2((0, tf );L

2(D)).
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• Thermoelasticity equilibrium system.

−div(σ(u, T )) = f in (0, tf )×D,

σ(u, T )n = g on (0, tf )× ΓN ,

σ(u, T )n = 0 on (0, tf )× ΓF ,

u = 0 on (0, tf )× ΓD,

(2.2)

The thermoelastic body is subject to the body force f ∈ L2((0, tf );L
2(D)d) in the

whole domain D and to the surface force g ∈ L2((0, tf );L
2(ΓN )d) on the part ΓN

of the boundary. The body is assumed to be fixed on the part ΓD of its boundary,
while it is unconstrained on the rest ΓF of the boundary. The illustration of the
model can be found in the Figure 2.1.

Figure 2.1: Illustration of the model for the thermoelastic body.

For the heat equation, we define the space W ((0, tf ), D) as

W ((0, tf ), D) :=
{
T ∈ L2((0, tf );H

1(D)) ∩ H1((0, tf );H
−1(D)) :

T = Tin on (0, tf )× ΓD and T = Tin in {t = 0} ×D
}
,

while, for the thermoelasticity equilibrium, we define the spaceH((0, tf ), D) asH((0, tf ), D) :=
L2((0, tf );H

1
D(D)d). Having these spaces at hand, the variational formulations associ-
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ated to the problems (2.1) and (2.2) read as follows:

find T ∈ W ((0, tf ), D) such that for any r ∈ L2((0, tf );H
1
D(D))∫ tf

0

∫
D
ρ
∂T

∂t
r dxdt+

∫ tf

0

∫
D
k∇T · ∇r dx dt+

∫ tf

0

∫
ΓN∪ΓF

βTr dsdt

=

∫ tf

0

∫
D
Qr dx dt+

∫ tf

0

∫
ΓN∪ΓF

βT̃ r dsdt

(2.3)

and 

find u ∈ H((0, tf ), D) such that for any v ∈ H((0, tf ), D)∫ tf

0

∫
D
σel(u) : ε(v) dx dt =

∫ tf

0

∫
D
f · v dx dt+

∫ tf

0

∫
ΓN

g · v dxdt

−
∫ tf

0

∫
D
σth(T ) : ε(v) dxdt.

(2.4)

It is well known, see [27], that (2.3) admits a unique solution T ∈ W ((0, tf ), D). Note
that problem (2.3) can be solved independently of (2.4). Thus, (T−Tin)B becomes a forc-
ing term in (2.4). Consequently, (2.4) also admits a unique solution u ∈ H((0, tf ), D).

2.3 Deterministic shape optimization problem

We are interested in the optimal shape of the body for the model described above. By
optimal shape we mean the shape at which the objective functional reaches a minimum
under the given constraints. In the present article, we consider two mechanical measures:
the volume and the von Mises stress. The volume is defined as

Vol(D) :=

∫
D
dx

and the von Mises stress is defined as

σVM(D) :=

√
d

2
σd(uD) : σd(uD),

where uD is the solution of (2.2) in the domain D and σd is the stress deviator tensor

σd(u) := σ(u, T )− trσ(u, T )

d
I = 2µ

(
ε(u)− div(u)

d
I
)
.

We shall next introduce the shape functional, which is the spatial L2-norm of σVM,
that is

VM(D, t) :=
2

d

∫
D
|σVM(uD(t,x))|2 dx =

∫
D
σd(uD(t,x)) : σd(uD(t,x)) dx.
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To address the time dimension, we introduce the parameters γ, δ ≥ 0 and consider a
weighted combination of two options: VM(D, t) averaged in time and VM(D, t) taken
at the final time, i.e.,

VMγ,δ(D) := γ

∫ tf

0
VM(D, t) dt+ δ VM(D, tf ).

We are interested in the minimization of the volume Vol(D) of the body with a
constraint on VMγ,δ(D) not to exceed a given threshold τ = const > 0. It is assumed
that we are looking for an optimal structure D which is contained in some given bounded
and connected reference domain Dbox with smooth boundary. Thus, the problem is
formulated as

minimize
D⊂Dbox

Vol(D) subject to VMγ,δ(D) ≤ τ. (2.5)

For sake of simplicity, we consider the case when the boundaries ΓD and ΓN are non-
optimizable, which is also reasonable from the application perspective.

Remark 2.1. It should be noted that such a particular, but application-important shape
optimization problem may not have a solution. We refer the reader to [3, Sct. 3.1] for
an instructive example of non-existence of solutions. Even in cases where the shape op-
timization problem lacks a solution, there is still a significant practical value. Engineers
frequently want to discover a component design that is better, but also close to the current
one without necessarily achieving optimality.

2.4 Adding uncertainties on the exterior temperature

In the next step, we want to consider the thermoelastic model (2.1) and (2.2) in the case
when the external temperature in the Robin boundary condition is random. We take
the external temperature as

T̃ ∈ L2
P[L

2((0, tf );L
2(ΓN ∪ ΓF ))].

In turn, the displacement and temperature fields become also random: they are pro-
cesses. By linearity of the systems and a priori estimates, one gets

T ∈ L2
P[W ((0, tf ), D)] and u ∈ L2

P[H((0, tf ), D)].

Therefore, the functional VM(D, t, ω) and, consequently, VMγ,δ(D,ω) also depend on
the random input field and become random processes.

In order to cast the shape optimization problem (2.5) into a deterministic one, we
consider the expectation of VMγ,δ(D,ω), which we denote by

Jγ,δ(D) := E[VMγ,δ](D) = γ

∫ tf

0
E[VM](D, t) dt+ δ E[VM](D, tf ). (2.6)

Consequently, in analogy to (2.5), the shape optimization problem under uncertain-
ties reads

minimize
D⊂Dbox

Vol(D) subject to Jγ,δ(D) ≤ τ. (2.7)
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For sake of simplicity, we consider only the expected functional here, but its variance
can also included as additional term, compare e.g. [11, 12].

Since the shape functionals in (2.7) are quadratic, we can express their expectation
explicitly by means of the trace of the two-point correlation (see [9, Sct. 2] for the
details).

Proposition 2.2. Let us consider a functional C(ω) in the form

C(ω) = ⟨Bu(ω),v(ω)⟩ = B : (u(ω)⊗ v(ω)) with B : Rd2 → R.

Then the expectation of C(ω) can be expressed as

E[C] =
∫
Ω
C(ω)P(dω) = B : Cor[u,v].

Since VM(D, t) is a quadratic functional, the expression for E[VM](D, t) follows
directly from Proposition 2.2.

Corollary 2.3. There holds

E[VM](D, t) =

∫
D

(
⟨σd : σd⟩Cor[u,u]

)
((t,x), (t′,x′))

∣∣
(t′,x′)=(t,x)

dx,

where

⟨σd : σd⟩ : H((0, tf ), D)⊗H((0, tf ), D) → L2((0, tf )×D)⊗ L2((0, tf )×D)

is the linear operator induced by bilinear mapping (u,v) → σd(u) : σd(v).

With this result at hand, we immediately arrive at the following statement which
can be used to compute the functional Jγ,δ(D,ω) in accordance with (2.6).

Remark 2.4. The two-point correlation Cor[u,u] can be described by a tensor-product
type boundary value problem. Such an expression is outside the scope of this article, thus
we omit its formulation here. The interested reader is referred to [9], where this issue is
discussed in detail.

3 Shape calculus

Our next focus is the computation of the shape derivative of the functionals in the
optimization problem (2.7) under consideration. We use the traditional method, in which
the deformations of ∂D are parameterized by means of a vector field θ ∈ W 1,∞(Dbox)

d

and then the functionals are differentiated in the Fréchet sense with respect to θ. To
this end, we introduce Lagrangian differentiation and calculate the derivatives of the
temperature T and the displacement fields u. Then, we compute the shape derivative
of the functionals Vol(D) and Jγ,δ(D). For more details about shape calculus, we refer
to [19, 26, 24].
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3.1 Basic identities

First, we need to recall concept of shape differentiability. Let us consider a vector field
θ : Dbox → Rd that belongs to W 1,∞(Dbox)

d such that

A1. the mapping (Id + θ) diffeomorphically takes the domain Dbox on itself,

A2. there holds θ = 0 on ΓD ∪ ΓN .

We define the family Dθ of domains by setting Dθ := (Id + θ)(D).
To simplify the notation, we do not mention the random parameter, i.e., we always

mean that T̃ (·, ·) ≡ T̃ (·, ·, ω), T (·, ·) ≡ T (·, ·, ω), and u(·, ·) ≡ u(·, ·, ω). We also want to
focus on the fact that the displacement field and the temperature depend on the domain
in which they are defined. For this purpose, we introduce the notation TD and uD.

Next, we compute the derivatives of the temperature field TD and displacement field
uD and in the deterministic case. We follow the Lagrangian approach and introduce the
next definition.

Definition 3.1 (Lagrangian derivative). Let D ⊂ Rd be a bounded, Lipschitz domain and
uD : D → Rd be an associated function. The mapping uD has a Lagrangian derivative
at a particular shape D if the transported function

ûD(θ) := uDθ
◦ (Id + θ)

is Fréchet differentiable at θ = 0. Its Fréchet derivative u̇D(θ) is called the Lagrangian
derivative of uD.

In the subsequent computations, we shall frequently use the surface divergence of a
vector field, which is given by divτ (θ) = div(θ) − (∇θn) · n. Moreover, we introduce
the following notation:

a(θ) = ∥(I +∇θ)−1n∥|det(I +∇θ)|,

A(θ) = |det(I +∇θ)|(I +∇θ)−1(I +∇θ)−⊤,

A′(θ) = div(θ)I −∇θ − (∇θ)⊤.

(3.1)

With this notation at hand, we can formulate the following lemma which characterizes
the Lagrangian derivative of the temperature field.

Lemma 3.2. The Lagrangian derivative

Ṫ (t,x) ∈ L2((0, tf );H
1
D(D)) ∩H1((0, tf );H

−1(D))
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of the solution of (2.1) satisfies

ρ
∂Ṫ

∂t
− div(k∇Ṫ ) = div(Qθ)− ρ

∂T

∂t
+ div(kA′(θ)∇T ) in (0, tf )×D,

(k∇Ṫ ) · n+ βṪ = divτ (βT̃θ)− (kA′(θ)∇T ) · n− divτ θβT on (0, tf )× ΓF ,

(k∇Ṫ ) · n = 0 on (0, tf )× ΓN ,

Ṫ = 0 on (0, tf )× ΓD,

Ṫ = 0 in {t = 0} ×D.
(3.2)

Proof. First, we establish the variational formulation of (2.1) for the transported map-
ping T̂D(θ) = TDθ

◦ (Id + θ). To achieve this, we start from the variational formulation
(2.3) on the perturbed domain Dθ:∫ tf

0

∫
Dθ

ρ
∂TDθ

∂t
r dx dt+

∫ tf

0

∫
Dθ

k∇TDθ
· ∇r dx dt+

∫ tf

0

∫
ΓN∪ΓFθ

βTDθ
r ds dt

=

∫ tf

0

∫
Dθ

Qr dxdt+

∫ tf

0

∫
ΓN∪ΓFθ

βT̃ r ds dt for any r ∈ L2((0, tf );H
1
D(D)).

Note that only the part ΓF of the boundary is perturbed, since θ = 0 on ΓD ∪ ΓN . We
transport this formulation back to the original domain D by using the chain rule and a
change of variables:∫ tf

0

∫
D
ρ
∂T̂D(θ)

∂t
r|det(I +∇θ)|dxdt+

∫ tf

0

∫
D

kA(θ)∇T̂D(θ) · ∇r dx dt

+

∫ tf

0

∫
ΓN∪ΓF

βT̂D(θ)ra(θ) ds dt =

∫ tf

0

∫
D

Q̂(θ)r| det(I +∇θ)| dx dt

+

∫ tf

0

∫
ΓN∪ΓF

β
̂̃
T (θ)ra(θ) ds dt for any r ∈ L2((0, tf );H

1
D(D)).

(3.3)

Here, the terms A(θ) and a(θ) are defined in (3.1).
Next, we calculate the shape derivative of T̂D(θ). The Fréchet differentiability of

θ → T̂D(θ) follows from the implicit function theorem (see [19] for more details). We
define A(θ, T̂D(θ)) : W

1,∞(Dbox)
d ×W ((0, tf ), D) → L2((0, tf );H

−1(D)) by

A(θ, T̂D(θ))⟨r⟩ :=
∫ tf

0

∫
D
ρ
∂T̂D(θ)

∂t
r| det(I +∇θ)| dx dt

+

∫ tf

0

∫
D
kA(θ)∇T̂D(θ) · ∇r dx dt+

∫ tf

0

∫
ΓN∪ΓF

βT̂D(θ)ra(θ) ds dt

and b(θ) : W 1,∞(Dbox)
d → L2((0, tf );H

−1(D)) by

b(θ)⟨r⟩ :=
∫ tf

0

∫
D

Q̂(θ)r| det(I +∇θ)| dx dt+

∫ tf

0

∫
ΓN∪ΓF

β
̂̃
T (θ)ra(θ) ds dt.
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Thus, we can rewrite the identity (3.3) as

A(θ, T̂D(θ)) = b(θ). (3.4)

Taking the limit θ → 0 yields

A(0, ṪD(θ)) = b′(0)⟨θ⟩ − A′(0, TD)⟨θ⟩.

The involved derivatives have the following explicit expressions for arbitrary θ ∈ W 1,∞(Dbox)
d

with θ = 0 on ΓD ∪ ΓN :

A′(0, TD)⟨θ⟩ =
∫ tf

0

∫
D
div(θ)ρ

∂TD(θ)

∂t
r dxdt

+

∫ tf

0

∫
D
kA′(θ)∇TD(θ) · ∇r dxdt+

∫ tf

0

∫
ΓF

divτ (θ)βTDr dsdt.

Here, A′(θ) = div(θ)I −∇θ − (∇θ)⊤ and

b′(0)⟨θ⟩ =
∫ tf

0

∫
D
div(Qθ)r dx dt+

∫ tf

0

∫
ΓF

divτ (βT̃θ)r dsdt.

By combining the expressions above with (3.4), we conclude the variational identity∫ tf

0

∫
Dθ

ρ
∂ṪD(θ)

∂t
r dxdt+

∫ tf

0

∫
Dθ

k∇ṪD(θ) · ∇r dxdt+

∫ tf

0

∫
ΓN∪ΓFθ

βṪD(θ)r dsdt

=

∫ tf

0

∫
D
div(Qθ)r dx dt+

∫ tf

0

∫
ΓF

divτ (βT̃θ)r dsdt−
∫ tf

0

∫
D
div(θ)ρ

∂TD(θ)

∂t
r dxdt

−
∫ tf

0

∫
D
kA′(θ)∇TD(θ) · ∇r dxdt−

∫ tf

0

∫
ΓF

divτ (θ)βTDr dsdt

for any r ∈ L2((0, tf );H
1(D)).

(3.5)
Finally, the claim follows by applying Green’s formula.

The next lemma characterizes the Lagrangian derivative of the displacement field.

Lemma 3.3. The Lagrangian derivative u̇(t,x) ∈ L2((0, tf );H
1
D(D)d) of the solution to

(2.2) satisfies

−div(σel(u̇)) = −div
(
(C : ∇u)∇θ⊤ + C : (∇θ∇u)− div(θ)σ(u, T )

− f ⊗ θ − ṪB + (T − Tin)B∇θ⊤) in (0, tf )×D,

σel(u̇)n =
(
(C : ∇u)∇θ⊤ + C : (∇θ∇u)− div(θ)σ(u, T )

− ṪB + (T − Tin)B∇θ⊤)n on (0, tf )× ΓF ,

σel(u̇)n = 0 on (0, tf )× ΓN ,

u̇ = 0 on (0, tf )× ΓD.

(3.6)
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Proof. The first step involves deriving a variational formulation for equation (2.2), which
characterizes the transported mapping ûD(θ) = uDθ

◦ (Id+θ). This is accomplished by
applying the variational formulation presented in equation (2.4) within the perturbed
domain Dθ:∫ tf

0

∫
Dθ

σel(uDθ
) : ε(v) dx dt =

∫ tf

0

∫
Dθ

f · v dx dt+

∫ tf

0

∫
ΓN

g · v dxdt

−
∫ tf

0

∫
Dθ

σth(TDθ
) : ε(v) dx dt for any v ∈ H((0, tf ), Dθ).

To revert to the original domain D, we employ the chain rule and a change of variables.
Since θ = 0 on ΓD ∪ ΓN , we obtain∫ tf

0

∫
D
C : E(ûD(θ),θ) : E(v,θ)|det(I +∇θ)|dxdt

=

∫ tf

0

∫
D
f̂(θ) · v| det(I +∇θ)| dx dt+

∫ tf

0

∫
ΓN

g · v ds dt

−
∫ tf

0

∫
D
σth(T̂D(θ)) : E(v)| det(I +∇θ)|dxdt for any v ∈ H((0, tf ), D),

(3.7)
where

E(v,θ) =
1

2

(
(I +∇θ)−1∇v +∇v⊤(I +∇θ)−⊤

)
.

Our aim is to compute the shape derivative of ûD(θ). The Fréchet differentiability
of θ → ûD(θ) is again a consequence of the implicit function theorem (see [19]). We
define A(θ, ûD(θ)) : W

1,∞(Dbox)
d ×H((0, tf ), D) → L2((0, tf );H

−1(D)d) by

A(θ, ûD(θ))⟨v⟩ :=
∫ tf

0

∫
D
C : E(ûD(θ),θ) : E(v,θ)|det(I +∇θ)| dx dt

and b(θ) : W 1,∞(Dbox)
d → L2((0, tf );H

−1(D)d) by

b(θ)⟨v⟩ :=
∫ tf

0

∫
D
f̂(θ) · v| det(I +∇θ)| dx dt+

∫ tf

0

∫
ΓN

g · v ds dt

−
∫ tf

0

∫
D
σth(T̂D(θ)) : E(v)|det(I +∇θ)|dxdt.

Hence, we can rewrite identity (3.7) as

A(θ, ûD(θ)) = b(θ) (3.8)

and taking the limit θ → 0 implies

A(0, u̇D(θ)) = b′(0)⟨θ⟩ − A′(0,uD)⟨θ⟩.

12



The derivatives can be explicitly characterized for any θ ∈ W 1,∞(Dbox)
d satisfying θ = 0

on ΓD ∪ ΓN :

A′(0, TD)⟨θ⟩ =
∫ tf

0

∫
D

[
div(θ)σel(uD) : ε(v)

− C : (∇θ∇uD) : ε(v)− C : ε(uD) : (∇θ∇v)
]
dxdt

and

b′(0)⟨θ⟩ =
∫ tf

0

∫
D

[
div(f ⊗ θ) · v − ṪD(θ)B : ε(v)

+ (TD − Tin)B∇θ⊤ : ∇v − div(θ)σth(TD) : ε(v)
]
dx dt.

We combine these expressions with (3.8) and obtain the following variational identity:∫ tf

0

∫
D
σel(u̇D(θ)) : ε(v) dxdt

=

∫ tf

0

∫
D

[
C : (∇θ∇uD) : ∇v + C : ∇(uD) : (∇θ∇v)

− div(θ)σel(uD) : ε(v) + div(f ⊗ θ) · v − ṪB : ε(v)

+ (T − Tin)B∇θ⊤ : ∇v − div(θ)σth(TD) : ε(v)
]
dxdt.

(3.9)

We finally prove the desired claim by applying Green’s formula.

3.2 Shape derivative

The objective of this subsection is the computation of the shape derivatives for the
functionals of interest. The differentiability is defined in accordance with the following
definition, compare [15, 19, 26].

Definition 3.4 (Fréchet differentiable shape functional). A shape functional F (D)
is Fréchet differentiable at D if there exists a linear continuous function F ′(D)⟨·⟩ :
W 1,∞(Dbox)

d → R such that

F (Dθ) = F (D) + F ′(D)⟨θ⟩+ o(θ)

for all θ ∈ W 1,∞(Dbox)
d. The linear form F ′(D)⟨·⟩ is called shape derivative of J in D.

In the context of unconstrained shape optimization, the shape derivative is employed
to identify a direction θ of deformation such that F ′(D)(θ) < 0. This direction of
deformation serves as a descent direction in a suitable optimization algorithm, allowing
for the minimization of the objective functional F (D). Before proceeding to the shape
derivatives of the functionals, we need to mention an important theorem (see e.g. [19, 26]
for a proof).
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Theorem 3.5 (Hadamard’s structure theorem). Let D ∈ Dbox be a C1-smooth do-
main. We suppose that F : Dbox → R is a differentiable functional in the sense of
Definition 3.4. If θ · n = 0 on the boundary ∂D, then F ′(D)⟨θ⟩ = 0.

The application of this theorem is explained in the following remark.

Remark 3.6. In the case of sufficiently regular domain D, we can conclude from this
theorem that the value of the derivative F ′(D)⟨·⟩ depends only on the normal component
of the vector field θ on the boundary ∂D, i.e.

F ′(D) =

∫
∂D

vD(θ · n) ds,

where vD : ∂D → R is a scalar field whose expression depends on the solutions of the
underlying boundary value problems and the functional form. Thus, in the case of an
unconstrained optimization problem, a descent direction θ to the optimal shape is easily
obtained by imposing that θ = −vDn on ∂D. Consequently, we have

F ′(D) = −
∫
∂D

v2D ds < 0.

We are now in the position to derive the shape derivatives of the functionals under
consideration. The shape derivative of the volume of a body is not difficult to calculate,
compare [26]. It is formulated in the following proposition.

Proposition 3.7. The shape derivative of the volume Vol(D) is given by

Vol′(D)⟨θ⟩ =
∫
ΓF

(θ · n) ds. (3.10)

The shape derivative of J ′
γ,δ(D)⟨θ⟩ is presented in the next theorem.

Theorem 3.8. The shape derivative of the Jγ,δ(D) is given by

J ′
γ,δ(D)⟨θ⟩ =

γ

∫ tf

0

∫
ΓF

((
⟨σel : ε⟩Cor[uD,wD]

)
(t,x) +

(
⟨σth : ε⟩Cor[TD,wD]

)
(t,x)

+
(
⟨σd : σd⟩Cor[uD,uD]

)
(t,x) + f(t,x) · E[wD](t,x)

)
(θ · n) dx dt

+ δ

∫
ΓF

((
⟨σel : ε⟩Cor[uD,wD]

)
(tf ,x) +

(
⟨σth : ε⟩Cor[TD,wD]

)
(tf ,x)

+
(
⟨σd : σd⟩Cor[uD,uD]

)
(tf ,x) + f(tf ,x) · E[wD](tf ,x)

)
(θ · n) dx

+

∫ tf

0

∫
ΓF

(
β
(
H− 2β

k

)
Cor[T̃ − TD, pD](t,x)− βCor[∂T̃ /∂n, pD](t,x)

+Q(t,x)E[pD](t,x)− ρCor[∂TD/∂t, pD](t,x)

− k
(
⟨∇ ⊗∇⟩Cor[TD, pD]

)
(t,x)

)
(θ · n) dxdt,

(3.11)
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where TD ∈ L2
P[Ω;W ((0, tf ), D)] is the solution of (2.1) with the Robin boundary data

T̃ ∈ L2
P[Ω;L

2((0, tf );L
2(ΓN ∪ ΓF ))] and uD ∈ L2

P[Ω;H((0, tf ), D)] is the associated
solution of (2.2). The function wD ∈ L2

P[Ω;H((0, tf ), D)] satisfies the following adjoint
system 

−div(σel(wD)) = 4µdiv(σd(uD)) in (0, tf )×D,

σel(wD)n = 4µσd(uD)n+ g on (0, tf )× ΓN ,

σel(wD)n = 4µσd(uD)n on (0, tf )× ΓF ,

w = 0 on (0, tf )× ΓD,

(3.12)

while pD ∈ L2
P[Ω;Pδ((0, tf ), D)] satisfies another backward in time adjoint system

ρ
∂pD
∂t

+ div(k∇pD) = −γB : ∇wD in (0, tf )×D,

(k∇pD) · n+ βpD = 0 on (0, tf )× ΓN ∪ ΓF ,

pD = 0 on (0, tf )× ΓD,

pD = δB : ∇wD in {t = tf} ×D.

(3.13)

Here, the function space Pδ((0, tf ), D) is defined as

Pδ((0, tf ), D) :=
{
pD ∈ L2((0, tf );H

1(D)) ∩ H1((0, tf );H
−1
D (D)) :

pD = 0 on (0, tf )× ΓD and pD = δB : ∇wD in {t = tf} ×D
}

and the linear operators

⟨∇ ⊗∇⟩ : W ((0, tf ), D)⊗ Pδ((0, tf ), D) → L2((0, tf )×D)⊗ L2((0, tf )×D),

⟨σel : ε⟩ : H((0, tf ), D)⊗H((0, tf ), D) → L2((0, tf )×D)⊗ L2((0, tf )×D),

⟨σth : ε⟩ : W ((0, tf ), D)⊗H((0, tf ), D) → L2((0, tf )×D)⊗ L2((0, tf )×D),

are induced by the bilinears mappings

(T, p) → ∇T · ∇p, (u,v) → σel(u) : ε(v), (T,v) → σth(T ) : ε(v),

respectively. The operator ⟨σd : σd⟩ was introduced in Corollary 2.3. Finally, H denotes
the mean curvature of ΓF .

Proof. By linearity, the shape derivative of the functional Jγ,δ(D) = E[VMγ,δ(D)] into
the direction of the perturbation field θ is given as J ′

γ,δ(D)⟨θ⟩ = E[VM′
γ,δ](D)⟨θ⟩. Thus,

in order to derive the expression of the shape derivative J ′
γ,δ(D)⟨θ⟩, it is enough to

compute the shape derivative VM′
γ,δ(D,ω)⟨θ⟩ and to employ Proposition 2.2 to compute

its expectation.
We present the computation of J ′

γ,δ(D)⟨θ⟩ in three steps. In order to shorten

our proof, we start with the derivative VM′(D, t, ω)⟨θ⟩, then move to the derivative
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VM′
γ,δ(D,ω)⟨θ⟩, and finish with expression of the derivative J ′

γ,δ(D)⟨θ⟩. In particular,
to simplify the notation, we omit mentioning the random event ω in the discussion of
VM′(D, t, ω)⟨θ⟩ and VM′

γ,δ(D,ω)⟨θ⟩, so we assume that it is arbitrary but fixed:

VM(D, t) ≡ VM(D, t, ω), VM′(D, t)⟨θ⟩ ≡ VM′(D, t, ω)⟨θ⟩,

VMγ,δ(D) ≡ VMγ,δ(D,ω), VM′
γ,δ(D)⟨θ⟩ ≡ VM′

γ,δ(D,ω)⟨θ⟩.

Step 1. For sufficiently small θ ∈ W 1,∞(Dbox)
d, a change of variables in the shape

functional VM(Dθ, t) yields

VM(Dθ, t) =

∫
Dθ

σd(uDθ
) : σd(uDθ

) dx = 4µ2

∫
Dθ

(
ε(uDθ

) : ε(uDθ
)− 4

div(uDθ
)2

d

)
dx

= 4µ2

∫
D

(
E(uD,θ) : E(uD,θ)− 4

tr((I +∇θ)−1∇uD)
2

d

)
det(I +∇θ) dx,

where

E(v,θ) =
1

2

(
(I +∇θ)−1∇v +∇v⊤(I +∇θ)−⊤

)
.

By taking the derivative using Definitions 3.1 and 3.4 in the above formula, we obtain

VM′(D, t)⟨θ⟩ = 4µ2

∫
D

(
2ε(u̇D(θ)) : ε(uD)− (∇θ∇uD + (∇θ∇uD)

⊤) : ε(uD)

− 8

d
div(uD)(div(u̇D)− tr(∇θ∇uD))

+ div(θ)

(
ε(uDθ

) : ε(uD)− 4
div(uD)

2

d

))
dx

=

∫
D

(
2σd(u̇D(θ)) : σd(uD)− 4µσd(uD) : (∇θ∇u)

+ div(θ)σd(uD) : σd(uD)

)
dx.

(3.14)
In order to simplify the expression for VM′(D, t)⟨θ⟩, we introduce adjoint states.

First, in order to characterize u̇ in (3.14), we formulate the variational identity for the
adjoint state wD ∈ H((0, tf ), D) as follows∫ tf

0

∫
D
σel(wD) : ε(v) dxdt = 4µ

∫ tf

0

∫
D
σd(uD) : ε(v) dxdt

for any v ∈ H((0, tf ), D).

(3.15)

By taking u̇ as test function in (3.15) and wD as test function in (3.9), we conclude

2

∫ tf

0

∫
D
σd(u̇D(θ)) : σd(uD) dxdt
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= 4µ

∫ tf

0

∫
D
σd(uD) : ε(u̇D(θ)) dxdt =

∫ tf

0

∫
D
σel(u̇D(θ)) : ε(wD) dxdt

=

∫ tf

0

∫
D

(
C : (∇θ∇uD) : ∇wD + C : ∇uD : (∇θ∇wD)− div(θ)σel(uD) : ε(wD)

+ div(f ⊗ θ) ·wD − ṪD(θ)B : ∇wD + (TD − Tin)B∇θ⊤ : ∇wD

− div(θ)σth(TD) : ε(wD)
)
dx dt.

With this identity at hand, we can transform (3.14) into

VM′(D, t)⟨θ⟩ =
∫
D

(
C : (∇θ∇uD) : ∇wD + C : ∇uD : (∇wD∇θ)

− div(θ)σel(uD) : ε(wD) + div(f ⊗ θ) ·wD

− ṪD(θ)B : ∇wD + (TD − Tin)B∇θ⊤ : ∇wD

− div(θ)σth(TD) : ε(wD)− 4µσd(uD) : (∇θ∇u)

+ div(θ)σd(uD) : σd(uD)
)
dx.

(3.16)

Step 2. In this step, we move to the computation of the derivative VM′
γ,δ(D)⟨θ⟩.

Note that

VM′
γ,δ(D)⟨θ⟩ = γ

∫ tf

0
VM′(D, t)⟨θ⟩ dt+ δVM′(D, tf )⟨θ⟩. (3.17)

In order to eliminate Ṫ , we introduce a variational identity for the adjoint state pD ∈
Pδ((0, tf ), D) in accordance with∫ tf

0

∫
D
ρ
∂pD
∂t

r dx dt−
∫ tf

0

∫
D
k∇pD · ∇r dx dt−

∫ tf

0

∫
ΓF

βpDr dsdt

= −γ

∫ tf

0

∫
D
rB : ∇wD dx dt for any r ∈ L2((0, tf );H

1
D(D)).

(3.18)

Remark that, in case of the heat equation, the adjoint state equation is inverse in time.
Thus, we assume that

pf,D := pD(tf ) = δB : ∇wf,D.

It is easy to check that the variational formulations (3.15) and (3.18) correspond
to the boundary value problems (3.12) and (3.13), respectively. By taking Ṫ as a test
function after integration by parts in the first term of (3.18), and pD as test function in
(3.5), we arrive at

γ

∫ tf

0

∫
D
ṪD(θ)B : ∇wD dx dt+ δ

∫
D
Ṫf,D(θ)B : ∇wf,D dx
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=

∫ tf

0

∫
D
ρ
∂ṪD(θ)

∂t
pD dxdt+

∫ tf

0

∫
D
k∇pD · ∇ṪD(θ) dx dt−

∫ tf

0

∫
ΓF

βpDṪD(θ) dsdt

=

∫ tf

0

∫
D
div(Qθ)pD dx dt+

∫ tf

0

∫
ΓF

divτ (βT̃θ)pD ds dt−
∫ tf

0

∫
D
div(θ)ρ

∂TD

∂t
pD dxdt

−
∫ tf

0

∫
D

kA′(θ)∇TD · ∇pD dxdt−
∫ tf

0

∫
ΓF

divτ (θ)βTDpD ds dt.

Thus, by using the identity above from (3.16) and (3.17), we derive the expression

VM′
γ,δ(D)⟨θ⟩ = γ

∫ tf

0
VM′

1(D, t)⟨θ⟩ dt+ δVM′
1(D, tf )⟨θ⟩

+

∫ tf

0

∫
D

(
div(Qθ)pD − div(θ)ρ

∂TD

∂t
pD − kA′(θ)∇TD · ∇pD

)
dx dt

+

∫ tf

0

∫
ΓF

[
divτ (βT̃θ)pD − divτ (θ)βTDpD

]
ds dt,

(3.19)
where

VM′
1(D, t)⟨θ⟩ :=

∫
D

(
C : (∇θ∇uD) : ∇wD + C : ∇uD : (∇θ∇wD)

− div(θ)σel(uD) : ε(wD) + div(f ⊗ θ) ·wD

+ (TD − Tin)B∇θ⊤ : ∇wD − div(θ)σth(TD) : ε(wD)

− 4µσd(uD) : (∇θ∇u) + div(θ)σd(uD) : σd(uD)
)
dx.

Under the hypotheses stated above and thanks to Theorem 3.5, we can consider
that θ = (θ · n)n on ΓF . Hence, we conclude that divτ (θ) = H(θ · n). Therefore,
by applying Green’s formula and the identitiy (3.19), we achieve the boundary integral
form of VMγ,δ(D):

VMγ,δ(D)⟨θ⟩ = γ

∫ tf

0
VM′

2(D, t)⟨θ⟩dt+ δVM′
2(D, tf )⟨θ⟩

+

∫ tf

0

∫
ΓF

(
k
∂TD

∂n

∂pD
∂n

− k∇TD · ∇pD − ρ
∂TD

∂t
pD

− β
∂T̃

∂n
pD +QpD +Hβ(T̃ − TD)pD

)
(θ · n) ds dt,

(3.20)
where

VM′
2(D, t)⟨θ⟩ :=

∫
ΓF

(
σel(wD)n · ∂uD

∂n
+ σel(uD)n · ∂wD

∂n
− σel(uD) : ε(wD)
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+ f ·wD + σth(TD)n · ∂wD

∂n
− σth(TD) : ε(wD)

− 4µσd(uD)n · ∂uD

∂n
+ σd(uD) : σd(uD)

)
(θ · n) ds.

By using the boundary conditions in (2.1), (2.2), (3.12), and (3.13), we immediately
obtain the final expression of VMγ,δ(D) from (3.20)

VMγ,δ(D)⟨θ⟩

= γ

∫ tf

0

∫
ΓF

(
f ·wD − σ(uD, TD) : ε(wD) + σd(uD) : σd(uD)

)
(θ · n) dx dt

+ δ

∫
ΓF

(
ff ·wf,D − σ(uf,D, Tf,D) : ε(wf,D) + σd(uf,D) : σd(uf,D)

)
(θ · n) dxdt

+

∫ tf

0

∫
ΓF

(
β
(
H− 2β

k

)(
T̃ − TD

)
pD − β

∂T̃

∂n
pD +QpD − ρ

∂TD

∂t
pD

− k∇TD · ∇pD

)
(θ · n) dxdt.

(3.21)
Step 3. To complete the proof, we recall that the field uD of displacement and

the temperature TD are random. Consequently, the adjoint states wD and pD are
also random. Nonetheless, the derivative VMγ,δ(D,ω)⟨θ⟩ is a bilinear form. Thus,
by applying Proposition 2.2 to (3.21), it is easy to derive the statement (3.11) and to
conclude the proof.

The resulting expression opens up the possibility of using gradient-based algorithms
that have proven to be effective for the numerical solution of shape optimization prob-
lems.

4 Numerical realization

In this part, we discuss the numerical methods and algorithms for solving the problem un-
der consideration. We use the level-set method to numerically solve the shape optimiza-
tion problem. The random temperature is modeled by means of the Karhunen–Loéve
expansion. We present numerical experiments for the optimization of a bridge-type
structure under the action of a random heat wave.

4.1 Level-set method

A major challenge in the implementation shape optimization algorithms is the accu-
rate representation of shapes. To address this, we use the level-set method, originally
introduced in [23] and adapted for shape optimization in [5].
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In this method, the domain D ⊂ Dbox is given by the subset of negative function
values of a level-set function ϕ : Dbox → R, which means that

ϕ(x) < 0 if x ∈ D,

ϕ(x) = 0 if x ∈ ∂D,

ϕ(x) > 0 if x ∈ Dbox \D.

The discretized motion of the domain D in Dbox translates in accordance with{
ϕn+1 = ϕn − tnθn · ∇ϕn in Dbox,

ϕ0 = ϕin in Dbox,

where tn = const > 0 is the discretization step size, ϕin is a chosen initial level-set
function, and θn is the velocity field.

This velocity field is determined by a constrained optimization algorithm using knowl-
edge of the shape gradient of the objective and the constraint. The natural idea is to
use the projected gradient. Here, we use instead an alternative: the null-space algorithm
introduced by Feppon et al. in [16] which has become popular in numerical shape opti-
mization. This algorithm starts from a point that does not satisfy the constraint, and
seeks to orientate the direction of the deformation at each step in such a way that the
constrained is fulfilled first, while the objective is reduced if possible. Interested readers
are referred to the article [16] for a precise definition of the algorithm and a study of its
properties.

This algorithm requires the computation of the shape gradient of both the objective
functional and the constraint. This is achieved by the usual extension-regularization
procedure, discussed by de Gournay in [14] for example, motivating the use of the for-
mulas for shape derivatives introduced in Theorem 3.8 and Proposition 3.10. We use
the Dapogny-Feppon implementation of the null-space optimization algorithm, see [13].
The boundary values problem are solved with the finite element solver FreeFem++, see
[18].

4.2 Computation of second-order moments

Calculating the derivative J ′
γ,δ(D)⟨θ⟩ becomes much more complicated in comparison

to calculating the derivative Vol′(D)⟨θ⟩, since it involves the computation of first and
second order moments of the states and their adjoints. Thanks to the linearity of the
governing equation and its adjoint, it is straightforward to calculate values like E[w] and
E[p] if the expectation of the data T̃ is known. In contrast, the computation of Cor[u,u],
Cor[u,w], etc. is more involved.

One way to compute such expresssions is to rely on the low-rank approximation of
the two-point correlation functions. To do so, we should assume that Cor[T̃ , T̃ ] is given.
Then, we can approximate T̃ (t,x, ω) by the truncated Karhunen–Loéve expansion

T̃ (t,x, ω) ≈
M∑
k=1

ξk(ω)⊗ T̃k(t,x), (4.1)
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where the random variables {ξk} are orthonormal with respect to L2
P(Ω) and the spatial

functions {T̃k} are orthonormal with respect to L2(D), see [17, 20] for example. Thus,
by linearity, there holds

TD(t,x, ω) ≈
M∑
k=1

ξk(ω)⊗ TD,k(t,x),

where TD,k corresponds to the solution of the heat equation for the input T̃k(t,x).
Analogue expansions hold true for the displacement field uD and the adjoint states
pD and wD. By inserting the respective extension and exploiting the orthonormality
of the random variables, it is easily seen that the correlation of uD is approximated
through

Cor[uD,uD]((t,x), (t
′,x′)) ≈

M∑
k=1

uD,k(t,x)⊗ uD,k(t
′,x′).

This can be used to compute the expression of the form

⟨σd : σd⟩Cor[uD,uD]((t,x), (t
′,x′)) ≈

M∑
k=1

σd(uD,k(t,x)) : σd(uD,k(t
′,x′)).

Similar expressions can be derived for ⟨σel : ε⟩Cor[uD,wD] and ⟨σth : ε⟩Cor[TD,wD]
that are also present in the expression for the shape derivative J ′

γ,δ(D)⟨θ⟩, see (3.11).
In the end, we reduced the problem of computing the shape derivative J ′

γ,δ(D)⟨θ⟩by
means of second-order moments to the problem of determining T̃k, k = 1, . . . ,M in
(4.1). In order to determine these, we compute a truncated spectral decomposition

Cor[T̃ , T̃ ]((t,x), (t′,x′)) ≈
M∑
k=1

λkϕk(t,x)⊗ ϕk(t
′,x′),

where (λk, ϕk), k = 1 . . . ,M are the eigenpairs of the associated Hilbert–Schmidt oper-
ator

ϕ 7→
∫ tf

0

∫
D
Cor[T̃ , T̃ ]((·, ·), (t′,x′))ϕ(t′,x′) dx′ dt′.

Thus, there holds T̃k(t,x) =
√
λkϕk(t,x), k = 1, . . . ,M . The efficient numerical real-

ization is presented in [17].

4.3 Computational model

The external domain Dbox ∈ R2 is chosen as the square 1cm × 1cm. Since the mesh is
automatically adapted towards the current geometry during the optimization process, it
is sufficient to say that the finite element size changes from hmin = 0.01 to hmax = 0.02.
The initial mesh is presented in Figure 4.1.

The final time is taken as tf = 1. We solve the dynamic problems (2.1) and (3.13)
by using the Crank–Nicolson scheme. In order to deal with the incompatible boundary
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(a) (b)

Figure 4.1: Initial setting. (a) Triangulation and (b) boundary conditions.

conditions in the ajoint equation (3.13), we apply a grading in the time discretization.
To this end, we split the time interval (0, tf ) into 20 subintervals, where the first 15
subintervals are of the fixed with ht, while the size of the last 5 subintervals is decreasing
towards the end with the factor 1/2, i.e., our time steps looks like ht/2, ht/4, . . . , ht/32.

The parameters in the thermoelasticity model are chosen as follows: Young’s modulus
E = 200 GPa, Poisson’s ratio ν = 0.3, material density ρ̃ = 8000 kgm−2, specific heat ca-
pacity C̃ = 450 J kg−1, thermal expansion coefficient α = 15 ·10−6 ℃−1, thermal conduc-
tivity coefficient k = 15Wm−2 ℃−1, and heat transfert coefficient β = 10Wm−2 ℃−1.
The body force is f = (0, 0) and the surface force is g = (0,−0.25). The initial temper-
ature is taken as Tin = 0℃.

The external temperature is taken as a heat wave that traveles bottom-up through
Dbox, which is subject to random perturbations. The uncertainties are defined through
the following correlation function, which is the product of a Matérn kernel (see [22]) in
space and a Gaussian kernel in time

Cor[T̃ , T̃ ]((t,x), (t′,x′)) := KGauss(|t− t′|)KMat,5/2(∥x− x′∥), (4.2)

where

KMat,5/2(r) :=
(
1 +

√
5r + 5r2

)
exp

(
−
√
5r
)

and KGauss(r) :=
exp(−r2/2)√

2π
.

Then, the temperature T̃ is given by

T̃ (t,x, ω) := T̃det(t,x) + κT̃stoch(t,x, ω),

where T̃det(t,x) := max{0,−600 sin(x2 − 2πt)} and

T̃stoch(t,x, ω) :=

48∑
i=1

√
λiϕi(t,x)ξi(ω).
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is obtained by computing (4.1) up to a relative error of the size 10−3. The parameter
κ > 0 allows us to control the size of the random fluctuations and is chosen such that

∥T̃stoch∥L2((0,tf ),Dbox)

∥T̃det∥L2((0,tf ),Dbox)

≈ 0.3.

i.e., there is about 30% random noise in the data. A visualization of T̃det(t,x) and
T̃ (t,x, ω∗) for some random sample ω∗ at different time steps can be found in Figure
4.2. Note that T̃ is defined in the whole domain Dbox but only its restriction on the
boundary ΓF ∪ ΓN is used.

(a) (b) (c)

(d) (e) (f)

Figure 4.2: Deterministic external temperature (top row) and a specific sample of its
random counterpart (bottom row) at time t = 0.25: (a), (d); t = 0.5: (b), (e); t = 0.75:
(c), (f).

4.4 Numerical results

First, we shall study the magnitude of the effect of the uncertainty term. To this end,
we have perform two experiments for the situation γ = 1 and δ = 0, which means
that we work only with time-averaged shape functional. In the first experiment, we
consider no uncertainty, i.e., there holds T̃ ≡ T̃det and we obtain the shape functional
VM1,0(D). In the second experiment, we use T̃ (ω) which we take as described above.
In this case, the shape functional becomes J1,0(D). The threshold for VM1,0(D) and
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J1,0(D), respectively, is set to τ = 0.15 and the optimization procedure is halted after
250 iterations. The results are presented in the Figure 4.3.

(a) (b)

(c) (d)

Figure 4.3: Impact of uncertainty. Top row: (a) final shape in deterministic case, (b)
final shape in stochastic case. Bottom row: convergence histories (blue: deterministic,
red: random) (c) objective functional Vol(D), (d) constrainted functionals VM1,0(D)
and J1,0(D).

As we can see, when uncertainties are taken into account, a thicker part of the design
appears to make it more robust. It is rather reasonable since we are considering large
uncertainties, which make the temperature distribution more chaotic. In the graphs, we
observe the convergence of the optimization procedure, which validates the feasibility of
the approach and the numerical method that was proposed.

Next, we consider different cases of parameter choices for γ and δ to see what effect
the von Mises stress at the end of the time interval has on the optimal shape. For
this purpose, we perform two more experiments with uncertainties: one for the choice
γ = δ = 0.5 and another one with the choice γ = 0 and δ = 1. The former one
corresponds to an equal consideration of the constraint averaged in time and evaluated

24



at the final instant. Conversely, in the latter one, only the value of the functional at the
final time tf is taken into account. The threshold and the number of iterations is set as
before. The results are shown in Figure 4.4.

(a) (b)

(c) (d)

Figure 4.4: Impact of weights. Top row: (a) final shape in the case with γ = δ = 0.5,
(b) final shape in the case with γ = 0, δ = 1. Bottom row: convergence histories (green:
γ = 0, δ = 1, blue: γ = δ = 0.5, red: γ = 1, δ = 0) (c) objective functional Vol(D), (d)
constrainted functionals J0,1(D), J0.5,0.5(D) and J1,0(D).

As we can see in Figure 4.4, the results obey the following logic. Since the heat
wave moves from the bottom to the top, the stress concentration at the final time will
be accumulated in the upper part of the structure. Therefore, the upper part of the
structure is reinforced as δ increases. Indeed, a comparison with Figure 4.3 (b) confirms
this observation. Therein, only the time-averaged functional is considered and hence
the shape functional is under a uniform influence of the von Mises stress at different
moments of time. Thus, in this case, a robust reinforcement is required in the whole
structure.

The convergence histories of the algorithm are shown in the graphs in Figure 4.4
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(c) and (d) in cases with different weights γ and δ. The peaks observed in subplot (d)
correspond to changes in topology during optimization procedure. These jumps occur
since the distribution of the temperature between different areas is different, so there
will be singularities if such areas merge.

5 Conclusion

The present article dealt with a shape optimization problem for a thermoelasticity model
with uncertainties in the Robin boundary condition. The problem was formulated as the
minimization of the body’s volume under an inequality constraint on the expectation
of the combination of the time-averaged L2-norm of the von Mises stress and taken at
last time. We derived an analytical expressions of the expected shape functional and
its shape derivative via second-order correlations. An efficient numerical method based
on low-rank approximation was proposed. The solution of the optimization problem
was numerically implemented via the level-set method. The results of numerical experi-
ments in two spatial dimensions were presented, validating the feasibility of the present
approach.

The limitations of this model are contingent upon the extent of thermal variations.
When such variations are significant, the coefficients that describe the properties of the
materials (dilation, thermal conduction, Young’s modulus, etc.) are not constant and
depend on the temperature. In the present theromoelastic model, however, we have
neglected this dependence. Accounting for it will be the subject of further research.
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