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A B S T R A C T

Aerosol mass balance studies based on filter samples require a conversion factor to derive organic matter (OM)
concentrations from organic carbon (OC) measurements from thermo-optical methods. This factor provides in-
direct insights on the molecular structure of OM needed in chemical transport models. Site- and season-specific
ratios of OC to OM (fOM:OC) were calculated using data from five rural background sites in France between 2012
and 2021 by relating the unidentified chemical fraction in PM2.5 samples to thermo-optical OC concentrations.
Further, multiple linear formulations were used to evaluate the impact of possible artefacts on the determination
of fOM:OC. The resulting fOM:OC was then compared to other estimates derived from online aerosol mass spec-
trometry data, showing good agreement. The spatial and temporal variability in fOM:OC is discussed considering
factors such as seasonality, meteorological conditions and the atmospheric oxidative potential. Linear-mixed
effect models were formulated to quantitatively determine the drivers which influence the fOM:OC at the
French rural background sites. Both ozone and relative humidity were variables with statistically significant
effects on fOM:OC, indicating that differences in the contributions from both photooxidation and water content,
explain the variability in fOM:OC observed at the French rural background sites. Site-specific fOM:OC yielded more
accurate PM2.5 mass closure and are therefore recommended in mass-balance exercises. Accurate fOM:OC are
critical to maintain consistency in OM time series, especially in cases where filter-based time series may be
replaced by state-of-the-art online instrumentation.

1. Introduction

Organic carbon (OC) and elemental carbon (EC) are the main
carbonaceous aerosols found in ambient air, both constituting the pre-
dominant component in particulate matter (PM) across various envi-
ronments including urban, rural and background sites (Christiansen
et al., 2020; Querol et al., 2013; Weber et al., 2019; Yttri et al., 2009,
2021). OC, representing the major fraction of carbonaceous aerosols,
can be emitted primarily from anthropogenic combustion sources
including fossil and biomass fuels, and commercial cooking; as well as
from natural sources such as plant debris, spores and pollens, among
others. Secondary OC (SOC) is formed through the oxidation of volatile
organic compounds (VOCs) from both natural and anthropogenic sour-
ces. Under atmospheric conditions, VOCs may oxidize with ozone (O3),

nitrate (NO3) and/or hydroxyl radicals (OH) to form less-volatile
products which may undergo further reactions and/or partition into
the condensed phase (Seinfeld and Pankow, 2003; Srivastava et al.,
2022). These processes are affected by various factors such as temper-
ature, relative humidity and total organic aerosol mass loadings (e.g.,
Hennigan et al., 2009). OC, together with EC, secondary inorganic
aerosols (SIA) andmajor ions, are monitored at rural background sites as
required by the European Air Quality Directive (European Parliament &
Council of the European Union, 2008) for the characterization of the
main components of PM2.5 (PM with a mean aerodynamic diameter
<2.5 μm). Carbonaceous aerosols are associated with adverse health
effects, including cardiovascular and respiratory diseases (Janssen et al.,
2012; Mauderly and Chow, 2008), neurodegenerative and carcinogenic
effects, among others (Aslam and Roeffaers, 2022); they also have an
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impact on the climate system with OC and EC having a cooling and
warming effect, respectively (IPCC, 2021).

Traditionally, the quantification of OC (and EC) in PM involves
thermo-optical methods applied to air samples collected on quartz fibre
filters. Different temperature protocols specify the temperature ramps to
separate the OC and EC fractions. In Europe, the EUSAAR_2 protocol
(Cavalli et al., 2010) was optimised for analysing carbonaceous aerosols
at European regional background sites. However, OC quantified by
thermo-optical methods does not account for other elements such as
hydrogen, oxygen, nitrogen and sulphur present in organic aerosol.
Often, organic matter (OM) is calculated by applying a constant OM/OC
ratio (or fOM:OC) to account for non-carbon organic mass. A conversion
factor is also used in global and regional models to simulate primary
organic aerosols from OC (Park et al., 2003). The chemical composition
of OM varies with location, season, and time of day as the mix of organic
compounds in the aerosol varies according to combustion efficiencies
and the presence of primary and secondary OC (Brown et al., 2013;
Turpin and Lim, 2001), making its estimation complex (Lim and Turpin,
2002). Conversion factors range from 1 (representing pure graphitic
carbon) to 3.8 for aliphatic dicarbonyls (Simon et al., 2011; Turpin and
Lim, 2001). OM/OC ratios larger than 3.8 might be possible, due to the
presence of organic sulphates but the probability of such high ratio in
ambient air is low due to low concentrations of such compounds (Simon
et al., 2011). In between, carboxylic acids such as oxalate have ratios of
1.74; and that of levoglucosan is 2.25. fOM:OC also varies seasonally and
larger ratios were found in summer when photochemical activity en-
hances the production of aged secondary organic aerosol (Bae et al.,
2006; Hand et al., 2019; Malm et al., 2011; Ruthenburg et al., 2014;
Simon et al., 2011). The most frequent approach in PM2.5 mass balance
studies is to use a single fOM:OC ratio which value is selected depending
on the type of monitoring site. Low fOM:OC (1.2–1.4) is used for local and
fresh sources (Timonen et al., 2013) but this ratio might differ in envi-
ronments with large biomass burning emissions; whereas fOM:OC of
1.9–2.2 is typically used for sites with highly oxidized secondary organic
aerosol (SOA) (Daellenbach et al., 2017). Lim and Turpin (2002) rec-
ommended a site-dependent fOM:OC: 1.6 ± 0.2 and 2.1 ± 0.2 for urban
and non-urban aerosols, respectively. In France, a general conversion
factor of 1.8 is used (Golly et al., 2019). Despite the increasing

availability of instruments measuring online OM in Europe (Bressi et al.,
2021; Chen et al., 2022) and in France (Chebaicheb et al., 2023; Favez
et al., 2021), OM continues to be routinely assessed by the OC proxy.

This manuscript evaluates the temporal and spatial variability in the
factor used to convert OC to OM concentration, commonly used in PM
mass balance studies at European regional background sites. The fOM:OC
were calculated using the residual method applied to filter data collected
at five rural background sites in France over the years 2012–2021. These
ratios were then compared with the typically used fixed ratios, those
from multi-linear regression models and those derived from online
aerosol mass spectrometry. The variability of fOM:OC was analysed in
relation to the instrumentation used to measure PM2.5 mass concentra-
tions, weather conditions, and the oxidative capacity of the atmosphere.

2. Methods

2.1. Monitoring sites, instruments, PM2.5 chemical composition and other
data

Data used here comprises PM2.5 mass concentrations and basic
chemical composition monitored at five rural background sites in France
in 2012–2021 (Fig. 1). The site Andra-OPE (OPE; 48◦34′N, 05◦30′E; 392
m altitude; EMEP/FR0022) is an atmospheric station part of a long-term
environmental monitoring system in the framework of a deep geological
disposal facility for radioactive residues (http://www.andra.fr/ope/) in
the north-east of France. The largest town in the region, Nancy, is
located 50 km NE of the site with over 100,000 inhabitants. The Atlantic
Ocean is 350 km away from the site. Peyrusse-Vieille (PEY; 43◦47′N,
00◦11′E; 236 m; EMEP/FR0013) is in the south-west of France, 250 m
away from the centre of a village with less than 100 inhabitants. It is 130
km away from the Atlantic Ocean, 45 km from the forest of Landes
(dominated by maritime pine trees) and 32 km from the closest town
(22,000 inhabitants). Revin (REV; 49◦54′N, 04◦38′E; 390 m; EMEP/
FR0009) is in the middle of a coniferous forest with the nearest village
(890 inhabitants) 1.5 km SSW of the monitoring site. The town of Revin
(6000 inhabitants) is located 4.5 km north of the site. The North Sea is
190 km away. St Nazaire-Le Désert (SND; 44◦34′N, 5◦17′E; 605 m;
EMEP/FR0023) is a few kilometres SE of the centre of a 200 inhabitants’

Fig. 1. Europe with mainland France highlighted in yellow (left) and a map with the location of the French rural background sites monitoring PM2.5 chemical
composition in 2012–2021 (right).
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village in the SE of France, with a landscape dominated by forest and
agricultural fields. The Mediterranean Sea is 150 km south of the
monitoring site with Marseille (~900,000 inhabitants) on the coast and
the city of Lyon (500,000 inhabitants) 215 km NNW. Verneuil (VER;
46◦49′N, 2◦37′E; 182 m; EMEP/FR0025) is in the centre of France, 230
km south of Paris and 300 km from the Atlantic Ocean and 400 km from
the Mediterranean Sea. The surroundings are characterized by more
than 50% of forest and grassland and also influenced by the nearby
timber industry. PEY, REV, SND and VER belong to the French National
Observatory of Measurement and Evaluation in Rural Areas (MERA)
managed locally by the relevant regional Approved French Air Quality
Monitoring Associations (AASQA) and nationally by IMT Nord Europe.
The OPE station is managed by ANDRA with support from Atmo Grand
Est.

Hourly PM2.5 gravimetric mass was monitored by either a Tapered
Element Oscillating Microbalance-Filter Dynamics Measurement System
(TEOM-FDMS; Thermo R&P; USA); a Beta Attenuation Monitor 1020
(BAM, MetOne Instruments Inc; USA); a beta gauge MP101MRST
(ENVEA; France) or a FIDAS 200 (PALAS; Finland), depending on the
site and year. All instruments have mechanisms to remove the water
content from the incoming air. Change of instrumentation took place at
all sites in the time series (Fig. S1) and the time series was maintained
given that all instruments are accredited to measure PM-equivalent mass
concentrations in France on a 24-h average basis (LCSQA, 2013, 2017).
Daily PM2.5 mass concentrations were calculated from hourly mea-
surements with at least 75% data capture. Ozone (O3) was also measured
hourly. Data collection and validation of the automatic analysers were
conducted by the regional AASQA as part of the French Air Quality
Monitoring Program.

Quartz fibre filters (Pallflex Tissuquartz 2500 QAT-UP, 150 mm in
diameter) were pre-fired for 24 h before sampling to remove organic
impurities at 1073 K at OPE; and at 773 K at the MERA sites. The latter
was done according to the PD CEN/TR 16243:2011 guidelines. Similar
filter pre-fired conditions were applied in other European studies (Sciare
et al., 2003; Viana et al., 2006; Pio et al., 2020). Sample filters were
exposed to ambient air for 24 h using a High-Volume Sampler (Digitel
DAH-80) equipped with a PM2.5 inlet and sampling at a rate of 30 m3

h− 1. Samplers were placed inside a temperature-controlled monitoring
cabin (20–23 ◦C) to limit the loss of semi-volatile species. After sam-
pling, filters were stored at temperatures < 4 ◦C and shipped back to the
laboratories for chemical analysis. Great care is taken to avoid
contamination and filter modification at all steps of sampling and
handling. A total of 2176 filters were analysed over the study period for
organic and elemental carbon (OC, EC) and major inorganic ions (Ca2+,
K+, Mg2+, Na+, NH4

+; and Cl− , NO3
− , SO4

2− ). OC-EC was quantified by
Thermo-Optical Reflectance by the Sunset analyser (Sunset Laboratory,
Inc, USA) following the EUSAAR2 temperature protocol (Cavalli et al.,
2010). Water-soluble inorganic ions were quantified by digesting a
punch of the filter in pure water and then analysed by ion chromatog-
raphy (Ca2+, K+, Mg2+, Na+, NH4

+; and Cl− , NO3
− , SO4

2− ). At the MERA
sites, field blanks were collected monthly, averaged seasonally and
removed from ambient samples for the inorganic ions but not for OC and
EC. Laboratory blanks for each filter lot were analysed monthly to
quantify the limit of detection (LoD) and limit of quantification (LoQ).
LoD was calculated as the standard deviation times the inverse of the
student’s law (95%). LoQwas three times LoD. At OPE, field blanks were
collected every 2–3 weeks, averaged annually and removed from sam-
ples for all species, including OC and EC. LoQ was calculated from the
annual field blank plus twice its standard deviation. For all sites,
whenever the sample was below the LoQ, it was substituted by LoQ/2.

Collocated in-situ non-refractory PM1 chemical composition
(including OM, sulphate, nitrate, and ammonium) was conducted at
times at REV. An aerosol mass spectrometer (AMS, Aerodyne Research
Inc., USA; 5-min resolution) sampled in summer 2012 (24 Jun-14 Jul),
and a quadruple Aerosol Chemical Speciation Monitor (Q-ACSM, Aero-
dyne Research Inc., USA; 30-min resolution) (Ng et al., 2011) in winter

2017-18 (28 Nov–3 Apr). Daily filters were collected for the winter
campaign and analysed using the same procedures as for the fortnight
filter samples described before.

Temperature (T) and relative humidity (RH) were measured at OPE,
PEY and REV. For SND and VER, T and RH were extracted from the
nearest meteorological site from the NOAA the Integrated Surface
database network (Smith et al., 2011) accessed through the worldmet
R-package (Carslaw, 2019).

2.2. fOM:OC calculations

PM2.5 mass balance calculations are based on the assumption that
total PM2.5 mass concentrations can be expressed as the sum of its main
components:

PM2.5= [OM]+ [EC]+ [SIA]+ [sea salt]+ [dust]+ [trace elements]+
ε (1)

where OM stands for organic matter, and SIA for secondary inorganic
aerosols which include nitrate, non-sea salt-sulphate and ammonium.
Trace elements include metals and other trace elements. ε refers to the
residual term including the missing mass, errors associated with the on-
line PM2.5 instruments and the analytical errors of the chemical analysis.

Sea salt concentrations (ss) were calculated from the following
tracers:

[sea salt] = [ss-Na+] + [Cl− ] + [ss-Mg2+] + [ss-Ca2+] + [ss-K+] + [ss-
SO4

2-] (2)

Ratios used in Eq. (2) were [ss-Ca2+] = 0.038 × [ss-Na+]; [ss-K+] =
0.037 × [ss-Na+]; and [ss-SO4

2+] = 0.252 × [ss-Na+] as in Seinfeld and
Pandis (2006).

To separate ss-Na+ from the non-sea salt Na+ (nss-Na+), the Na-to-Ca
ratio in crust (Na/Ca)crust = 0.56 Bowen (1979) as reported in Marconi
et al., 2014) was used, and the following set of equations was
formulated:

[nss-Na+] = [nss-Ca2+] × (Na/Ca)crust (3)

[ss-Na+] = [Na+] – [nss-Na+] (4)

[nss-Ca2+] = [Ca2+] – [ss-Ca2+] (5)

Resolving the system of equations and using the representative
ratios:

[nss-Ca2+] = 1.022 × [Ca2+] – 0.039 × [Na+] (6)

[nss-Na+] = 0.57 × [Ca2+] – 0.0212 × [Na+] (7)

Dust concentrations were calculated from non-sea-salt calcium (nss-
Ca2+) as [dust] = 9.7 × [nss-Ca2+]. nss-Ca2+ was calculated as per Eq.
(6). The conversion factor that relates dust and nss-Ca2+ used here was
calculated using the data from an intensive measurement campaign in
winter 2013, where a wide spectrum of elements related to crustal
content (Al, Si, Fe, Ti and P) was monitored at three French sites. PM10
daily filters were collected and analysed and dust concentrations
assessed (see Alastuey et al. (2016) for details about the methodology).
The relation between nss-Ca2+ and mineral dust calculated from crustal
elements was consistent at the three sites and the inverse of the slope
(9.7) used as a conversion factor (Fig. S2).

Non-sea salt sulphate in SIA was calculated by subtracting the sea
salt component, as shown before, from total sulphate. Only the non-sea-
salt-non-dust potassium (nss-ndust-K+) was included as other trace
metals and elements were not routinely analysed at the MERA sites. nss-
ndust-K+ was calculated subtracting the sea-salt and dust component
from total potassium. The readers are referred to Font et al. (2024) for
further details.

OM was estimated from OC as:

A. Font et al. Atmospheric Pollution Research 15 (2024) 102301 
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[OM] = fOM:OC x [OC] (8)

where fOM:OC is the conversion factor from OC to OM. The mass closure
approach or residual method (RM) was used to estimate it, assuming
that PM2.5 mass closure can be explained by major sources (marine,
dust, SIA, EC and trace elements) and the unaccounted PM2.5 fraction (or
residual PM2.5 mass) is then attributed to OM. The normalisation of this
component to OC provides an estimation of the conversion factor or fOM:

OC (Bae et al., 2006; Cesari et al., 2014; El-Zanan et al., 2005; Guinot
et al., 2007):

fOM:OC= ([PM2.5] – ([EC]+ [SIA]+ [sea salt]+ [dust]+ [nss-ndust-K+])
/ OC (9)

The conversion factor here represents the upper-limit value due to
the non-accounted mass in the chemical composition data (i.e., metals
associated with industrial emissions, etc). The entire dataset (N = 2176
filters) was used to estimate fOM:OC. First, fOM:OC was calculated daily
from individual samples as well by linear models. Different types of
regressions were tested: ordinary least square (OLS), OLS regression
with a forced zero intercept, and the Reduced-Major-Axis (RMA)
regression. OLS regression minimizes residuals in the y-axis (i.e., unac-
counted PM2.5 mass = [PM2.5] – ([EC] + [SIA] + [sea salt] + [dust] +
[nss-ndust-K+]) whereas the RMA regression minimizes both x (i.e., OC)
and y (i.e., unaccounted PM2.5 mass) residuals. The latter is preferred in
atmospheric applications when relating two measured variables (e.g.,
Ayers, 2001) as both x and y have associated errors.

Alternatively, fOM:OC was estimated using a multi-linear regression
(MLR) relating PM2.5 mass residual against multiple PM2.5 elements,
including OC. Multiple MLRs were formulated (Table 1). As per Hand
et al. (2019); Malm et al. (2011); and Malm and Hand (2007), ammo-
nium sulphate (AS) and ammonium nitrate (AN) were calculated from
sulphate and nitrate concentrations, respectively, considering that both
sulphate and nitrate were fully neutralized and solely in the form of
ammonium sulphate and ammonium nitrate, respectively. Calculations
used here were [AS] = 1.375 × [nss-SO4

2-] and [AN] = 1.29 × [NO3
− ]

(Hand et al., 2019). EC was not included as an explanatory variable in
any of the multi-linear models due to collinearities with OC (Hand et al.,
2019). Similarly, NH4

+was not included in the MLR due to its correlation
with both nitrate and sulphate. Note that models #6 and #7 are
essentially the same but AN and AS in model #7 were calculated from
individual ions including NH4

+. Model #7 is essentially the RM as per Eq.
(9). Coefficients from the MLR were also used to evaluate possible
sampling and analytical artefacts (Hand et al., 2019; Malm and Hand,
2007). The coefficients derived from the regressions are interpreted as
mass multipliers that account for unmeasured compounds and/or effects
of potential sampling or analytical biases (Hand et al., 2019). The co-
efficient for OC (a1 as in Table 1) is equivalent to fOM:OC.

Further, fOM:OC calculated from filter data was compared to those
derived from the in-situ instrumentation at REV. For summer 2012, an
AMS instrument provided OM:OC ratios derived from the HR peak
fitting procedure implemented in the PIKA module of the AMS software
program (Aiken et al., 2007). For winter 2017, daily fOM:OC were
calculated from the OM mass concentrations measured by a Q-ACSM
and relating them against the OC obtained by thermo-optical measure-
ments on filters. OM from the Q-ACSM was reported every half an hour
and averaged daily. A 75% data threshold was applied to calculate daily
means.

2.3. Linear-mixed effect regression modelling to understand the drivers of
fOM:OC

Linear-mixed effect regression modelling was used to understand the
drivers that explain the variability in fOM:OC observed across the French
rural background sites. The fOM:OC calculated by the residual method (i.
e., Eq. (9)) at each monitoring site was taken as the outcome, averaged
by long periods covering the different times that PM2.5 mass concen-
trations were monitored by the different type of instruments at each
monitoring site (Fig. S1). A random effect was specified on each moni-
toring site. The lmer function from the lme4/R package (version 1.1.34)
(Bates et al., 2015) was used. The 95% confidence intervals for the fixed
effects were calculated using the confint function using the Wald method
(i.e., central estimate ± 1.96 x standard error) from the stats/R package
(version 4.3.1). A fixed effect (or explanatory variable) was considered
significant (i.e. driving fOM:OC) whenever its confidence interval did not
include zero.

Several model formulations were tested and compared against the
null model (without fixed effects). Before building the model, possible
collinearity between fixed effects was assessed by means of the pairwise
Pearson correlation values and the maximum variance inflation factor
(VIF). Thresholds of R > 0.70 and VIF >10 are suggested thresholds
indicating possible collinearity (see references in Dormann et al.
(2013)). Only explanatory variables with R < 0.70 were included in the
model formulation and the model was kept whenever the maximum VIF
value was < 10.

The best model was selected based on the Conditional Akaike In-
formation (cAIC); the model fit or correlation coefficient (R2); and the
Likelihood Ratio Test (LRT). The best model was selected compromising
the three criteria: the lowest cAIC, the highest R2 with an LRT test sig-
nificant at least at p < 0.05.

3. Results and discussion

3.1. fOM:OC from filter data

Chemical data from all filters were used to calculate fOM:OC as per Eq.
(9). Median fOM:OC ranged from 1.4 (SND) to 3.2 (PEY) with interme-
diate values of 1.8 (REV) and 2.3 (OPE and VER) (Table 2). For the OLS
regression forced to zero, the correlations between the residual PM2.5 vs
OC were moderate to strong at all sites (range R2: 0.56–0.84), indicative
of a significant dependency of the PM2.5 residual to OC concentrations.
SND was the site with the lowest slope (i.e., fOM:OC) (1.5) followed by
OPE (1.8), REV (2.1), VER (2.3) and PEY (2.9) (Table 2). The coefficient
of determination was however weaker for the other type of regressions
(range of R2 = 0.16–0.57), indicating a lower fraction of OC was
explained by the PM2.5 residuals. The OLS regression returned the lowest
slopes or fOM:OC (range of 1.0–2.1) while RMA regression had the largest
(range of 2.5–3.7). The OLS regression forced to origin showed better
correlation coefficients and slopes closer to the median fOM:OC from daily
observations (Table 2). Also, the resulting conversion factors were in
agreement with those expected in ambient data (1.4–2.3) according to
(Turpin and Lim, 2001). The adjusted R2 for the multi-linear models are
shown in Fig. S8 and ranged from R2 = 0.52 to R2 = 0.95. Generally,
model #6 and model #7 showed the lowest R2 compared to the rest of

Table 1
Different multi-linear models were considered to estimate fOM:OC. PM2.5 residual
concentrations were calculated taking into account different PM species
depending on the model.

Residual considered ML-model

#1 PM2.5 – EC residual ~ 0 + a1 × OC + a2 × AN + a3
× AS + a4 × nss-ndust-K+ + a5 × dust +
a6 × sea_salt

#2 PM2.5 – (EC + sea_salt) residual ~ 0 + a1 × OC + a2 × AN + a3
× AS + a4 × nss-ndust-K+ + a5 × dust

#3 PM2.5 – (EC + sea_salt + nss-ndust-
K+)

residual ~ 0 + a1 × OC + a2 × AN + a3
× AS + a5 × dust

#4 PM2.5 – (EC + sea_salt + nss-ndust-
K+ + dust)

residual ~ 0 + a1 × OC + a2 × AN + a3
× AS

#5 PM2.5 – (EC + sea_salt + nss-ndust-
K+ + dust + AS)

residual ~ 0 + a1 × OC + a2 × AN

#6 PM2.5 – (EC + sea_salt + nss-ndust-
K+ + dust + AS + AN)

residual ~ 0 + a1 × OC

#7 PM2.5 – (EC + sea_salt + nss-ndust-
K+ + NH4

+ + dust + nss-SO4
2- +

NO3
− )

residual ~ 0 + a1 × OC
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models at the same site. fOM:OC estimated from the MLR model #1 to
model #5 (Table 1) were similar (Fig. S8) and summarized together in
Table 2. fOM:OC ranged from 1.6 to 2.2 at OPE (median: 1.8); 1.9–2.9 at
PEY (median: 2.0); 1.4–1.9 at REV (median: 1.5); 1.2–1.5 at SND (me-
dian: 1.3); 1.9–2.2 at VER (median: 1.9) (Table 2). fOM:OC estimated from
the MLR were slightly lower than the ratios calculated by the RM by
either the OLS forced to zero or the RMA regression (Table 2) and they
were particularly low at REV (1.5) and SND (1.3). This indicates that
part of the sampling and analytical artefacts might be transferred to the
fOM:OC ratio estimated by the RM. Coefficients for OC from the MLR from
model #6 did not differ from that frommodel #7 and equalled that from
the RM (Table 2; Fig. S8). This indicates that both nitrate and sulphate
were fully neutralized by ammonium and validate the calculation of AS
and AN.

OLS regression forced to zero yielded larger correlations between the
PM2.5 residuals and OC than the other types of regressions when
considering the 2012–2021 data for the estimation of fOM:OC using the
RM method. fOM:OC calculated from the MLR varied depending on the
elements considered as explanatory variables. Therefore, the RM
method with the OLS regression forced to zero was considered as a more
robust method to calculate representative site-specific fOM:OC.

The site-specific fOM:OC for SND and OPE was below the recom-
mended value of 2.1 for non-urban environments (Lim and Turpin,
2002). However, lower fOM:OC were previously calculated at these types
of monitoring sites (Chow et al., 2015). Low fOM:OC (1.5–1.6) were also
previously calculated at a French regional background site near Paris
(20 km) in July 2009 (Crippa et al., 2013) and in 2011–2013 (Petit et al.,
2015) (Table 3). Also, at the remote mountain site of Jungfraujoch
(3580 m in the Swiss Alps), fOM:OC was 1.84 in winter 2005 (Cozic et al.,
2008). In Cabauw, The Netherlands, fOM:OC was 1.6 in PM1 (Liu et al.,
2024). REV and VER exhibited a range of values representative of highly
oxidized OM, which agreed with the expected ratio of 2.1 for non-urban
aerosols. Similar ratios (2.0–2.1) were calculated for three rural sites in
the Ile-de-France region for 2009–2010 (Bressi et al., 2013), and for VER
(fOM:OC = 2.07) in 2011-14 (He et al., 2018) (Table 3). PEY had the
largest fOM:OC ratio, slightly above the 2.2–2.6 range representative for
non-urban sites according to Lim and Turpin (2002) but in agreement
with the presence of highly oxidized aerosols. Comparing the
site-specific fOM:OC between sites, only OPE and VER observed statisti-
cally similar ratios, probably related to their continental location
(Fig. 4A), with the ocean located more than 300 km away (Fig. 1).

Seasonal fOM:OC were slightly different compared to the long-term
conversion factors and the variation was not homogeneous among
sites (Fig. S3). The largest fOM:OC was in spring at OPE, PEY and VER
(2.2–3.2), whereas at REV it was in winter (2.4), and in summer at SND
(1.7). The lowest fOM:OC were calculated in summer at OPE, PEY and

REV (1.4, 2.7 and 1.8, respectively) and in autumn at SND (1.3). VER
showed comparable values (2.2–2.3) in all seasons except spring (2.6).
Considering the daily variability in fOM:OC by seasons, OPE and SND
showed non-statistical differences among seasons (Fig. S4B). Similarly,
(Bressi et al., 2013) observed a lack of clear seasonal variation in the fOM:

OC ratio at five sites in the Ile-de-France region, including one urban
(Paris), one suburban and three rural sites (Table 3). For the other sites
(PEY, REV and VER), summer fOM:OC was generally statistically different
from the other seasons and generally lower (Fig. S4B). This seasonal
behaviour of fOM:OC contrasts with those previously reported in the
literature for the same type of monitoring sites. Previous studies in the
US and in Europe highlighted the seasonal variation of fOM:OC, with more
elevated fOM:OC in summer and lower in winter, consistent with more
aged secondary organic aerosol in the warm periods associated with
enhanced photochemical activity; and less aged primary organic aerosol
in winter (El-Zanan et al., 2005; Hand et al., 2019; Malm et al., 2011;
Malm and Hand, 2007; Poulain et al., 2020; Ruthenburg et al., 2014;
Simon et al., 2011). However, large fOM:OC values were also observed in
the cold season in Pittsburgh, US (Polidori et al., 2008) and was related
to biomass burning and residential wood combustion. The biomass
burning contribution to OC concentrations was estimated to be 40–90%
at French rural background sites in winter 2013 (Golly et al., 2019).
Primary organic markers of biomass burning, such as levoglucosan, are
characterized by large fOM:OC (2.25) (Chow et al., 2018), and there is
evidence of secondary organic aerosols formed from residential wood
burning in ambient measurements (Mohr et al., 2012). Oxygenated
organic aerosols from biomass burning emissions were reported at
suburban sites in the north of France (Chebaicheb et al., 2023; Roig
Rodelas et al., 2019), and elsewhere (Wallace et al., 2018), consistent
with elevated fOM:OC, with ratios of 1.93 (Roig Rodelas et al., 2019) and
2.03 (Wallace et al., 2018).

3.2. Investigation of samples outside expected fOM:OC

Following the residual method, about 38% of all filters used here
were out of the expected 1–4 range for fOM:OC: 3% had a negative fOM:OC
(i.e. the sum of chemical composition was too high); or fOM:OC was < 1
(17%) or > 4 (18%) (Table S1). Per sites, fOM:OC > 4 represented the
majority of cases (14–34% of the total observations) except at SND
where the largest proportion was for fOM:OC < 1 (26%) (Table S1). fOM:

OC > 4 was more frequent in January–May, and fOM:OC < 1 in summer
(Fig. S6A) but without large differences. Samples with fOM:OC < 0 (i.e.,
negative residuals and therefore PM2.5 larger than the reconstructed
mass) were characterised by significantly larger concentrations of ni-
trate and dust compared to samples with fOM:OC within the expected
range (1 < fOM:OC < 4) (Fig. S7), suggesting a possible overestimation of

Table 2
fOM:OC calculated from median daily (residual PM2.5 mass)/OC ratios; by ordinary-least-square (OLS) regression of residual PM2.5 mass vs OC; OLS regression with a
forced zero intercept; reduced-major-axis regression (RMA) and multi-linear regression (median from models #1 to model#5) and coefficients from model #6
(Table 1). CI stands for confidence interval.

RM MLR

Site Median ratio [p25-
p75]a

OLS regression:
[95% CI];
R2

OLS - forced to origin:
[95% CI];
R2

RMA regression:
[95% CI];
R2

Multi-linear regression: median
[min, max]
Min R2 – Max R2

Multi-linear regression (model
#6): [95% CI];
R2

OPE 2.3 [1.4; 3.2] 1.0 [0.8; 1.3];
R2 = 0.16***

1.8 [1.6; 2.0];
R2 = 0.56***

2.6 [2.3; 2.8];
R2 = 0.16***

1.8 [1.6; 2.2]
R2 = 0.83–0.90***

1.7 [1.5; 1.9];
R2 = 0.52***

PEY 3.2 [2.7; 3.6] 2.1 [1.8; 2.3];
R2 = 0.36***

2.9 [2.8; 3.0];
R2 = 0.77***

3.4 [3.2; 3.7];
R2 = 0.36***

2.0 [1.9; 2.6]
R2 = 0.84–0.91***

2.9 [2.7; 3.0];
R2 = 0.77***

REV 1.8 [1.5; 2.0] 1.7 [1.4; 2.0];
R2 = 0.21***

2.1 [2.0; 2.2];
R2 = 0.62***

3.7 [3.4; 4.0];
R2 = 0.21***

1.5 [1.4; 1.9]
R2 = 0.85–0.92***

2.1 [2.0; 2.3];
R2 = 0.62***

SND 1.4 [1.2; 1.5] 1.3 [1.1; 1.5];
R2 = 0.28***

1.5 [1.4; 1.6];
R2 = 0.70***

2.5 [2.3; 2.7];
R2 = 0.28***

1.3 [1.2; 1.5]
R2 = 0.79–0.91***

1.5 [1.4; 1.5];
R2 = 0.70***

VER 2.3 [2.1; 2.4] 2.1 [1.9; 2.2];
R2 = 0.57***

2.3 [2.2; 2.4];
R2 = 0.84***

2.7 [2.6; 2.9];
R2 = 0.57***

1.9 [1.9; 2.2]
R2 = 0.92–0.95***

2.3 [2.2; 2.4];
R2 = 0.81***

*** regression statistically significant at p < 0.001.
a p25 and p75 refers to the first and third quartile, respectively.
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Table 3
Values of fOM:OC reported in the literature in various studies at remote sites.

Reference Particle
size

Location (type),
Country

Method Period fOM:OC

Kiss et al.
(2002)

PM1.5 K-puszta (rural
background),
Hungary

Total organic carbon (TOC) analyser to determine TC and WSOC.
Used solid-phase extraction on a copolymer sorbent. Analysed C, H,
N, and S of OM by elemental analyser with estimated O

Jan–Sep 2000 1.93 ± 0.038 (range: 1.9–2.0)

El-Zanan et al.
(2005)

PM2.5 Multiple sites (rural
background), US

Residual method applied to 24 h filters. OC quantified using the TOR
thermal protocol

1998–2003 2.07 (all); 2.33 (summer); 1.87 (winter)

Cozic et al.
(2008)

PM1, TSP Jungfraujoch
(remote), Switzerland

OM PM1 by Q-AMS vs filter-based OC TSP by the Sunset instrument,
following the NIOSH protocol

Feb–Mar 2005 1.84

Lowenthal et al.
(2009)

PM2.5 Great Smoky
Mountains (remote),
US

OM measured gravimetrically to OC measured by thermal optical
reflectance in residues of isolated WSOC

Jul–Aug 2006 2.4 ± 0.3

Takahama et al.
(2011)

PM1 Whistler mountain
(remote), Canada

FTIR and ACSM Mar–Apr 2019 2.0–2.2

Bressi et al.
(2013)

PM2.5 3 sites around Paris
(rural), France

Residual method applied on 24 h filters. OC by the Sunset instrument,
following the EUSAAR 2 protocol

Sep 2009–Sep 2010 Urban site: 1.95; Suburban site: 1.98; North-east rural: 2.08; North-west rural:
2.03; South rural: 2.12; Seasonal: 1.8–2.2

Crippa et al.
(2013)

PM1 SIRTA (regional
background), France

AMS Jul 2019 1.66 ± 0.11 (Whole period); 1.68 ± 0.11 (Atlantic clean);
1.62 ± 0.09 (Atlantic polluted); 1.72 ± 0.04 (Continental)

Petit et al.
(2015)

PM1,
PM2.5

SIRTA (regional
background), France

OM PM1 by Q-ACSM vs filter-based OC PM2.5 by the Sunset
instrument, following the EUSAAR2 protocol

Jun 2011–Jun 2013 1.49 ± 0.04

Ruthenburg
et al. (2014)

PM2.5 Multiple sites (rural
background), US

FTIR 2011 1.71–1.83 (all); 1.64 (winter); 1.70 (spring); 1.71 (summer, autumn)

He et al. (2018) PM2.5 Verneuil (rural
background), France

Residual method applied on 24 h filters. OC by the Sunset instrument,
following the EUSAAR 2 protocol

2011–2014 2.066

Hand et al.
(2019)

PM2.5 Multiple locations
(rural background),
US

Multi-linear regression relating PM2.5 residual concentrations to OC.
OC quantified using the TOR optical thermal protocol

2005–2016 1.67 (2005–2010); 1.46 (2005–2010: winter); 1.69 (2005–2010: spring); 1.83
(2005–2010: summer); 1.68 (2005–2010: autumn); 1.86 (2011–2016); 1.60
(2011–2016: winter); 1.86 (2011–2016: spring); 2.05 (2011–2016: summer); 1.88
(2011–2016: autumn)

Poulain et al.
(2020)

PM1 Melpitz (rural
background),
Germany

OM PM1 by Q-ACSM vs filter-based OC PM1 by the Sunset instrument,
following the EUSAAR2 protocol

Jun 2012–Nov 2017 1.71 (all); 1.29 (winter); 1.84 (spring); 2.74 (summer); 2.49 (autumn)

This study PM2.5 Verneuil (rural
background), France

Residual method (OLS regression) applied on 24 h filters. OC by the
Sunset instrument, following the EUSAAR 2 protocol

2014–2021 2.3 (all); 2.2 (winter); 2.6 (spring); 2.3 (summer, autumn)

This study PM2.5 Revin (rural
background), France

Residual method (OLS regression) applied on 24 h filters. OC by the
Sunset instrument, following the EUSAAR 2 protocol

2014–2021 2.1 (all); 2.1 (winter); 2.4 (spring); 2.8 (summer); 1.9 (autumn)

This study PM2.5 Revin (rural
background), France

AMS Summer 2012 1.8

This study PM2.5 Revin (rural
background), France

OM PM1 by Q-ACSM vs filter-based OC PM2.5 by the Sunset
instrument, following the EUSAAR2 protocol

Winter 2017 2.2

Liu et al. (2024) PM1 Cabauw (rural
background),
The Netherlands

Average daily OM PM1 by TOF-ACSM-CV-PM2.5 divided by the filter-
based OC PM1 by the Sunset instrument, following the EUSAAR2
protocol

11–May 24, 2021 and
16 Sep – Oct 12, 2021

1.58 ± 0.54

Liu et al. (2024) PM2.5 Cabauw (rural
background),
The Netherlands

Average daily OM PM2.5 by TOF-ACSM-CV-PM2.5 divided by the
filter-based OC PM2.5 by the Sunset instrument, following the
EUSAAR2 protocol

11–May 24, 2021 and
16 Sep – Oct 12, 2021

1.97 ± 0.59

TSP: total suspended particles; WSOC: water soluble organic carbon.
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both. This agrees with Galindo et al. (2020) which observed that the
chemical mass closure on PM10 samples at a location in south-east Spain
on days with Saharan dust outbreaks were lower than concentrations
measured gravimetrically. This was associated with a lower conversion
factor to estimate dust concentration from nss-Ca2+. Samples with fOM:

OC < 0 were also characterised by lower OC concentrations. Samples
with fOM:OC > 4 were characterised by lower concentrations of both OC
and EC as well as nss-ndust-K+ compared to samples with 1 < fOM:OC < 4
(Fig. S7). The Wilcox test indicates that both nss-SO4

2- and NH4
+ were

statistically different in samples with fOM:OC > 4, but the median con-
centrations were 16% and 24% lower, respectively (Fig. S7). There was,
however, a clear inter-annual distribution of unexpected fOM:OC
(Fig. S6B) that coincided with the PM2.5 instrument used with larger fOM:

OC associated with TEOM-FDMS (Fig. S1), resulting with different fOM:OC
depending on the type of instrument used to measure PM2.5 mass con-
centrations (Fig. S5). All PM2.5 instruments complied with the EU
reference method and no correction to PM2.5 mass is suggested (LCSQA,
2013). Removing those filters with a daily fOM:OC not in the 1–4 range
resulted in slightly lower fOM:OC at PEY (2.5); and larger values at OPE
and SND (2.0 and 1.8, respectively) for the 2012–2021 period. At REV
and VER, ratios were similar (2.1 and 2.2, respectively).

3.3. Sampling and analytical artefacts

The coefficients for AN and AS from the MLR were used to evaluate
possible sampling and analysis artefacts as presented in Hand et al.
(2019); Malm et al. (2011)). Coefficients were expected to be 1 for
perfect mass closure. However, multiple artefacts may exist. PM2.5 mass
concentrations can be overestimated due to inefficient drying systems
leading to the presence of particle bound water (PBW) associated with
inorganic salts and other water-soluble species such as AN and AS,
leading to coefficients > 1 (Bae et al., 2006; Malm et al., 2011). Other
possible positive artefacts comprise the absorption of acid gases to the
filter tape used in some PM2.5 analysers. This was previously reported
for the BAM-1020 systems (Le et al., 2020; Liu et al., 2013). Conversely,
PM2.5 mass concentrations may be biased low due to the volatilisation of
semi-volatile organics or ammonium nitrate. It is well documented in
the literature that AN might volatilise from the filter media including
quartz fibre filters (Chow et al., 2015; Keck and Wittmaack, 2005; Bae
et al., 2006a; Malm et al., 2011), glass fibre filters such as those used in
the Met One BAM-1020 (Le et al., 2020; Liu et al., 2013), and
Teflon-coated glass fibre filters used by the TEOM-FDMS systems
(Salvador and Chou, 2014). However, some studies have pointed an
overestimation of the PM2.5 mass by TEOM-FDMS due to the chilled
filter holding too much volatile PM (Schwab et al., 2006). Other nega-
tive artefacts may be related to the PALAS-FIDAS instrument missing

particle mass associated with particles smaller than 0.18 μm, its lower
particle cut-off.

Globally, the coefficient for AS was above 1 at all French rural
background sites for all the MLR models tested (Fig. S8D) indicating the
possible influence of PBW or acid gases associated with the presence of
sulphate or sulphur compounds. By type of instrument, the coefficient
for AS ranged from 1.0 for the BETA instrument; to 1.9 for the FIDAS
(Table 4). The coefficients for AN were 1.4–1.7 at PEY using the
2012–2021 data indicating a possible influence of volatilisation of
NH4NO3 particles at this site from either the quartz fibre filters
(Fig. S8C) or an overestimation of the semi-volatile PM leading to larger
PM2.5 concentrations from the online instrument. The artefact associ-
ated with AN at PEYwas present independently of the type of instrument
used (PALAS-FIDAS and TEOM-FDMS), although the artefact was larger
for the PALAS-FIDAS (1.6 [1.4–1.9]) than the TEOM-FDMS (1.3
[1.0–1.6]) (Fig. 3). The coefficients were 0.8–0.9 at OPE; and 0.7–0.8 at
SND indicating possible losses of semi-volatile material by the PM2.5
online instrument by 10–30%, respectively (Fig. S4C). Conversely, at
REV and VER, the coefficient was approximately 1.

From Fig. S5 and Table 4 it is clear that the type of instrument to
measure PM2.5 mass concentrations had an effect on the determination
of fOM:OC. To better understand the artefacts associated with the PM2.5
instruments, MLR was calculated for each type of instrument and site.
Coefficients associated with OC, AN and AS frommodel #4 are shown in
Fig. 2. All instruments showed coefficients for AS > 1, the lowest being
for the BAM1020 (median: 1.3) and the largest for the FIDAS (median:
1.9) (Fig. 2C). Coefficients for AN were 0.7 for the MP101M, 1.0 for the
BETA, 1.1 for both the TEOM-FDMS and the BAM1020 and 1.6 for the
FIDAS (Fig. 2B). FIDAS was the instrument with the largest coefficients
for both AS (median: 1.9) and AN (median: 1.6) (Fig. 2).

Malm et al. (2011) stated that the coefficient for AN from the MLR
included the artefacts associated with PBW and volatilisation and
argued that if the coefficient for AS is considered as representative of the
first artefact also for AN, the fraction of volatilised nitrate could be
estimated. Here, we calculated the artefact associated with the PBW
associated with AN by comparing the coefficient for AN from the MLR
when AS was considered as an explanatory variable (model #4) with
that without (model #5) (Table 4). In general, the coefficient for AN
from model #5 was slightly larger than that from model #4, but only by
6% (range: 0–10%) (Table 4), with differences independent of the
monitoring site and instrument type (Fig. S9). This indicates that any
possible artefact related to PBW was not associated with AN and mainly
with AS. However, the coefficient for OC (or fOM:OC) increased by 16%
(range: 8–39%) when AS was removed from the MLR, with the FIDAS
and the MP101M showing the greatest impact (increase by 39% and
33%, respectively) (Table 4). The introduction of AS in the PM2.5

Table 4
Coefficients with 95% confidence interval in brackets estimated from the MLR models #4, #5 and #6 for OC, ammonium nitrate (AN) and ammonium sulphate (AS)
and differences in coefficients associated with the different types of instruments.

Instrument Element Coefficient model #4 Coefficient model #5 Coefficient model #6 Difference coefficient
Model #4 vs #5 (%)

Difference coefficient
Model #5 vs #6 (%)

TEOM-FDMS OC 2.1 [1.9–2.3] 2.4 [2.3–2.6] 2.3 [2.2–2.4] 17 − 4
AN 0.9 [0.8–0.9] 0.9 [0.8–1.0] 8
AS 1.5 [1.4–1.7] –

MP101M OC 1.0 [0.9–1.2] 1.4 [1.3–1.5] 1.3 [1.2–1.4] 33 − 8
AN 0.7 [0.7–0.6] 0.7 [0.6–0.9] 10
AS 1.6 [1.4–1.8] –

BETA OC 1.6 [1.2–2.0] 1.9 [1.7–2.2] 1.9 [1.7–2.1] 17 0
AN 1.0 [0.8–1.1] 1.0 [0.9–1.2] 5
AS 1.4 [0.9–1.9] –

BAM1020 OC 1.8 [1.7–2.0] 1.9 [1.7–2.0] 2.0 [1.9–2.0] 3 6
AN 1.1 [1.0–1.2] 1.1 [1.0–1.2] 0
AS 1.1 [0.9–1.3] –

FIDAS OC 1.4 [1.1–1.6] 1.9 [1.8–2.1] 2.2 [2.1–2.4] 39 14
AN 1.9 [1.7–2.1] 2.0 [1.7–2.2] 5
AS 2.0 [1.7–2.4] –
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residual calculation and then its subsequent exclusion as an explanatory
variable in the MLR had an impact on the fOM:OC, but not on the co-
efficients for AN. This may indicate that some of the artefacts associated
with AS were also associated with OC. A possible explanation could be
the presence of organosulphur compounds such as dimethyl sulphide
(DMS) or methane sulphonic acid (MSA) which form secondary particles
on filters in online instruments leading to an overestimation of PM2.5
mass concentrations. Conversely, new particles formed from sulphuric
acid and volatile organic compounds (VOCs) at these types of moni-
toring sites might be missed by particle counter instruments such as
PALAS-FIDAS used here. Alternatively, a volatilisation of organo-
sulphate secondary particles from the quartz filter fibres might lead to
loss of PM2.5 mass, while they would still be recovered from the chemical
speciation analysis. Organosulphur compounds were estimated to ac-
count 5–10% of the organic mass at regional background sites in the US

(Tolocka and Turpin, 2012); however, those are lower at European sites,
of the order of 1.3% referred to total carbon (Glasius et al., 2018;
Nguyen et al., 2014). However, the limited impact of AS on fOM:OC cal-
culations for the BAM1020 instruments (Table 4) suggests a lower
probability of the latter explanation.

The influence of AN on the determination of fOM:OC was estimated to
be on average 4% (range: 8%–14%) as estimated from the difference in
fOM:OC from model #5 to model #6 (Table 4).

3.4. Comparison of fOM:OC with aerosol mass spectra estimates

The average fOM:OC reported by the AMS at REV in summer 2012 was
1.8 (range: 1.7–2.0) in agreement with the summer fOM:OC at REV
calculated from the long-term filter dataset (1.8 [1.5–2.1]; Table 3;
Figure S3). In 2017-18, the fOM:OC ratio derived from OC from filters and
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Fig. 2. Coefficients (and 95% confidence interval as error bars) resulting from the multi-linear regression #4 applied to each site and PM2.5 instrument. The brown
and yellow horizontal line in (B) corresponds to the fOM:OC = 1.6 and fOM:OC = 2.1 as the reference values for urban and rural sites, respectively, as per Turpin and Lim
(2001). The red horizontal line in (B–C) marks the coefficient = 1.
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OM from Q-ACSM resulted in a slope of 2.2 (95% confidence interval:
1.9–2.6) (Table 3; Fig. 3A). This fOM:OC for the 2017-18 winter campaign
was close to the site-specific ratio calculated from the long-term time
series (2.1) (Table 3; Figure S3) but lower than the winter fOM:OC (2.4)
for REV (Fig. S3). However, the fOM:OC calculated from the RM applied to
filter data for the same period was 1.6 [1.1–2.1] (Fig. 3B). Removing the
observations with fOM:OC out of the expected 1–4 range (which repre-
sented 3.2% of the data campaign), fOM:OC agreed with that estimated
from the OM from the ACSM and was 2.0 [1.8–2.2] (Fig. 3C). fOM:OC was
also estimated using the MLR models (models #1 to #5), and only the
coefficients that where statistically significant were considered. The
median value was 2.8 (range: 2.6–3.2), which was an upper limit
estimate.

3.5. Drivers of fOM:OC across the French rural sites

Daily fOM:OC variability was related to external variables such as
elemental carbon (EC), temperature (T), relative humidity (RH) and
ozone (O3). To reduce the variability of the multi-year data, this was
shown in the form of boxplots (Fig. 4). Each monitoring site observed
slightly different responses of fOM:OC against the external variables. For
instance, at VER, as EC increased, fOM:OC decreased to values near 1.2 for

EC concentrations of 0.8–1.0 μgm− 3, suggesting local fresh EC emissions
and less oxygenated aerosols (Fig. 4A). Conversely, at PEY, REV and
SND there was an increase in fOM:OC as EC concentrations increased
suggesting the lack of local primary sources of carbonaceous aerosols
and thus transported downwind to the site (Fig. 4A). The long-range
transport of air masses rich in EC was then associated with aged emis-
sions with a larger loading of oxidized aerosols. There was not a clear
pattern between fOM:OC and EC at OPE (Fig. 4A). At PEY, REV and VER
there was a reduction of fOM:OC from highly-oxidized values to less
oxidized organic aerosols with increasing temperature (Fig. 4B). At
these sites, however, there was an increase in fOM:OC indicating oxidized
aerosols at larger RH (Fig. 4C). This might be indicative of enhance
oxidation by aqueous-phase chemistry leading to the formation of SOA.
Enhanced aqueous oxidation were reported previously in some single-
component studies (i.e., maleic acid) (Gallimore et al., 2011). Oxalate
is also formed from aqueous oxidation of several precursor compounds
(see references in Ervens et al. (2011)) and it is one of the most abundant
species in organic aerosol (Golly et al., 2019; Neusüss et al., 2000).
However, it is important to note that the role of relative humidity is not
clear in all systems (Hinks et al., 2018). The effect of the temperature on
fOM:OC was the reverse at SND with an increase of fOM:OC with increasing
temperature. High temperatures lead to the increase of biogenic
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emissions of VOCs (e.g., isoprene) leading to subsequent SOA formation.
The relation between fOM:OC and temperature was non-existent at OPE
(Fig. 4B) At OPE and SND there was an increase in fOM:OC as O3 con-
centration increased probably associated with the enhanced oxidative
capacity of the atmosphere and then the oxidation of organic aerosols.
The trend was reversed at PEY, REV and VER.

To understand the main drivers of fOM:OC, linear-mixed effect models
(LME) were used and related the fOM:OC calculated by the RMmethod for
each instrument at each site (as shown in Fig. S5) to median EC, T, RH
and O3 for the same period. To avoid collinearity in the LME, T was
excluded as explanatory variable because it showed a significant nega-
tive correlation with HR (R = − 0.87) and a significant positive corre-
lation with O3 (R = 0.75) (Fig. S10). A total of N = 12 periods were
considered in the LME models matching with the changes of instru-
mentation at each site. Different formulations were built including a null
model (only with the random effect) (Table S2). The model with the best
performance was model #12 with an R2 = 0.74 and a cAIC value of
24.723, the latter lower to the cAIC of the null model (27.719)
(Table S2). Ozone and RH were the two parameters with statistically
significant impact on fOM:OC, with an increase in fOM:OC of 0.13 per every
μg m− 3 of O3; and an increase of 0.07 per every % increase in RH.
Conversely, EC was associated with a decrease in fOM:OC but the coeffi-
cient was not statistically significant (Table 5). Therefore, both photo-
oxidation and relative humidity, potentially aqueous-phase chemistry,
influenced in the determination of fOM:OC in agreement with more
oxidized OM aerosols at a larger oxidation capacity of the atmosphere.

While fOM:OC calculated using Eq. (9) with different type of online
PM2.5 instruments effectively resulted in different slope values (Fig. S5),
the instrument was not a fixed effect on the best LMEmodel (model #12;
Table 5). Model #15 had ‘instrument’ as fixed effect and it was the
second-best model according to the correlation coefficient (R2 = 0.676)
and statistically significant according to the LRT test. However, its cAIC
was large (32.406) (Table S2). Any type of instrument showed statisti-
cally significant coefficients and therefore the type of instrument was
not a significant factor influencing fOM:OC as per model #15. O3 and RH
showed similar fixed effects (0.10 per μg m− 3; and 0.04 per %; Table 5)
compared to model #12 despite the confidence interval for RH crossed
the zero value.

3.6. Mass balance calculations using tailored fOM:OC

PM2.5 was reconstructed using ion concentrations and using calcu-
lated fOM:OC. An improved PM2.5 reconstruction was achieved through
site and season-specific fOM:OC as calculated by the RM - OLS regression
forced to zero (Table 6). Reconstructed vs measured PM2.5 improved at
PEY from a slope of 0.68 (i.e. an underestimation of ~32%) using a fixed
fOM:OC of 1.8 to 0.79 and to 0.88 (i.e. an underestimation of 21% and
12% of the PM2.5 mass) using seasonal and site specific fOM:OC, respec-
tively. Furthermore, the mean PM2.5 residual was 2.0 μg m− 3 (26%
error) for the fixed ratio compared to 0.69 and 0.60 μgm− 3 (13% and 8%
error) for seasonal and site-specific fOM:OC, respectively. VER also
observed an improvement of the reconstructed PM2.5 mass, with a slope
that changed from 0.84 (fixed factor) to 0.93 (both site and seasonal fOM:

OC) which represented a decrease of the unidentified mass from 13% to
below 5%. The improvement for SND was notable when using a site-
specific fOM:OC, with a reduction of the residual from − 11% to 0.2%.
However, the use of the seasonal fOM:OC at SND did not show an
improvement on the reconstructed PM2.5 mass with a mean residual of
9%. REV also observed a better reconstruction of the PM2.5 mass using
the site-specific than the fixed fOM:OC, with a mean residual representing
3% and 9% of the measured PM2.5, respectively. Using the seasonal fOM:

OC resulted in a better reconstruction of the PM2.5 mass (4%) than the
fixed fOM:OC but not compared to the site-specific one. The improvement
of the PM2.5 mass balance at OPE was less evident, with a reduction of
the mean residual from 9% when using a fixed fOM:OC; to 4% when using
either site or seasonal fOM:OC values. For all sites, filtering the dataset
and only selecting those daily samples with a fOM:OC in the 1–4 range as
per Eq. (9), reconstructed PM2.5 mass showed larger residuals (range
from − 11% to 15%) than using fOM:OC calculated from the full dataset
(range from 0.2% to 8%) (Table 6). The use of fOM:OC calculated by the

Table 5
Model formulation, model fit and statistical parameters (intercept and regres-
sion coefficients) of the selected linear-mixed effect model for each pollutant.
Values denote the 95% confidence interval. Bold numbers indicate significance
at p < 0.05. *** LRT test significant at p < 0.001.

# 12 # 15

Formulation fOM:OC ~ O3 + EC + RH +

(1| station)
fOM:OC ~ instrument + O3 + EC +

RH + (1| station)
R2 (cAIC)LRT 0.736 (24.723)*** 0.676 (32.406)***
Intercept ¡10.1 [-17.4, -2.8] − 5.8 [-13.8, 2.4]
O3 0.13 [0.07, 0.20] 0.10 [0.03, 0.17]
RH 0.07 [0.01, 0.13] 0.04 [-0.03, 0.11]
EC − 6.0 [-19.7, 7.7] − 8.7 [-22.80, 5.40]
BETA – − 0.02 [-1.3, 1.3]
FIDAS – 0.61 [-0.41, 1.6]
TEOM-
FDMS

– 0.11 [-1.08, 1.32]

MP101M – 0.41 [-1.94, 1.13]

Table 6
Slope of the RMA regression (±95% confidence interval) relating the reconstructed PM2.5 mass from mass balance vs the measured PM2.5 concentration. The fOM:OC
used was a fixed value (1.8), the site-specific fOM:OC, site-specific fOM:OC from selected daily observations when fOM:OC = 1–4; and seasonal fOM:OC are compared. All
regressions are statistically significant at p < 0.001. Residual is the mean residual in μg m− 3 and its % over total measured PM2.5 is expressed in brackets.

OPE PEY REV SND VER

Fixed fOM:OC = 1.8 Slope 1.02 [0.99–1.04] 0.68 [0.66–0.70] 0.80 [0.78–0.82] 0.92 [0.90–0.94] 0.84 [0.83–0.86]
R2 0.78 0.71 0.78 0.71 0.88
Residual, μg m− 3 (%) 1.0 (9%) 2.0 (26%) 0.8 (9%) − 0.6 (− 11%) 1.0 (13%)

Site specific fOM:OC (OLS regression) Slope 1.02 [0.97–1.07] 0.88 [0.83–0.93] 0.86 [0.83–0.90] 0.86 [0.82–0.90] 0.93 [0.90–0.96]
R2 0.78 0.66 0.80 0.72 0.87
Residual, μg m− 3 (%) 1.0 (4%) 0.6 (8%) 0.3 (3%) 0.01 (0.2%) 0.2 (3%)

Site specific fOC:OM (OLS regression filtered
dataset)

Slope 1.05 [1.02–1.08] 0.80 [0.78–0.83] 0.83 [0.81–0.85] 0.92 [0.90–0.95] 0.91 [0.90–0.93]
R2 0.78 0.68 0.77 0.71 0.87
Residual, μg m− 3 (%) 0.5 (5%) 1.2 (15%) 0.8 (9%) − 0.6 (− 11%) 0.4 (5%)

Site specific fOC:OM (Multilinear regression) Slope 1.01 [0.96; 1.06] 0.71 [0.68; 0.75] 0.81 [0.78; 0.84] 0.82 [0.78; 0.86] 0.86 [0.83; 0.89]
R2 0.79 0.75 0.84 0.86 0.89
Residual, μg m− 3 (%) 1.0 (9 %) 2.1 (27%) 1.4 (15%) 0.4 (7%) 1.0 (13%)

Seasonal fOM:OC (OLS regression) Slope 1.06 [1.00–1.11] 0.79 [0.75–0.83] 0.88 [0.85–0.92] 0.92 [0.88–0.97] 0.93 [0.90–0.96]
R2 0.78 0.69 0.80 0.72 0.88
Residual, μg m− 3 (%) 0.4 (4%) 1.0 (13%) 0.4 (4%) − 0.5 (− 9%) 0.4 (5%)
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ensemble of the multi-linear regression as shown in Table 2 showed a
general improvement of the reconstructed PM2.5 mass compared to the
fixed ratio at REV, SND and VER, with slopes ranging from 0.84 to 0.89;
and mean residuals ranging from 7% to 15% (Table 6). However, the
PM2.5 mass balances using either site- or seasonal-specific ratio provided
better mass closure. At OPE and PEY, the PM2.5 reconstructed mass was
similar than using a fixed ratio (Table 6).

4. Conclusions

One limitation in aerosol source apportionment studies based on the
thermo-optical determination of OC is the conversion from OC to OM.
Traditionally, a fixed ratio is used based on the typology of the site.
However, the use of a fixed fOM:OC may lead to large fraction of unac-
counted mass in the PMmass balance. We calculated site specific fOM:OC,
relating the residual mass with the major inorganic and OC components
from daily filters, using also collocated on-line PM2.5 measurements at
one of the sites. The PM2.5 residual was generally well-correlated to OC
at all sites indicating that the unidentified chemical fraction was largely
explained by OC, particularly when using the OLS regression forced to
zero for this residual method (RM). Site-specific fOM:OC at our five French
rural sites varied from 1.5 (SND) to 2.9 (PEY) over the years 2012–2021.
Ratios calculated using this method on daily filter data yield comparable
results to those obtained from online OM measurements at the site of
REV. The use of site-specific fOM:OC calculated with this method for the
long-term dataset resulted in better mass balance calculations, reducing
the PM2.5 unaccounted mass. When trying to define site- and season-
specific fOM:OC and fOM:OC calculated removing outliers yielded larger
residuals in the PM2.5 mass balance. Further, multi-linear regression
analysis was also used to derived fOM:OC values but the estimated values
depended on the species included in the regression, and coefficients
derived from these multi linear regressions were probably over-
estimated. Therefore, site-specific fOM:OC define with residual method is
recommended for such exercises.

The conversion factor calculated using the RM as presented here
represents, however, the upper limit of the true fOM:OC, as the chemical
speciation data used in this study does not consider metals and other
minor elements. Additionally, determining fOM:OC using this method
relies on subtracting multiple measured variables, introducing associ-
ated errors. The distribution of samples with fOM:OC outside the expected
1–4 range in ambient air corresponded to changes in the PM2.5 online
instrument used to monitor PM2.5 mass concentrations. Notably, periods
monitored with TEOM-FDMS yielded larger fOM:OC values compared to
other types of instruments (e.g. BAM, FIDAS). Finally, several sampling
and analytical artefacts might influence the fOM:OC value as assessed by
the residual method. Generally, artefacts associated with ammonium
sulphate were transferred to the fOM:OC ratio, and those represented an
average increase of 16% of the fOM:OC. Artefacts associated with
ammonium sulphate were larger when particle counters are used to
monitor PM2.5 mass. Artefact associated with sulphate was also attrib-
uted to the presence of organic sulphate acids overestimating PM2.5 mass
concentrations. The literature also largely describes the artefact of vol-
atilisation of ammonium nitrate. Here, significant artefacts associated
with ammonium nitrate were only observed at one site of the five sites.
Keeping the sampling systemwithin a temperature-controlled cabinmay
have limited the volatilisation of ammonium nitrate at the other sites.
The artefacts associated with ammonium nitrate had a minimal impact
on the calculation of fOM:OC using the residual method, estimated at 4%
on average.

The variability of fOM:OC at the French rural background sites un-
derscores the lack of homogeneity across territories with apparent
similar site characteristics. Both photooxidation (represented by O3
concentrations) and aqueous-phase chemistry (represented here by the
relative humidity) can influenced the value of fOM:OC and their in-
fluences were mathematically quantified by means of linear-mixed ef-
fect models. EC did not show a statistically significant influence on the

determination of fOM:OC. However, EC may become an important factor
when considering a variety of sites including regional, rural and urban
environments with distinct EC and/or fresh emission gradients. The
specific type of instrument monitoring PM2.5 mass concentrations,
despite the artefacts associated with it, was not a determining factor
influencing the site specific fOM:OC derived by the residual method.

Recently, online instruments capable of measuring the chemical
composition of fine PM (mainly in PM1 or PM with an aerodynamic
diameter < 1 μm) at high time resolution (< 1 h) have become available
at multiple locations across Europe (Bressi et al., 2021; Chen et al.,
2022). However, historical datasets of PM2.5 chemistry rely mainly on
offline techniques. There is a critical need to ensure the consistency of
the PM2.5 chemical composition time-series and this study highlights
some key elements, such as those related to OM estimates from
thermo-optical OC measurements. The residual method with OLS
regression forced to zero as presented here proved to be a valid method
for PM2.5 mass balance exercises. This work provides some insights in
the calculation of the conversion factor, emphasizing the importance for
collocated measurements of both online OM and offline filter techniques
to maintain the continuity and reliability of OM estimates.

CRediT authorship contribution statement

Anna Font: Writing – original draft, Visualization, Software, Meth-
odology, Investigation, Formal analysis, Data curation, Conceptualiza-
tion. Joel F. de Brito: Writing – review & editing, Methodology,
Investigation, Conceptualization. Véronique Riffault:Writing – review
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Alastuey, A., Allan, J.D., Aurela, M., Berico, M., Bougiatioti, A., Bukowiecki, N.,
Canonaco, F., Crenn, V., Dusanter, S., Ehn, M., Elsasser, M., Flentje, H., et al., 2021.
A European aerosol phenomenology - 7: high-time resolution chemical
characteristics of submicron particulate matter across Europe. Atmos. Environ. X 10
(December 2020). https://doi.org/10.1016/j.aeaoa.2021.100108.

Brown, S.G., Lee, T., Roberts, P.T., Collett, J.L., 2013. Variations in the OM/OC ratio of
urban organic aerosol next to a major roadway. J. Air Waste Manag. Assoc. 63 (12),
1422–1433. https://doi.org/10.1080/10962247.2013.826602.

Carslaw, D., 2019. Package ‘ worldmet. https://cran.r-project.org/package=worldmet.
Cavalli, F., Viana, M., Yttri, K.E., Genberg, J., Putaud, J.-P., 2010. Toward a standardised

thermal-optical protocol for measuring atmospheric organic and elemental carbon:
the EUSAAR protocol. Atmos. Meas. Tech. 3, 79–89.

Cesari, D., Genga, A., Ielpo, P., Siciliano, M., Mascolo, G., Grasso, F.M., Contini, D., 2014.
Source apportionment of PM2.5 in the harbour-industrial area of Brindisi (Italy):
identification and estimation of the contribution of in-port ship emissions. Sci. Total
Environ. 497–498, 392–400. https://doi.org/10.1016/j.scitotenv.2014.08.007.

Chebaicheb, H., Brito, J. F. De, Chen, G., Tison, E., Favez, O., Marchand, C., Pr, S.H.,
2023. Investigation of four-year chemical composition and organic aerosol sources of
submicron particles at the ATOLL site in northern France. Environmental Pollution
330 (May), 121805. https://doi.org/10.1016/j.envpol.2023.121805.

Chen, G., Canonaco, F., Tobler, A., Aas, W., Alastuey, A., Allan, J., Atabakhsh, S.,
Aurela, M., Baltensperger, U., Bougiatioti, A., De Brito, J.F., Ceburnis, D.,
Chazeau, B., Chebaicheb, H., Daellenbach, K.R., Ehn, M., Haddad, I. El,
Eleftheriadis, K., Favez, O., Prévôt, A.S.H., 2022. European Aerosol Phenomenology
– 8: Harmonised Source Apportionment of Organic Aerosol using 22 Year-long
ACSM/AMS Datasets 166 (May). https://doi.org/10.1016/j.envint.2022.107325.

Chow, J.C., Lowenthal, D.H., Chen, L.W.A., Wang, X., Watson, J.G., 2015. Mass
reconstruction methods for PM2.5: a review. Air Quality, Atmosphere and Health 8
(3), 243–263. https://doi.org/10.1007/s11869-015-0338-3.

Chow, J.C., Riggio, G.M., Wang, X., Chen, L.W.A., Watson, J.G., 2018. Measuring the
organic carbon to organic matter multiplier with thermal/optical carbon-quadrupole
mass spectrometer analyses. Aerosol Science and Engineering 2 (4), 165–172.
https://doi.org/10.1007/s41810-018-0033-5.

Christiansen, A.E., Carlton, A.G., Porter, W.C., 2020. Changing nature of organic carbon
over the United States. Environ. Sci. Technol. 54 (17), 10524–10532. https://doi.
org/10.1021/acs.est.0c02225.

Cozic, J., Verheggen, B., Weingartner, E., Crosier, J., Bower, K.N., Flynn, M., Coe, H.,
Henning, S., Steinbacher, M., Henne, S., Coen, M.C., Petzold, A., Baltensperger, U.,
2008. Atmospheric Chemistry and Physics Chemical composition of free
tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch.
Atmos. Chem. Phys. 8. www.atmos-chem-phys.net/8/407/2008/.

Crippa, M., El Haddad, I., Slowik, J.G., Decarlo, P.F., Mohr, C., Heringa, M.F., Chirico, R.,
Marchand, N., Sciare, J., Baltensperger, U., Prévôt, A.S.H., 2013. Identification of
marine and continental aerosol sources in Paris using high resolution aerosol mass
spectrometry. J. Geophys. Res. Atmos. 118 (4), 1950–1963. https://doi.org/
10.1002/jgrd.50151.

Daellenbach, K.R., Stefenelli, G., Bozzetti, C., Vlachou, A., Fermo, P., Gonzalez, R.,
Piazzalunga, A., Colombi, C., Canonaco, F., Hueglin, C., Kasper-Giebl, A., Jaffrezo, J.
L., Bianchi, F., Slowik, J.G., Baltensperger, U., El-Haddad, I., Prévôt, A.S.H., 2017.
Long-term chemical analysis and organic aerosol source apportionment at nine sites

in central Europe: source identification and uncertainty assessment. Atmos. Chem.
Phys. 17 (21), 13265–13282. https://doi.org/10.5194/acp-17-13265-2017.

Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J.R.G.,
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